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Abstract

In the context of digital image processing and analysis, the Binary Partition Tree (BPT) is a classical data-structure for
the hierarchical modelling of images at different scales. BPTs belong both to the families of graph-based models and
morphological hierarchies. They constitute an efficient way to define sets of nested partitions of image support, that
further provide knowledge-guided reduced research spaces for optimization-based segmentation procedures. Basically, a
BPT is built in a mono-feature way, i.e., for one given image, and one given metric, by merging pairs of connected image
regions that are similar in the induced feature space. We propose in this work a generalization of the BPT construction
framework, allowing to embed multiple features. The cornerstone of our approach relies on a collaborative strategy
enabling to establish a consensus between different metrics, thus allowing to obtain a unified hierarchical segmentation
space. In particular, this provides alternatives to the complex issue of arbitrary metric construction from several –
possibly non-comparable – features. To reach that goal, we first revisit the BPT construction algorithm to describe it in
a fully graph-based formalism. Then, we present the structural and algorithmic evolutions and impacts when embedding
multiple features in BPT construction. We also discuss different ways to tackle the induced memory and time complexity
issues raised by this generalized framework. Final experiments illustrate how this multi-feature framework can be used
to build BPTs from multiple metrics computed through the (potentially multiple) image content(s), in particular in the
context of remote sensing.

Keywords: binary partition tree, morphological hierarchy, multiple features, graph-based image processing, image
segmentation

1. Introduction

1.1. Context

In image processing and analysis, segmentation is a cru-
cial task. The concept of segmentation is also quite generic
from various points of views: in terms of semantics (from
low-level definition of homogeneous areas to high-level ex-
traction of specific objects), in terms of definition (object
versus background or total partition of the image support),
and in terms of algorithmics (region-based or contour-
based approaches).

In this context, morphological hierarchies propose a
wide range of data-structures for modelling images at var-
ious scales, allowing for the definition of connected oper-
ators [1]. Mainly based on the theoretical frameworks of
graphs and mathematical morphology [2] [3, Chapters 3,
7, 9], these approaches have already proved their efficiency
–the algorithms to build and handle them are generally of
linear or quasi-linear time and space complexity– in many
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imaging applications. Their very principle is to embed
images in a dual spatial / spectral representation space,
composed of shapes (a shape is a spectrally homogeneous
and spatially coherent region at a given scale) together
with their spatial (neighbouring) and hierarchical (inclu-
sion) relations. These representations offer a structured
space to find the best regions / scales according to the ap-
plicative objective using, for instance, high-level features
to describe the image regions and their content.

Among these representations, the Binary Partition Tree
(BPT) [4] is a hierarchical representation of an image mod-
elled as a tree structure, whose each node is a connected
region. Each of these nodes is either a leaf –an elemen-
tary region– or an internal node, modelling the union of
the regions of its two children nodes. The root is the node
corresponding to the entire support of the image. Practi-
cally, a BPT is built from its leaves –provided by an initial
partition of the image support– to its root, in a bottom-up
fashion, by iteratively choosing and merging two adjacent
regions which minimize a merging criterion (based on a
given metric) computed between them. The BPT struc-
ture allows users to explore the image at different scales
and can be used for various tasks such as segmentation,
information retrieval, object recognition and visual brows-
ing.



Like other hierarchical structures, the BPT was mainly
designed to process one image at a time. In addition, by
contrast with most of them (e.g., component-trees, trees
of shapes) that are intrinsically defined from the image
content, the BPT is also designed to embed an extrinsic
metric that is used, together with the image, to build a
mixed image / knowledge model. In other words, a BPT
is generally built for one image and one metric.

1.2. Motivations and Contributions

The BPT has already demonstrated its relevance for
challenging image processing and analysis tasks, for in-
stance in the fields of video analysis, remote sensing or
medical imaging. Nevertheless, as stated above, it remains
mostly limited to a one image, one metric paradigm.

Indeed, on the one hand, the metric –namely the merg-
ing criterion used to decide, at each step of the BPT con-
struction, which nodes to merge– is a scalar function, that
imposes to fuse various (potentially non-comparable) ele-
ments of expert knowledge (e.g., colorimetric and geomet-
ric heterogeneity criteria); this means in particular that
this metric has to be carefully thought beforehand by the
user, and cannot be handled on the flight by the process,
in a more flexible fashion. On the other hand, from the
imaging point of view, the handling of several images, e.g.,
multisensor, multitemporal or multispectral, is generally
dealt with either by defining a super-image, or by gather-
ing the multiple information provided by various spectral
bands into a single metric.

In this article, our purpose is to investigate how the
BPT construction framework can be generalized to explic-
itly relax these two constraints, thus leading to a multi-
feature paradigm, i.e., the handling of many metrics and
/ or many images. The underlying idea of our approach
relies on a collaborative strategy enabling to establish a
consensus between different metrics, thus allowing to ob-
tain as output a unified hierarchical segmentation space.

In order to reach that goal, it is first mandatory to
emphasise the structural core of the BPT construction
algorithm, and in particular to separate its fundamental
graph-based expression –that is indeed a graph-collapsing
algorithm– from its knowledge-based layers (image topol-
ogy, metric definition, merging policies, etc.); this prelim-
inary analysis is developed in Section 3.

In a second time, we explain in Section 4, how the basic
BPT construction framework can be generalized to han-
dle multiple features. We first identify the requirements
in terms of data-structures (Section 4.1), and then the
algorithmic side effects (Section 4.2). A complexity analy-
sis (Section 4.3) is then proposed to describe the induced
space and time complexity increases.

Based on this theoretical framework, we present in Sec-
tion 5 some practical implementation details of the pro-
posed tool. For the sake of reproducibility, we provide
an open-source library (Section 5.1) for the creation of
multi-feature BPTs, which also constitutes a technological

contribution of this work. We then detail the proposed al-
gorithms (Section 5.2) and the main data-structures (Sec-
tion 5.3) implemented in our library to construct multi-
feature BPTs.

In a fourth time, we discuss in Section 6 some perspec-
tive strategies for scaling up the multi-feature construc-
tion. To this end, we identify the main bottlenecks when
considering standard sequential algorithmics (Section 6.1).
We then consider two points of view: first, heuristic solu-
tions that approximate the exact algorithm in a sequen-
tial way (Section 6.2); second, the way to switch from a
sequential to a distributed algorithm (Section 6.3).

This work is concluded by two application examples in
the domain of satellite image analysis, in Section 7, that
illustrate how the framework can allow us to define BPTs
from multiple metrics and from multiple images.

The remainder of the article –which is an extended and
improved version of the conference paper [5]– is composed
of a synthetic state of the art of graph-based, hierarchical
and multi-image segmentation, in Section 2; and a con-
clusion that emphasises the perspectives of this work, in
Section 8.

2. Related works

2.1. Graph-based and Hierarchical Image Segmentation

Image processing and analysis problems, and in particu-
lar segmentation, are often considered in a discrete way via
concepts of graph theory. Practically, image points (i.e.,
pixels, voxels) are considered as the vertices of a graph,
while the spatial / neighbouring relations between them
are modelled by graph edges. This paradigm, democra-
tized since the early 70’s [6], led to the development of
a wide range of segmentation approaches, based on basic
graph manipulations.

In this context, image segmentation could be viewed as
a partial (e.g., region growing [7]), or total partitioning
problem with partitions obtained via monotonic (e.g., wa-
tersheds [8]) or non-monotonic transformations (e.g., split
and merge [9]). Some of these approaches led in particular
to the development of optimization schemes (e.g., graph-
cuts [10, 11], random walks [12], power watersheds [13]). In
the framework of mathematical morphology, these graph-
based approaches gave rise to the notion of connected op-
erators [14].

Graph-based segmentation allows us to obtain one seg-
mentation result from a given image. In order to provide a
better reliability to the ill-posed problem of segmentation,
some hierarchical approaches were developed to compute
families of nested partitions, providing potential solutions
to segmentation issues at different scales. These notions
of hierarchies for image analysis take their origin in image
models initially devoted to optimize the access and space
cost of the carried information (e.g., octrees [15]). These
regular models were progressively shifted toward image /
content-guided, irregular hierarchies [16].
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From this point on, several hierarchical image models
were developed, mainly in the framework of mathematical
morphology. The most popular are component-trees [17],
trees of shapes [18, 19], hierarchical watersheds [20], hyper-
connected component-trees [21], and binary partition trees
[4] (see Section 2.2). Since they provide a space of potential
segmentations, instead of a single result, these hierarchical
models were progressively involved in attribute-based [22]
or optimization schemes [23, 24] for segmentation purpose.

Based on these image models, generally designed as trees
(i.e., rooted, connected), further developments were pro-
posed to allow for a better flexibility in image and pa-
rameter handling. The case of multiband (e.g., colour)
images was considered, leading to data-structures such as
component-graphs [25], multivalued component-trees [26]
or multivariate trees of shapes [27]. Topological handling
was also investigated, by allowing connectivity hierarchies
in component-hypertrees [28], or dealing with asymmetric
hierarchies [29] allowing for non-directed graph as image
models. The way to embed semantic information as im-
age values was also pioneered via the notion of shaping
[30, 31].

2.2. Binary Partition Trees

Most of the hierarchical structures proposed in the lit-
erature are models intrinsically deriving from the image
signal. For instance, component-trees represent the inclu-
sion of the successive level-sets; trees of shapes represent
the image level-lines; while hierarchical watersheds rely
on saliency measures similar to gradients. As a draw-
back, these models strongly rely on the image intensity
since they aim to extract image regional extrema. Un-
fortunately, in different applicative contexts, such regions
may not correspond to objects of interest in image content,
in particular when dealing with complex images.

By contrast, the binary partition tree (BPT) [4] relies
on a mixed image / knowledge model and allows for higher
flexibility than many other hierarchical structures. From
a structural point of view, BPTs present similar proper-
ties with binary space partition trees [32], designed to effi-
ciently model an image space, mainly in computer graph-
ics. Indeed, BPTs provide hierarchies of nested total par-
titions of an image.

From an algorithmic point of view, a BPT is built by
progressively merging elementary image segments (for in-
stance, flat zones), based on information about image con-
tent, but also on a priori knowledge directly chosen with
respect to the targeted segmentation application. In par-
ticular, the choice of the metric chosen to guide which
pairs of regions should be iteratively fused together (and
in which order) is crucial, since it can lead to a huge num-
ber of different BPTs, whose structures will be more or
less adapted to certain kinds of tasks and images. This
gave rise to several works, ranging from theoretical contri-
butions [33] to experimental assessments [34]. The basic
criteria used in most of image segmentation approaches are
generally radiometric or geometric region similarities (or

their fusion into a single metric). Thanks to this model,
the BPT nodes are good candidates for capturing objects
of interest, potentially emerging from the image content at
different scales, since BPTs are able to build image regions
based on their similarities.

Based on this property –and except few contributions
in the field of object recognition [35, 36, 37]– BPTs
were mainly involved in segmentation / classification cases
where such total partitions make sense from a semantic
point of view. More precisely, the wider application field
of BPTs is remote sensing [38]. In this context, BPTs were
involved for multiresolution / multiscale image segmenta-
tion and classification [39, 40]; coupled optical / LIDAR
data analysis [41]; hyperspectral images [42, 43]; polari-
metric SAR [44, 45], mixed SAR / hyperspectral images
[46]; or multi-temporal SAR image analysis [47].

2.3. Discussion – Contributions

The standard use of a single metric for the whole cre-
ation process of a BPT requires strong a priori knowledge
from the user, regarding the size, the shape and / or the
spectral homogeneity of the objects to be segmented in the
image. For instance, the basic models and criteria used in
most of image segmentation approaches are generally tex-
tural similarities [48], multi- / hyper-spectral homogeneity
[42], or rely on combination of geometric and colour cri-
teria fused together in a single region similarity measure
[39].

Such application-dependent strategy makes the process
quite rigid and leads to a double issue. Firstly, the fusion
of multiple features generally does not enable to take ad-
vantage of the richness of the information carried by the
diversity of the metrics. In addition, in some specific cases,
these merging criteria can be in disagreement together
(e.g., geometrical likeness vs. spectral dis-likeness) regard-
ing the similarity between two adjacent regions, leading to
a non-consensual BPT structure. Secondly, depending on
the scale of the regions / nodes among the tree, some cri-
teria may not be relevant for choosing the next couple of
regions to be fused. For example, the closer the nodes
are to the root (regions become wider), the less relevant a
spectral homogeneity criterion is.

By contrast with the classical approach for building the
BPT, this article proposes a new way of creating a BPT
by using simultaneously various metrics. This paradigm
also allows us, by definition, to encompass the case of pro-
cessing several images / modalities of a same scene, with
similar or specific metrics in each. In this work, we do
not intend to regroup different criteria in a unique region
merging criterion, but to consider each metric individually.
The cornerstone of our framework relies on the consensual
strategies –derived from the machine learning field– tuned
for the management of these different complementary cri-
teria.

Such framework presents some virtues. It lightens the
task of the user, by offering more flexibility for the BPT
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creation. Indeed, since the negotiation between the dif-
ferent features, at each step of the BPT construction, is
intrinsically dealt with by the algorithm, with respect to
the chosen consensus policies, the hard prior knowledge
mandatory from the user is reduced to the choice of these
features and the global strategies for their collaboration.

The counterpart of these advantages is related to the
necessary handling of more complex data-structures, and
a higher computational cost. Thus, we devote a part of our
study on setting up an adequate data-structure that allows
for the potential optimization of our algorithmic frame-
work, and its distribution over several processing cores.

3. Structural Description of the BPT Construction

3.1. Definitions and Notations

This section gathers formal definitions and notations
mandatory to make this work self-contained.

An image is a function I : Ω → V that associates to
each point x of the finite set Ω a value I(x) of the set V .

To model the fact that two points x and y of Ω are neigh-
bours, let AΩ be an adjacency (i.e., irreflexive, symmetric)
binary relation on Ω. In other words, GΩ = (Ω, AΩ) is a
graph that models the structure of the image space.

For any partition P of Ω, we define an adjacency in-
herited from that of Ω. We say that two distinct sets
N1, N2 ∈ P are adjacent if there exist x1 ∈ N1 and x2 ∈ N2

such that (x1, x2) is an edge of AΩ, i.e., x1 and x2 are ad-
jacent in (Ω, AΩ). This new adjacency relation AP is also
irreflexive and symmetric.

3.2. The Standard BPT Construction [4]

A BPT is a hierarchical representation of an image.
More precisely, it is a binary tree whose each node is a
connected region. A node can be either a leaf representing
an “elementary” region, or a node modelling the union of
two neighbouring regions. The root node corresponds to
the image support.

The BPT is built in a bottom-up fashion starting from
the determination of the leaves –provided by an initial
partition of the image– to the root. This is done via an
iterative process, that chooses and merges, at each step,
two adjacent regions minimizing a criterion reflecting their
likeness. This merging sequence is stored in a hierarchi-
cal structure which allows the regions of the image to be
modelled at different scales. The BPT construction is il-
lustrated in the right part of figure* 1.

A huge number of distinct BPTs may be obtained for
a given initial partition of Ω. In order to decide which
one among them will be the most relevant, it is necessary
to define a merging order, i.e., to decide of the priority
of the fusions between nodes. Let Ni, Nj ∈ P be two
distinct and adjacent regions / nodes. A BPT generation
relies on two main notions: a region model, denoted as
Mr(Ni), which specifies how a region Ni is characterized
(e.g., colour, shape), and a merging criterion, denoted as

Or(Ni, Nj), which defines the similarity of neighbouring
regions Ni, Nj and thus the merging order.

A strategy commonly adopted to represent each region
is to consider their average colour in a specific space (e.g.,
RGB, HSV), and to iteratively merge pairs of adjacent re-
gions that either have region models similar one to each
other, or similar to the region model of the novel re-
gion built from their potential union. Another strategy
[49] considers as region model a combination of radiomet-
ric and geometric features, with a merging criterion that
weights both radiometric and geometric region similarities,
evolving during the construction of the BPT, to provide
a heavier weight to the geometric similarities according to
the size of the BPT nodes. The choice for these parameters
is strongly application-dependent. However, in any case,
the merging criterion is a scalar function, which imposes
to fuse various elements of expert knowledge, and cannot
be handled on the flight by the process, in a more flexible
and dynamic way.

3.3. Structural Description: A Graph-based Point of View

3.3.1. Graph and valuation function

The way to describe the construction of a BPT is gen-
erally considered from spatial (the way regions are built)
and descriptive (the way regions are characterized and how
they can be considered similar) points of view. Indeed,
the classical –image and application-oriented– description
of the BPT construction algorithm considers as input: the
image I (i.e., the geometrical embedding of Ω, and the
value associated to each point of Ω); a region model, that
allows us to “describe” the nodes; and a merging criterion,
that allows us to quantify the homogeneousness of nodes
before and after a putative fusion. These information are
important from an applicative point of view.

However, beneath these image and knowledge-based no-
tions, the construction of a BPT is intrinsically a process
of graph collapsing. Indeed, from an algorithmic point of
view, the only use of region models and merging criteria is
to define a valuation on the edges that allows us to choose
which nodes to fuse at any given step. In the sequel, we
will then consider that a BPT is fully1 defined, by only
two input information (see left part of figure* 1):

1. a graph GL = (L, AL) that models the initial partition
of the image;

2. a valuation function W : (2Ω)2 × V Ω → R that al-
lows us to choose (relatively to a specific metric), at
each step of the process, the next pair of nodes to be
merged.

3.3.2. Structural description of the algorithm

Now, let us consider an initial partition L of Ω. (Each
node L ⊆ Ω of L is assumed to be connected with respect

1The construction of a BPT is not fully deterministic since it may
happen that the valuation function W has a common minimal value
for several edges.
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Figure 1: Illustration of the algorithm for the creation of a BPT from one image. Left: two input information which are (1) a graph
GL = (L, AL) that models the initial partition of the image; and (2) a valuation function W : (2Ω)2 × V Ω → R that allows us to choose, at
each step of the process, the next pair of nodes to be merged (see Section 3.3). Right: progressive, bottom-up, creation of the tree from To

to T6 by iterative fusions of two neighbouring regions.

Figure 2: One step of the building of a BPT from one image. From the left to the right: First: the partition of Ω before and after the fusion
of two nodes. Second: the associated graph G, before and after the fusion of N3 and N4, forming the new node N8; the red edge is removed;
the blue and orange edges are updated, e.g., (N1, N3) becomes (N1, N8); the orange are merged by pairs, e.g., (N7, N3) and (N7, N4) become
(N7, N8); the green edges are not affected. Third: the sorted list that gathers the scalar valuations of each remaining edge of G; the red
cells are removed, as the edge (N3, N4) is suppressed; this edge had been chosen due to its highest position in the list; the scores of blue and
orange cells are updated with respect to N8; the orange cells are merged by pairs; the positions of the blue and orange cells are updated with
respect to their new scores; the scores of the green cells are not affected. Last: a new part of the BPT T is created by adding the new node
N8, and linking it to its two children nodes N3 and N4.

to AΩ.) This partition L defines the set of the BPT leaves
we are going to build (e.g., L can be the set of the image
flat zones). It is equipped by the adjacency AL inherited
from AΩ, leading to a graph GL = (L, AL) that models
the structure of the partition of the image I.

The BPT is the data-structure that describes the pro-
gressive collapse of GL onto the trivial graph (Ω, ∅). This
process consists of defining a sequence (Gi = (Ni, ANi

))ni=0

(with n = |L|−1) as follows. First, we set G0 = GL. Then,
for each i from 1 to n, we choose the two nodes Ni−1 and
N ′i−1 of Gi−1 linked by the edge (Ni−1, N

′
i−1) ∈ ANi−1

that minimizes the valuation function W , and we define Gi

such that Ni = Ni−1 \ {Ni−1, N
′
i−1}∪ {Ni−1 ∪N ′i−1}; in

other words, we replace these two nodes by their union.
The adjacency ANi

is defined accordingly from ANi−1
:

we remove the edge (Ni−1, N
′
i−1), and we replace each

edge (Ni−1, N
′′
i−1) and / or (N ′i−1, N

′′
i−1) by an edge

(Ni−1∪N ′i−1, N
′′
i−1) (in particular, two former edges may

be fused into a single).
From a structural point of view, the BPT T is the Hasse

diagram of the partially ordered set (
⋃n

i=0Ni,⊆). From
an algorithmic point of view2, T is built in parallel to the
progressive collapse from G0 to Gn (T stores the node fu-
sion history). More precisely, we define a sequence (Ti)

n
i=0

as follows. We set T0 = (N0, ∅) = (L, ∅). Then, for each
i from 1 to n, we build Ti from Ti−1 by adding the new

2In [50], a graph-based definition of BPT construction is also pro-
posed, that relies on a minimum spanning tree paradigm. However,
this formalization is valid only if the merging order is associated to
a valuation of the edges that is fixed a priori on the initial partition.
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node Ni−1∪N ′i−1, and the two edges (Ni−1∪N ′i−1, Ni−1)
and (Ni−1 ∪N ′i−1, N

′
i−1). The BPT T is then defined as

Tn.

3.3.3. Data-structures

The above description of the BPT construction algo-
rithm implies to define –and update during the whole
process– several data-structures, namely:

• the graph G, that allows us to know what nodes re-
main to be merged and what are their adjacency links;
and

• the tree T that is progressively built.

In order to efficiently compute the valuation W , it is also
important to associate each node of G to the corresponding
part of the image I, e.g., via a mapping between G and Ω.

The last, but not least, required data-structure is a
sorted list W that gathers the scalar valuations of each
remaining edge of G. This list contains the information
that will authorise, at each of the n iterative steps of the
process, to choose the couple of nodes to be merged rela-
tively to a given metric. One iteration of this algorithm is
illustrated in figure* 2.

This choice is made in constant time O(1), since W is
sorted. After the merging operation,W has to be updated:
(1) to remove the edge between the two nodes; (2) to up-
date the edges affected by the merging operation; and (3)
to re-order these updated edges. Operation (1) is carried
out in constant time O(1). Operation (2) is carried out
in O(α.TW ), where TW is the cost of the computation of
W for an edge, and α is the number of neighbours of the
merged nodes (α is generally bounded by a low constant
value). Operation (3) is carried out in O(α. log2 |W|).

4. Multi-feature Generalization of the BPT Con-
struction

In this section, we investigate a multi-feature generaliza-
tion of the BPT construction algorithm. Indeed, we now
consider that this construction, viewed as a graph collaps-
ing problem, still takes as input the graph GL = (L, AL).
By contrast, we now use several valuation functions W? :
(2Ω)2×V Ω → R. These functions are still devoted to allow
us to choose, at each step of the process, the next pair of
nodes to be merged. We discuss the structural and algo-
rithmic side effects of using several valuation functions “at
the same time”, instead of only one. Our purpose is still to
build one BPT from these input information. Practically,
introducing several valuation functions allows us to embed
several features in an independent way in the construction
process. These features can in particular represent sev-
eral metrics associated to a same image; a same metric
associated to several images of a same scene; or even var-
ious metrics on various images of a same scene. In other
words, this generalized paradigm opens the way to a versa-
tile handling of multi-image (e.g., multimodal, multi-time,

etc.) and / or multi-criteria definition of consensual BPTs,
without the constraint of defining beforehand any ad hoc,
hard, unified metric.

4.1. Structural Evolutions

The proposed generalization deals with the “feature”
part of the construction. As stated in Section 3.3.1, we
need a graph that models the initial partition L of the
image(s). Here, we still have one such initial graph; which
means that, fundamentally, our purpose is still to collapse
a unique graph while, practically, our purpose is to build
the BPT associated to a unique spatial scene, topologically
modelled by this graph. From a semantic point of view,
this implies that the (potentially multiple) images involved
in the BPT construction process have to be defined in a
same spatial reference3, i.e., the same support Ω. A graph
GL, which is isomorphic to (Ω, AΩ), can be obtained easily,
either by subdividing Ω into one-point singleton sets or by
considering flat zones.

The “graph” part of the BPT construction process re-
mains unchanged. In terms of data-structures, the gen-
eralized BPT construction algorithm will still handle one
graph G, that will be progressively collapsed; and one tree
T that will be built to provide the BPT. A unique map-
ping between N and Ω will still allow us to have access to
the values of a node for the different images.

Let us now consider the “feature” part of the data-
structure. In the initial BPT construction approach, the
valuation function W : (2Ω)2 × V Ω → R was explicitly
modelled by a sorted listW of the values of all graph edges.
This list was updated during the progressive collapsing of
G, by removing elements from the list; updating the values
of some edges (thanks to the mapping between N and Ω);
and (re)sorting edges with respect to their updated values.

We now consider n > 1 valuation functions W? : (2Ω)2×
V Ω → R, which means that each edge is associated to
n values, one for each function. By assuming that we
consider k distinct images, and l distinct metrics, we may
have up to n = k.l such valuation functions. This leads us
to define no longer one, but n sorted lists Wi (1 ≤ i ≤ n).
Each listWi is associated with a specific valuation function
Wi : (2Ω)2×V Ω

j → R that is defined with respect to a value
set Vi (see figure* 3). The handling of these sorted lists
remains the same in terms of removal, value updating /
resorting, as for one list.

Our purpose is now to build a BPT from these n lists, by
generalizing the algorithm described in Section 3.2, which
initially depended on one list W.

4.2. Algorithmic Evolutions

From an algorithmic point of view, each iteration of the
construction process preserves the same organization. An

3This constraint is not actually a real issue, since this spatial
coherence assumption is generally a standard requirement in image
processing (e.g., in medical imaging where several modalities are su-
perimposed via registration processes; in remote sensing where the
acquired data are georeferenced; etc.).
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Figure 3: General structure of a BPT creation involving n valuation functions / sorted lists. Each listWi gathers edges information computed
by using one valuation function corresponding to a given metric on an image. A BPT is obtained by applying a collaborative strategy leading
to a consensus between the information carried by these n lists (see Section 4.2).

edge is chosen and the two incident nodes of the graph
are merged. This operation leads to update the nodes and
edges of G, and adds a new node plus two edges in T. The
main differences are that: (1) n > 1 sorted lists then have
to be updated; and (2) the choice of the optimal edge has
to be made with respect to the information carried by these
n sorted lists instead of only one, for a standard BPT.

At each iteration of the algorithm (see figure* 4), the
choice of the optimal edge to remove, leading to the fusion
of its two incident nodes, depends on a decision, i.e., a
consensus, made with respect to the information provided
by these n lists. In particular, useful information are car-
ried, on the one hand, by the sorted lists Wi, that give
a relative information on edges, induced by their ordering
with respect to Wi; on the other hand, by the valuation
functions Wi : (2Ω)2×V Ω

j → R that give an absolute value
to each edge. These information are of distinct natures; we
study their relevance according to various kinds of consen-
sus policies. In particular, we identify, hereinafter, three
main families of consensus strategies.

4.2.1. Absolute information consensus

Let us consider that the consensus policy consists of
choosing the edge of lowest mean valuation among the n
lists Wi, or the edge of minimal valuation among all lists.
The first consensus (namely min of mean) is defined by
a linear formulation: arg(N,N ′)∈N min

∑n
i=1Wi((N,N

′)),
while the second (namely min of min) is defined by a non-

linear formulation: arg(N,N ′)∈N min minn
i=1Wi((N,N

′)).
In both cases the decision is made by considering the abso-
lute information carried by the edges. In such conditions
–and more generally whenever the information carried by
the values of each edge is a sufficient knowledge, inde-
pendently of the relative values between edges– n sorted
lists Wi are not necessary, and a single sorted list W that
contains the information of these, linear or non-linear, for-
mulations is indeed sufficient. The BPT construction in-
volving n lists is then equivalent to that from one list.

The main difficulty raised by this policy derives from
the potential heterogeneity of the values carried by the
different W? valuation functions. Indeed, to be tractable,
this policy requires that all values are comparable. This
implies in particular that they must be of same nature,
but also that they should be normalized to allow for the
definition of adequate fusion / comparison operators. This
issue is mainly the same that occurs in most optimization
problems where a given metric is built from several terms
of varying semantics. This drawback argues in favour of
using the next two proposed policies.

4.2.2. Relative local information consensus

Let us now consider that the consensus policy consists of
choosing the edge that is the most often in first position in
the n sorted listsWi, or the most frequently present in the
r � |Wi| first positions in the n lists Wi. These consen-
sus (namely, majority vote and most frequent, potentially
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Figure 4: One step of the building of a BPT involving n lists Wi. Left: the partition of Ω before and after the fusion of two nodes. Center:
the associated graph G, before and after the fusion of N3 and N4, forming the new node N8; the red edge is removed; the blue and orange
edges are updated, e.g., (N1, N3) becomes (N1, N8); the orange edges are merged by pairs, e.g., (N7, N3) and (N7, N4) become (N7, N8); the
green edges are not affected. Right: the n lists Wi, each corresponding to a valuation function Wi; the red cells are removed, as the edge
(N3, N4) is suppressed; this edge had been chosen according to a given consensus policy, due to its “optimal” position and / or valuation in
the n lists; the scores of blue and orange cells are updated with respect to N8; the orange cells are merged by pairs; the positions of the blue
and orange cells are updated with respect to their new scores; the scores of the green cells are not affected.

weighted) policies do not act on the absolute valuations of
the edges, but on their relative positions in the lists. An-
other strategy can also consist in choosing the edge with
the lowest mean of ranks, according to the position of the
edges within the lists. In such cases, it is then mandatory
to maintain n sorted lists. However, the decision process
does not require to access the whole lists, but it can be
restricted to the first (or the first r) element(s) of each,
leading to a local decision process.

4.2.3. Relative global information consensus

Let us finally consider that the consensus policy con-
sists of choosing the edge that has the best global ranking
among the n sorted lists Wi. As previously, such consen-
sus (e.g., best average, or best median ranking) policy, also
acts on the relative positions of the edges in the lists, and
need not consider the absolute values of the edges. How-
ever, by contrast with the above case, the decision process
requires to explicitly access the whole content of all these
lists, leading to a global decision process of higher compu-
tational cost.

4.3. Complexity Analysis

Computationally, choosing the edge to remove is no
longer a constant time operation, but will depend on the
way information are used and compared. Afterwards, op-
erations (1–3) described in the standard BPT construction

algorithm, for the sorted list maintenance, have to be du-
plicated for each list. These operations are then carried out
in O(n), O(n.α.TW?

) and O(n.α. log2 |W?|), respectively,
where TWi

is the cost for computing Wi for a given edge,
while α is an upper bound for the nodes degree within the
graph G.

However, this initial generalization of the BPT construc-
tion algorithm can be refined by studying more precisely
the policies that are considered to choose an edge, with re-
spect to the information carried by the valuation functions
Wi and / or the sorted lists Wi.

Besides, the choice of a consensus strategy is strongly
application-dependent. As a consequence, it is important
to consider a trade-off between the structural and compu-
tational cost of the approach versus the benefits in terms of
results accuracy. In particular, these costs are summarized
in Table 1.

This table provides the cost of an elementary step of
the BPT construction process. The number of these steps
is equal to the size of the initial graph GL, namely |L|,
and more precisely to the number of vertices in this initial
graph (minus one), as each step merges two of these ver-
tices, until obtaining a graph formed by exactly one node.
At each step, at least one edge is removed from the graph;
the number of remaining edges is in particular equal to
the size of the list(s) |Wi|. We can assume that the num-
ber of edges is bounded by the number of vertices of the
graph, up to a multiplicative constant α (generally low for
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images defined on discrete grids, 4 in general on pixel 2D
images). Based on these assumptions, an upper bound for
the overall computational cost of the standard BPT con-

struction [4] is
∑|L|

i=1(O(1) +O(log2 |W|)) =
∑|L|

i=1O(1) +∑|L|
i=1O(log2(α.i)) = O(|L|) + logα.O(log2(|L|!)) =

O(|L| log2 |L|), and so is the cost for the first consensus
policy (Section 4.2.1). Following the same kind of cal-
culation, the cost for the second consensus policy (Sec-
tion 4.2.2) is O(n.|L| log2 |L|), while that of the third (Sec-
tion 4.2.3) is O(n.|L|2).

5. Implementation details

For the sake of reproducibility, we provide in this section
some implementation details of the proposed algorithms
and data-structures that are required to compute multi-
feature BPTs.

5.1. Agat: An open-source library for multi-feature BPT
construction

As a technological contribution of this work, we devel-
oped an open-source Java library4, called Agat, that im-
plements the proposed algorithm and the required data-
structures for the creation of a multi-feature BPT (called
MBPT in the following). It should be noticed that
other open-source libraries were already proposed to cre-
ate BPTs [47, 51]; however these former libraries rely on
the creation of classical mono-feature BPTs.

The Agat library is generic, since it gives the user
the opportunity to totally tune the construction of their
MBPT, by easily implementing their own metric and con-
sensus strategies as new Java classes. To this end, our
library uses the same pattern factory mechanism for both
cases, and the user only needs to create new classes that
extend either a predefined metric or a consensus class par-
ent. To create a new metric, two methods have to be
designed: the first defining the computation of the under-
lying feature value for a particular node, and the second
defining the metric (dissimilarity) computation between
two adjacent nodes according to this feature. To create
a new consensus, the user needs to implement a method
that applies the desired consensus strategy and returns the
next couple of nodes to be merged (see Section 5.2.2).

We have also developed and integrated in Agat a Tiff
library which allows the user to load only the subdivisions
of the images that are necessary to the current segmen-
tations. This enables to reduce the memory resources re-
quired by the application, which is useful when dealing
with large images.

Once a MBPT has been constructed, a saving system
implemented in the library enables to store the tree struc-
ture in a file. Such file, encoded in the Json format, con-
tains information about the tree, such as the pixels con-
tained in each leaf, the merging orders of the nodes, the

4Available at https://bitbucket.org/agat-team/agat-v0.3.

paths of the images in the file system, the metrics and
the consensus strategy used. Thanks to this Json file, the
MBPT can be rebuilt as many times as wanted, without
recomputing it. Indeed, the library can emulate the con-
struction of the tree (defining leaves, merging nodes and
getting the root) by simply reading the Json file.

For image segmentation purpose, a standard cut can be
performed from the MBPT file, by specifying the number
of desired regions. As output of this cutting method, the
framework generates segmentation images such as border
image and label images based on random colours. Supple-
mentary image results can be generated if the user wants
to produce, for example, the segmentation results related
to a specific interval of region numbers. Many other seg-
mentation paradigms based on BPTs have been proposed
in the literature, mainly based on energy optimization, or
criterion-based node selection. These paradigms are not
natively implemented in the proposed library, whose prin-
cipal purpose is the construction of MBPTs; however, they
can be easily interfaced with Agat.

5.2. Implementation details of the proposed algorithm

To build a multi-feature BPT, the main structure of the
classical BPT creation algorithm remains unchanged. In-
deed, the MBPT is still built from its leaves –provided by
an initial partition of the image support– to its root, in
a bottom-up fashion, by iteratively choosing and merging
two adjacent regions which minimize a merging criterion.
However, instead of dealing with a classical merging crite-
rion only relying on one image and one metric, our algo-
rithm may now consider many images, different metrics,
and a consensus strategy as input parameters. The core
of the algorithm is divided as:

1. preparation of the lists Wi based on each image and
metric couples;

2. preparation of the graph G modelled as a Region Ad-
jacency Graph (RAG);

3. creation of the MBPT tree T by merging pairs of
nodes.

The general structure of the proposed algorithm is pre-
sented in Algorithm 1.

5.2.1. Preparation of the lists Wi and the RAG

As already mentioned in Section 4.1, by assuming that
we consider k distinct images and l distinct metrics, we
may have up to n = k.l valuation functions. Each image
is then associated to a specific metric. This leads us to
prepare no longer one, but n sorted lists Wi. Each list Wi

will contain all edges of the graph G and will be maintained
ordered during the creation process of the MBPT. Its data-
structure and maintenance will be detailed in Section 5.3.5.
An object representing the metric is instantiated by the
algorithm and, linked to each list Wi. At this stage of the
process, those n lists are still empty but ready.

When all lists Wi are prepared and linked to the right
couple of image and metric, a graph G (implemented as
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Edge Edge Edges Edges
# W? choice removal update sorting

Standard BPT [4] 1 O(1) O(1) O(1) O(log2 |W|)
Absolute inf. 1 O(1) O(1) O(1) O(log2 |W|)
Relative local inf. n O(n) O(n) O(n) O(n. log2 |W?|)
Relative global inf. n O(n.|W?|) O(n) O(n) O(n. log2 |W?|)

Table 1: Cost of the BPT construction for various families of consensus. For readability purpose, α and TW? , which are practically bounded
by low constant values have been omitted.

Algorithm 1: General structure of the proposed algo-

rithm
Data: Image I[ ]; Metric W [ ]; Consensus strategy Consensus;

Result: One Multi-feature Binary Partition Tree MBPT ;

/* Variables */

1 Region Adjacency Graph G; // the RAG

2 List W[ ]; // the list of lists Wi

3 Image preSeg; // an initial partition of the image

support

/* Initializations */

4 prepareLists(I,W ); // associate metrics, images &

adjacency lists

5 prepareRAG(W, preSeg); // build initial leaves &

adjacencies

6 fillLists(W,G); // fill the lists with the initial

adjacencies

/* Node fusions while the list of adjacency is not

empty */

7 while G.tabAdja is not empty do

8 Adjacency chosenAdja = Consensus.apply(W);

9 Node n1 = chosenAdja.region1;

10 Node n2 = chosenAdja.region2;

11 Node newNode = fusionOf(n1, n2);

12 G.tabNode.add(newNode);

13 G.tabAdja.update(); // adding, removing and updating

values

/* Update the content of the lists */

14 for i = 0; i <W.size(); i+ + do

15 W[i].update(); // adding, removing and updating

values

16 MBPT.tabNode = G.tabNode;

17 return MBPT

a RAG) has to be built. By starting the process from
the pixels or from an initial partition of the image sup-
port (e.g., a pre-segmented image: superpixels, flat zones,
etc.), the initial nodes of the graph are created. These
nodes also constitute the set of leaves of the MBPT. Each
leaf represents an initial sub-part of the image(s) and con-
tains information about the corresponding pixels. Once
the leaves are prepared, the edges of the graph are cre-
ated and their values are computed by invoking particular
methods of the corresponding metric. Those edges repre-
sent the adjacencies between neighbouring regions of the
image. For each edge, n computed metric values are asso-

ciated. In parallel, we use these metric values to fill the n
lists Wi that should be further maintained sorted.

5.2.2. Creation of the MBPT by merging nodes

Once the listsWi and the graph G are ready, an iterative
fusion of the nodes can be operated to build the MBPT
in a bottom-up fashion. This iteration process stops when
the lists Wi are empty. This state means that the root of
the tree is reached. The main part of this iterative block
is composed of:

1. the choice of the two next adjacent nodes of G to be
merged by applying the consensus strategy defined by
the user;

2. the handling of the n lists Wi by removing, in each
list, the adjacency linking the two chosen nodes and
by updating the values of all adjacencies that link
them to their neighbours;

3. the resorting of the lists.

5.3. Implementation details of the data-structures

Let us now describe the main data-structures used by
the algorithm and implemented in our library. For a better
comprehension of their implementation, only the most im-
portant structures such as the MBPT, the RAG, the nodes,
the adjacencies and the lists Wi are mentioned here. Note
that some of these data-structures are strongly dependent
on the Java philosophy.

5.3.1. Data-structure of the MBPT

In the proposed library, the MBPT is modelled by a
class whose most important attributes are: a list of the im-
age(s); a list of lists Wi; the RAG; the consensus strategy
to be used; and an indexation matrix to map the pixels
from the image support to the nodes. Another optional
attribute of this class is a pre-segmented image (i.e., an
initial partition of the image support) if the user does not
want to start the creation of the MBPT from the pixels.

This MBPT class does not actually represent a physi-
cal structure of tree; however it gathers all the required
information for its creation and management. Its most
important methods are: the growing method, which is the
principal element of the creation process, since it contains
the three main points of the algorithm described in Sec-
tion 5.2; the regrowing method that allows for the rebuilt
of the MBPT from a saved Json structured file; and finally
the cutting method that generates segmentation results.

10



5.3.2. Data-structure of the RAG

As an attribute of the MBPT class, the RAG contains
simultaneously the structure of the tree T, and the struc-
ture of the graph G. In particular, it contains a table of
all nodes that regroups the nodes of both the graph G and
the tree T. Indeed, each node of the graph is also one
of the tree. This table of nodes is static and the required
memory space allocation is only done once when preparing
the RAG.

It also contains a static table of all adjacencies, so its
memory allocation space needs not be done more than
once. This table regroups all the active adjacencies of
the graph G. Unlike the lists Wi, this set is not ordered.
Its main purpose is to store the adjacencies in the mem-
ory. During the creation process of the tree, the content of
this table can only decrease. Indeed, some adjacencies are
deleted and others are updated during the node merging
iterations. When an element is removed from this table,
it is replaced by the last not empty element. By doing so,
all empty cells remain at the end of the table, leading to a
compact structure (making easier iteration in its content
when needed). At the end of the node merging iterations,
this table is totally empty.

5.3.3. Data-structure of a node

The nodes represent important elements of both the
MBPT tree T and the graph G. Each node is modelled by
a class whose principal attributes are: the type of the node
(leaf, simple node or root); a list of pixels contained in the
region modelled by the node; the left and right children
of the node (and its father); a list of adjacencies linking
the node to its neighbours; and a list of feature values
associated to all metrics and prepared by each of them.

5.3.4. Data-structure of an adjacency

The adjacencies are edges representing the links between
each neighbouring regions. Each of them are associated to
n values computed from each metric. Each adjacency is
modelled by a class and its attributes are:

• a couple of neighbouring nodes;

• a table of metric values representing the distances be-
tween the two nodes (relatively to the n metrics);

• an index giving its position in the table of adjacencies
of the RAG;

• a table of ranks;

• two tables of previous and next adjacencies.

The three last attributes are used during the handling of
the n lists Wi by particular consensus strategies. Their
interest will be explained in the next section. Each adja-
cency also implements some methods of the Java compa-
rable interface. Surcharging those methods allows for the
comparison between adjacencies, that helps their sorting
in the lists Wi by using the table of metric values.

5.3.5. Data-structure of a list Wi

The data-structures used for the n lists Wi are crucial
in this algorithm. Indeed, most instructions related to the
MBPT creation rely on them. Each listWi contains all ad-
jacencies of the RAG (see Section 5.3.2) and must be main-
tained sorted. The sorting process of each list is realized
by considering the corresponding metric values (also called
scores) saved in each adjacency (see Section 5.3.4). The
data-structure of the lists Wi must be designed carefully
in order to lighten the MBPT creation process. In Agat,
a listWi is modelled by a class containing an hybrid data-
structure based on a red-black binary search tree, provid-
ing guaranteed logarithmic time cost for basic operations.
An illustration of this hybrid data-structure is provided in
figure* 5, where each box represents an adjacency and the
bold relations model father-son relationships in the binary
search tree. This structure is maintained sorted thanks
to a specific comparator that determines which adjacency
has to be placed before or after another. In our case, if
some adjacencies have the same score s, the least recent
are placed before the most recent (e.g., Adja. 6 and Adja. 4
in figure* 5).

The proposed structure of a listWi is particular because
its implementation allows also each adjacency to know its
rank r in each list. Then, the process can get rapidly
the position of the adjacency in a list Wi. Such strat-
egy is useful to speed up the computation carried out by
the consensus strategies, in particular in the case of rel-
ative and global consensus strategies (see Sections 4.2.2
and 4.2.3): for instance, to choose the adjacency with the
lowest mean of ranks, according to its positions within the
n lists Wi. Indeed, the ranks of each adjacency can be
determined rapidly without having to iterate on all lists
content. When a list Wi is modified (adding, removing,
sorting elements), three specific attributes of each adja-
cency (see Section 5.3.4) are updated:

• the table of ranks;

• the table of previous adjacencies;

• the table of next adjacencies.

Those attributes allow for the formation of a linked list
of adjacencies (combined to the red-black binary search
tree), whose links are built according to the ranks of the
adjacency in the listWi (white boxes model pointers while
dashed relations model linkages in figure* 5). In order
to reduce the task and time computation related to the
modification of each list, the ranks are only updated once
per node fusion.

5.4. Parallel streaming on the list of lists Wi

The Java 8 proposed an API stream which simplifies
the processing of the collections, the tables and the I/O
sources. The stream is not based on the iteration pattern
and does not store additional data, but only manages to
queue them for processing. This allows us to reduce the
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Figure 5: Illustration of the hybrid data-structure of a list Wi containing all adjacencies of the RAG (9 in this example) represented as black
boxes. The list is implemented using a red-black binary search tree, maintained sorted according to the metric values (also called scores s)
saved in each adjacency. The bold relations model the father-son relationships of the binary search tree. On top of this structure, a linked list
of adjacencies is implemented (see Section 5.3.5) to store the ranks r of each adjacency in the list Wi: white boxes model pointers (previous
and next elements in the list) while dashed relations model double linkages.

memory consumption resulting from the creation of tem-
porary variables during the iteration of a list content. In
addition, the reason why we used the streaming concept
on the list of lists Wi (see Section 5.3.1) is justified by
its ability to process them in a parallel and independent
way. Indeed, the streaming system relies on a fork / join
framework provided by the Java SE. Actually, when the
n lists Wi need to be modified or updated, the stream ob-
ject puts each list Wi in a sub-stream and threads them
for a parallel processing.

6. Perspectives for scaling up the Multi-feature
BPT Construction

6.1. Bottlenecks

The complexity analysis presented in Section 4.3 empha-
sises three main bottlenecks for the computational cost of
BPTs in general, and in particular for multi-feature BPTs.
These bottlenecks are:

(1) the size of the edge lists, that is linearly dependent
on the size |L| of the initial graph, which leads to the
log2 |L| part of the cost (and a |L| part for the third
policy);

(2) the number of steps of the construction process, that
is linearly dependent on the size |L| of the initial
graph, which leads to the |L| part of the cost;

(3) the number of valuation functions, which leads to the
n part of the cost.

We discuss hereinafter some sequential and distributed
strategies devoted to decrease these bottlenecks, thus lead-
ing to algorithms that will lead to fairly similar results as
the exhaustive algorithm, but with a lower complexity.

6.2. Heuristics for Sequential Algorithmics

The bottleneck deriving from the number of valuation
functions can be hardly avoided when considering a se-
quential algorithmics. In such case, the optimization of the
framework mainly relies on heuristic strategies designed
for standard mono-feature BPT construction; they can
of course also allow us to decrease that of multi-feature
BPTs.

The first way to reduce the computational complexity
of the BPT construction consists of initiating the process
from a partition L with a lower number of regions. Instead
of using singleton sets, which is equivalent to setting L
isomorphic to Ω, and thus of same cardinality, flat zones or
superpixels [52] can be considered. In such case, the gain
of complexity derives from the reduction of |L| with the
counterpart of adding a cost for superpixels computation.

Another solution to optimize the overall cost is to reduce
the cost of each elementary step. In particular, the update
of the edges –and more precisely their resorting within the
list(s)– after node fusions, can be carried out only after a
given number ρ of iterations. This optimization is however
marginal, since these edges still have to be resorted, while
the gain concerns the lower size of the list at the resorting
time. This optimization only influences the log2 |L| part
of the computational complexity. In addition, the risks
of choosing non-optimal edges for the merging, increase
linearly with ρ.

An alternative consists of working with lists that do
not contain all the edges [51]. This heuristic relies on de-
creasing the number of edges by only adding in the list(s)
those of lower values during each update stage. This strat-
egy leads to work on lists of lower sizes, acting on the
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|L| log2 |L| term of the cost. As the previous one, this al-
gorithm does not guarantee that the BPT structure will
be topologically equivalent to the one of a BPT built using
the original algorithm.

6.3. From Sequential to Distributed Algorithmics

As observed above, the sequential optimizations of the
mono-feature BPT construction algorithm necessarily af-
fect the result, by providing an approximate BPT, com-
pared to the original algorithm. In addition, such heuris-
tics do not tackle the issue of efficiently handling multiple
lists, in the case of multi-feature BPT construction. In
this context, we explore strategies based on distributed al-
gorithmics that enable to build –approximate but fairly
close– BPTs and that will allow us to effectively break the
complexity of the initial algorithm.

The time cost of the multi-feature BPT construction
is mainly due to the space cost of the handled data-
structures, and in particular the number (n) and size (|L|)
of the lists Wi. To reduce this time cost via distributed
algorithmic paradigms, it is mandatory to split this space
cost, by partitioning the amount of information to be pro-
cessed. In this context, two alternatives can be considered:
either distributing each whole list on a given computing
core; or splitting the graph G to be processed and dis-
tributing each subgraph on these cores.

6.3.1. List-based distribution algorithmics

By assuming that n cores can be used, one list Wi can
be assigned to each core. In such case, each core is able
to process –in parallel and without interaction with the
others– some list-dependent operations such that the re-
moval of an edge from the list; the update of the edges
impacted by the fusion of the two vertices incident to the
removed edge; and the re-sorting of the lists after these up-
dates. The speed-up for these operations is linear, and we
preserve the same cost as for standard BPT construction
for these parts of the process.

However, the choice of the edge to be removed at each
step still requires to exchange information between the n
lists / cores. Then the distribution of the lists has no
speed-up effects on this part of the process.

In summary, the properties, advantages, and drawbacks
of this distribution strategy are the following:

• the number of algorithmic cores is constant and de-
termined a priori as the number n of lists;

• only the lists are distributed on the cores, while the
graph and image structures are shared;

• the distributed algorithm is equivalent to the sequen-
tial one in terms of result;

• the time complexity of the overall process remains
bounded by a n factor, due to the communications
between lists for choosing the best edge at each step;

• the time cost is however reduced due to the linear
speed-up of the other operations on lists.

6.3.2. Graph-based distribution algorithmics

The dual solution to distributing one list on each algo-
rithmic core, is to split the image space into p sets of nodes,
and to distribute each node set –and the associated edges–
onto p cores. In such condition, each core still has to han-
dle n lists Wi, but each of these lists can be restricted
only to the edges of the associated sub-image / sub-graph.
Then, the spatial coherence of each split sub-image / sub-
graph is crucial; indeed, at each step, the removal of an
edge due to the fusion of two nodes, implies to update and
resort the edges in a direct neighbourhood. As a conse-
quence, a regular subdivision of the image into squares (or
via superpixels) is mandatory.

This space-partitioning strategy also implies to deal
with the case of the edges that are shared by two sub-
images, i.e., the edges whose the two vertices are located
in different sub-graphs, respectively. The handling of these
edges is directly linked to the policy for handling the evo-
lution of the partition, during the iterative construction
of the BPT. Indeed, each core processes its own edges,
within its own subgraph. In other words, each core builds
a BPT for its handled sub-image, independently from the
other cores. This modus operandi is a fair approxima-
tion, in terms of results, of what should be obtained with
a sequential algorithm. This assertion is notably justified
when the distribution of the Wi values of edges is homoge-
neous over the image, thus ensuring that each sub-image
contains similar values at a same step.

In particular, this is verified for sub-images that are
correctly designed with respect to the evolution of the
BPT construction. More precisely, it is important to pro-
gressively fuse the sub-images and their associated partial
BPTs, and to carry out these merging just in time. In
this context, two approaches can be considered. The first
is deterministic and parametrised beforehand, by experi-
mentally assessing the number of iterations required be-
fore each merging of a regular (e.g., quad- / octree) hier-
archical partitioning, to approximate at best a sequential
BPT construction by a distributed one. The second is
non-deterministic, and consists of merging two subgraphs
whenever an edge that links these two sub-graphs presents
a Wi value that is lower that any edge in both sub-graphs.

In summary, the properties, advantages, and drawbacks
of this distribution strategy are the following:

• the number of algorithmic cores is scalable, and re-
quires to be sufficiently high to handle a hierarchical
decomposition into sub-images;

• each one of the p core contains n lists, but their size
is p times lower than in the sequential case;

• each core contains the subgraph it handles;
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• the distributed algorithm is not equivalent to the se-
quential one in terms of result, as some merging op-
erations are carried out in parallel and without com-
munication; however the result can be designed to
be similar to the one obtained with a sequential ap-
proach;

• the speed-up of the process is directly correlated with
the parallelization degree over the hierarchy of sub-
graphs.

7. Experimental studies

To illustrate our framework, two application cases have
been considered in the domain of remote sensing image
analysis. Our purpose is to highlight the versatility of the
multi-feature framework by demonstrating how it can be
used to build BPTs from either multiple images and / or
multiple metrics computed through the image content. In
Section 7.1, we show how a multi-feature BPT can be built
from a single complex satellite image by considering simul-
taneously, and in a consensual manner, various metrics. In
Section 7.2, we show how a multi-feature BPT can be built
from multiple satellite images sensed over the same geo-
graphical area by considering simultaneously information
provided by different image contents.

The BPT construction and segmentation approaches
were voluntarily chosen as very simple, in order to avoid
any bias related to these choices, thus better focusing on
the actual structural effects of multi-feature BPT versus
standard BPT. These experiments then have to be con-
sidered as illustrative examples, since neither quantitative
validation nor fine parameter tuning were carried out. Our
purpose is mainly to give the intuition of potential uses of
such BPTs in complex imaging domains.

7.1. Illustrative example 1: Multi-criteria segmentation

The segmentation of very-high spatial resolution
(VHSR) satellite images is a challenging task since the
latest generation of images presents high spectral and spa-
tial resolution properties, leading to huge volumes of data.
In this context, the segmentation of satellite images using
classical mono-metric BPTs has already been widely stud-
ied [38, 39, 40, 42, 43]. This motivates in particular the
experimentation of multi-criteria segmentation procedures
on such images.

7.1.1. Data

The dataset used here (courtesy LIVE, UMR CNRS
7263) was sensed over the town of Strasbourg (France)
by the Pléiades satellite in 2012. The first sample is
a VHSR image (2000 × 2000 pixels) representing a com-
plex high-density urban area (figure* 6(a)) composed of
different urban objects (e.g., individual houses, industrial
buildings, parking lots, roads, shadows, water canals). The
second sample is also a VHSR image (2000× 2000 pixels)

but that represents a typical low-density urban area (fig-
ure* 6(d)) composed of different geographical objects (e.g.,
crop fields, forests, bare soils, rivers). These two satellite
images are pansharpened multispectral images at a spa-
tial resolution of 60 cm with four spectral bands (R, G, B,
NIR).

7.1.2. Method and results

To reduce the spatial complexity of this approach, the
BPTs are built from an initial partition L composed of
200000 regions obtained from a cut performed on a “stan-
dard” BPT.

We considered here four complementary valuation func-
tions W? : (2Ω)2 × V Ω → R that model radiometrical or
geometrical information related to region dissimilarities.

The first valuation function Wcolour is defined as the
increase of the ranges of the pixel intensity values for
each radiometric band, potentially induced by the fusion
of incident regions (i.e., a virtual merge). Practically,
Wcolour can be computed as follows. Let Ni, Nj ∈ P
be two distinct and adjacent regions / nodes. A mul-
tispectral image is modelled as a function I : Ω → V
which associates, to each point x ∈ Ω, a s-uple (with
s > 1 the number of spectral bands) of spectral inten-
sities I(x) =

∏s
b=1 Ib(x). The Wcolour valuation func-

tion is then computed as 1
s

∑s
b=1 max{v+

b (Ni), v
+
b (Nj)} −

min{v−b (Ni), v
−
b (Nj)} where v?b provides the extremal val-

ues for the b-th spectral band in I (i.e., in Ib).
The second valuation function Wndvi quantifies the dif-

ference of NDVI between two adjacent regions. The NDVI
(Normalized Difference Vegetation Index) of a pixel is a
simple indicator that can be used to analyze remote sens-
ing data and assess whether the target being observed con-
tains live green vegetation or not. It is simply computed
as a function that associates to each point x ∈ Ω the ra-
tio (INIR(x) − IR(x))/(INIR(x) + IR(x)) involving both
the R and NIR channels. Practically, the Wndvi valua-
tion function is computed for two adjacent nodes Ni, Nj

as the absolute difference between the averages of NDVI
associated to the pixels of the two regions.

The third valuation function Wndwi computes the dif-
ference of NDWI (Normalized Difference Water Index) be-
tween two adjacent regions. The NDWI of a pixel is an
indicator to assess whether the target being observed con-
tains presence of water or not. The Wndwi valuation func-
tion is computed similarly to the Wndvi valuation function
by replacing the R channel by the G one.

The fourth valuation function Welong is defined as the
change of the geometrical elongation values, potentially
induced by the fusion of two incident regions. The geo-
metrical elongation of a node N is computed as the ra-
tio of the height and width of its bounding box and is
denoted as elong(N). Practically the Welong valuation
function is computed for two adjacent nodes Ni, Nj as

|elong(Ni ∪Nj)− elong(Ni)+elong(Nj)
2 |.

In the case of multi-criteria BPTs, the relative local
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(a) High-density urban area. (b) BPT of (a). (c) MBPT of (a).

(d) Low-density urban area. (e) BPT of (d). (f) MBPT of (d).

Figure 6: (a, d) Illustration of two very-high spatial resolution satellite images (2000× 2000 pixels) at a spatial resolution of 60 cm sensed by
the Pléiades satellite and covering different geographical areas. (b, resp. e) Segmentation result from a cut containing 23500 regions (resp.
5000 regions) performed on a “standard” BPT of (a, resp. d). (c, resp. f) Segmentation result from a cut containing 23500 regions (resp.
5000 regions) performed on a MBPT of (a, resp. d) using four features: the colour intensity, the region elongation, NDVI and NDWI values
{Wcolour,Welong ,Wndvi,Wndwi}.

information consensus policy mean-of-ranks, according to
the position of the edges within the lists is applied for the
first 15% of the lists W?.

As a baseline, the “standard” BPTs of the satellite im-
ages of figure* 6(a, d) are constructed using the colour
intensity value criterion Wcolour. These trees are then
segmented by considering a user-defined horizontal cut to
produce a partition whose the region scales are adapted to
segment the various objects contained in the sensed geo-
graphical areas (e.g., individual houses, buildings, roads,
forests), see figure* 6(b, e). For visualisation purpose,
the segmentation results are depicted here in random false
colours.

In order to evaluate the impact of the differ-
ent valuation functions W? on the segmentation re-
sults, the multi-criteria BPTs are then built by
considering various combinations of valuation func-
tions (e.g., {Wcolour,Wndvi}, {Wcolour,Welong,Wndvi},

{Wcolour,Welong,Wndvi,Wndwi}). The produced multi-
criteria trees are then segmented in the same way as for the
“standard” BPTs, leading to the same number of regions.
For illustration purpose on the entire images, figure* 6(c,
f) shows some examples of the best results obtained from
our multi-criteria BPTs.

From the “standard” BPT results (see figure* 6(b, e)),
we observe that the obtained regions are quite radiometri-
cally homogeneous and are adapted to extract simple ur-
ban objects (e.g., small road segments, bare soils). Con-
cerning more complex objects strongly structured by their
geometrical shapes (e.g., house roofs, rivers, large vegeta-
tion areas and roads with elongated structures), the re-
gions produced with the “standard” BPT are not always
relevant since the considered urban objects are often com-
posed of several small sub-regions (see the river, road sec-
tions and vegetation areas in figure* 6(b, e)). In compari-
son, the cut extracted from the MBPT enables to directly
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(a) Image crop (1). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 7: Segmentation results from the BPTs and the MBPTs, centered on crop (1) of the image presented in figure* 6(a). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi}; MBPT-2: {Wcolour,Welong ,Wndvi,Wndwi}.

(a) Image crop (2). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 8: Segmentation results from the BPTs and the MBPTs, centered on crop (2) of the image presented in figure* 6(a). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndwi}; MBPT-2: {Wcolour,Welong ,Wndvi,Wndwi}.

(a) Image crop (3). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 9: Segmentation results from the BPTs and the MBPTs, centred on crop (3) of the image presented in figure* 6(a). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi,Wndwi}; MBPT-2: {Wcolour,Welong ,Wndvi}.

gather, in a same partition, regions corresponding both to
simple urban objects and to complex ones (see the previous
mentioned geographical objects in figure* 6(c, f)).

To facilitate the qualitative analysis of the obtained
results, we focus hereinafter on eight illustrative image
crops (from figure* 7 to figure* 14) extracted from the two
satellite images of the dataset. Note that the BPTs and

MBPTs are still computed from the entire image contents
(figure* 6(a, d)) and are still segmented in the same way to
provide cuts with an equal number of regions. figure* 7(a)
presents a typical example of a urban area composed of
structured complex urban blocks. In this example, we ob-
serve that the segmentation result provided by the “stan-
dard” BPT (figure* 7(b)) does not enable to reconstruct

16



(a) Image crop (4). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 10: Segmentation results from the BPTs and the MBPTs, centred on crop (4) of the image presented in figure* 6(a). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi}; MBPT-2: {Wcolour,Welong ,Wndvi}.

these urban blocks since they often appear composed of
several small sub-regions (see in particular the road seg-
ments). By adding the valuation function Wndvi in the
creation process of our multi-criteria BPT (figure* 7(c)),
we observe that the extracted cut permits to regroup con-
nected regions having similar NDVI values (objects con-
taining vegetation pixels or not). In this result, the gar-
den areas between houses (see centre bottom of the crop
(1)) are gathered in larger segments and the road sections
are better connected than before. This last phenomenon
is also easily observable in figure* 7(d) where the cut was
performed on a multi-criteria BPT involving four valuation
functions {Wcolour,Welong,Wndvi,Wndwi}. In this exam-
ple, the elongation criterion permitted to produce compact
and large road sections.

In figure* 8, it can be noticed that the river, at the
right side of the crop (2), is divided by three segments in
the result obtained from the “standard” BPT figure* 8(b).
By considering the Wndwi valuation function during the
MBPT creation process (see segmentation result in fig-
ure* 8(c)), the river corresponds to only one segment. In-
deed, this valuation function enables to quantify the sim-
ilarity between neighbouring regions containing water or
not. We also observe that the segments of road are also
less disconnected since they do not contain water but they
present similar (low) NDWI values. The best result for
the segmentation of both simple and complex objects is
shown in figure* 8(d) where four valuation functions are
involved {Wcolour,Welong,Wndvi,Wndwi}. Here, the road
sections are well delineated, the river belongs to one seg-
ment and the vegetation area (at the right side of the crop
(2)) looks more homogeneous. Our assumption is that
complex urban objects appearing in the image content as
either homogeneous and elongated can be extracted from
a cut of the multi-criteria BPT thanks to the consensus
made between the different criteria during the MBPT cre-
ation.

In comparison to what we observe in figure* 9(b), which
is a result from the “standard” BPT, the use of the Wndvi

and the Wndwi valuation functions together in figure* 9(c)

enhances the segmentation of both the vegetation areas
and the bare soils in an urban area. Adding the Welong

metric in figure* 9(d) also helped the creation of the curved
road and the small elongated group of trees at the right
side of the crop (3). However, some geographical objects
having certainly similar NDVI and / or NDWI values are
mixed up together although they have different semantics.
Indeed, the building roofs at the right side of the crop (3)
are merged with the parking lot.

The same phenomenon is observed in figure* 10(c, d)
where the triangular bare soil, the road sections and the
vegetation areas are visually better segmented with the
MBPTs than with the “standard” BPT (see figure* 10(b)).

The image crops extracted from the low-density urban
area image (figure* 6(d)) represent illustrative examples
of vegetation areas, rivers and scattered urban objects.
figure* 11(c) and figure* 12(c) highlight the ability of the
Wndvi valuation function to regroup objects containing live
green vegetations. In these examples the wide vegetation
areas are gathered in larger segments while they were di-
vided in several sub-regions in the results obtained from
the “standard” BPTs (see figure* 11(b) and figure* 12(b)).
The consensual results obtained from the use of more val-
uation functions in the MBPTs (see figure* 11(d) and fig-
ure* 12(d)) enable to deal with the colour heterogeneity
between the different crop fields.

figure* 13(a) represents an area composed of urban ob-
jects mixed up with some complex vegetation zones. The
road section are visible in the result from the “standard”
BPT (see figure* 13(b)) but the vegetation areas at the
right side of the crop (7) are divided in numerous small re-
gions. From the results of the multi-feature BPT involving
both the Wcolour and the Wndvi valuation functions (fig-
ure* 13(c)), we observe that the vegetation areas and the
road sections form now better connected regions. The re-
sult obtained from adding the Welong metric to the MBPT
(figure* 13(d)) presents a balanced consensual segmenta-
tion where road sections can be easily recognized and the
vegetation areas are more homogeneous.

Finally, the result obtained from the “standard” BPT,

17



(a) Image crop (5). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 11: Segmentation results from the BPTs and the MBPTs, centred on crop (5) of the image presented in figure* 6(d). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi}; MBPT-2: {Wcolour,Welong ,Wndvi,Wndwi}.

(a) Image crop (6). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 12: Segmentation results from the BPTs and the MBPTs, centred on crop (6) of the image presented in figure* 6(d). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi}; MBPT-2: {Wcolour,Wndvi,Wndwi}.

(a) Image crop (7). (b) BPT. (c) MBPT-1. (d) MBPT-2.

Figure 13: Segmentation results from the BPTs and the MBPTs, centred on crop (7) of the image presented in figure* 6(d). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndvi}; MBPT-2: {Wcolour,Welong ,Wndvi,Wndwi}.

in figure* 14(b), shows that the vegetation areas at the
left part of the crop (8) are divided in several small sub-
regions, the river seems to be perfect and the urban zone is
over-segmented. In comparison, the result obtained from
a multi-feature BPT using the Wndwi valuation function
offers an unexpected observation. The river, that seems to
be totally homogeneous in figure* 14(a), is segmented dif-

ferently in figure* 14(c, d). In fact, the result obtained for
the multi-feature BPTs helped to highlight some vegeta-
tion structures that cannot be easily interpreted by human
observation. Indeed, the river is composed of small sand-
banks covered by vegetation tissues that could be clearly
observed when we focus on the near infrared band (see the
zoom in the figure* 14(e)). By combining four valuation
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(a) Img. crop (8). (b) BPT. (c) MBPT-1. (d) MBPT-2. (e) NIR band.

Figure 14: Segmentation results from the BPTs and the MBPTs, centred on crop (8) of the image presented in figure* 6(d). BPT: {Wcolour};
MBPT-1: {Wcolour,Wndwi}; MBPT-2: {Wcolour,Welong ,Wndvi,Wndwi}.

functions {Wcolour,Welong,Wndvi,Wndwi} in figure* 14(d),
a consensual segmentation result shows us a pertinent bal-
ance between the vegetation areas that are quite homoge-
neous, the urban area where the road sections are well
structured, and the complex content of the river that we
observed earlier.

7.2. Illustrative example 2: Multi-image segmentation

We now illustrate the interest of multi-criteria BPT for
multi-image segmentation in the context of satellite imag-
ing. It has to be noticed that involving BPTs in a multi-
image processing context is innovative since to the best of
our knowledge BPTs have never been used for this pur-
pose.

7.2.1. Data

The dataset used here is a time series of images (1000×
1000 pixels) sensed over an area located near Toulouse
(France). This area is a typical agricultural zone com-
posed of different types of crop fields and vegetations. Im-
ages were acquired by the Formosat-2 satellite over the
2007 cultural year. They were ortho-rectified and have a
spatial resolution of 8 m, with four spectral bands (R, G,
B, NIR). From this dataset, we selected four images (Fig-
ure 15) all acquired late August and September to reduce
as much as we can the temporal evolution effects. Note
that the second image is partially affected by the presence
of clouds. The main purpose of this experiment is actually
to assess the ability of our multi-feature BPT framework
to capture time-independent and redundant information
from the contents of multiple images representing the same
scene.

7.2.2. Method and results

To reduce the spatial complexity of this approach, the
BPTs are built from an initial partition L composed of
200000 regions obtained from a cut performed on a “stan-
dard” BPT. This initial partition was produced from the
Image 1 (figure* 15(a)) that is not affected by the presence
of cloud.

In the case of multi-image BPTs, the relative local infor-
mation consensus policy mean-of-ranks, according to the

position of the edges within the lists is applied for the first
15% of the lists W?.

As a baseline, a “standard” BPT is construct for each
satellite image presented in figure* 15 by considering the
intensity value criterion Wcolour (denoted hereinafter as
W img1

colour, W img2
colour, W img3

colour, W img4
colour depending on the im-

age where this criterion is computed). These binary trees
are then segmented by using a user-defined horizontal cut
to produce a partition whose the region scales are adapted
to segment the various geographical objects covering the
sensed areas (e.g., agricultural crop fields, wide forest ar-
eas), see figure* 16(f, g, h, i) and figure* 17(f, g, h, i).
For visualisation purpose, the segmentation results are de-
picted here in random false colours on illustrative image
crops.

To evaluate the impact of the different valu-
ation functions on the segmentation results, the
multi-image BPTs are built by considering simulta-
neously informations extracted from the contents of
the four satellite images (e.g., {W img1

colour, . . . ,W
img3
colour},

{W img1
colour,W

img2
colour,W

img1
ndvi ,W

img2
ndvi }). The produced multi-

image trees are then segmented in the same way as for the
“standard” BPTs, leading to the same number of regions.

For a better visualization, we focus in the following
on two image crops representing different parts of the
geographical scene. In the crop (1) represented by fig-
ure* 16(a, b, c, d), we observe that, although some varia-
tions are due to the time evolutions, the main structures
of the crop fields do not evolve. After a visual interpreta-
tion of these images, it can be noticed that the majority of
observed geographical areas preserve the same crop field
partition. However, each segmentation obtained from the
“standard” BPT of each image presents totally different
partitions (see figure* 16(f, g, h, i)). Indeed, some partic-
ular crop fields (centre of crop (1)) are always divided in
various number of regions (sometimes few and sometimes
more). The same phenomenon can be observed with the
elongated vegetation area that is sometimes merged with
the neighbouring crop fields. In comparison, the results
obtained from our multi-image BPT (see figure* 16(e)) are
more stable since they arise from a consensual discussion
between the results of the “standard” BPT results.
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(a) Image 1 (sensed the 08-11-2007). (b) Image 2 (sensed the 09-01-2007).

(c) Image 3 (sensed the 09-08-2007). (d) Image 4 (sensed the 09-15-2007).

Figure 15: Illustration of four satellite images (1000× 1000 pixels) at a spatial resolution of 8 m sensed by the Formosat-2 satellite covering
the same geographical area.

The same behaviour can be observed in the second crop
(figure* 17) where the results obtained from the “stan-
dard” BPT of each image (see figure* 17(f, g, h, i)) are
almost totally different but most important information
are gathered in the result of our multi-image BPT (see
figure* 17(e)).

The best results are shown in figure* 16(j) and fig-
ure* 17(j) where we used three of the four images with two
metrics {W img1

colour, . . . ,W
img3
colour,W

img1
ndvi , . . . ,W

img3
ndvi }. The

regions corresponding to crop fields are more homogeneous
and the number of sub-regions of each area is well adapted
for a future object-based recognition or classification step.

8. Conclusion

In this article, we proposed a generalization of the
BPT construction framework, classically built in a mono-
feature way, thus allowing to consider various multi-feature
paradigms. Such a multi-feature framework enables to re-
duce the task of the user, by offering more flexibility for
the BPT creation. Indeed, the negotiation between the
different features, at each step of the BPT construction, is
intrinsically dealt with by the algorithm, with respect to
the chosen consensus policies. This reduces the hard prior
knowledge mandatory from the user to the only choice
of the involved features and the global strategies for their
collaboration. Experimental evaluations of this framework

20



(a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4. (e) MBPT-1.

(f) BPT-1. (g) BPT-2. (h) BPT-3. (i) BPT-4. (j) MBPT-2.

Figure 16: Segmentation results from the mono-image BPTs and the multi-images/metrics MBPTs. (a) Crop 1 from Image 1 (Figure 15(a)).
(b) Crop 1 from Image 2 (Figure 15(b)). (c) Crop 1 from Image 3 (Figure 15(c)). (d) Crop 1 from Image 4 (Figure 15(d)). (f) Seg. result
from a BPT of Image 1. (g) Seg. result from a BPT of Image 2. (h) Seg. result from a BPT of Image 3. (i) Seg. result from a BPT of

Image 4. (e) Seg. result from a MBPT with 4-images/1-metric {W img1
colour,W

img2
colour,W

img3
colour,W

img4
colour}. (j) Seg. result from a MBPT with

3-images/2-metrics {W img1
colour, . . . ,W

img3
colour,W

img1
ndvi , . . . ,W

img3
ndvi }.

(a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4. (e) MBPT-1.

(f) BPT-1. (g) BPT-2. (h) BPT-3. (i) BPT-4. (j) MBPT-2.

Figure 17: Segmentation results from the mono-image BPTs and the multi-images/metrics MBPTs. (a) Crop 2 from Image 1 (Figure 15(a)).
(b) Crop 2 from Image 2 (Figure 15(b)). (c) Crop 2 from Image 3 (Figure 15(c)). (d) Crop 2 from Image 4 (Figure 15(d)). (f) Seg. result
from a BPT of Image 1. (g) Seg. result from a BPT of Image 2. (h) Seg. result from a BPT of Image 3. (i) Seg. result from a BPT of

Image 4. (e) Seg. result from a MBPT with 4-images/1-metric {W img1
colour,W

img2
colour,W

img3
colour,W

img4
colour}. (j) Seg. result from a MBPT with

3-images/2-metrics {W img1
colour, . . . ,W

img3
colour,W

img1
ndvi , . . . ,W

img3
ndvi }.

on two application cases highlight its versatility and its in-
terest by demonstrating how it can be used to build con-

sensual multi-feature BPTs from multiple images and / or
multiple metrics computed through the image content.
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The algorithmic evolutions related to the multi-feature
BPT construction require the handling of more complex
data-structures and consensual algorithms, compared to
“standard” BPTs. In order to tackle the induced memory
and time complexity issues raised by this framework, the
short-term perspective of this work will be to implement
distributed heuristics based on graph-based distribution
algorithmic. Integrating higher-level consensus may also
allow us to improve the relevance of the hierarchies and
the induced segmentation.

Beyond the application examples described in this ar-
ticle, other relevant applications could also be considered
for the processing of different families of images. As an
example, it is possible to apply multi-feature BPTs to seg-
ment hyperspectral images, by establishing a consensus
between the complementary (and potentially correlated)
information carried by the different spectral bands. Multi-
temporal imaging can also be considered, by establishing
a higher-level “temporal” consensus between the different
image acquisitions of the same scene.

Another methodological challenge is raised by the pos-
sible divergences between the different values gathered by
the metrics / images, which may lead to occasional irrel-
evant consensual decisions. We plan to study how non-
consensual information could be used to follow local con-
sensus between metrics / images leading to hypertrees
where the branches model local fusion decisions.
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[44] A. Alonso-González, C. López-Mart́ınez, P. Salembier, Filtering
and segmentation of polarimetric SAR data based on binary
partition trees, IEEE Transactions on Geoscience and Remote
Sensing 50 (2012) 593–605.

[45] P. Salembier, Study of binary partition tree pruning techniques
for polarimetric SAR images, in: ISMM, International Sympo-
sium on Mathematical Morphology, Proceedings, volume 9082
of Lecture Notes in Computer Science, Springer, 2015, pp. 51–
62.
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hierarchical data structure for image representation and prob-
abilistic inference, in: ISMM, International Symposium on
Mathematical Morphology, Proceedings, volume 9082 of Lec-
ture Notes in Computer Science, Springer, 2015, pp. 301–312.

[52] V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes,
T. Walter, E. Decencière, Waterpixels, IEEE Transactions on
Image Processing 24 (2015) 3707–3716.

Jimmy Francky Randrianasoa
obtained the MSc degree in Computer
Science and ESIROI Engineer degree,
from the Université de la Réunion,
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2006 and 2012. He is now a professor at Université de
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