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ABSTRACT

Through the photosynthetic activity, microalgaegass more than 25% of annual inorganic carbon ldisdan
oceans into carbohydrates that ultimatedgrve to feed the other levels of the trophic oeka. Besids,
microalgae synthesize bioactive molecules suchgmgnts and lipids that exhibit health propertiesaddition,
abiotic stresses, such as high irradiance, nutséntvation, UVirradiation trigger metabolic reorientations
ending with the production of other bioactive compds such as>-3 fatty acids or carotenoids. Traditionally,
these compounds are acquired through the dietanerafation. The increasing, and often unsatisfaemand
for compounds from natural sources, combined wWithdecrease of the halieutic resources, forcesgheech for
alternative resources for these bioactive companédviicroalgae possess this strong potential. Fetairce, the
diatomOdontella auritais already commercialized as dietary complemedta@mpete with fish oil for human
nutrition. In this contribution, the microalga waris briefly presented. Then, the different typé®iologically
active molecules identified in microalgaes presented together with their potential use. @uspace limitation,
only the biological activities of lipids and pigntenare describedin details. The contribution ends with a
description of the possibilities to play with th@ve@onmental constrains to increase the produgtiaf
biologically active molecules by microalgae andayescription of the progresses made in the fiéldiga

culturing.
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INTRODUCTION

More than 70% of Earth is covered with water, irichtthe most dominant group of living organismghast of
algae. Algae belong to the plant phylum. They aostty living in water while they have colonized every tgbe
ecological niche. The preferences of individuabhkpecies, which determine their geographicatitlistion,

are based on their environmental tolerance and thgbonses to abiotic interaction. On the othadhaatural
populations are morphologically, physiologicallyddmochemically diverse because of genetic vaiitgtaind
abiotic conditions [1].

Algae have a tremendous impact on the sustainabilithe marine ecosystem as being the primaryyrecs

[2] and, therefore, a food source for other marirganisms. Their potential is not restricted to fioint as
through feeding of other organisms placed at hifgnazls in the food chain can take benefit frontipalar me-
tabolites such as photoprotective compounds [3]tH@rbasis of their constituting number of cellgaa can be
grouped as unicellular or pluricellularganismsthese terms being often taken as synonym foraaigae or
phytoplankton and macroalgae, respectively. Alggeasent a few percentage among the total number of
species described so far (Fig. S1) even thoughuhger of species is probably largely underestichptg This
is especially true for microalgae. The use of algméertilizers and food is established since tit@aity. Con-
sidering the increasing need of food, bioenerggrpiaceutical and cosmetic compounds, a particttantaon
has been paid for the last decade to sustainabdeimees that do not compete with usual food ressuidi-
croalgae are pretty good candidates for such aogerpnd their long evolutionary and adaptive difieegion
has led to a large and diverse array of biochengizastituents. Amazingly, the development of indakpro-
cesses using algae remains weak (5Iiroduced/year) when compared to the field prtdoq4 16 T pro-
duced/year) [4], probably becausetlefir typicalweakgrowth rate compared [5]. Therefore, the improvenaén
culturing performances constitutes the best waydge alga cost-competitive. This can be achievexligh a
deep knowledge of algal biochemistry and physiolagg obviously through optimization of bioreactdigver-
theless, numerous new molecules are isolated,idedcat the atomic level and tested for their lgatal activi-
ties, as testified by the increasing number of jpakibns on this topic found in databases (totahber of papers
published between 1964 and 2011 = 705) (Fig. S#is @mount remains however very small when compared
with the number of papepublished about molecules originating from highlaings (> 13000)1, 6-10]. Until
recently, it was thought that the metabolishalgaeis close tahatof higher plants. However, the interpretation
of sequenced genomes established the originalittyeoflgal metabolism and will bring informatioroaib pri-

mary and secondary metabolisms, and the presera@yaholeculege.g.,[11]).
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70 In this contribution, the microalga woris first briefly overviewed. Then the different types oblbigically

71 active molecules identified in microalgasepresented together with their potential use. Dusplce limitation,
72 only the biological activities of lipids and pigntsrarediscussedn details. The contribution ends with a

73  descriptionof the possibilities to play with the environmentahstrains to increase the productivity of

74  biologically active molecules by microalgae andhaf progresses made in the field of alga culturTitg data
75 presented in this manuscriptelimited to the eukaryotic microalgae producing neoles with a biological

76 activity. Molecules isolated from macroalga or degwith other usages will not be covered here thied

77 interested reader is invited to read the excefpapiers published on these topiegy(,[3,6-7,1214)).

78

79 THE MICROALGA WORLD: A BRIEF OVERVIEW

80 Algae is a generic term used to designate euka&rpogianisms sharing photoautotrophy (most of tieeiss)
81 and the absence of land plant characteristics asittachea. From the evolution point of view, atga

82 polyphyletic group of taxons, all deriving from timternalization of a cyanobacterium-type organista a

83 eukaryotic heterotrophic cellhisexplains why actual chloroplasire surrounded by two envelopé§{17.
84 On the basis of the chloroplast pigments, thresaliyes are currently considered as distinct evalatioclusters

85 of taxa [L5-17:

86 - The blue lineage of primary endosymbiantsvhich chlorophylla (Chl a) is the only Chl-type of molecule
87 and the chloroplast still contains a peptidoglycath wall typical of cyanobacteria. These organidraimg
88 not eukaryotes, this lineage is not presented here.

89 - The red lineage of primary endosymbiointsvhich Chla is alsothe only Chl-type of molecule. Belong to
90 this lineage more than 6,000 species, mostly uolegland marine, including many notable seaweefti®d
91 algae or Rhodophyta. Subcellular and phylogeneiatyaes revealed that red algae are one of thetolde
92 groups of algaelB-19. The oldest fossil eukaryot® far identifieds a red alga and was found in rocks
93 dating to 1,200nillion years ago40].

94 - The green lineage of primary endosymbidnthich Chlais associated to Chl b. Belongs to this lineage the
95 green algae or Chlorophyta (more than 6,000 species which the higher plants emerged. Chlorophyta
96 forms a paraphyletic group of unicellular, colon@dccoid, caenobial and filamentous forms as agll

97 seaweeds.

98
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To explain the presence of additional membranesnarthe chloroplasts, a secondary endosymbiotitsact
usually invoked. The members of the red lineageesbndary endosymbionts constitute a very diversepgof
organisms, the most important from the pharmacalupicint of view being the diatoms (Heterokontadl &me

dinoflagellates (Alveolata).

Diatoms

With 250 orders and more than*Epecies, the diatom taxon is one of the most dévgroup of microalgae [21].
Diatoms are thought to contribute as much as 258%eoEarth primary productivity [22]. Diatoms habe
unique property to have a siliceous cell wall arelcharacterized by a typical pigment compositahorophyll

¢ as accessory Chl molecule and fucoxanthin amtie carotenoid [23-24]. Diatoms are used in agitaito
feed mollusks whereas several intracellular mettdsosuch as lipids (eicosapentaenoic acid (EPA),
triacylglycerols) and amino acids are extracted asetl by pharmaceutical and cosmetic industrief5

Beside these compounds, diatoms may excrete tqigsients and antibiotics.

Dinoflagellates

Itis a large group of photosynthetic organismsuifa a large fraction are in fact mixotrophic céks
combining photosynthesis with ingestion of prey][Zome species live in symbiosis with marine agma
(called zooxanthellae). As diatoms, dinoflagellatss Chl ¢ as an accessory pigment. Dinoflagedieganostly

known for red tides and the neurotoxins releasethgwsuch a phenomenon.

MICROALGAE: NATURAL FACTORIES FOR BIOLOGICAL MOLECU  LES IMPORTANT FOR

HEALTH

Toxins

Toxic compounds are mostly produced by dinoflageiaand diatoms, although not every specie prodhées
type of compound. For instance, the dinoflagellaiexandriumsp.,Karenia brevigpreviouslyGymnodinium
breve produces paralytic shellfish toxins saxitoxi) [28] and brevetoxin-B2). This last toxin is responsible
for neurologic disorders [29] singletaxon can synthesize several toxins (Talle $he blooms may cause hu-
man irritation of eyes and throat in the coastahaOccasionally, the consumption of contaminatedifsshs re-

sults in human poisoning, the prominent symptonisgogastrointestinal disordeBeside these toxins, the di-
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noflagellateAmphidinium klebiproduces different groups of macrolides such gshéainol-7 ) [30] exhibit-

ing extremely potent cytotoxicity against L1210lsék. mouse lymphocytic leukemia cells and antifungus ac-
tivity [29]. Goniodoma pseudogonyaulaxcretes antimicrobial and antifungal substanceb as goniodomin-

A (4) [31-32]. In addition, goniodomoin A has been shdw inhibit angiogenesis [33prorocentrum limaand
Dinophysissp. synthesize okadaic acid, a protein dephospdtowgl inhibitor andsambierdiscus toxicusro-
duces ciguatoximndmaitotoxinthat causeliarrhetic disturbances (Tabld)SGambierdiscus toxicualso pro-
duces fungus growth inhibitors, the gambieric a2 (Table ).

Several diatom species have been reported to sipéhdomoic acids) (Table ) [34], a tricarboxylic acid an-
tagonist of the neuroexcitatory glutamate insedticproperties [25]hatcan be fatal after accumulating in shell-
fish, some of which being able to retain high lesethis compound [35]. Domoic acid was found tovieey ef-

fective in expelling ascaris and pinworms [29].

Pigments As mentioned earlier, most of the algae are phwtddrophs. Consequently, their chloropksterich
in pigmented molecules such as tetrapyrroles arataroids. The molecules are able to absorb ligdniks to
their characteristic conjugated double bonds. Eédcitosynthetizing microalga contains at least theec
tetrapyrrole Chh (6). Except in red algae, in which Chis accompanied by the open tetrapyrroles
phycoerythrin, phycocyanin and allophycocyaninegrand brown algae contain another type of Chl cubde
(Tablel). The set of light harvesting molecules is compatad with several carotenoids (Car) (TableAs it
will be explained below in details, these molecuiase a great health and therapeutic potential.

The diatorrHaslea ostrearissynthesizes and excretes a hydrosoluble blue pigrienso-called
marrenine, responsible for the greening of oysies [§']. This pigment exhibits an antiproliferagiveffect on

lung cancer model [36] and has potential antivarad anticoagulant properties [37].

Amino acids: Beside the universal functions of amino acidprioteins, they are important for skin hydration,
elasticity, photoprotection (see below) and arduithed in cosmetics [7]. Amino acids from diatomsibi

dermatological properties [38].

Photoprotectants The best known photoprotectasynthesized by microalgae are mycosporine-likenami
acids (MAAs) (Fig. S3). MAAs act as sunscreenstiuce UV-induced damage and also as ROS scavengers

[39]. Mycosporine-like amino acids have been foimchore than 380 marine species, including micraalg
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[40]. A database referencing the studies in migaal cyanobacteria and macroalgae is availabledthiver-

sity of Erlangen, Germanyttp://www.biologie.univ-erlangen.de/botanik1/html/eng/mar-

database.htm). A recent study reported the screening of 33dffit species belonging to 13 classes of microal-
gae for MAAs [40]. The highest concentrations wienend in dinoflagellates whereas diatoms contaielgt

low amounts. MAAs have the potential to replacsiugplement today’s available sunscreens and phatigu

those based on petrochemical products. More rgcertler photoprotective molecules such as pyrophgin

a (Eicenia bicyclis[41]), fucoxanthin (Fuco)Hijikia fusiformis [42]) have been isolated from brown macroal-
gae [3,29]. Because these molecules are also priesgicroalgae, they have been also considereel. Heffrey

et al [43] have reported the occurrence of such comgeium206 strains of 152 microalgae. In many mikroa
gae, the cell is made more resistant to UV by toeiaulation in the cell wall of sporopollenin [44] Car-poly-

mer absorbing UV light.

Lipids: In animal cells, essential fatty acids and spealify polyunsaturated fatty acidRUFAg are

incorporated into lipid membranes in which theyr@ase the fluidity and exchanges between extra and
intracellular compartments. Numerous studies hareahstrated that dietay3 PUFAs have a protective effect
against atherosclerotic heart disease [45-48].tWheprincipalw3 fatty acids in marine oils, eicosapentaenoic
acid (EPA; 20:®3) (7) and docosahexaenoic acid (DHA; 2&8) (8), have a wide range of biological effects.
Both EPA and DHA are known to influence lipoproteietabolism, platelet and endothelial function,
coagulation, and blood pressure. More specificBBA performs many vital functions in biological mieranes,
and is a precursor of several lipid regulators imed in the cellular metabolism. In addition, tHéeet of w3

fatty acids may depend, to some extent at leagh®presence of underlying disorders such aspigtsiinia,
hypertension, diabetes mellitus, and vascular deef8]. DHA is a major component of brain, eyaeeand
heart muscle, it has been considered as impoahiréain and eye development and also good carsiooNar
health [49].,03 fatty acid supplementation in animals and hunmasslts in substantial increases in the plasma
and tissue levels of EPA and DHA, as well as vagiaicorporation of the phospholipid classes irioas

tissues. These differences may be important fostisequent use and metabolism of EPA and DHAoALh
both fatty acids are thought to be biologicallyiest most studies have focused on the relative itapoe and
effects of EPA, primarily because of its predomizein marine oils and fish species. Because aniglH are
unable to synthesize these molecules, they muatdpgired through the diet. So far, the main sofoc®UFASs,

free or methyl ester derivatives, fatty alcohaddtyf amines and glycerol is fishes. However, figldepends on
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fish quality and fish resources, which are dectiramd fish tends to accumulate poisonous subtanadse

food chain. Therefore, alternate sources have exptited. Microalgae present an excellent potéidir this
purpose because (i) their fatty acid profile is@ien than that of fish oil, (ii) the production atition can be
controlled and last but not leastj Xthe algal species can be selected accordinget®thA required (see
below). In contrast to EPA, molecules from fishmibducts are unstable and exhibit a poor tasta,dskers

from microalgae are of better quality and more Istf0]. Importantly, selected PUFA can be favored through
choosing culture conditions. Some species, su¢thasodactylum tricornutuproduce mainly EPA [51].
Among the lipids, arachidonic acid (Ara), an esisatty acids, is produced by some algae sudliaschia
conspicug52]. Ara is also a precursor of prostaglandins leottotrienes and, is also a component of mature
human milk [53]. All these molecules can be usediftierent activities such as nutrition (human amimal),

pharmaceutics, cosmetics, aquaculture and biodiesdlction.

Polysaccharides
Best producers of polysaccharides of interest evevib and red seaweeds. Among the different types of
polysaccharides synthesized by these algae andisioesized by red microalgae suchPagohyridiumsp.,

those that are highly sulfated present an antigictivity [54-55].

Miscellaneous

In addition to their usenh flavor and fragrance industries, monoterpenes daxen increasing commercial
attention because of their putative action as ahtnsecticides andntimicrobial agents [56]. Little is known
about the production of these molecules in micraalgut their use as biotransformant has been e=pf6].
Water extract of the marine diatarasleaostreariaexhibited anticoagulant activity [37].

Due to space limitation for this review and theikklity of the data, only the lipids and pigmenés molecules

with biological activitiesaredetailed in the next section.

LIPIDS AND PIGMENTS, TWO TYPES OF BIOLOGICALLY ACTI VE COMPONENTS

SYNTHESIZED BY MICROALGAE

Lipids

10
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Fishes andnarine microalgae are the primary producerss®PUFA While microalgae synthesize3 PUFA,
fishesusually obtain EPAvia bioaccumulation in the food chain. So far, two lo¢ tquestions that have been
addressedire (i) is it cheaper to produc@3 fatty acids from algae is than from fistvand (i) arew3 fatty
acids obtained (EPA and DHA in particular) from romlgae as effective as those obtained from fisf oi
Regarding the first question, it was shown tatfatty acid production from microalgae would inddee less
expensive thatthe onefrom fishes. In addition, unlike fish oil, microalw3 fatty acid extracts have no odour,
are less susceptible to beontaminated by heavy metals, and do not contaglesterol [57]. Finally, when
microalgae are grown under controlled conditiohs,domposition of the fatty acids shows no seasaarétion
[58]. As fish oil fails to meet the increasing dewafor purified PUFA, alternative sources are besogght,
especially from microalgae. Microalgae containdipévels between 20-50% (Tallg but in stress conditions
such as N-deprivation or an irradiance or tempeeaincrease, some species of microalgae are #ble,
accumulate up to 80% of their dry weight in fat -9, including large quantities of high-quality3 PUFAs
(Table 2). Thus, algae are gaining increasing ttteecause of their important values for humaaitheas well
as for aquaculture.

So far several algae are already used as dietpplesnentsChlorella sp, afreshwateunicellular green alga, is
known to be a good source of proteins, lipid s@ubitamins, pigments, choline, and essential miseraa
bioavailable form. The administration Ghlorella affects some biochemical and physiological funti¢71].
As algal sources of DHA come the brown algehizochytriumsp. (40% DHA, 17% docosapentaenoic acid
(DPA)), the green algdJlkenia sp. and the red alg&rypthecodinium cohnii(40-50% DHA) [72]. The
production from thdatter specieds especiallywell described [73] and marketed by Martek compddiyA
produced from microalgae is mainly used for chitd adult dietary supplements [74]. Moreov@r,cohniihave
effects in aquaculture [75]. It has already beeswsdd that algal oils rich in DHA are nutritionakguivalent to
fish oils in several tests [76-77], suggesting #ilgal oils couldconstitutea susbtitution to fishils. In addition,
new algal sources for th@3 very long chain PUFAs (VLCPUFA) are being examdinghese include the
production of EPA from other strains such as madiaoms.P. tricornutum a marine diatom, has been widely
used as a food organism in aquaculture and comrsides a potential source for EPA production [7He Fole
marine microalga known to be rich in EPA used aketary supplement is the marine diat@naurita It has
been shown that extracts of this microalga havardiproliferative effect on cultures of bronchomainary and
epithelial cells [78]. Different experimental moslere used to conduct studies in relation withafs@3 fatty

acids from microalga sources. Using freeze-drieckroailgae, animals and specifically murine modetscdten

11
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used as previously described by several authorsn&loor modified (chemically and genetically) straibf mice
and rats have been already used to study the fiéCthlorellasp. onmyelosupressiomnduced by lead [79], on
glycogenesis improvement in diabetic nid¢&1] and on dglipidemia prevention in rats fed with high fat diet
treatments [80]. The comparison of rats fed witefre-driedO. aurita or with fish oil shovg that the plasma
triacylglycerol concentration in rats fed microagaas lower than in the control group and also thahe fish
oil group (Fig. 1). The plasma concentrations of LIHand LDL-cholesterol were significantly higher by
comparison with the control rats. For the rats\eith fish oil, LDL cholesterol was similar to the rdésd with
control diet, while HDL cholesterol was higher thanthe group ofcontrol rats. Nevertheless, the HDL/LDL
cholesterol was statistically similan both the control and microalga-fed groups of,rathereas this ratio is
greater intherats fedwith fish oil.

According to the use of microalga as an alternatish oil, differences in the enrichment of tissnew3 fatty
acids and specifically in EPA were mentioned. Imfjaesults reported in Fig. 2 show that the led#l&EPA,
obtained for each organ are significantly differéim ones obtained in the two other groups (férsaidied
organs). In fact, whatever the organ consideregr(liheart or kidney), EPA levels were significgritigher in
rats fed with the freeze-dried microalga diet tirathose fed with fish oil or control diets. Moremy significant
higher amount of DPA was found in the liver andnidg total lipid of the rats fedith the diatom diet than in
those from rats fed with fish oibr with the control dietThe n-6/n-3 ratio in liver, heart or kidney, were
significantly different in the three experimentabgps, the rats fed the control diet being systaally higher
than in the two other groups. In addition, thisaodénds to be lower in the rats fed the freezedricroalga
diet by comparison with those fed the fish oil ombese results showed that a freeze-d@edurita diet could
be considered as an alternate source to fish agulation of blood parameters involved in lipigttabolism
and in the enrichment of tissue B fatty acids and specifically in EPA. This enridmh into EPA at the
expense of Ara incorporation into total lipids ofer, heart and kidney could have beneficial efeict the
cardiovascular disease prevention as describedfishihoil. Moreover, when intaghicroalgae areised in diet,
the effect of thew3 fatty acid role could be potentiated with pigmeantentsuch as Fuco or other Cars. These
results are in line with those publishbgd Rao & Rao [81] and Micallef & Garg [82fvho found a synergistic
action between pigments, fatty acids and phytoktem plasma lipid concentration decrease, on nimftatory
response and thus on cardiovascular disease msletion. These molecules that are naturally coathinO.

aurita make this organism a major actor in human nutritie an alternate to fish oil.

12
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278 Pigments

279 Three major classes of photosynthgtigmentsoccur among micrlgae Chls and derivatives, Cars (carotenes
280 and xanthophylls) and phycobilins, which togettearesent hundreds ofolecule purificatiof83]. Considering
281 their high structural diversity and the possibilty pharmacomodulate these molecules, the poteofial
282 microalgapigments to obtain molecules of therapeuticalrageis very high. Because of their lability and
283 difficult purification, the biological activity of most moleculesmainsunstudied[27,59] A large number of
284 studies designed to purify and identify bioactivel@scules from microalgae have lead to the isolatidn
285 pigments. These purified pigments usually havegh hictivity on pharmacological and cellular effestat very
286 low concentrations.

287

288 Antioxidant, anti-inflammatory and antimutagenic activities

289 Oxidative stress is a major cause of inflammatorgnés implicated in a large number of diseasesh s
290 cancer, neurodegenerative and cardio-vascular stisear diabetes. The antioxidant and anti-inflatorga
291 activities of microalga pigments is widely demoatd and evidenced in numeroirs vitro free radical
292 scavenging assays aiml vivo assays. The antiradical capacity of metal-free @ivatives such as chlorins,
293 pheophytins, and pyropheophytins is much weaker tthea corresponding metallo-derivatives. Protopgrish
294 methyl ester and its magnesium chelated derivatigewell as pheophorbide and pheophytirb, were also
295 identified as strong antioxidant molecu[8¢]. The ability of the porphyrin ring to transfer elexts explains the
296 antioxidant activity ofChls and derivatives. The high antioxidant activity mfieophorbideb, compared to
297 pheophorbide, suggests that the presence of the aldehyde fumetay also be critical to this activity [85]he
298 antioxidant properties of Chls and Chl-derivativdisappear in the presence of light [86)etal-free and
299 metallo-Chl derivatives have also antimutagenidviigis, as demonstrated using a bacterial mutagjsrassay
300 [87-89. Microalgal carotenoidse(g, zeaxanthin (Zea), astaxanthin (Ast8))(and epoxycarotenoids.g,
301 neoxanthin) have strong antioxidant activitiesitro andin vivoin animal models. Particularly, Asta has a great
302 potential to prevent cancer, diabetes and cardoaNasdiseases [89-90]. The presence of the hydmuxy keto
303 endings on each ionone ring explains Asta uniqagufes, such as the ability to be esterified [@Lhigher
304 antioxidant activity and a more polar configuratiblan other Cars [92]. Epidemiologic studies dertrates an
305 inverse relationship between cancer incidence #@tdrg Car intake or blood carotenoid levels, ititivention
306 trials using a high dose of carotene supplememtsiai show protective effects against cancer aticaascular

307 disease. Rather, the high risk population (smokersasbestos workers) showed an increase in ceases in
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these trials [93]. Phycocyanmand phycoerythrin also exhibit antioxidant and-aftammatory activities [94-
96]. As a conclusion, mosticroalga pigments exest strongin vitro antioxidant activity, but additional
intervention trials are required to precise théis@ption, metabolism and potential as naturabaitant, anti-

inflammatory and antimutagenic compourdsivo

Cytotoxicity

A large number of studies performed in cancer ogidtswvn in vitro clearly demonstrate the antiproliferative,
cytotoxic and pro-apoptotic activities of Chl dexiiwves, Cars, and phycobilins [27]. Moreover, salstudies
designed to purify antiproliferative molecules fromarine microalgae have led to the isolation obtsare (Zea)
[83,91] and epoxyCarse(g, Fuco, violaxanthin (Viola)10)) [78,92]. Fuco is the prototypical example of a
microalgal cytotoxic pigment with an important thpeutic potential. Its strong antiproliferative fatpxic and
pro-apoptoticactivities, at concentrations inferior to 1 uM, yeabeen widely studied and demonstrated on a
large number of human cancer cell lines from vaitissular origin (lung, breast, prostate, lymphpgestric,
uterine, neuroblaston&tg) [98-102]. The molecular mechanisms involved ia tytotoxic activity of Fuco are
not completely understood, but various cellulargéss of Fuco have been identified. Because of its
hydrophobicity, Fuco easily crosses and integreg#lsmnembranes. It inhibits mammalian DNA-depend2Ni
polymerases [103], protects against ROS and UVdadWDNA injury [99,104-107], down regulates cyclanrsd
CDK expression, disturbs major transduction pattsa@ntrolling cell survival and transcriptional imation of
genes involved in resistance to apoptosis and amtér drugs in cancer cells. (MAPK, NB-[99,101],
p21WAF/Cipl CDK inhibitor [108], Bcl-xL [109-110]).Fuco also enhances Gap junction intracellular
communication, an important process in the contfotell growth, differentiation, apoptosis inducti@nd
diffusion of anticancer drugs [111]. Intestinal almion and metabolism of dietary Fuco into its onaj
metabolite fucoxanthinol was demonstrated in mibeit not in humans. Absorption studies in humadscated
that less than 1 nmoliis found in plasma after a 1 week diet contairfingo- rich diet [112]. In the same way
as Fuco, a large number of microalga pigments vaenatified as cytotoxic at very low concentrationgancer
cells. They belong to the epoxyCars clasgy{ Viola [96], halocynthiaxanthin [100,103,113-114jeridinin
[114-117]), to Chl derivativese(g, Chla, pheophytina, pheophytin b, pheophorbid or to phycobilins €.g,
phycocyanin) [92]. Moreover, for some of them, thaiticancer activity was confirmed afiger osabsorption.
As an example, in the pathogen-free ddY strain mibhe development of skin tumors induced b3-O-

tetradecanoylphorbol-13-acetatesuppressed when 1 pmol peridinin is added itedievater [118]. For most
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molecules, intestinal resorption, bioavailabilitydametabolism are unknown. Besides, their effeectdncancer
cells and immune cells is mostly unexplored. Unideding their pharmacological activity in humanlsehay

allow to obtain potent selective anticancer phaeuécs.

Ref 95

Multi-drug resistance reversion in cancer cells

Microalgae pigments may have interest to restorgy drensitivity or reverse ntitdrug resistance in cancer
cells, as some of them inhibit or down-regulate gdefflux pumps. As examples, neoxanthin increases
rhodamine 123 accumulation in multi-drug resistarft#DR) colon cancer cells [113], inhibits thE-
glycoprotein(P-gp efflux pump and reverses MDR in doxorubicin-resitMCF-7 cells and hmdrl- transfected
L1210, at 4 and 40 pg.ril_respectively 19. Viola and violeoxanthin are effective MDR modiaes in Colo
320, at4 and 40ug.mL?, respectively 120. Mod erate P-gp inhibition by Viola was obseniadhMDR1-
transfected L1210 and MDA-MB-231 expressing the MIRRimp (HTB26) at 20 pg.mL[121-122]. In the
same way, a significant reduction of P-glycoprotekpression R-HepG2 cells, at both transcripticaad

translational levels, was observed when cells wewged with pheophorbide[123].

Antiangiogenic activity

Fuco and its physiological metabolite fucoxanthihakve antiangiogenic effects, as demonstrateddrbtbod
vessels and HUVEC tube formation assays. In SCIPenmjected subcutaneously with’1@UT-102 cells,
fucoxanthinol did not affect tumor incidence, bugrsficantly slowed tumor growth. It also significty

decreased microvessels outgrowth, in a dose-dependner, in aex vivoangiogenesis assay.

Use as fluorescent probes

The physicochemical characteristics of phycobili@l and Chl catabolites make them suitable for ase
fluorescent probes for cellular and tissular aralyg.g, cell sorting cytofluorescenceflow cytometry
histofluorescence, binding assays, ROS detectadgling of pathological or apoptotic cel&tg). Phycocyanin
or phycoerythrin-coupled antibodies are common eatgy available for research and medical use, irclwhi

phycobilins act as powerful and highly sensitiueofiescent probes (for reviews, see [96]).
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368 Other preventive or therapeutical use

369 Microalgal pigments have demonstrated their lacktaficity and biological activity in a wide rangef o
370 biological applications, including prevention of ute and chronic coronary syndromes, atherosclerosis
371 rheumatoid arthritis, muscular dystrophy, catamed neurological disorders. They are also recomextnd
372 protect the skin and eyes against UV radiation {128]. Lutein is one of the major xanthophylls fdun green
373 microalgae. It selectively accumulates in the maailthe human retina, protects the eyes from dixielstress,
374 and acts as a filter of the blue light involvedniacular degeneration and age-related cataract1[262,27].
375 Fuco anti-allergic activity was recently evidenagging a rodent mast cells model [127]. It couldoatave
376 interest to limit the risk of obesity [127,129])e@ause of their antioxidant and anti-inflammatazgivity, most
377 microalga pigments have neuroprotective effectstitured rat cerebellar neurons, and hepatopreteetifects
378 in hepatocytes growim vitro (e.g, phycocyanin, phycoerythrin) [96]. Besides, somgligs have demonstrated
379 antiviral and antifungal activities for some pigrt@.g, allophycocyanin, phycocyanin) [96, 130].

380

381 Potential and obstacles to a possible pharmaceutical development of microalgae pigments and derivatives

382 The lack of oral toxicity of microalgae pigmentsyrze due to a weak intestinal resorption but alsggssts a
383 possible pharmaceutical development for these ratdede.g, [24]). Most microalga pigments are labile
384 molecules, sensitive to light and oxygen, and ftighly probable that their half-life in a physigloal context is
385 short [131]. This lability has interestvhen considering new applications, but is also a limit to their
386 pharmaceutical development. It also explains thgh hprice and low availability of pigments standards
387 necessary to set up intervention trials and clinissays. Consequently, theégea lack ofin vivo studies on
388 absorption, metabolism and pharmacokinetics of maiga pigments [27]. Moreover, dozens of pigmemis a
389 derivatives are unstudied because no standmmbailable. It is essential to carry on the develept of
390 economically viable industrial processes to obtagh amounts of pigments and derivatives (seleatibaver-
391 producing species and strains, definition of physjcal conditions giving the best production yild
392 optimization of eco-extraction and purification pesses, development of chemical and chimioenzymatic
393 synthesis). As an example, the average caroteoicentration in dry microalgae is 0.1-2% (w:w). Wiggown
394 under optimized conditions of salinity and lighteinsity, Dunaliella produces up to 149B-carotene [72,130-
395 132]. Purification from natural sources is much enexpensive than chemical synthesis, but has thentate
396 of providing pigments in their natural isomer prapans .9, carotene) [72,130-132]

397
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398 ABIOTIC STRESSES: A CONVENIENT WAY TO INDUCE THE ME TABOLIC REORIENTATION
399 AND INCREASE THE PRODUCTION OF SELECTED BIOACTIVE C OMPOUNDS.

400 As microalgae play a major role in @Qptake [222], numerous studies deal with effects of abiotiesdes on
401 algal biology and metabolism. The main objectivesame of those studies were to predict how and alyae
402 will cope with climatic change and increasing ptitin. The commercial exploitation of the naturatroalgal
403 diversity for the production of carotenoids and RSRas already started up with few strains sud@hderella
404 vulgaris (TrebouxiophyceaePunaliella salina(Chlorophyceae}laematococcus. pluvialE€hlorophyceae)
405 [133-134 andO. aurita(Bacillariophyceae). In this section, the impaaftabiotic stresses such as light, UV-ra-
406 diation, nutrient starvation, temperature and nsetal microalgal metabolism and on the productiobiolbgi-
407 cal active compounds is reviewed.

408

409 Light

410 More than terrestrial plants, microalgae displainersity of light harvesting pigments (Table 1lpaling
411 photosynthesis at different depths according tongigt content. Photosynthetic apparatus of mostaaigae
412 acclimates to light level and light quality by opizing pigment content and composition [135-141jcidalgae
413 are confronted with variations of light by movengeint the water column and emersion for coastaltent
414 species. To cope with high sunlight intensities;nmilgae have developed different photoprotective
415 mechanisms. One of these, the xanthophyll cyclesists in the reversible conversion of Viola, ardixanthin
416 and Zeain green algae and in the reversible csiorediadinoxanthin and diatoxanthin in brown alf@g141-
417 142]. Acclimation to low irradiance intensity orel enriched light increases Car synthesis suclias [£40].
418 The photoprotection or the low photoacclimatiordeaarbon to Cars whereas in nonstressfull comditiG
419 serves mainly to growth (cell wall edification). e marine diatoriasleaostrearig C fixation byp-

420 carboxylation is almost equal to that in thep@thway whereas under low irradiatiopfRation dominates
421 [144)]. Light intensity has also an impact on ligighthesis, PUFAs: EPA, was significantly higher emidw
422 light, and saturating fatty acids and DHA levelgevkigher under high light iRavlova lutheri{140]. EPA and
423 DHA are now recognized as having a number of ingrdmeutraceutical and pharmaceutical applications.

424

425 UV-radiation

426  Microalgae experience high levels of UV-radiatiarshallow areas, low turbide habitats or during tales

427 when they are deposited on intertidal flats. Sehauthors have shown that UV exposure increasesearaoid
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content [145-146] and, in some Bacillariophycea® A4 synthesis [147-148]. Guihéneetf al. [149] have
shown that a 8-day exposure to UV decreases thé\Rtiient, EPA by 20% and DHA by 16%Raviova
lutheri but not inOdontellaaurita in which the PUFA content remains unchandedother environmental

stresses, UV radiation stimulates the intracellR&S production [150-151] triggering antioxidatidefence

such as antioxidative enzyme activities and anti@xi compounds (glutathione;tocopherol, ascorbatetc).

Nutrient starvation

The reorientation of the metabolism induced byieatrstarvation is illustrated by the accumulatidi\sta in
H. pluvialisunder N-limitation and P- or S-starvation [1B®2-153]. Asta accumulation is related to a massive
increase in carbohydrate content up to 63% of #fiedey weight [154] and an increase of lipid cariten the
cytoplasm. In the Crytophyce&halomonassp., N-starvation triggers a rapid decline in Nvaining
compounds causing an almost complete loss of phyttwan [155]. Riyahiet al.[156] have shown that the
production of3-carotene irDunaliella salinawas increased with nitrate 1 mM and salinity 3@,the other
hand, in the microalgéradydiscus minutu@Eustigmatophyceae), N-starvation brings abowaly 50% drop
in triacylglycerols (TAGSs) containing EPA, and aksadecrease of TAGs containing Ara, while P-stéovatas a
sizable effect on those TAGs that contain two oedhAra [157]. Many microalgae promote a shiftigd
metabolism by producing substantial amount (20-80%ry weight) of TAGs as lipid storage during the
stationary phase when nitrate becomes depleted.[IB8 amount of EPA partitioning into TAGS varies

according to strains and also during the diffeprases of growth within a species.

Metals

Some metals such as Cu, Fe, Zn are essentialslfonetabolism since they are components of elactro
transporters involved in photosynthesis and repitasome enzymestc. When metals are present in excess,
they induce an oxidative stress [159-160] and aidant defense mechanisms already cited aboveofe with
metals in excess, many microalgae excrete exopuipsaides that adsorb metals in the medium ancdeptev
them to enter inside the cells [161-162]. Polysadde depolymerization by different procedureswaithe
obtentiona variety of oligomers with potential applicatidngherapeutics and in biotechnology [10]. However
in the presence of Cd, the xanthophyll cycl®haeodactylum tricornutuns inhibited [163]. The impact of

metals depends on their speciation and the growetium pH [164].
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Temperature

Microalgae can synthetize VLCPUFA as major fattidaommponents [165]. Experiments in controlled
conditions are necessary in order to select sppcaghicing those PUFAS, in what conditions, at vdtage of
their growth, and in what lipid class. Tonenal. [158] have shown than fatty acids accumulate dutfire
stationary phase of growth when nitrate conceminati the growth medium was low. EPA productiohigher
at 8°C than at 25°C in the red microalggurpureuni166]. In the marine diatomitzschia leavigultivated at
15, 19 and 23°C, growth is enhanced at the higbegperature but the lowest temperature favours the
distribution of PUFAs in phospholipids and increak#A content in TAGs [167]. As in terrestrial giarthe
increase of PUFAs in membrane was suggested tstratagy to maintain membrane fluidity under low

temperature.

LARGE-SCALE CULTURE AND BIOMOLECULE PRODUCTION

Microalgae are a source for a variety of bioacteenpounds. However, they remain largely unexplared,

until now, very few commercial achievements of rmaagal biotechnology have emerged [168]. Duringlés

decades, researchers and engineers have develeypadlscultivation technologies that are still ipeutoday.
Seen very often as obvious, the subsequent cudfuaegiven microalgae can be more difficult thapented in
the attempt to up-scaling. Numerous drawbacks dfiitulties await the entrepreneur wishing to st a

commercial production. The choice of photobioreestdight systems, control for pH, GCetc.. batch or
continuous cultures, management of nutrients, waipply, water treatment onward and outward as asthe
energy needed will constitute a strategic debatmc€rning the biological aspects, once the propkrcted
strain is chosen, the type of culture system, deglihg strategies (photoautotrophy, heterotrophyptmophy

reviewed hereafter), the confrontation with pathmyeontaminants and predators will enter in threegga

Photoautotrophic production

Photoautotrophic productions use light as the soofenergy thank to photosynthesis and, @®the source of
carbon. They are currently processed with eithenoponds or closed systems, that can use sun dight
artificial light. However, the major constraint thzhototrophic production must address is how iffitly light
is used. Indeed, productivity is tightly relatedtie surface to volume ratio of the cultivationteysand many

recent technological developments tendeidorove this ratio
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Originally, open-ponds and raceways were used faraalgae production, but the quest for increased
productivity and better control led to the devel@min of closed photobioreactors. The latter are liysua
recognized as achieving higher biomass productititygn open systems [60,169-170]. Nevertheless, the
maximum biomass productivity does not necessaniychthe maximum productivity for a particular molecule
neither the maximakconomic efficiency [171]. It is beyond the scope of thidide to enter into the
argumentation of the pro and contra open pamisusphotobioreactorsThe solution might lie in between when
the two technologies will be integrated in the sapreduction line. Controlled production system like
photobioreactors rendereasier to explore the metabolic versatility of roadgae with different production
strategies. Despite their high initial investmepihotobioreactors provide a variety of attractivendfas for
bioactive molecule production, when compared tonoggstems. First, they make possible monospeaeific
axenic culturesas well They also are characterized by reproducibleatitin conditions and accurate control
for abiotic factors such as temperature, pH, iaade, evaporation and hydrodynamics. The producifoa
particular molecule can take advantage of theserasnsince abiotic factors can substantially intptme
biochemical composition of microalgae, as discusdsale.

Most of the commercial productions use photoaupdtio cultivation processes, with pigments, heattbdf and
aquaculture being the main markets. Several comater@mpanies produce Asta witlaematoccoccus Mera
Pharmaceuticals (Hawaii) reports a biomass prodanctof about 6.6 T/year using closed tubular
photobioreactors. Similar culture systems have hesenl by Algatechnologies (Israel) and Fuji HeS8ltence
(Hawaii). However, the production cost of Asta wiHaematoccocuss still high because of physiological (slow
growth rate) and technical (two-stage productioocpss) constraints. Thiiom the economic point of vigw
Asta produced witlHaematoccocusan hardly compete with the synthetic pigment [92]

Dunaliella natural B-carotene is another widely distributed pigmentfranicroalgae. Its global production
through autotrophic cultivation is estimated abwatbl.2 T/year [12]. Two cultivation processes anerently
used forp-carotene production. Betaten (Adelaide Austratia)Aquacaroten (Subiaco, Australia) grow this
microalgae in unmixed open ponds and Betaten rep@g-carotene production of about 13 T/year (about 400
ha of culture area). The associated productionscagpear relatively low consideririge optimal climate and,
unlike other system#0 pumping is required [172]. Raceway ponds (isitmode) are operated by the Nature
Beta Technologies company (Eilat, Israel), repgrtap-carotene production of 3 tonnes per year. Several
studies have been attempted to gfdunaliella in closed photobioreactors, although up to dad@enof these

trials led to any significant production even a fiilot scale [173]. Several other little compardgesamercialize
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a variety of microalgae grown photoautotragily for their high amount in EPA and DHA. For exale,
Isochrysis spis produced by Innovative Aquaculture Products (Lalsqueti Island, Canada) and the diatom
aurita is produced by BlueBiotech InT (Kollmar Germara)d Innovalg (Bouin, France). In the lattér,
aurita is grown photoautotrophically in open air 1,006 raceways and co-cultured with the macroalgae

Chondrus cripusfor increased productivity [65].

Heterotrophic production

Studies on microalgae heterotrophy were initiatethe 60s and demonstrated that some species gmidon
organic carbon sources, such as sugars or orgaits, aeplacing the traditional support of lighteegy. The
number of studies further increased in the 200@k thie growing interest for biofuel from microalg#enong
the microalgae species currently cultivated, onfgw (e.g.,Chlorella protothecoides, Crypthecodinium cohnii,
Schizochytrium limacinum, Haematococcus pluvjatiave been successfully grown heterotiophy [174]
Conversely to photoautotrophy where productivityakated to the illuminated area of the culturedurctivity
for heterotrophic cultures relies on organic cartmmmcentration in the bulk volume of the culturenisT
facilitates the up-scaling for commercial productiand usually results in higher productivity, witfomass
production being one order of magnitude higher tf@nphotoautotrophically grown cultures [175] amd
reduced production, harvest and maintenance cBetsinstance, high biomass concentration (4579 &nd
volumetric productivity (20 g I* d*) were achieved in heterotrophic culturedNizschia albg176].
Heterotrophic culture requires axenic conditionsnajor drawback when compared to photoautotroplsy. A
pointed out byBumbacket al.[177], any, even minor, contamination introducethwhe inoculum could easily
outcompete the microalgal species for the orgamidan source. The prerequisite for axenicity ane th
additional care for its maintenance necessarilyaichggthe production costs. Additionally, heterotrapbulture
might not bring the same diversity and the samoehemical compositioas reached with photoautotrophy. Yet,
Perez-Garciat al.[174] reported the possibility to produce luteirttwbunaliella sp and Asta withChlorella
zofingiensisgrown heterotropleally. Wang & Peng[178] reported the first growth-associated biosgsth of
Asta with Chlorella zofingiensisheterotrophic cultures using glucose as organibara source. This study
suggested that maximal biomass and Asta productiaid be obtained simultaneously by a one stageroud)
rather than the two stage process that was propfmsddaematococcusAlthough commercial production of
Astawith heterotrophicChlorella zofingiensisulture has not yet been reported, this specigshaa promising

alternative to Haematococcusfor the mass production of Asta. Besides, comraérgroduction of

21



547
548
549

550

551

552
553
554

555
556
557
558
559
560
561
562
563
564
565

566
567
568
569
570
571
572
573
574
575
576

Current Pharmaceutical Biotechnology Mimouni et al.

heterotrophically growrChlorella in fermentor is common in Japan and Korea, mafatyaquaculture and
health food applications [179]. Martek (USA) alsgcsessfully produces DHA health food with heterphic

Crypthecodinium cohnitultivation [180].

Mixotrophic production

If mixotrophy is defined so as to include osmotrgpimost of microalgae can be considered as mixbtoop
Many microalgae can grow on dissolved organic cafd®1] and, under inorganic nitrogen stress, ugaric
sources of nitrogen [182].

When microalgae are grown with €8s the sole carbon source, light provides theggnaeecessary for biomass
production. However, under photoautotrophic condsi growth is often limited by light availabilignd, during
the night, the productivity is further reduced tspiration. Mixotrophic microalgae can concurrerdiyve
phototrophy and heterotrophy to utilize organicrggeand both inorganic and organic carbon substrateis
leading to a synergetic effect of the two procegbas enhances theulture productivity. Yang et al. [183]
demonstrated that biomass yield on the suppliedggneas four folds higher for true mixotrophicalyown
Chlorella pyrenoidosathan for the photoautotrofh culture. They also highlighted that cyclic aubptnic/
heterotrophic cultivations, could lead to even meffecient utilization of energy for biomass prodioa than the
true mixotrophy. Moreover, mixotrophy can overcoright limitation occurring at high densities. This
mechanism has been demonstrated to be importaScaredesmus obliqu[is4] and is suggested to be widely
spread among mixotrophic microalgae in general.

Hence, high productivity is one of the major betsefissociated with mixotrophy. For some microaldbe,
growth performance under mixotrophic conditions eaen exceed that achieved with heterotrophic restu
Indeed, Pulz & Gross[12] pointed out that the maximum specific growtter of Chlorella vulgaris and
Haematococcupluvialis growing mixotrophically was the sum of the photawetic and heterotrophic specific
growth rates. BesidesStadnichucket al. [185] reported higher Chhl, carotenoids, phycocyanin and
allophycocyanin content inGaldieria partita grown mixotrophcally than in heterotropbally cultures.
Mixotrophy can therefore overcome some of the demkb experienced with heterotroplttultures [186] and
might be an efficient means for enhanced produatiblight-induced pigments in microalgae. Howe\as, for
heterotrophic cultures, mixotrophic cultures requérxenic conditions to prevent bacteria from oufoetimg
microalgae for organic substrates. Research wiliderled to cope with the risk of favouring the prgktic part

in the culture. To date, the processing of mixadtiopcultivation implies the availability and maintnce of
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577 axenic strains, the investment for sterilizable tphmreactors and higher operation costs. Howeterhigher
578 productivity achieved with mixotrophy cultures coidalance these drawbacks.

579 It is well documented that some economically imaort microalgae can be grown mixotrogdly
580 (Haematococcugpluvialis, Scenedesmus acutus, Chlorella vulgadanochloropsis sp However, despite the
581 indisputable assets of mixotrophy, only one compeeported the use of mixotrophic processes for stiial
582 Asta production. Indeed, BioReal (Sweden) was its¢ ¢ompany in the world to produce and commeixzal
583 from 15 to 30 T/year of Asta-rich biomass using atigphy culture in indoor closed photobioreactdra?].

584

585 CONCLUSIONS AND FUTURE DIRECTIONS

586 Microalgae represent a subset of single cell migraoisms that generally grow autotrophically uséagbon
587 dioxide as the sole carbon source and light asggn@hey are ubiquitous in nature, occupying evgpe of
588 ecological niche. Microalgae represent a major poetd resource of genetic potential for valuableatiive
589 agents and fine biochemicals. Screening studiesildheeveal the existence of new molecules poténtial
590 interesting for their biological activities. Frornet basic point of view, the mechanisms of actiothefalready
591 marketed products should be better established.if&ance, it has been reported that, beyon8 and
592 antioxidants, fish oil also contain peptides havirigactive activity. Many of them have an interést health
593 and pharmaceutical industries. In their naturaliremnent, algae are subjected simultaneously ttereifit
594 abiotic factors with daily and seasonal variatitimst may be stressful, such as tidal movementspeeature,
595 light levels or UV radiations. To cope with strefse synthesis of molecules of interest such amxdants,
596 PUFAs and glycerol is increased in tolerant miayaal More basic research on this point should bi®meed
597 to elucidate the metabolic and regulation circirit®lved in these productions. This will help tscbver what
598 are the interactions between several abiotic facémd mechanisms involved in the biochemical resgain
599 silico research, biochemical characterization of micrdajgaducts and in the same way the research of
600 biological activities of algal extracts seem prangsfor biotechnology applications. Many molecupgsduced
601 by microalgae show a high structural diversity ahduld be considered as potent bioactive molealbéss to
602 significantly modulate human cell functions, in dypiological or pathological context, at very low
603 concentrations. Additional studies of their biokali activity in vivo are required to precise their absorption,
604 metabolism and interest as potential natural antieaor cardioprotective agents. The developmeffafient

605 purification processes will stimulate their stusydaharmaceutical development.
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The cultivation means to produce bioactive compsuae various. Important are the source of enengytlae
biomass yield. The selection for high producingisss, the optimization of culture modes and haingsand the
management of molecule expression in cultures auneiad steps for the future. Whatever the specied a
molecules produced, the harvesting system is aarskge and limiting step that has to be adaptqoiéserve
together the algae integrity but also the one efrtiolecule. Ideally, microalgae producers lookskoains with a
high valuable-product productivity. However, umbw, the main commercial productions rely on a feid-
type strains and the selection for original straifih a high potential for biotechnology remainstellenge for
the industry. Pioneer studies for strain selecti@ne initiated in the 90s. The combination of metaggis to a
selection procedure resulted in substantially iaseel production for pigmentsld7], PUFAs [188 or
triacylglycerices [189. These techniques offer an appealing alternativ@MOs.

Transgenic microalgae can be also used as biorefactproduction of therapeutic and industrial nedmdnant
proteins [90-19]. To date, a variety of recombinant proteins hiagen expressed from nucleus and chloroplast
of Chlamydomonas reinhardtiiThese include pharmaceutical proteins, antibodiascines, and others that
showed a biological activity comparable to the sgnmteins produced by traditional commercial teqhes
[192). Our groups were quickly intrigued by the potahtbf microalgae as a means to produce therapeutic
proteins 193. A private company was born from this researclgehics, which is, to date, the first European

privately-held biotechnology company focusing omadwative uses of microalgae to produce recombinant

biotherapeuticshttp://www.algenics.com). Concerning the use of microalgae as a platfofmrecombinant
proteins, the recent success led to several pateé®is 197 with the successful production of erythropoidtin
Phaeodactyluntricornutum (unpublished work). The production costs for magal therapeutic proteins are
very attractive i(e., the cost for recombinant antibody is estimate®.@2 US$ and 150 US$ per gram from
microalgae and mammalian cell culture respectividlgd). Moreover, this cost could falbrovided that
recombinant protein production is coupled with remy of valuable natural product. However, to tlesttof our
knowledge, no microalgal therapeutic proteins Haaen yet commercially used.

Microalgae can also be used in biotransformatiquearents. In such experiments, immobilized miayealare
incubated with particular substrates to use th&@tinenzymes to produce products. Such a methotders used
to study the potential of green microalgae suchCatamydomonas spand Oocystis sp.to produce new
monoterpenes. The molecular engineering describedeacombined with biotransformation principle open

many new avenues for algal biotechnology.
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ABBREVIATIONS : Asta: astaxanthin, Car: carotenoids, Chl: chlagdip DHA: docosahexaenoic acid, EPA:
all-Z-eicosa-5,8,11,14,17-pentaenoic acid, Fuco: fucitmanMAAs: mycosporine-lide amino acid3;gp: P-
glycoprotein PUFA: polyunsaturated fatty acids, MDR : multisdmresistance, TAGS: triacylglycerols, Viola:

violaxanthin, VLC: very long chain, Zea: zeaxanthin
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SUPPLEMENTARY MATERIAL

Fig. S1 Algae represent less than 10% of the total numberfadentified species

The original data [S1] were not including the ullidar species. In order to take into account thaggnisms,

we have substituted the number of original speayethe number of species found in the AlgaeBasabdese

(http://www.algaebase.org/) although this number is probably largely undénested.

[S1] The World Conservation Union. IUCN Red ListTdfreatened Species. Summary Statistics for Glpball
Threatened Species (1996-2010).

http://www.iucnreditlist.org/documents/summarysidis/2010 1RL Strats Table 1.pAEcessed 31/01/2012.

Fig S2 Number of publications describing a compound from &ae having a biological actvity

The numbers of publications were taken from the \Wfinowledge database

(http://www.webofknowledge.com/Search performed in December 2011

Fig. S3 Exemple of mycosporine-like amino acids.
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Fig. 1.Main plasma biochemical parameters in rats fed withdifferent diets.

Glucose, triacylglycerol and cholesterol levels evedetermined using colorimetric kits (glucose RTU,
cholesterol RTU, triglycerides enzymatique PAP l&&pectively, from bioMerieux, Marcy-I'Etoile, Free).
Results are expressed (mmol)las mean + SEM for n = 4 animals. After analydisariance, the means were
compared by Fisher's least significant differenest.t Means assigned different superscript letteesew
significantly different p < 0.05).
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1115

1116 Fig. 2. Effects of (13 fatty acid marine sources on total lipid(]3 fatty acid composition in plasma, liver,
1117 heart and kidneys in rats fed with different diets

1118 After extraction of lipids, fatty acid methyl estewere obtained according to the method of Slower lanza
1119 [81]. Fatty acid composition was performed on a Bf2us apparatus as previously described [82]. Reats
1120 expressed (% molar) as mean = SEM for n = 4 animdisr analysis of variance, the means were costhay
1121 Fisher's least significant difference test. Meassigned different superscript letters were sigaiiity different
1122 (p< 0.05).
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1124 Tablel. Main chlorophyll and carotenoid types in the wad taxons of photosynthetic organisms.

1125
Pigment type Red algae Brown algae Green algae
Phycoeryhthrin, phycocyanin, allophycocyanin + - -
Chla + + +
Chlb - - +
Chic - + -
B-carotene Unicellular + +
Fucoxanthin - + -
Violaxanthin + + +
Lutein Pluricellular - +
Zeaxanthin + + +
Canthaxanthin - - -
Xanthophyll cycle - + +
1126
1127 Table 2. Total lipid content (% of dry weight) and EPA and DHA content (molar percentage) of some
1128 species of microalgae [59-69].
1129
Classes Species Lipid content EPA| DHA
Tetraselmis suecica 15-23 1-5 <1
Chlorophyceae Chlorella sp. 28-32 1-5 <1
Dunaliella primolecta 23 <1 <1
_ Isochrysis sp. 25-33 <1 10-20
Prymnesiophyceag :
Pavlova lutheri 20-25 >20 10-20
Skeletonema costatum 13 10-20 1-5
Thalassiosira pseudonana 24 15 1
Bacillariophyceae Odontella aurita 7-13 >25 1-2
Phaeodactylum tricornutum  20-30 26 2
Nitzschia sp. 45-47 25-30 <1
Dinophyceae Crypthecodinium cohnii 20 45 <1
Rhodophyceae Porphyridium cruentun 10-15 21 <1
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