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[1] This study focuses on the effects of time correlation in weekly GPS position time
series on velocity estimates. Time series 2.5 to 13 years long from a homogeneously
reprocessed solution of 275 globally distributed stations are analyzed in terms of noise
content and velocity uncertainty assessment. Several noise models were tested, including
power law and Gauss‐Markov processes. The best noise model describing our global
data set was a combination of variable white noise and power law noise models with mean
amplitudes of ∼2 mm and ∼6 mm, respectively, for the sites considered. This noise
model provided a mean vertical velocity uncertainty of ∼0.3 mm/yr, 4–5 times larger than
the uncorrelated data assumption. We demonstrated that correlated noise content with
homogeneously reprocessed data is dependent on time series length and, especially, on
data time period. Time series of 2–3 years of the oldest data contain noise amplitude
similar to that found for time series of 12 years. The data time period should be taken into
account when estimating correlated noise content, when comparing different noise
estimations, or when applying an external noise estimation to assess velocity uncertainty.
We showed that the data period dependency cannot be explained by the increasing
tracking network or the ambiguity fixation rate but is probably related to the amount and
quality of recorded data.

Citation: Santamaría‐Gómez, A., M.‐N. Bouin, X. Collilieux, and G. Wöppelmann (2011), Correlated errors in GPS position
time series: Implications for velocity estimates, J. Geophys. Res., 116, B01405, doi:10.1029/2010JB007701.

1. Introduction

[2] To investigate geophysical phenomena, secular
velocities of discrete points on the Earth’s surface are
commonly estimated today from position time series of
permanent GPS stations. Horizontal velocities have been
used for decades to derive global plate kinematics [e.g.,
Argus and Heflin, 1995; Larson et al., 1997; Kogan and
Steblov, 2008] or to study regional tectonics [e.g.,
McClusky et al., 2000; Marquez‐Azua and DeMets, 2009].
More recently, GPS vertical velocities have been used to
study subduction zones [e.g., Bergeot et al., 2009], to assess
postglacial rebound processes [e.g., Nocquet et al., 2005;
Sella et al., 2007] or to correct long‐term sea level records
from tide gauges [e.g., Wöppelmann et al., 2009]. For all
these applications, unbiased velocities and realistic

uncertainty estimates are mandatory. However, several
issues are known to affect velocity estimation, for instance
reference frame errors [Argus et al., 1999], seasonal signals
[Blewitt and Lavallée, 2002], position offsets [Williams,
2003a], and antenna phase center model errors [Cardellach
et al., 2007; Steigenberger et al., 2009a]. In general, all
nonmodeled physical phenomena or neglected correlated
noise content generate processes that affect velocity uncer-
tainty estimation [e.g.,Williams et al., 2003b]. Noise sources
result from mismodeling of orbits [Griffiths and Ray, 2009;
Steigenberger et al., 2009b], atmospheric effects (loading
and tropospheric delay) [e.g., Tregoning and Watson, 2009],
correlation through estimated parameters within the GPS
data processing, and station‐dependent effects like monu-
ment instability [King and Williams, 2009] or near‐field
multipath [e.g., King and Watson, 2010; F. Dilssner et al.,
Impact of near‐field effects on the GNSS position solution,
paper presented at 21st International Technical Meeting of
the Satellite Division of the Institute of Navigation, Savan-
nah, Ga., 2008]. To properly infer valuable geophysical
information, the noise effects on velocity estimates need to
be taken into account.
[3] When rates are estimated without any a priori data

covariance information, the noise content is usually assumed
to be uncorrelated, thus simplifying the covariance matrix
into a diagonal matrix. Assuming that the sampling rate
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(DT) is constant (equally spaced data) and that the number
of points (N) is large, then the trend variance is approxi-
mated by [Zhang et al., 1997; Williams, 2003b; Bos et al.,
2008]:

�2
r �

12 � a2
N � T2

¼ 12 � a2
DT 2 � N 3 � Nð Þ ; ð1Þ

where a represents the uncorrelated (white) noise amplitude
and T is the time series length. Formal trend
uncertainties are then proportional to the uncorrelated noise
amplitude and inversely proportional to the number of
points and the time series length. This way, by
incrementing the sampling interval or the observation time
span, the trend uncertainty is considerably reduced. Esti-
mated formal velocity uncertainties may be very small.
Some studies estimating rates assuming uncorrelated data
reevaluated the estimated rate uncertainties from c2

adjustments [e.g., Khan et al., 2008], or equivalently, from
a posteriori variance scaling factors [e.g., Calais et al.,
2006; Argus and Peltier, 2010].
[4] Early studies detected time‐correlated noise in several

geodetic data sets including GPS data [Wyatt, 1982, 1989;
Langbein and Johnson, 1997; Zhang et al., 1997]. Owing to
this unaccounted time‐correlated noise, rate uncertainties
were estimated to be too optimistic up to one order of
magnitude [Zhang et al., 1997; Mao et al., 1999]. This way,
assuming that the covariance matrix reflects time‐dependent
positions, for example by supposing that station monuments
move following a random walk process, then the formal
uncertainty of the estimated velocities is approximated by
[Zhang et al., 1997; Williams, 2003b; Bos et al., 2008]:

�2
r �

b2

T
¼ b2

DT � N � 1ð Þ ; ð2Þ

where b represents the random walk noise amplitude.
Equation (2) shows that in the presence of heavily correlated
time series, velocity uncertainties are significantly aug-
mented with respect to those from uncorrelated time series.
In this case, the addition of more (correlated) positions by
extending the observation span barely reduces the formal
rate uncertainty. Moreover, changing the sampling interval,
while keeping the observation span constant, does not affect
the estimated formal uncertainties at all.
[5] The study of noise processes in GPS position time

series has been conducted on station position time series
from regional and global networks. Regional solutions filter
out some level of common correlated noise content, con-
stituting then interesting data sets to investigate specific
local noise sources as monument noise [e.g., Zhang et al.,
1997; Beavan, 2005; Williams et al., 2004; Langbein,
2008]. Conversely, noise analyses of global solutions are
appropriate to investigate technique‐related noise sources
such as reference frame and orbit, troposphere or loading
mismodeling [e.g., Mao et al., 1999; Williams et al., 2004;
Amiri‐Simkooei et al., 2007]. For all these global noise
analyses with nonreprocessed data, a combination of white
and flicker noise is commonly used to describe the sto-
chastic properties of the position time series. Most of these
authors used the Maximum Likelihood Estimation (MLE)
technique.

[6] Here we analyze the noise content of a global
reprocessed vertical velocity field formed by 275 stations
spanning up to 13 years (section 2). We investigate if noise
properties found in past global analyses are still relevant to
longer reprocessed time series and whether they can be
assumed to be constant with time. If we cannot assume this,
can we derive a time‐dependent general rule to account for
the noise content impact on velocity uncertainties? We
focused on the vertical component only because it is the
most susceptible to noise. However, results obtained on the
vertical component are largely transposable to the horizontal
components. Before the noise analysis, existing periodic
signals in time series were analyzed and removed in a sta-
tion‐by‐station basis (section 3). A wide range of noise
models were analyzed to give the general noise content of a
reprocessed global GPS solution and, more specifically, a
reevaluation of the vertical rate uncertainty for each station
of the velocity field (section 4). The long time series used
here allowed us to infer time‐dependent colored noise
properties and thus to investigate how and why time‐cor-
related GPS noise content varies with time (section 5).

2. Data

[7] Several global vertical velocity field solutions with
different station networks, time spans, and processing
strategies have been released throughout time by the Uni-
versity of La Rochelle Analysis Center Consortium (ULR)
since its creation in 2002 [Wöppelmann et al., 2004, 2007,
2009]. In this paper, we analyze the fourth ULR solution
(ULR4 hereafter). This solution is based on a homogeneous
reprocessing of a global network of 316 stations from Jan-
uary 1996 to December 2008 using the GAMIT/GLOBK
package [Herring et al., 2008]. We applied up‐to‐date
models and procedures following the International Earth
Rotation Service (IERS) standards [McCarthy and Petit,
2004] and the International GNSS Service (IGS) [Dow et
al., 2009] recommendations (http://acc.igs.org/reprocess.
html). For instance, we used the absolute antenna phase
calibration model [Schmid et al., 2007], cutoff angle of 10°,
phase cycle ambiguity fixation, VMF1 grids [Boehm et al.,
2006; Kouba, 2007] for tropospheric delay, FES2004 model
[Lyard et al., 2006] for ocean tide loading, and no higher
ionospheric effects or atmospheric loading were corrected
for. We processed the GPS data estimating daily station
positions, satellite orbits, and Earth orientation parameters.
To optimize the data processing, the station network was
split in several subnetworks. A dedicated station distribution
scheme using daily optimized subnetworks was devised to
improve the network geometry. Subnetwork loose solutions
were combined into daily and then into weekly solutions
using the combination model described by Dong et al.
[1998]. The resulting 678 weekly solutions were provided
to the IGS TIGA pilot project [Schöne et al., 2009] and to
the first IGS reanalysis campaign (http://acc.igs.org/repro-
cess.html). More details about the GPS data processing
strategy implemented for the ULR4 solution are given by
Santamaría‐Gómez et al. [2011] and are not repeated here.
[8] Station velocities were estimated combining these 678

weekly solutions into a long‐term solution using CATREF
software [Altamimi et al., 2007]. Seasonal signals (annual
and semiannual) were removed before velocity estimation.
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From the resulting residual position time series, only those
having a minimum length of 2.5 years were retained in the
velocity field, thus avoiding biased velocities due to unre-
liable estimated seasonal signals [Blewitt and Lavallée,
2002] and underestimated velocity uncertainties due to
absorbed correlated noise content in estimated trends of
short time series [Williams et al., 2004; Bos et al., 2010].
This led to 275 residual position time series with lengths
between 2.5 and 13 years. Each of these residual time series
was used in the noise analysis described in section 4 to
address station velocity uncertainties. Although seasonal
signals were already removed, remaining periodicities were
analyzed and removed before the noise analysis, as
described in section 3.

3. Periodic Signals Analysis

[9] Residual position time series may be represented by a
sum of parameters of interest and background noise. Thus
data that is not described by the functional model
(represented here by station rates and significant periodic
signals) will be captured by the stochastic model. Noise
parameters are sensitive to superimposed signals present in
time series [Mao et al., 1999; Beavan, 2005; Williams and
Willis, 2006; Amiri‐Simkooei et al., 2007]. For instance,
neglecting seasonal signals could produce power law esti-
mates biased to higher values [Blewitt and Lavallée, 2002].
To avoid biased estimates of correlated noise content, any
significant periodic signal must be removed from the time
series. Seasonal signals were already removed prior to

velocity estimation (section 2). We nevertheless verified the
presence of remaining periodicities using a nonlinear itera-
tive least squares method to detect the most powerful
spectral lines [Mignard, 2005; Collilieux et al., 2007].
Median spectral resolution is 0.1 cpy, equivalent to a median
time series length of 10 years. Only significant signals with
frequency higher than the annual frequency were retained.
Signal significance is based on the signal‐to‐noise ratio
(SNR), which is the ratio between the spectral line ampli-
tude and the median spectrum. That is, SNR is dependent on
the assumed background noise. Thus, using a white back-
ground noise, low‐frequency signals may be flagged as
significant, whereas we want to interpret them as being
background noise. The rigorous approach to estimate the
significance of detected frequency signals is to use a back-
ground noise as realistic as possible, for instance, a flicker
noise model in global GPS position time series. Here, we
devised a simpler approach based on a frequency‐dependent
decay SNR threshold to assign the significance of detected
signals. Using a white background noise and a SNR
threshold of 4, the SNR of all detected signals was extracted.
A nonlinear regression equation (y = axb) was fitted to be
used as SNR threshold. This approach yielded a frequency‐
dependent SNR threshold between 4 for the highest fre-
quencies and 6 for near‐annual frequencies.
[10] The resulting significant signals (Figure 1) were

centered nearby the harmonics of the GPS “draconitic” year
period (approximately 351.2 days or 1.04 cpy), i.e., the
revolution period of the GPS constellation in inertial space
with respect to the Sun, in agreement with Ray et al. [2008].
Very little significant amplitudes were found from the fourth
harmonic onward. The mapping of these draconitic harmo-
nics into position time series may be driven by orbit mis-
modeling, atmospheric loading, or station‐dependent
multipath errors [Ray et al., 2008; Tregoning and Watson,
2009; King and Watson, 2010]. It is worth noting that
some significant signals were also found at the highest
frequencies (∼24.76 cpy or a period of ∼14.75 days, not
shown in Figure 1). These signals are likely due to the
propagation of mismodeled tidal periods [e.g., Penna et al.,
2007].
[11] It is also appreciable in Figure 1 that even after

removing the seasonal signals (annual and semiannual) there
is still noticeable power near these bands. Some authors
have already shown this effect [Amiri‐Simkooei et al., 2007;
Ray et al., 2008]. This remaining near‐seasonal power could
result from neglecting seasonal signals with time‐varying
amplitudes [Bennett, 2008] or harmonics of the draconitic
period, but the spectral resolution is too large to really
conclude on this point. The mean amplitude of the
remaining signals (see Table 1) was small enough to not

Figure 1. Significant periodic signals using a frequency‐
dependent SNR threshold. Only the first seven harmonics
of the 1.04 cpy frequency are shown.

Table 1. Mean Frequency and Scatter and Mean and Maximum Amplitudes of the Significant GPS Draconitic Harmonics Detected in
Residual Time Series of ULR4 Solution

Draconitic Harmonic Mean Frequency (cpy) Scatter Frequency (cpy) Mean Amplitude (mm) Maximum Amplitude (mm)

1 1.09 0.10 1.7 4.5
2 2.10 0.05 1.5 2.6
3 3.10 0.07 1.3 2.4
4 4.17 0.04 1.4 4.0
6 6.27 0.02 1.1 1.5
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significantly affect velocity estimation. The maximum
values of these harmonics reach 4 mm at KODK station
close to the annual period and at ALRT station in the fourth
harmonic. For the ALRT station, this signal does not affect
the velocity estimation due to its high frequency. For
KODK, this signal corresponds to a bias of 0.2 mm/yr in the
velocity estimation if suitable parameters are not estimated.
Therefore the impact of these harmonics on velocity esti-
mates can be neglected for most applications.
[12] Figure 1 and Table 1 also show that the estimated

frequencies for the first three harmonics are a little scattered,
especially the first one. In addition, there are some signifi-
cant signals that are apparently not related to these harmo-
nics. These signals might result from real loading effects,
from tidal EOP mismodeling [Gross, 2009] or from the
propagation of unmodeled or mismodeled periodic loading,
which could be station‐dependent since they are functions
of the relative position of stations and satellites [Stewart et al.,
2005; Penna et al., 2007; Tregoning and Watson, 2009].
Another station‐dependent effect is multipath, which might
be one of the causes of the mapping of the orbit draconitic
periods into position time series [King and Watson, 2010].
In addition, the draconitic period varies for each satellite and
over time [Choi et al., 2004; King and Watson, 2010], so its
effect on position time series might not be purely harmonic.
In this sense, note that annual draconitic frequencies of
Figure 1 might be slightly biased high, although the mean
value (see Table 1) lies within the mean frequency resolu-
tion (0.1 cpy).
[13] In our study, to avoid a biased noise analysis, instead

of removing a mean frequency for these signals, the detected
significant signals (up to 10 per station from near‐annual to
the Nyquist frequency) were removed on a station‐by‐station
basis, following Amiri‐Simkooei et al. [2007]. With this
procedure, all station‐dependent significant peaks from near‐
annual to the highest frequencies were properly filtered out
while preserving the background noise to be estimated with

MLE. For instance, Figure 2 shows four power spectra
estimated using the Lomb‐Scargle periodogram [Press et al.,
1992] for the NRIL station corresponding to the raw time
series (no periods removed) and to the time series with dif-
ferent periodic signals removed (seasonal, seasonal plus
fixed draconitic, and seasonal plus station‐specific). The raw
spectra (solid black line in Figure 2) contained all the peri-
odicities, notably a prominent annual signal. When seasonal
signals were removed (dotted blue line in Figure 2), the
remaining peaks corresponded mainly to the draconitic
periods already shown in Figure 1. However, by removing
these fixed draconitic periods (dashed red line in Figure 2),
there was remaining and significant power near 1 and 3 cpy
frequencies. When removing station‐specific harmonic
terms, these signals were also filtered out (solid green line
in Figure 2). The effect of remaining peaks (e.g., fourth and
sixth harmonic) was estimated to be insignificant on the
noise analysis of section 4.

4. Noise Analysis

4.1. Noise Models

[14] Noise models tested here were formed by combining
white and colored noise components. White noise compo-
nents tested were constant white noise (WH) amplitude,
variable white noise amplitude (VW), and time‐dependent
white noise (TW) amplitude. The WH model has a constant
variance. The VW model uses the formal errors of the
residual time series and solves for a variance scale param-
eter. The TW model, in addition to the constant term of the
WH model, fits an exponential decay term, which represents
time‐dependent amplitude of the white noise over a finite
time span [Williams and Willis, 2006]. Colored noise
components tested were power law and Gauss‐Markov
processes. The power law process [Agnew, 1992] follows a
power spectrum of

Px fð Þ ¼ P0 � f k ; ð3Þ

where P0 is a normalizing constant, f is temporal frequency,
and k is the spectral index defining the frequency depen-
dence of the process. Specific power law models with
integer spectral index are named flicker noise (FN) for k =
−1 and random walk (RW) for k = −2. When k is to be
estimated, this noise model was termed here as general
power law (PL). The Gauss‐Markov process follows a
power spectrum of (S. D. P. Williams, personal communi-
cation, 2010)

Px fð Þ ¼ P0ð�2 þ 4�2f 2Þk2; ð4Þ

where b is the crossover frequency representing the point
where the spectrum of low and high frequencies cross each
other. For lower frequencies, this process is frequency‐
independent (flat spectrum or k = 0) and for the higher
frequencies, the process is consistent with a power law
process. When k is to be estimated, this noise model was
termed here as general Gauss‐Markov (GG). The first‐
order Gauss‐Markov (GM) noise model is a special case
where k = −2.

Figure 2. Vertical power spectrum for NRIL station with
raw time series (black), time series without seasonal signals
(blue), without seasonal plus fixed harmonics (red), and
without seasonal plus station‐specific signals (green). The
x axis is in logarithmic scale.
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4.2. Optimal Noise Model Criteria

[15] We used MLE as implemented by Williams [2008] to
address the nature and the amount of time‐correlated noise
in the 275 residual vertical time series (section 2). This
technique has been shown to perform better than the clas-
sical spectral analysis, improving the sensitivity to the time‐
correlated noise content [Langbein and Johnson, 1997; Mao
et al., 1999]. Moreover, when the number of points is much
larger than the number of parameters of the regression, it
performs similarly to the Least Squares Variance Compo-
nent Estimation [Amiri‐Simkooei et al., 2007].
[16] The likelihood value obtained from the MLE analysis

indicates the degree of coherence between input data and an
a priori chosen noise model. In order to select the best noise
model to describe the data, we first analyzed the maximum
likelihood ratio (dML) between different noise models.
Several authors have discussed the appropriateness of the
dML metric to assess model significance [Langbein and
Johnson, 1997; Mao et al., 1999; Williams et al., 2004;
Langbein, 2004, 2008; Beavan, 2005; Williams and Willis,
2006]. The dML between two different stochastic models
can be used as a decision parameter if the difference in the
number of estimated parameters (degrees of freedom) for
each model is taken into account. Thus the simplest noise
model showing a significant higher ML value is signaled as
the best model to describe the data. Williams and Willis
[2006] suggested a dML (at 95th percentile) between 2.9
and 3.1 for one degree of freedom difference and 4.7 for two
degrees of freedom difference. Langbein [2004] proposed a
value of dML (at 95th percentile) equal to 2.6 per degree of
freedom difference.
[17] To obtain a proper dML threshold value specific for

the noise models tested here, we used equations 7 to 9
of Williams [2003b] to create 1000 synthetic time series of
10 years of data (average span of ULR4 solution time
series). We created 500 of them following a FN with unit
noise amplitude (1 mm yr−1/4). The other 500 were created
following a RW with unit noise amplitude (1 mm yr−2). The
noise properties of these synthetic time series were then
estimated with MLE assuming FN, PL, GM, and GG noise
models. The ML values of each time series and noise model
were compared. Gauss‐Markov processes (GM and GG
models) obtained a higher ML value for 76% of the syn-
thetic time series, in agreement with Langbein [2004]. The
ML value was then compared between pairs of noise models
and the dML values at the 95th percentile were extracted
(Table 2). If the dML between two models are larger than the
correspondent value in Table 2, then the first model (left) is
preferred over the second one (right). We found subtle

differences in the dML values between different processes
even with the same difference of degrees of freedom. It is
worth noting that between the PL and GM noise models
there is no difference in degrees of freedom. However,
between these two models, MLE results often pointed to a
GM model even though synthetic noise was a PL process
(FN or RW), and also with longer synthetic time series. The
95th percentile values of Table 2 were used as a threshold to
assess specific noise model significance in section 4.3.

4.3. Noise Analysis Results

[18] To provide a more realistic velocity uncertainty for
the ULR4 vertical velocity field, the vertical velocity un-
certainties were reestimated in a station‐by‐station basis
using a full a priori variance‐covariance matrix. To obtain
the most adequate variance‐covariance matrix, several noise
models were tested to describe the noise content of the 275
vertical residual time series. By combining several white
noise and colored noise model components, we considered
27 different stochastic models. This range of stochastic
models is larger than that used in recent noise analyses of
global GPS solutions [Williams et al., 2004; Amiri‐Simkooei
et al., 2007; Wöppelmann et al., 2009].
[19] As described in section 4.2, the dML value between

different noise models was used to identify the best noise
model to describe noise content in our data. Table 3 contains
the median dML value of each model, distributed by noise
component, with respect to the RW model, which is the
model that provides the smallest ML value.
[20] By examining results of Table 3, we can draw the

following general conclusions.
4.3.1. Regarding the White Noise Models
[21] 1. Any combination of colored noise with VW was

significantly superior to the other types of white noise
combinations tested. When using a WH model, the MLE
algorithm often found zero white noise amplitude, in
agreement with the findings of Beavan [2005]. Conversely,
with VW model there was always some level of (scaled)
white noise amplitude. However, these differences between
WH and VW models did not translate into significant dif-
ferences in the estimated velocity uncertainties.
[22] 2. The TW model performed slightly better than the

simpler WH model. But, in general, there is no appreciable
exponential time‐dependent decay of white noise in GPS
data. Indeed, only for 2–3% of the time series, a TW was
significantly detected (see supplementary material).1 Time‐
variable white noise is, however, significant through the
preferred VW model.
4.3.2. Regarding the Colored Noise Models
[23] 1. The mean value of the PL model was significantly

larger than the other colored noise models. This may be due
to an important loss of solutions for the TW+GG model,
where only 86% of the time series were successfully solved
(for the other models it was between 98% and 100%). These
numerical issues were probably due to the large number of
parameters to solve (5) for the TW+GG model and the
shortness of some time series;
[24] 2. With respect to noise models with integer spectral

index (FN, RW, FN+RW and GM), the FN model was

Table 2. ML Ratio (dML) at 95th Percentile and Difference of
Degrees of Freedom Between Different Noise Models Tested With
Synthetic Data for Subsequent Model Significance Assessment

Degree of Freedom Difference 95% dML

PL versus FN/RW 1 2.2
GM versus RW 1 4.3
GG versus FN/RW 2 5.2
GM versus PL 0 3.4
GG versus PL 1 4.0
GG versus GM 1 2.3

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JB007701.
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clearly superior to the RW model. Thus RW noise, found
with different geodetic measurements and related to monu-
ment instability, was not clearly found in our results, in
agreement to other global GPS solutions [Williams et al.,
2004]. For these global solutions, this could be due to the
shortness of the time series or to the dominance of the other
noise types, such as FN, which could mask the RW noise.
This was also corroborated by the performance of the FN
+RW model, in agreement with Langbein’s [2008] findings.
For the time series with an estimated spectral index between
‐1 and −2, the dML value between PL and FN+RW is not
significant. Assuming that RW is station‐dependent and FN
is regionally correlated [Williams et al., 2004], this would
indicate that, although RW may exist, it is masked under FN
and it only would appear when FN is taken into account
through regional noise filtering or using a FN+RW noise
model. In this sense, several studies using very short baselines
[e.g., King and Williams, 2009; Hill et al., 2009] place a
bound of 0.2–0.8 mm/yr1/2 for the RW standard deviation due
to monuments. Finally, GM and FN models performed sim-
ilarly, due to that GM tends to mimic FN noise for the middle
frequencies near the crossover period [Langbein, 2008].
[25] We aim at providing a noise process model that most

often describes the autocorrelation of GPS height time series
to be used to reevaluate velocity uncertainties estimates. We
are however aware that there are station‐by‐station differ-
ences with such a general model (see the end of this
section). This way, we will also discuss the impact using
one model or another on the velocity uncertainties. From
Table 3, we can exclude all models except VW+GG, VW
+PL, VW+GM, and VW+FN. The dML threshold values of
Table 2 are larger than the dML values found between the
best four models of Table 3. This means that, regarding the
dML metric, the FN, PL, GM, and GG noise models are
interchangeable and no decision can be taken to select the
best noise model. A different criterion must then be used to
select the noise model. Thus if velocity uncertainties
between these four retained models were similar there would
be no issue to arbitrarily select one of them. Figure 3 re-
presents the velocity uncertainties of the ULR4 solution
estimated using the four models with the highest mean
likelihood value. Vertical velocity uncertainties of VW+FN,
VW+GM and VW+GG models were plotted against the VW
+PL model. From Figure 3, it was clear that both GM
and GG models showed more optimistic vertical velocity
uncertainties than the PL model. Estimated vertical veloci-
ties were compared to vertical velocities from the recently
released ITRF2008 [Altamimi et al., 2010] using a 14‐
parameter similarity [Altamimi et al., 2002]. The vertical

velocity weighted RMS of the transformation is 0.5 mm/yr.
On the basis of this vertical velocity discrepancy, the mean
uncertainty values provided by the GG and GM models
(0.19 and 0.15 mm/yr, respectively) appear to be unrealis-
tically small. These models also provide optimistic rate

Figure 3. Comparison of vertical velocity uncertainties (in
mm/yr) between VW+PL model and (top) VW+FN, (mid-
dle) VW+GM, and (bottom) VW+GG models.

Table 3. ML Ratio of Each Stochastic Model With Respect to
RW Modela

FN RW FN+RW PL GM GG

72.4 0 72.4 93.5 89.2 93.6
WH 41.3 93.4 82.3 60.7 93.8 93.8 93.6 79.9
VW 58.5 116.0 96.7 95.7 116.1 113.4 117.0 101.9
TW 44.8 97.6 82.4 97.6 103.3 106.1 62.0 84.8

94.9 65.4 81.6 101.7 100.6 91.6

aStochastic models are grouped by type (white or colored). Rightmost
column and bottom row represent the mean value of each noise
component. The best models are shown in bold.
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uncertainties in other geodetic techniques as the two‐color
electromagnetic distance meter (EDM) technique [Langbein,
2004] and the DORIS technique [Williams and Willis, 2006].
Extracting a set of stations with the most optimistic un-
certainties (2–3 times smaller than the PL uncertainties), we
note that the estimated crossover frequency of the Gauss‐
Markov processes (b in equation (4)) for this set was large,
with a median crossover period of 2.3 months (median
crossover period was 5.5 months and 1.5 years for the whole
VW+GM and VW+GG estimates, respectively). Since a
higher crossover frequency represents more low‐frequency
spectra being uncorrelated, this estimated parameter severely
affects the resulting rate uncertainty. Therefore, since the true
uncertainties are unknown, we chose to be conservative and
to take the stochastic model that provided the least optimistic
uncertainties. Thus both Gauss‐Markov models (GG and
GM) were discarded as the most general noise model.
[26] Comparing velocity uncertainties derived from VW

+FN and VW+PL models in Figure 3, differences were
much more varied (RMS of 0.23 mm/yr), which would
represent the station‐by‐station deviation from the fixed
spectral index of the FN model. The fact that uncertainty
differences were centered near zero (mean uncertainty dif-
ference is 0.02 ± 0.01 mm/yr) might indicate that, in general,
the power law noise is driven by a flicker nature. In addi-
tion, the estimated mean spectral index for the VW+PL
model was close to the spectral index corresponding to a
flicker noise with a mean value of −0.88 ± 0.02 and a RMS
of 0.27. Therefore to account properly for the mean spectral
index of the time series the VW+PL model was preferred to
the VW+FN. The mean noise amplitudes estimated using
both VW+PL and VW+FN models were for colored noise
5.8 ± 0.1 mm yr−k/4 and 6.0 ± 0.1 mm/yr1/4, respectively, and
for white noise 1.9 ± 0.1 mm and 2.0 ± 0.1 mm, respectively.
The median vertical velocity uncertainty estimated using

the selected noise model was 0.31 mm/yr, which represents
a factor of degradation between 4 and 5 compared to that
if no time correlated noise is assumed.
[27] Although the selected VW+PL model best described

the GPS data used here in a general way, some stations
affected by specific error sources or geophysical effects can
contain a different noise type [Langbein, 2004]. Therefore in
order to estimate the most reliable velocity uncertainty of the
ULR4 vertical velocity field in a station‐by‐station basis, the
dML value was analyzed between all the tested models. For
each station, the simplest model with the highest significant
ML value was selected. GM and GG noise models were
however rejected if their estimated crossover frequency
exceeded the semiannual frequency (about 10% of the sta-
tions). Table 4 shows a summary of the percentage of sta-
tions retained for each colored noise model component.
Adopting this procedure, the main noise type of the analyzed
time series is flicker noise, followed by a general power law.
This way, reprocessing the GPS data with a homogeneous
strategy and parameterization did not depose flicker noise as
the dominant type of correlated noise content for a global
GPS solution. The estimated ULR4 velocities and their
correspondent uncertainties issued from the station‐depen-
dent best noise model are presented in the supplementary
material. The vertical velocity uncertainties range from 0.1 to
3.3 mm/y with median value of 0.34 mm/yr.

4.4. Noise Content Time Dependency

[28] Noise analyses of global solutions are useful to get
insights into the noise sources of the GPS technique. For
instance, analyzing if correlated noise content is constant or
time‐dependent can provide relevant information about its
sources. Here, we analyzed the effect of different time series
lengths using synthetic and real data. In addition, we made
use of real data to assess different data time period effects on
estimated noise parameters.
[29] We used 54 vertical residual time series of the ULR4

solution spanning more than 12 years (1997.0–2009.0) with
more than 95% of available data (minimizing possible bia-
ses resulting from data gaps). Each of these time series
was windowed with a decreasing rate of 1 year, from 12 to
2 years of data (Table 5). Different periods of the same data
span were analyzed separately, from the newer data (group
a) to the oldest (groups b, c, d, e, or f). Table 5 summarizes
the 28 different groups of time series analyzed. Each group
of 54 time series corresponds to a different time series length
or to a different data time period (see Table 5). Using a

Table 4. Percentage of Stations of ULR4 Solution in Which
Stochastic Properties Are Described By Specific Colored Noise
Model Component

Noise Model Percentage of Stations

FN 71%
PL 24%
GM 2%
RW 2%
FN+RW 1%
GG 0%

Table 5. Summary of Time Series Groups Analyzed

Span/Perioda a b c d e f

12 1997–2008 ‐ ‐ ‐ ‐ ‐
11 1998–2008 1997–2007 ‐ ‐ ‐ ‐
10 1999–2008 1997–2006 ‐ ‐ ‐ ‐
9 2000–2008 1997–2005 ‐ ‐ ‐ ‐
8 2001–2008 1997–2004 ‐ ‐ ‐ ‐
7 2002–2008 1997–2003 ‐ ‐ ‐ ‐
6 2003–2008 1997–2002 ‐ ‐ ‐ ‐
5 2004–2008 2001–2005 1997–2001 ‐ ‐ ‐
4 2005–2008 2001–2004 1997–2000 ‐ ‐ ‐
3 2006–2008 2003–2005 2000–2002 1997–1999 ‐ ‐
2 2007–2008 2005–2006 2003–2004 2001–2002 1999–2000 1997–1998

aThe time series are distributed into 11 groups of different time series lengths (left) and in up to six groups of different data time periods (up).
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combination of PL plus WH, the median estimated noise
parameters (noise amplitudes and spectral index) were
extracted for each group. Estimating the trend uncertainty
from short residual time series, taking into account correlated
noise, causes estimated noise content to be biased low since
some amount of time correlation is absorbed by the trend
estimation [Williams et al., 2004; Bos et al., 2010]. To assess
this bias on noise estimates with real data, we created 500
synthetic time series of 12 years (626 weekly points each)
following the mean noise parameters of the 12‐year solution.
They were then windowed and analyzed as with real data.
[30] Figures 4 and 5 show the median spectral index and

the median PL amplitude of each analyzed group of real and
synthetic time series of Table 5. Within the synthetic data,
both parameters (spectral index and colored noise amplitude)
are biased slightly low for shorter time series (maximum bias
of 0.1 units and 0.5 mm yr−k/4, respectively), in agreement
with the findings of Williams et al. [2004]. With real data,
however, the spectral index and the PL amplitude of the
different groups do not follow the same pattern as the syn-
thetic data. The departure between real and synthetic data
suggests that the noise content in the real time series is not
constant, confirming the results of Bos et al. [2010]. In
addition, given a time series length, incorporating older data
clearly resulted in higher spectral indices (Figure 4). For
example, from 3 to 8 years, spectral index of older data (b, c,
or d solutions) are systematically closer to −1 than newer
data (a solutions). That is, older data contain noise that is
more correlated than newer data. This way, it is remarkable
that with only 4 or 5 years of the oldest data (solutions 4c

and 5b), the spectral index is similar to that obtained using
the whole 12 years of data. Therefore noise content of long
time series might be adversely affected by the noise content
of the oldest data. It is worth noting that for solutions with
9 to 12 years of data, the spectral index did not change
significantly by adding new and less correlated data. The
spectral index started to diverge with the 8‐year solutions
and shorter.
[31] Regarding the amplitude of the power law noise

(Figure 5), we observe the same kind of discrepancy
between old and recent data analyses. In this case, the
separation between older and newer data was more striking.
Time series of only 2 or 3 years of the oldest data contained
noise amplitude similar to that found for the whole 12 years
data. In addition, solutions of 2 to 4 years using data before
epoch 2001.0 (2e, 2f, 3d, and 4c solutions) were signifi-
cantly noisier than other solutions of the same length. The
discrepancy between older and newer solutions was also
clear in the spectral index of Figure 4. In Figure 4 the dis-
crepancies between older and newer groups start with the
solutions shorter than 8 years, where the newer solution (8a)
was the first one that did not use data before 2001. Therefore
the year 2001 corresponds likely to a major improvement in
GPS data processing.
[32] Figure 6 shows the median velocity uncertainty for

each time series group of Table 5. It shows a reduction of
the velocity uncertainty with time series length following a
1/T relationship, corresponding to a flicker noise [Mao
et al., 1999] (note that the noise model used was a general
power law process). Regarding exclusively older (dashed

Figure 4. Median spectral index for each group of time series of Table 5 (solid circles) and for synthetic
time series (open squares) with respect to time series length.
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line) and newer data (dotted line), the relationships between
vertical velocity standard deviation and time period esti-
mated are

�older
r ¼ 3:38 � T�1:10

�newer
r ¼ 1:79 � T�0:96 ð5Þ

being expressed in mm/yr and T in years. Equation (5)
confirms that noise amplitude is significantly reduced with
newer data. Figure 6 also shows the uncertainty prediction
equation (25) of Williams [2003b] (solid line). This predic-
tion closely matched the uncertainty estimated using older
data, representing an upper bound (conservative) prediction.
Equation (5) and Figure 6 show that, for instance, to reach a
mean velocity uncertainty of 0.45 mm/yr, 4 years of newer
data (4a) were needed against 6 years of older data (6b).

5. Discussion

[33] The discrepancy between synthetic and real data
groups indicates that the correlated noise content in GPS
data is not time constant. Correlated noise amplitude of the
newest data (a solutions) rises linearly (Figure 5) with time
series length probably because more long‐period signals are
being considered together with the use of noisier (older)
data. Conversely, the noise amplitude of older data exhibits
a convex shape (Figure 5) likely indicating that the two
features (time series length and data time period) are in
opposition. This way, for shorter and older time series (from

3d to 7b) noise amplitude might rise linearly with time series
length. Conversely, for longer and older time series (from 7b
to 12) noise amplitude might slightly decrease due to the
less noisy (newer) data being added. The same noise pattern
with similar amplitudes was found using the 54 selected
stations from the reprocessed IGS residual vertical time
series (red symbols in Figure 7) of the new ITRF2008
realization [Altamimi et al., 2010]. This confirms that noise
dependency on data time period is systematic for the longest
time series of global GPS solutions and does not depend on
our solution. For the IGS solution however, the noise sep-
aration for data before and after 2001, seen in the ULR4
solution, is less clear.
[34] In addition to this time‐dependent correlated noise

amplitude, Mao et al. [1999] found a latitudinal dependence
of the white noise amplitude. Williams et al. [2004] also
pointed out a likely latitudinal dependence of the flicker
noise amplitude, being noisier in the Southern Hemisphere
than in the Northern Hemisphere in both studies. Here, we
analyzed 83 vertical time series (26% in Southern Hemi-
sphere) from the ULR4 solution for which we have 95% of
data between 2000 and 2009. To avoid the effect of time
series length and data time period, we windowed the
selected 83 time series to those epochs. For these time
series, the white noise amplitude difference between
Northern and Southern Hemispheres (0.18 ± 0.16 mm) was
not significant. Conversely, a Student t‐test showed that the
Southern Hemisphere was significantly noisier with a PL
amplitude difference of 1.05 ± 0.38 mm yr−k/4. Therefore the

Figure 5. Median power law noise amplitude (mm yr−k/4) for each group of time series of Table 5 (solid
circles) and for synthetic time series (open squares) with respect to time series length.
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correlated noise amplitude in reprocessed time series with
the same length and data time period is also spatially cor-
related, in agreement with the findings of Williams et al.
[2004]. The limited number of equatorial stations of our
set did not allow us to confirm the parametric function used
by Williams et al. [2004]. No difference was found on the
spectral index between both hemispheres.
[35] Since spectral index and noise amplitude depend on

data time period, it is clear that the noise source of this
variation cannot be monument noise. This would imply an
important change of the environmental conditions of all the
stations had occurred, which is unrealistic. This remark
supports the idea that correlated noise in current global GPS
solutions is mainly related to data processing and data
quality and quantity (both increasing with time) and not to
monument noise. Thus even when performing a homoge-
neous reprocessing, the quality of the solution varies with
time. Heterogeneities within the reprocessing might come
from the increasing quality and quantity of stations in the
tracking network, the quality and quantity of available data
for each station (performance of receivers/antennas evolving
with time), the evolving equipment on satellites, the quality
of the orbital parameters estimation (increasing number
of tracking stations with time), the tropospheric model (a
priori pressure or mapping function values changing with
improved ECMWF analyses) or from unmodelled differential
second‐order ionospheric effects (through the solar 11‐year

cycle) [Petrie et al., 2010]. To narrow the field of possible
sources down, we carried out three tests.
[36] To investigate if the noise dependency on data time

period comes from the evolution in the number and density
of stations in our network, the 54 stations used in the win-
dowed noise analysis of section 4.4 were reprocessed in a
unique time‐constant network (see Figure 8, bottom) for the
whole period (test A hereafter). These 54 stations have time
series of more than 12 years with at least 95% of available
data. The parameterization described in section 3 was
applied. The noise analysis indicated that the correlated
noise amplitude is ∼34% higher corresponding with a
sparser network. However, the same data time period
dependency persisted (see green symbols in Figure 7), thus
ruling out the tracking network evolution origin. Within this
test we also estimated the orbital parameters. This way,
improvements in the orbit estimation due to an increasing
tracking network is also ruled out.
[37] The heterogeneity of the reprocessing of the whole

network was also noticeable in the increased percentage of
resolved ambiguities over time, from ∼50% in 1996 (∼70%
in 1997) to ∼95% in 2009 (not shown here, see Figure 1 of
Santamaría‐Gómez et al. [2011]). The increased percentage
of fixed ambiguities in our tracking network is not related to
the increased number of stations, since stations were dis-
tributed and processed in a daily variable number of sub-
networks (the number of stations per subnetwork is nearly
constant, between 40 and 50 from 1998 to 2009). Tregoning

Figure 6. Median vertical velocity uncertainty (mm/yr) for each group of time series of Table 5 with
respect to time series length. Fitted curves represent the relationship between data span and mean velocity
uncertainty for older (dashed) and newer (dotted) data. Uncertainty prediction (solid) was estimated using
equation (25) in the work of Williams [2003b].
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and Watson [2009] and King and Watson [2010] have
recently shown that fixing ambiguities reduces the magni-
tude of power law noise and propagated spurious signals.
Thus the time‐evolving rate of fixed ambiguities might drive
the noise dependency pattern found here. To analyze this
fact, the same windowed noise analysis of the 54‐station
network was performed using the ambiguity‐free GPS
solutions (test B hereafter), i.e., no attempt to fix phase
ambiguities was done. For this test, the correlated noise level
was ∼17% higher with respect to the ambiguity‐fixed solu-
tion of test A, corroborating the findings of Tregoning and
Watson [2009] and King and Watson [2010]. However, a
similar pattern of data time period and time series length
dependence was found again (blue symbols in Figure 7),
thus rejecting the ambiguity fixation rate as the main source
of this dependency.
[38] The noise pattern and the increased number of fixed

ambiguities might be then related to some extent to
improved receiver quality. For instance, under high iono-
spheric activity, the Turbo Rogue receivers (almost domi-
nating the IGS tracking network before year 2000) had a
tracking problem of L2 at low elevations (see IGS electronic
mail message 2190, 1999; http://igscb.jpl.nasa.gov/piper-
mail/igsmail). Near the ionospheric maximum period
(2001–2003), the data of a midlatitude Turbo Rogue
receiver was severely affected up to an elevation of 25° (see

IGS electronic mail message 2240, 1999; http://igscb.jpl.
nasa.gov/pipermail/igsmail). This way, to isolate the lacking
of low‐elevation observations in the older data, we
reprocessed the 54‐station network with a cutoff angle of
30° (test C hereafter). The correlated noise amplitude of this
test was ∼125% higher with respect to the test A. The noise
dependency (not shown in Figure 7) had a similar pattern
although results were less significant due to that at least half
the observations were not used (see Figure 8).
[39] The origin of the noise dependency on data time

period might be then related to other causes such as quality
improvements of data and models, increasing of the amount
of data per station, or to the constellation evolution. In this
sense, King and Watson [2010] showed that constellation
evolution represents a clear driver for time‐correlated noise
content in GPS position time series. Even for a constant
tracking network the number of observations (double dif-
ferences) used to estimate the parameters increases with time
(Figure 8). This increase might reflect the increased number
of satellites and the quality improvement of the tracking
equipment (number of channels, phase detection, clock noise,
antenna phase stability, etc.). As receivers and antennas
improve, the number and quality of the tracked phases in-
creases, resulting both features in more observations to be
inverted. This probably explains the increasing percentage of
fixed ambiguities (Figure 8 on the middle) and the noise

Figure 7. Median power law noise amplitude (mm yr−k/4) for each group of time series of Table 5. Data
analyzed come from the IGS/ITRF2008 solution (red) and the tests A (green) and B (blue). Each symbol
represents a different data time period of Table 5, being a, circles; b, squares; c, triangles; d, diamonds;
e, pentagons; and f, inverted triangles. Amplitude values correspond to the IGS/ITRF2008 solution.
Amplitude values for test A and B are scaled as described in the text.

SANTAMARÍA‐GÓMEZ ET AL.: CORRELATED ERRORS IN GPS TIME SERIES B01405B01405

11 of 14



pattern found here. It is worth noting that the decreasing rate
of fixed ambiguities before mid 2000 in test A (Figure 8)
might be related to the ionospheric effect on L2 tracking for
Turbo Rogue receivers. This effect would persist even for
high‐elevation observations since the same phenomenon was
reproduced in test C. This would indicate that even using a
cutoff angle of 30° might not avoid the L2 tracking problems
of older receivers under high ionospheric activity.
[40] The noise dependency on time series length and time

series period would probably be larger if nonreprocessed
solutions are concerned. This is illustrated by the difference
of position repeatability in earlier epochs between the
nonreprocessed and the most recent GPS solutions as shown
in Figure 3 of Collilieux et al. [2010]. Thus noise content
comparisons between different solutions and different
regions should take into account the respective time series
length and data time period included, especially within non-
reprocessed solutions. For instance, Williams et al. [2004]
compared noise content of different global and regional
networks of different time series lengths (from 2 to 11 years)
and different data epochs (from 1991 to 2003). Langbein
[2008], using recent data with a median span of 6.5 years
from 1996 onward, compared noise results to those of
Williams et al. [2004] ones within the same regional network
(the mean data span used by Williams et al. [2004] for
that regional network was 3.2 years between 1991 and 2003).
His results showed reduced correlated noise amplitude, in

agreement with our results. Beavan [2005] used data from
a regional network with time series lengths between 2 and
4 years from 2000 to 2004.5. He also compared his noise
analysis (resulting from short and newer data) to those per-
formed by Williams et al. [2004] (longer and older data) and
concluded that his results were only slightly noisier. How-
ever, none of these studies took into account the fact observed
here, that is, noise parameters are time‐dependent.
[41] Therefore to properly account for the colored noise

dependency on data time period, the known data covariance
matrix used in noise analyses [e.g., Langbein and Johnson,
1997; Zhang et al., 1997; Mao et al., 1999; Langbein, 2004;
Williams, 2003b; Williams et al., 2004; Amiri‐Simkooei
et al., 2007; Bos et al., 2008] might take the following form:

C ¼ a tð Þ � I þ bk tð Þ tð Þ � Qk tð Þ tð Þ; ð6Þ

where C is the data covariance matrix, a(t) is the time‐
dependent white noise amplitude, I is the identity matrix,
bk(t)(t) is the time‐dependent colored noise amplitude of the
time‐dependent spectral index k, and Qk is the noise model
covariance matrix. bk(t) could be approximated, for instance,
by an exponential or linear decay function. The few estimates
for each time series length (maximum of 4 for 3‐year solu-
tions) did not allow however to assess the appropriateness of
these functions. Note that a(t) was already tested with such

Figure 8. (top) Number of double differences, (middle) percentage of fixed ambiguities, and (bottom)
number of processed stations for test A (black) and test C (gray).
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an exponential decay function in the noise analysis carried
out in this study (TW model, see section 4.3).

6. Conclusion

[42] We analyzed 27 noise models with 275 globally
distributed stations from the ULR4 solution spanning 2.5 to
13 years to estimate their realistic vertical velocity uncer-
tainty. Seasonal signals were previously removed when
velocities were estimated. Before the noise analysis, we
analyzed the remaining periodic signals in time series.
Signals corresponding mainly to the GPS draconitic orbital
period and its harmonics were found with amplitudes up to
4 mm. These signals might result in velocity differences up
to 0.2 mm/yr, which can be neglected because estimated
uncertainties (at 1 sigma) are at the same level.
[43] From the 27 noise models tested in this study, the

combination of variable white noise and power law noise
was the best‐rated model. The power law was found to be
driven mainly by a flicker noise nature (71% of the sites
show flicker noise). This shows that, even within a
reprocessing of more than 13 years of GPS data, flicker
noise persists as the dominant colored noise for global
networks. The mean noise amplitudes estimated using a
power law model were 5.8 ± 0.1 mm yr−k/4 for colored and
1.9 ± 0.1 mm for white noise. The vertical velocity uncer-
tainty (at 1 sigma) estimated using the preferred noise model
for each station ranged between 0.1 to 3.3 mm/yr with a
median value of 0.34 mm/yr.
[44] We showed that correlated noise content is dependent

on time series length but mainly on data time period. We
found that older data are noisier than recent ones and that the
same noise levels were estimated with the oldest 4–5 years
and with the full 12‐year time series. This fact confirms that
the main noise source in global GPS solutions is not related
to monuments [King and Williams, 2009; Hill et al., 2009].
The several tests carried out in this study revealed that the
increasing number of stations in the tracking network, the
increasing rate of fixed ambiguities or the lack of L2 data
for Turbo Rogue receivers under high ionospheric activity,
are not the source of the correlated noise time‐dependent
pattern. Suspected sources of this time dependence are, for
instance, the increasing number of data recorded per station,
their improved quality, the satellite constellation evolution
and the improvements of the performance of some models
(i.e., tropospheric delay) used in the reprocessing.
[45] Correlated noise content comparisons between dif-

ferent solutions and different regions should take into
account the respective time series length and data time
period included, otherwise erroneous conclusions might be
derived. This should be taken into account especially within
non‐reprocessed solutions where the time period depen-
dence is probably larger.
[46] Using homogeneously reprocessed GPS data, our

results confirmed the 1/T dependence for the velocity
uncertainty first given by Mao et al. [1999] corresponding
to a flicker noise, with T the length of the time series in
years. Indeed, the vertical velocity uncertainties were esti-
mated to decrease as ∼1.8/T mm/yr with recent data against
∼3.4/T mm/yr with older. For instance, to get a velocity
uncertainty of 0.45 mm/yr, 4 years of recent data were
needed against 6 years of older data.
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