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ABSTRACT 

 
Characterization of randomness and spatial variability of material properties, loading or deterioration 
processes of structures, from inspection, is a very challenging task that concentrates the improvement 
of Non Destructive Testing (NDT) tools on more efficient and higher structural coverage. In case of 
characterization of random loading or material properties, this challenge is arduous because of the 
limited number of measures and the quasi-infinite potential positions of local failures. This paper 
presents a two stages procedure for the stochastic characterization of random fields from NDT 
measurements. According to the stationarity property, the optimal quantity of NDT measurements and 
their position can be assessed once a quality requirement is included. The proposed procedure allows: 
(i) to quantify the properties of the ergodic stationary field, and (ii) to assess the second order 
parameters of the studied random variables. The paper ends illustrating the methodology with an 
application that considers the inspection of a concrete beam with a capacitive technique. The results 
indicate that the proposed methodology is useful to identify the parameters of a random field by 
reducing the number of NDT measures under given quality requirements. 
 

Keywords: non-destructive testing, spatial variability, characterization, optimization, inspection, 
random field  

 

1. INTRODUCTION 

1.1. Background  

Many countries worldwide are increasing expenditures for maintaining existing infrastructure. Within 
the framework of Bridge Management Systems (BMS), methods based on visual inspection have been 
firstly developed with a real potential and several applications [1] and new methods and techniques 
based on measuring and monitoring are still under development [2–5]. The extension of these 
methodologies and the development of new methods for optimizing the management of other assets 
different than bridges are still under consideration: sewer or railway networks [6,7], dams [8] and 
wharfs [9–12]. The common challenge is to optimize the allocation of resources for inspection, 
maintenance and repair from a risk analysis by ensuring an allowable risk [13–16]. Reliability 
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methods offer the theoretical background and tools for safety assessment and Risk Based Inspection 
(RBI) methods account for uncertainty on measurements. 

Optimal asset management requires quantifying the condition of the structure from on-site 
measured data. In the probabilistic thinking, this question has been addressed by random variable 
modeling and updating methods that have been widely developed during the three last decades. 
Random variable updating is very useful for condition assessment and reliability updating when a 
priori distribution is known and data coming from inspections or monitored systems is collected 
[5,9,17]. Basically, the Bayes theorem and its derivative tools (Bayesian Networks) offer the 
theoretical framework to deal with this issue. The so-called RBI generalizes these approaches in the 
case of non-perfect inspections by linking inspection and decisions [4,18–20]. RBI methods are 
powerful once there is no important spatial or temporal variability involved into the problem. This 
implies that the location of the most critical defect, from a reliability point-of-view, is known. In these 
cases, it can be assumed that the spatial distribution of defects in the neighboring zone does not affect 
the reliability assessment (robustness). Nevertheless, actual progresses in the development and 
implementation of new NDT techniques or embedded sensors for new and existing structures need to 
improve these methodologies within three directions: 

- Consideration of spatial variability: it has been shown that spatial variability of real 
infrastructure cannot be described by random variables. Then, spatial randomness should be 
considered in several problems. For instance, previous studies [16,20] have found that 
inspections should also account for the spatial variability of the measured parameters. 

- Robust updating: establishing a prior distribution for a whole set of material properties or 
model parameters for existing structures conditions the result of posterior distributions 
obtained after probabilistic updating [21]. The selection of prior distributions is a very difficult 
task because it is mainly based on the knowledge of experts and then probabilistic updating 
must be applied with care. Therefore, further research is required to develop new methods or to 
improve the existing ones to obtain posterior distributions based on robust updating which is 
less depending on the uncertainties of prior distributions [22]. 

- Exploitation of data measured from NDT tools: NDT tools offer new possibilities to collect a 
huge quantity of data by an operator or a new generation of remotely operating vehicles and 
robots – e.g. [23]. These data could be useful for randomness or spatial variability 
quantification. However, there are many uncertainties and errors inherent to the measure itself 
and the assessment of a material property or model parameter from a physical measure (speed 
wave, resistivity, etc.). New research efforts should be addressed to improve the understanding, 
controlling, and quantifying these sources of uncertainty and error. 

 

1.2. Aims and Scope  

Recent studies have focused on random field characterization based on NDT measurements. Nguyen 
et al [24,25] combined several NDT techniques, kriging and variograms to assess the spatial 
variability of concrete at different scales (point, local and global). Gomez-Cardenas et al [26] proposed 
an two-step approach to optimize the number and position of ultrasound measures required to localize 
critical zones. The main objective of this paper is to propose a methodology to find an optimal 
inspection configuration (number and localization of NDT measures) that minimizes the error of 
identification of probability distributions for a given quantity of interest (resistance, porosity, water 
content, etc.) with spatial dependency. This study does not focus on the detection of damage and/or 
critical zones. The paper focuses on second order random variables and it has been developed on the 
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basis of some basic but realistic assumptions about the inspection characteristics and the random field 
nature. The proposed flowchart considers a unique stochastic field that can be parameterized by the 
same parameters (for the distribution and the spatial variability) for several components built with the 
same material and subjected to the same degradation processes (same environment). For the sake of 
simplicity of the writing and the illustration, we will consider a one-dimensional spatially distributed 
field. However, this methodology could be extended to characterize a n-dimensional random field. 
This methodology is mainly based on a two stages procedure (Figure 1): 

- The first stage aims to characterize the spatial correlation of the studied stochastic field – i.e. 
the parameter of a correlation function. 

- The second stage is devoted to get “weakly correlated” data on structural components in view 
to build a sample of events assumed as independent. 

The first part of the paper presents the adopted method for representing spatial variability – i.e., 
the Karhunen-Loève decomposition (Section 2). Section 3 details the proposed two-stages inspection 
strategy. The optimization of the number and position of NDT measures is based on a quality criterion 
that is also presented in Section 3. The paper ends with applications to a numerical and a real study 
cases to illustrate the potential of the methodology (Sections 4 and 5, respectively). 

 

2. RANDOM FIELD MODELING OF INSPECTIONS 

2.1. Usual Approaches for Spatial Variability Modeling  

Random field theory is useful for modeling spatial variability of a given quantity (material property, 
deterioration process, load, etc.). Random fields could take several forms more or less complicated 
depending on the intrinsic characteristics of the structure (material randomness, construction process, 
etc.) and/or the interactions with external actions (environmental actions, deterioration processes, etc.). 
A stationary stochastic process can be used to represent spatial variability when the random field can 
be considered as homogeneous – i.e. the values of the statistical characteristics of this field do not 
change with the space). For instance, stationary stochastic processes have been used to model the 
spatial variability of surface chloride concentration [27], concrete properties [28–30] or soil properties 
[31–35]. In some cases, when a structure is affected by several phenomena that vary with time (e.g. 
deterioration) and/or with space (concrete casting in several layers), it is modeled as piecewise 
stationary stochastic process. This type of stochastic field can represent, for example, the vertical 
spatial variability of the increase of soil strength with depth or the vertical corrosion of structures 
located in coastal environments [10]. Figure 2 plots the mean loss of steel thickness due to corrosion 
with depth for sheet-piles in marine environment where the corrosion process is governed by several 
phenomena that depend on the exposure zone E at 10, 25 and 50 years (t10, t25 and t50). It can be 
observed that there is a characteristic for each considered zone –i.e., E∈[EA, ET, EL, EI, EM, ES], limited 
by horizontal dashed lines: from the top to the bottom, Aerial (A), Tide (T), Low level of tide (L), 
Immersion (I), Mud (M) and Soil (S). In this case, a piecewise stationary stochastic field could be used 
to have a good representation of the spatial variability of the loss of thickness. 

2.2. Usual Approaches for Inspection Modeling  

During inspection, there are many factors that influence the quality of measurements – e.g, 
environmental conditions, error in the protocol, error due to material variability, and error induced by 
the operator [36]. These factors could lead, for a given inspection, to under or overestimations of the 
measured parameter. If the parameter is underestimated, the owner could decide “do nothing” when 
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repair is required. On the contrary, an overestimation generates a “wrong decision” where early repair 
generates overcharges [4,14,19]. In this paper we will consider inspection as perfect. It means that (i) 
there is no bias and (ii) the error is negligible or repetitively tests allow to obtain a good estimate of 
the real value computed as the average of measurements at a given point and therefore to assume error 
as negligible. 

2.3. Main Assumptions for Stochastic Modeling  

In order to simplify the presentation of the proposed methodology, we consider the following main 
assumptions about the nature of both the random field and inspection: 

- The stochastic field is considered as second order stationary, statistically homogeneous and the 
type of marginal distribution is known (e.g., Normal). Then, we focus on the characterization 
of the second order parameters of the marginal distribution – i.e., mean and standard deviation. 
In the following applications we will consider a Gaussian random field. 

- A larger number of measurements (more than 100) can be performed. It implies that the 
structure should have important dimensions or constituted by many components. That is 
allowed by the future generation of inspection with drones or robots. 

- Inspections are regularly spaced for simplicity of the campaign planning. However, different 
spatial configurations of inspections could also be considered in the optimization problem. 

- Inspections are considered as perfect as defined in Section 2.2 and in the literature [20]. 

2.4. Karhunen-Loève Expansion  

Given a probability space (Ω,  F , P), a stochastic field or process with space or time Z is a collection 
of Z-valued random variables indexed respectively by a set s “space” or t “time”. Let us denote Z(x, θ) 
the one-dimensional stochastic field where θ represents the randomness and x the spatial coordinate. 
Z(x,θi) is called the ith trajectory of this field and corresponds to a given realization θi of the field for 
whatever location x. Z(x1, θ) is a random variable that is generated by θ at a given location x = x1 that 
is characterized by its marginal distribution. Since we consider here only homogeneous stochastic 
fields, the marginal distribution of Z(x1, θ) is independent on the location. For example, if Z(x, θ) 
represents the one-dimensional random field of the material strength for various beams built with the 
same isotropic and heterogeneous material, the proposed procedure aims to characterize the marginal 
distribution of strength from a series of spaced correlated NDT measurements on each component. In 
this case a trajectory represents one series of one-dimensional measurements on a given beam. A 
stochastic field is second order stationary if it follows three main properties: 

- the expected value E[Z(x, θ)] does not depend on the location x – i.e., E[Z(x, θ)] = µZ; 

- the variance V[Z(x, θ)] does not depend on the location x – i.e., V[Z(x, θ)] = σZ
2; and 

- the spatial covariance COV[Z(x, θ), Z(x’, θ)] depends only on the distance (x-x’). 

Thus, the second order stationary is a property restricted to the two first probabilistic moments. It can 
be shown that various random fields such as geometries of welds for ships [37] or the spatial 
distribution of chloride concentration in reinforced concrete (RC) structures can be represented by 
stationary stochastic fields [38]. Note that if E[Z(x, θ)] is not constant with space, the time-dependent 
trend of the signal can be subtracted and the stationarity properties could be proved for the field (Z(x, 
θ) – E[Z(x, θ)]). 
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Several approaches can be used to represent a stochastic field Z(x, θ): Karhunen-Loève expansion, 
approximation by Fourier series, approximation EOLE, variograms, etc. [39]. In this paper, we select a 
Karhunen-Loève expansion to represent the stochastic field of the quantity of interest Z(x, θ) 
(resistance, porosity, water content, etc.). Karhunen-Loève expansion was selected by taking into 
account its simplicity of implementation and computational time. This expansion represents a 
stochastic field as a combination of orthogonal functions on a bounded interval [–a, a]: 

    
Z(x,θ) = µZ +σZ λiξi (θ)

i=1

nkl

∑ fi (x)  (1) 

where, µZ is the mean of the field Z, σZ is the standard deviation of the statistically homogeneous field 
Z, nkl is number of terms in the truncated expansion, ξi(θ) is a set of independent centered Gaussian 
random variables, and λi and fi(x) are, respectively, the eigenvalues and eigenfunctions that depend on 
the type of autocorrelation function (ACF) ρ(Δx). It is possible to analytically determine the 
eigenvalues λi and eigenfunctions fi(x) for some autocorrelation functions [40]. For example, if we 
assume that the field is second order stationary and we consider an exponential ACF:  

    

ρ(Δx = x1− x2 )=exp −
Δx

b

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
; 0 < b  

(2) 

 

where b is the an autocorrelation parameter and Δx ∈ [–a, a]. The following transcendental eθuations 
can be obtained for the exponential ACF: 

    

1
b
−ω tan(ωa) = 0

ω−
1
b

tan(ωa) = 0

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

 
(3) 

 

where ω is obtained by solving eq. (3). If the solution of the second transcendental equation is noted 
ω*, the eigenfunctions are: 

    

fi (x) =

cos(ωix)

a + sin(2ωia) / 2ωi

 for even i

sin(ωi
*x)

a−sin(2ωi
*a) / 2ωi

*
 for odd  i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

 
(4) 

 

and the corresponding eigenvalues become: 

    

λi =

2
b 1/ b2 +ωi

2( )
 for even i

2
b 1/ b2 +ωi

*2( )
 for odd i

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

 
(5) 

 

The spatial variability of various material properties or model parameters could be represented by 
an exponential autocorrelation. For instance, Figure 3 presents an autocorrelation function computed 
from cone penetration tests measurements in Australia [35]. It is noted that an exponential ACF as the 
described by eq. (2) could be used to represent the spatial autocorrelation of the measurements. The 
exponential ACF is adopted herein because we found that the experimental autocorrelation of the 
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spatial measures presented in section 5 follows this trend. However, other ACFs could be more 
appropriate to describe the spatial variability of other parameters. 

 

3. DESCRIPTION OF THE PROPOSED METHODOLOGY 

3.1. Proposed procedure  

This methodology focuses on optimizing identically spaced inspections on structural components of 
similar characteristics – i.e., built with the same material and exposed to similar conditions. For 
instance, a set of 1D components (beams), or a large 1D-component subdivided artificially or 
physically (expansion joint or construction joints as pipe joints in a water network) in a set of short 
components, or belonging to a wall type structure (steel sheet pile or concrete wall). For illustrating 
the methodology, we consider a set of large 1D-components (beams). Section 4.4 discusses the case of 
small components for which characterization of spatial variability is difficult. 

By using the results of inspections and random field modeling, we propose a two stages 
inspection method that provides: (i) the parameters of the spatial autocorrelation function and (ii) 
weakly correlated measurements that are gathered to build a sample used to characterize the statistics 
and the marginal distribution of Z. Figure 1 presents the flowchart of the proposed methodology.  

The first stage encompasses three starts with an exhaustive inspection with Ns1 inspections closely 
separated at distance Lb on a single component. This exhaustive inspection aims at obtaining 
correlated measurements used to estimate the autocorrelation parameter b (eq. (2)). By assuming that 
the random field is ergodic, one trajectory is sufficient to characterize the whole joint distribution of 
the stochastic process. Lb is mainly defined by expert knowledge. If there is no information about Lb, a 
small distance could be used. It could be reduced if there is no correlated information between two 
consecutive measures. This stage also requires the definition of the expected precision and confidence 
of the estimates to characterize. The following two steps are carried out when this information is 
available: 

Step 1.1 – Assessment of the autocorrelation parameter and first estimates of Z: the experimental 
autocorrelation computed by the procedure described in Section 3.2. Once b is estimated, it is 
possible to use eq. (2) to determine an inspection distance, Lc, which provides weakly correlated 
events for Z during the inspection of the components. Lb and Lc can be related by the generic term 
IDT for Inspection Distance Threshold. Thus, Lb and Lc should satisfy: Lb∈]0, IDT[ and Lc ∈ 
]IDT, L[ where L is the length of the component. The IDT is defined by assuming that after a 
given distance, the events measured from an inspection can be considered as weakly correlated. A 
Spatial Correlation Threshold (SCT) of the spatial autocorrelation is used to determine IDT. Thus 
from eq. (2), the relationship between IDT and SCT is: 

   IDT =−bln(SCT)  (6) 

For instance, for b = 20cm and SCT=0.2, IDT=32.2 cm. The selection of a given SCT value will 
influence the parameter estimate precision. Such an aspect is illustrated in detail in section 4.2. 
Besides determining b, the data obtained from the inspection on the first component (weakly 
correlated measures) is considered to determine first estimates of the mean µZ and σZ and the 
standard deviation of Z.  
Step 1.2 – Optimization of the number of measures by using Monte Carlo simulations: the 
parameters b, µZ and σZ are used for modeling inspection trajectories by combining eq. (1) and 
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Monte-Carlo simulations. Each simulation simulates an inspection over a new component. 
Various components (whole structure) are simulated. The distance between two consecutive 
simulated measures for each trajectory is Lc. These simulations are devoted to determine an 
optimal number of inspections in terms of the precision and confidence on the estimates that are 
required by the asset owner (Section 3.3). Consequently, depending on the structural constraints 
(e.g., number and length of components) the outputs of this stage are the minimum: (i) number of 
components Nt, and (ii) number of inspections per component Ns separated by a distance Lc.  
Once Stage 1 provides an optimal configuration for new NDT inspections, Stage 2 focuses on the 

statistical characterization of µZ and σZ as indicated in the following step (Figure 1): 
Step 2.1 – Assessment of µZ and σZ: New NDT measurements are carried out by considering the 
configuration provided by stage 1 (Nt, Ns and Lc). Data estimated from these weakly correlated 
NDT measurements is finally used to assess the statistical parameters of Z. 

3.2. Assessment of the Autocorrelation Parameter from Discrete Inspections  

We assume that the stationary stochastic field can be characterized by an exponential ACF that 
depends on a parameter b (eq. (2)) and that a trajectory is sufficient to characterize the whole joint 
distribution. However, the methodology can be applied to other ACF for different applications [39,41]. 
Let us focus on the assessment of this ACF from experimental data Z (obtained from sensors or NDT 
tests). Then, the autocorrelation between two observations z0 and zk, ρk is given by [34]: 

    

ρk = i=1

nb−k

∑ zi−µZ( ) zi+k−µZ( )

i=1

nb∑ zi−µZ( )2
   with    0≤ k < nb

 (7) 

 

where zi is the value of Z at location i, µZ is the mean value of Z and nb is the number of observations 
of Z. Two major procedures have been reported in the literature for the estimation of b for a spatially 
variable property from a database. The first procedure searches b that maximizes the Maximum 
Likelihood Estimate (MLE) [42]. The second procedure, proposed by Vanmarcke [43] and applied in 
[44], estimates the model parameter that provides the best fit to the sample autocorrelation. This last 
method can lead to a biased estimation when data is lacking. Consequently, we use the MLE for the 
estimation of b. Thus, the likelihood function writes: 

    

Lh =
1

2π
exp −

νi
2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

k

∏ =
1

2π

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

k

exp −
νi

2

i=1

k

∑
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

 (8) 

 

where νi is the ith component of the vector of independent standard values obtained from: 

    
ν= C−1 Ẑ−µẐ

σẐ

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 

 (9) 

 

where  Ẑ  is the vector of measurements after inspection of the random variable Z and C a lower 
triangular matrix such that CCT= ρ and ρ the autocorrelation matrix. 

3.3. Definition of a reliability oriented measure of quality of inspection 

When focusing on a practical application, we aim at optimizing the total number of weakly correlated 
inspections N=Np×Ns×Nt where Np is the number of repetitive tests for reducing the error of 
inspection, Ns is the number of inspected sections and Nt the number of trajectories (Figure 4). Here, 
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the error of inspection is not considered (Section 2.3) and by neglecting the Ns1 inspections of the first 
stage, the total number weakly correlated inspections simply becomes N=Ns×Nt. 

We use simulated data to find the minimum number of inspections that ensure a given quality of 
the estimates. In this case the quality will be evaluated with respect to the ‘theoretical’ expectation and 
standard deviation of the stochastic field Z (µZ and σZ).    µẐ  and    σẐ  are respectively the mean and 

standard deviation of the stochastic field Z estimated from N simulated measurements after inspection 
and computed by: 

    
µẐ =

1
N i=1

N

∑ẑi      and     σẐ =
1
N i=1

N

∑ ẑi−µẐ( )2
 (10) 

The quality of a result of inspection can be expressed by several concepts. If we consider the error 
of measurement, risk oriented measures have been developed: PoD, PFA [14], PoI [17], PGA and 
PWA [3,4]. Otherwise, and in case of a finite number of measurements and a finite size of the 
structure (spatial field effect), other measures can be defined based on distribution tails or a confidence 
interval of the probability of failure [44]. We select in this paper a confidence interval of both the 
mean µ and the standard deviation σ expressed as a percentage ε (precision) of µ and σ, respectively. 
We combine random field modeling and Monte-Carlo simulations to estimate the bounds of the 
confidence interval numerically for target probabilities Pti,µ and Pti,σ for both the mean and the standard 
deviation, respectively. In a real case, these probabilities could be defined by the asset owner 
depending on the type of application (structural reassessment, reliability study, etc.). These target 
probabilities are compared with the following probabilities computed from inspection data: 

    
PẐ

µ = P µẐ ∈ (1−εµ )µZ;(1+εµ )µZ
⎡
⎣⎢

⎤
⎦⎥( )  (11) 

    
PẐ
σ = P σẐ ∈ (1−εσ )σZ;(1+εσ )σZ

⎡
⎣⎢

⎤
⎦⎥( )  (12) 

Eqs (11) and (12) are very difficult to estimate. Hence, they are numerically estimated herein by 
considering data generated from random field modeling. If only a statistical error is considered 
(measures are independent), confidence intervals theory gives analytical estimates of the precision (  εµ

th  

and   εσ
th ) as a function of the number of measurements N: 

    
εµ

th =u
1−α2

σZ

µZ N
 (13) 

    
εσ

th =u
1−α2

1
2N

 (14) 

where u1-α/2 =1.96 for Pti,µ = Pti,σ =0.95. In the case of measurements on trajectories with a weak 
dependency between data, these values will increase. It is also important to note that both precision 
and confidence depend on the number of measurements and therefore could be limited by the 
structural configuration – e.g., the maximum N is limited by the structural size or the number of 
components. 
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Depending on the final use of the estimates, several precisions ε or confidence levels Pti can be 
required for the mean and the standard deviation. The optimal number of inspections can differ 
between these two estimates. For instance, for optimizing the assessment of µZ:  

    
Nopt ,µ = argmin

N
Pti,µ ≤ PẐ

µ( )  (15) 

A different value Nopt,σ could be obtained for optimizing the assessment of σZ. Then, the optimal 
number of measurements Nopt writes: 

    
Nopt = max Nopt ,µ ; Nopt ,σ( )  (16) 

 

4. APPLICATION TO A NUMERICAL EXAMPLE  

4.1. Problem Description 

This example aims to illustrate: (i) the effect of considering correlated measures in the assessment of 
the mean and standard deviation of the marginal distribution, (ii) the possibilities for the selection of 
optimal inspection configurations for specific structures, and (iii) the special case of small size 
structures. We will therefore consider in the first part a structure with a larger size for which L>>b 
allowing to assess b from a theoretical point of view. The last part of this section highlights some 
issues about the size of the structures.  

We suppose that the random field to inspect is Gaussian, stationary, ergodic, and characterized by: 
b = 1m, µZ = 100 and σZ = 20 and that the length of the structure is L=200 m. This example does not 
focus on the assessment of the autocorrelation parameter b. Section 5 will present a complete 
application of the two-stages methodology for a study case including some considerations for the 
assessment of b. We aim to provide an inspection protocol that ensures: Pti,µ = Pti,σ = 0.95.  

4.2. Effect of SCT on the Precision of the Estimates 

We first analyze the effect of the choice of SCT on the precision of the estimates quantified by εµ and 
εσ (Figure 5). For Ns=20 measurements on a large component (Nt=1) with length L=200m, the 
theoretical values computed from eqs. (13) and (14) are: εµ

th= 9.3% and εσth= 33%. These values 
correspond to the maximum precision estimated from N=20 independent measurements (statistical 
error only). It is observed that the precision obtained from consecutive measurements is close to the 
theoretical value when SCT is small. This effect is more pronounced when SCT is lower than 0.3 for 
both εµ and εσ. Therefore, it is noted that a threshold level of autocorrelation could be defined to 
provide the distance of inspection. In the following, we fix SCT=0.3 to compute IDT and define Lc 
from eq. (6). 

4.3. Selection of Optimal Configurations for Inspection 

As described in Section 3.3, for given precisions (for instance εµ = 5% and εσ = 20%) and a fixed Lc 
value, it is possible to estimate the required number of measurements Ns and Nt to ensure Pti,µ = Pti,σ = 
0.95 (eqs. (11) and (12)). By assuming that SCT=0.3, eq. (6) provides that IDT=–bln(0.3)≈1.2m. Since 
Lc ∈]IDT,L[, we select Lc =1.2m. Figure 6 presents the couple of minimum required values for Ns and 
Nt to guarantee these requirements. For both estimates, the number of measures per component 



 10 

decreases when the number of components is larger. Based on a given structural configuration (e.g., 
limited number or length of components), Figure 6 illustrates how estimating the number of measures 
per component Ns spaced by Lc = 1.2 m on Nt components. The number of required measures is almost 
the same for these quality requirements. However, more measurements will be needed if we require a 
larger precision on the standard deviation. 

The optimization can be also expressed in terms of total number or measurements N. Figure 7 gives 
the minimum total number of required measurements as a function of the number of available 
components Nt, for instance a given number of beams in a bridge. As indicated by eq. (10), there are 
different optimum values for the mean and the standard deviation. In this case, the optimal number of 
measures Nopt is driven by the assessment of µZ and computed from eq. (11). Here the optimal number 
is Nopt = 40 for Nt = 4 components and Ns=10 measures per component separated by Lc=1.2m. This 
inspection configuration requires only a total inspection zone of 12m per component. Depending on 
structural accessibility, the decision maker could decide to perform more spaced measurements that 
should improve the quality of the estimates. Different conclusions could be drawn if costs of 
measurements are included in the analysis. For example, the cost of inspecting an additional 
component could be higher than the cost of increasing the number of measures per component. 

 

4.4. Effect of the Size of the Structure  

Previous subsections assume that the components are larger enough to find a set of “weakly 
correlated” measurements. Let us focus on small structures and the related shortcomings for optimal 
characterization. We consider the same stochastic field as described in Section 4.1 and we decrease the 
size of a structure from the original length of 200m until 10m. Figure 8 shows the effect of the size of 
the structure on the precision of the estimates µZ and σZ. These results correspond to N=20 measures on 
a single component. Therefore, the theoretical precisions agree with the values computed in Section 
4.2. When SCT>0.8, there is no a unique trend because in this case the measures are very close and 
only describe the local shape of the inspected trajectory. For components larger than 50m, 20 
measurements can be realized whatever SCT. It is consequently observed that for L>50m both εµ and 
εσ converge similarly to the case where L=200m (Figure 5). It is also noted that for shorter components 
(L=10 and 25m) the values of εµ and εσ cannot be computed because it is not possible to carry out 20 
measures. Therefore, the convergence until the theoretical value cannot be reached for shorter 
components. For shorter components, the precision on the assessment of the estimates µZ and σZ could 
be improved by adding more measurements on additional components Nt>1. However, if L<b, it could 
be very difficult to obtain a good characterization of the spatial variability.  

 

5. APPLICATION TO A STUDY CASE  

5.1. Description of the Structure and the NDT Tool 

The objective of this example is to characterize the marginal distribution and spatial variability of the 
water content W, modeled as a second order random variable, for a reinforced concrete beam exposed 
to natural environmental conditions in Bouguenais (Pays de la Loire, France) by using NDT 
inspections (Capacitive technique). The inspection was performed on the first of March 2012 with 
high relative humidity of air (Hair=99%) and a low temperature (T=5°C). Figure 9 presents the 
configuration of the experiment. The proposed methodology is applied to inspections on two 
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horizontal trajectories called Line A and Line B. A vertical distance of 40 cm separates these lines. To 
neglect the error of the measurement, we performed Np=30 repetitive tests on each point and we select 
the mean value to represent the reference measurement of water content at each point. Figure 9 also 
includes the histogram for these Np=30 repetitive tests. Therefore, according to Section 2.2, we justify 
the assumption that these repetitive tests will provide a “perfect” measurement. The repetitive tests are 
carried out on Ns=80 horizontal points separated by 20 cm for each line.  

Figure 10 presents the experimental devices. The principle of the Capacitive technique is based on 
the resonance frequency measurement of an oscillating circuit (around 30-35 MHz) between several 
electrodes lying on the upper face of the concrete slab (Figure 9) [45,46]. As the combination of 
medium and electrodes behave like a capacitor, a variation of the dielectric properties of the medium 
induces a shift of the resonant frequency. A calibration enables to obtain directly the concrete relative 
permittivity from the frequency measurements, which is mainly related to the water content and the 
mixing components [47–49]. The volume investigated depends on the geometry of the electrodes. In 
this study, we used larger electrodes to investigate a 6-8 cm depth of concrete, volume that is more 
coherent with ground penetrating radar measurements. For simplicity, we consider, for this concrete, a 
linear relationship between relative humidity and NDT outputs: 

   
W =

48.4981−(Fc−Fair )
31.753

 (17) 

where Fc and Fair are frequency values in RC beam and in the air at situ, respectively. Ongoing studies 
in several laboratories worldwide are searching for more accurate relationships by considering a multi-
technique approach to account that each NDT tool is sensitive to humidity, porosity, size and type of 
aggregates. 

5.2. Data and Modeling 

Figure 11 presents the two trajectories obtained for lines A and B based on measures with a filter that 
remove the few outliers. The shape and the values are different for each line. Line A shows more 
variability but lower values in comparison to line B. It is expected to find lower water content in the 
line A because the drying process is faster in the upper zones – i.e., they are more exposed to wind and 
there is a diffusion of water through the lower zones. The variability could also be explained by other 
factors as the segregation of concrete. Taking into account this variability with height, we cannot 
merge the data of both lines to estimate the marginal distribution of W in this practical application. 
Therefore, in this case we will use the data from one trajectory to characterize the spatial variability 
and recommend an optimal number and spatial distribution of measures for the second trajectory. We 
verify first that the autocorrelation shape is similar. 

Figure 12 presents the autocorrelation data for trajectories A and B. We obtained a classical shape 
where the autocorrelation decreases with distance including negative values [34]. After fitting the 
experimental data with eq. (2) according to the method presented in Section 3.2, we found that the 
exponential autocorrelation functions are very close for the two lines. We obtained: b=0.45m and 
b=0.51m for lines A and B, respectively. It means that the exponential function could be useful to 
represent the autocorrelation and therefore for modeling the horizontal spatial variability of the water 
content in RC beams at different depths. Data of line B seems to be more regular (Figure 11) and its 
experimental autocorrelation is more close to the exponential function. Therefore, in the following, we 
will use the data from line B to characterize the spatial variability and recommend an optimal number 
and spatial distribution of measures for the study of the data of line A. Figure 12 only presents 
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autocorrelation values for 8m to illustrate the decay of the values for the first 2 meters; but these 
values were estimated by considering the information of the whole beam (16m). 

5.3. First Stage 

According to Section 3, the first stage of the inspection methodology is devoted to the assessment of b 
on a single trajectory. There is an error on the assessment of b because this parameter is deduced from 
a limited number of measurements Ns1 on a given trajectory. This error is mainly due to the number of 
measurements Ns1 on a trajectory (statistical error) and the choice of Lb. Although b could be modeled 
as a random variable B, we decide to consider it as a deterministic value determined from sufficiently 
correlated measures. b for line B is b=0.51m. Thus, we validate that the inspection distance Lb = 0.2m 
ensures higher correlation between measured data (Figure 12). By defining a SCT=0.3, we can 
determine IDT=0.61m from eq. (6). Then the distance between two weakly correlated inspections is Lc 
=0.6 m for determining the first estimates of µZ and σZ that will be used to model the random field. By 
using the experimental data obtained from this first stage, Figure 13a plots µB and σB as a function of 
the number of measures in the first trajectory Ns1 for 1,000 simulated trajectories. The convergence of 
µB through the value of b determined from the 80 measurements is faster and the error is less than 
0.05m for Ns1 ≥ 45 measures. σB decreases when Ns1 is larger by reducing the uncertainty on the 
assessment of the parameter b.  

Figure 13b presents the mean and the 95% confidence interval of µB for 1000 simulated 
trajectories as well as the values of b computed from experimental data, as a function of Ns1. The 
various experimental points for a given Ns1 correspond to different sets of Ns1 over the total number of 
measurements. It can be observed that the scatter is large when Ns1 decreases and could even reach 
0.9m for Ns1=20. It is also noted that b estimated from experimental data is close to µB when Ns1>45. 
These results therefore indicate that the assessment of b requires a minimum number of correlated 
measures Ns1. 

Let us now fix the value Ns1=45 measures and optimize the number and spatial distribution of 
measurements. By considering the autocorrelation parameter identified during the first stage 
(b=0.51m) and selecting a SCT=0.3, the distance between two weakly correlated inspections is Lc =0.6 
m. Due to the length of the beam, practically, the maximum number of measures is max(Ns,)= 26. This 
information is used to estimate the theoretical mean and standard deviation from weakly correlated 
measures µW,26=10.12% σW,26=0.67%. Values of µW,26, σW,26 and b will be used to optimize the number 
and spatial distribution of inspections. 

Figure 14 describes the effect of the choice of a confidence level (Pti  =95% and 90%) on the 
precisions εµ and εσ. After performing Monte Carlo simulations, we plot the evolution of εµ and εσ as a 
function of the number of measures per trajectory Ns. The shape of the curves is consistent with the 
theoretical eqs. (13) and (14). Namely, εµ and εσ decrease for larger quantity of available data. For all 
cases, more inspections are required if the confidence level increases. For example, at a given 
precision level εµ =10%, the needed number of inspections Ns increases from 9 to 12 if the confidence 
level increases from 90% to 95%. It is also noted that the maximum precisions are limited by the 
geometry of the structure in this case. For instance, for a confidence level of 90%, the maximum 
precisions are εµ =5.2% and εσ =20% when Ns =26 measures. 

For the second stage, we fix the following precision levels (εµ =10% and εσ =30%) and the 
confidence interval (Pti,µ = Pti,σ=95%). Consequently, by using the results presented in Figure 14, we 
obtain the optimum values: Nopt,µ=12 and Nopt,σ=20 measures. Finally, by applying eq. (15), Nopt=20 
measures. This information will be used to characterize the marginal distribution of the water content 
on the line A, modeled as a second order variable.  
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5.4. Second Stage and Validation  

By considering the output of the first stage (Lc=0.6m, and Nopt=20 measures), the estimates of the 
mean and standard deviation of W for the line A are: µW,20=9.46% and σW,20=0.86%. To verify if these 
values are within the confidence interval, we take as a reference the mean and the standard deviation 
for all the 26 weakly correlated measures: µW,26=9.37% and σW,26=0.85%. This information is also used 
to compute the bounds of the confidence interval. Thus, Figures 15 and 16 present respectively the 
evolution of µW and σW with Ns for virtual (simulation) and real inspections and the quality 
requirements defined in Section 5.3 (εµ =10%, εσ =30%, and Pti =95%). For the assessment of the 
mean, these results confirm that after Nopt,µ=12 measures (found for the line B) the estimates are inside 
the confidence interval. Similar behavior was found for the standard deviation by confirming the 
optimal value Nopt=20 measures for the assessment of both estimates. We observe similar results for 
the virtual and the real inspection by confirming that this type of simulation is adapted for representing 
the spatial variability of the water content.  

6. CONCLUSIONS 

This paper proposed an original two stages method for the optimal stochastic characterization of 
random fields from NDT measures in view to (i) assess the shape parameter of the correlation 
function, and (ii) deduce the parameters of the marginal distribution for a second order variable. One-
dimensional stochastic fields with exponential autocorrelation are selected for illustration. The role of 
the distance between measurements for the stochastic characterization is highlighted and a 
probabilistic-oriented measure of quality is defined in terms of confidence intervals of the two first 
statistical moments. That underlines the key role of SCT, the spatial correlation threshold that allows 
us to rationally define a “weakly dependence” in terms of quality of assessment of the statistical 
moments. The methodology relies on (i) the assessment of the autocorrelation function on a first 
trajectory and the use of this information for the optimization of NTD measurements (stage 1), and (ii) 
the assessment of the parameters of the marginal distribution on a given set of components by 
knowing the distance between inspections, the number of measures per component, and the number of 
components (stage 2). The paper ends with practical applications and suggestions for optimizing the 
stochastic characterization of the water content in a concrete beam by using a capacitive NDT. We 
found that the optimized configuration ensures the quality requirements. 

Further work in this area will be addressed to: 
- the application to other NDT techniques, 
-  the consideration of other types of autocorrelation functions, 
- the updating of the optimized configuration and the value of the autocorrelation parameter after 

inspection of new components, and 
- the extension of the methodology for optimizing 2D inspection configurations.  
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Figure 1. Flowchart of the proposed methodology. 
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Figure 2. Mean value of steel thickness loss in each zone at times 10, 25 and 50 years (adapted from [10]). 

 

 
Figure 3. Spatial correlation of cone tip resistance in a clay (adapted from [35]). 
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Figure 4. Definition of the number of inspections. 

 

 

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1

Correlated measures
Theoretical value

Pr
ec

is
io

n,
 ε µ (%

)

Spatial Correlation Threshold, SCT

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1

Correlated measures
Theoretical value

Pr
ec

is
io

n,
 ε
σ (%

)

Spatial Correlation Threshold, SCT  
Figure 5. Effect of SCT on the precisions εµ and εσ. 

 



 22 

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

ε
σ
= 20%

ε
µ
= 5%

M
ea

su
re

s 
pe

r c
om

po
m

en
t, 

N
s

Number of components, N
t

 
Figure 6. Number of required Ns and Nt to ensure Pti,µ = Pti,σ = 0.95 (Lc =1.2 m). 
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Figure 7. Total number of measures as a function of Nt to ensure Pti,µ = Pti,σ = 0.95 (Lc=1.2m). 
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Figure 8. Effect of the size of the structure on the precisions εµ and εσ. 
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Figure 9. Configuration of the inspection at the RC beam. 
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Figure 10. Devices used for obtaining the NDT data. 
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Figure 11. Experimental trajectories of W. 
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Figure 12. Auto-correlation data and fitted functions for W. 
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Figure 13. Effect of Ns1 on the assessment of µB and σB. 
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Figure 14. Influence of Ns on the precisions εµ and εσ. 
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Figure 15. Comparison between modeling and real results in the case of εµ =10% and Pti,µ=95%. 
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Figure 16. Comparison between modeling and real results in the case of εσ =30% and Pti,σ= 95%. 


