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Binary Partition Tree Construction from Multiple
Features for Image Segmentation

Jimmy Francky Randrianasoa, Camille Kurtz, Éric Desjardin, Nicolas Passat

Abstract—In the context of digital image processing and
analysis, the Binary Partition Tree (BPT) is a classical data-
structure for the hierarchical modeling of images at different
scales. BPTs belong both to the families of graph-based mod-
els and morphological hierarchies. They constitute an efficient
way to define sets of nested partitions of image support, that
further provide knowledge-guided reduced research spaces for
optimization-based segmentation procedures. Basically, a BPT is
built in a mono-feature way, i.e., for one given image, and one
given metric, by merging pairs of connected image regions that
are similar in the induced feature space. We propose in this work
a generalization of the BPT construction framework, allowing
to consider versatile multi-feature paradigms. The cornerstone
of our approach relies on a collaborative strategy enabling to
establish a consensus between different metrics, thus allowing to
obtain a unified hierarchical segmentation space. To reach that
goal, we first revisit the BPT construction algorithm to describe it
in a fully graph-based formalism. Then, we present the structural
and algorithmic evolutions and impacts when embedding multiple
features in BPT construction. We also discuss the different ways
to tackle the induced memory and time complexity issues raised
by this generalized framework. Final experiments illustrate how
this multi-feature framework can be used to build BPTs from
multiple images and / or multiple metrics computed through the
image content.

Index Terms—binary partition tree, morphological hierarchy,
multiple features, graph-based image processing, image segmen-
tation.

I. INTRODUCTION

A. Context

IN image processing and analysis, segmentation is a crucial
task. The concept of segmentation is also quite generic

from various points of views: in terms of semantics (from low-
level definition of homogeneous areas to high-level extraction
of specific objects), in terms of definition (object versus back-
ground or total partition of the image support), and in terms
of algorithmics (region-based or contour-based approaches).

In this context, morphological hierarchies propose a wide
range of data-structures for modeling images at various scales,
allowing for the definition of connected operators [1]. Mainly
based on the theoretical frameworks of graphs and mathemat-
ical morphology [2] [3, Chapters 3, 7, 9], these approaches
have already proved their efficiency – the algorithms to
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build and handle them are generally of linear or quasi-linear
time and space complexity – in many imaging applications.
Their very principle is to embed images in a dual spatial /
spectral representation space, composed of shapes (a shape
is a spectrally homogeneous and spatially coherent region at
a given scale) together with their spatial (neighbouring) and
hierarchical (inclusion) relations. These representations offer a
structured space to find the best regions / scales according to
the applicative objective using, for instance, high-level features
to describe the image regions and their content.

Among these representations, the Binary Partition Tree
(BPT) [4] is a hierarchical representation of an image modeled
as a tree structure, whose each node is a connected region.
Each of these nodes is either a leaf – then corresponding
to an elementary region – or an internal node, modeling the
union of the regions of its two children nodes. The root is
the node corresponding to the entire support of the image.
Practically, a BPT is built from its leaves – provided by an
initial partition of the image support – to its root, in a bottom-
up fashion, by iteratively choosing and merging two adjacent
regions which minimize a merging criterion (based on a given
metric) computed between them. The BPT structure allows
users to explore the image at different scales and can be used
for various tasks such as segmentation, information retrieval,
object recognition and visual browsing.

Like other hierarchical structures, the BPT was mainly
designed to process one image at a time. In addition, by
contrast with most of them (e.g., component-trees, trees of
shapes) that are intrinsically defined from the image content,
the BPT is also designed to embed an extrinsic metric that
is used – together with the image – to build a mixed image
/ knowledge model. In other words, a BPT is generally built
for one image and one metric.

B. Motivations and Contributions

The BPT has already demonstrated its relevance for chal-
lenging image processing and analysis tasks, for instance
in the fields of video, remote sensing or medical imaging.
Nevertheless, as stated above, it remains mostly limited to a
one image, one metric paradigm.

Indeed, on the one hand, from the imaging point of view, the
handling of several images, e.g., multisensor, multitemporal or
multispectral, is generally dealt with either by defining a super-
image, or by gathering the multiple information provided by
various spectral bands into a single metric. On the other hand,
the metric – namely the merging criterion used to decide, at
each step of the BPT construction, which nodes to merge –
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is a scalar function, that imposes to fuse various elements of
expert knowledge; this means in particular that this metric has
to be carefully thought beforehand by the user, and cannot be
handled on the flight by the process, in a more flexible fashion.

In this article, our purpose is to investigate how the BPT
construction framework can be generalized to explicitly relax
these two constraints, thus leading to a multi-feature paradigm,
i.e., the handling of many images and / or many metrics.
The underlying idea of our approach relies on a collaborative
strategy enabling to establish a consensus between different
metrics, thus allowing to obtain as output a unified hierarchical
segmentation space.

In order to reach that goal, it is first mandatory to emphasise
the structural core of the BPT construction algorithm, and in
particular to separate its fundamental graph-based expression
– that is indeed a graph-collapsing algorithm – from its
knowledge-based layers (image topology, metric definition,
merging policies, etc.); this preliminary analysis is developed
in Section III.

In a second time, we explain in Section IV, how the basic
BPT construction framework can be generalized to handle
multiple features. We first identify the requirements in terms of
data-structures (Section IV-A), and then the algorithmic side
effects (Section IV-B). A complexity analysis (Section IV-C)
is then proposed to describe the induced space and time
complexity increases.

In a third time, we discuss in Section V, how to practically
tackle these complexity issues. To this end, we identify the
main bottlenecks when considering standard sequential algo-
rithmics (Section V-A). We then consider two points of view:
first, heuristic solutions that approximate the exact algorithm
in a sequential way (Section V-B); second, the way to switch
from a sequential to a distributed algorithm (Section V-C).

This work is concluded by two application examples, in
Section VI, that illustrate how the framework can allow us to
define BPTs from multiple images and from multiple metrics.

The remainder of the article – which is an extended and
improved version of the conference paper [5] – is composed
of a synthetic state of the art of graph-based, hierarchical and
multi-image segmentation, in Section II; and a conclusion that
emphasises the perspectives of this work, in Section VII.

II. RELATED WORKS

A. Graph-based and Hierarchical Image Segmentation

Image processing and analysis problems – and in particular
segmentation – are often considered in a discrete way via
concepts of graph theory. Practically, image points (i.e., pixels,
voxels) are considered as the vertices of a graph, while the
spatial / neighbouring relations between them are modeled by
the edges of this graph. This paradigm, democratized since
the early 70’s [6], led to the development of a wide range of
segmentation approaches, based on basic graph manipulations.

In this context, image segmentation could be viewed as a
partial (e.g., region growing [7]), or total partitioning problem
with partitions obtained via monotonic (e.g., watersheds [8])
or non-monotonic transformations (e.g., split and merge [9]).
Some of these approaches led in particular to the development

of optimization schemes (e.g., graph-cuts [10], [11], random
walks [12], power watersheds [13]). In the framework of
mathematical morphology, these graph-based approaches gave
rise to the notion of connected operators [14].

Graph-based segmentation allows us to obtain one segmen-
tation result from a given image. In order to provide a better
reliability to the ill-posed problem of segmentation, some
hierarchical approaches were developed to compute families of
nested partitions, providing potential solutions to segmentation
issues at different scales. These notions of hierarchies for
image analysis take their origin in image models initially
devoted to optimize the access and space cost of the carried
information (e.g., octrees [15]). These regular models were
progressively shifted toward image / content-guided, irregular
hierarchies [16].

From this point on, several hierarchical image models
were developed, mainly in the framework of mathematical
morphology. The most popular are component-trees [17], trees
of shapes [18], [19], hierarchical watersheds [20], hypercon-
nected component-trees [21], and binary partition trees [4]
(see Section II-B). Since they provide a space of potential
segmentations, instead of a single result, these hierarchical
models were progressively involved in attribute-based [22] or
optimization schemes [23], [24] for segmentation purpose.

Based on these image models, generally designed as trees
(i.e., rooted, connected, acyclic graphs), further developments
were proposed to allow for a better flexibility in image and
parameter handling. The case of multiband (for instance,
colour) images was considered, leading to data-structures such
as component-graphs [25], multivalued component-trees [26]
or multivariate trees of shapes [27]. Topological handling
was also investigated, by allowing connectivity hierarchies
in component-hypertrees [28], or dealing with asymmetric
hierarchies [29] allowing for non-directed graph as image
models. The way to embed semantic information as image
values was also pioneered via the notion of shaping [30], [31].

B. Binary Partition Trees
Most of the hierarchical structures proposed in the literature

are models intrinsically deriving from the image signal. For
instance, component-trees represent the inclusion of the suc-
cessive level-sets; trees of shapes represent the image level-
lines; while hierarchical watersheds rely on saliency measures
similar to gradients. As a drawback, these models strongly rely
on the image intensity since they aim to extract image regional
extrema. Unfortunately, in different applicative contexts, such
regions may not correspond to objects of interest in image
content, in particular when dealing with complex images.

By contrast, the binary partition tree (BPT) [4] relies on
a mixed image / knowledge model and allows for higher
flexibility than many other hierarchical structures. From a
structural point of view, BPTs present similar properties with
binary space partition trees [32], designed to efficiently model
an image space, mainly in computer graphics. Indeed, BPTs
provide hierarchies of nested total partitions of an image.

From an algorithmic point of view, a BPT is built by
progressively merging elementary image segments (for in-
stance, flat zones), based on information about image content,
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but also on a priori knowledge directly chosen with respect
to the targeted segmentation application. In particular, the
choice of the metric chosen to guide which pairs of regions
should be iteratively fused together (and in which order) is
crucial, since it can lead to a huge number of different BPTs,
whose structures will be more or less adapted to certain
kinds of tasks and images. This gave rise to several works,
ranging from theoretical contributions [33] to experimental
assessments [34]. The basic criteria used in most of image
segmentation approaches are generally radiometric or geomet-
ric region similarities (or their fusion into a single metric).
Thanks to this model, the BPT nodes are good candidates for
capturing objects of interest, potentially emerging from the
image content at different scales, since BPTs are able to build
image regions based on their similarities.

Based on this property – and except few contributions in the
field of object recognition [35], [36], [37] – BPTs were mainly
involved in segmentation / classification cases where such total
partitions make sense from a semantic point of view. More
precisely, the wider application field of BPTs is remote sensing
[38]. In this context, BPTs were involved for multiresolution /
multiscale image segmentation and classification [39], [40];
coupled optical / LIDAR data analysis [41]; hyperspectral
images [42], [43]; polarimetric SAR [44], [45], mixed SAR
/ hyperspectral images [46]; or SAR time series analysis [47].

C. Discussion – Contributions

The standard use of a single metric for the whole creation
process of a BPT requires strong a priori knowledge from
the user, regarding the size, the shape and / or the spectral
homogeneity of the objects to be segmented in the image. For
instance, the basic models and criteria used in most of image
segmentation approaches are generally textural similarities
[48], multi- / hyper-spectral homogeneity [42], or rely on
combination of geometric and color criteria fused together in
a single region similarity measure [39].

Such application-dependent strategy makes the process quite
rigid and leads to a double issue. Firstly, the fusion of multiple
features generally does not enable to take advantage of all
the richness of the information carried by the diversity /
complementarity of the metrics. In addition, in some specific
cases, these merging criteria can be in disagreement together
(e.g., geometrical likeness vs. spectral dis-likeness) regarding
the similarity between two adjacent regions, leading to a
non-consensual BPT structure. Secondly, depending on the
scale of the regions / nodes among the tree, some criteria
may not be relevant for choosing the next couple of regions
to be fused. For example, the closer the nodes are to the
root (regions become wider), the less relevant a spectral
homogeneity criterion is.

By contrast with the classical approach for building the BPT,
this article proposes a new way of creating a BPT by using
simultaneously various metrics. This paradigm also allows us,
by definition, to encompass the case of processing several
images / modalities of a same scene, with similar or specific
metrics in each. In this work, we do not intend to regroup
different criteria in a unique region merging criterion, but

to consider each metric individually. The cornerstone of our
framework relies on the consensual strategies – derived from
the machine learning field – tuned for the management of these
different complementary criteria.

Such framework presents some virtues. It lightens the task
of the user, by offering more flexibility for the BPT creation.
Indeed, since the negotiation between the different features, at
each step of the BPT construction, is intrinsically dealt with by
the algorithm, with respect to the chosen consensus policies,
the hard prior knowledge mandatory from the user is reduced
to the choice of these features and the global strategies for
their collaboration.

The counterpart of these advantages is related to the neces-
sary handling of more complex data-structures, and a higher
computational cost. Thus, we devote a part of our study on
setting up an adequate data-structure that allows the potential
optimization of our algorithmic framework, and its distribution
over several processing cores.

III. STRUCTURAL DESCRIPTION OF THE BPT
CONSTRUCTION

A. Definitions and Notations

This section gathers formal definitions and notations manda-
tory to make this work self-contained.

An image is a function I : Ω → V that associates to each
point x of the finite set Ω a value I(x) of the set V .

To model the fact that two points x and y of Ω are neigh-
bours, let AΩ be an adjacency (i.e., irreflexive, symmetric)
binary relation on Ω. In other words, GΩ = (Ω, AΩ) is a
graph that models the structure of the image space.

For any partition P of Ω, we can define an adjacency
inherited from that of Ω. More precisely, we say that two
distinct sets N1, N2 ∈ P are adjacent if there exist x1 ∈ N1

and x2 ∈ N2 such that (x1, x2) is an edge of AΩ, i.e., x1 and
x2 are adjacent in (Ω, AΩ). This new adjacency relation AP
is also irreflexive and symmetric.

B. The Standard BPT Construction [4]

A BPT is a hierarchical representation of an image. More
precisely, it is a binary tree whose each node is a connected
region. A node can be either a leaf representing an “elemen-
tary” region, or a simple node modeling the union of two
neighbouring regions. The root is the node corresponding to
the support of the whole image.

The BPT is built in a bottom-up fashion starting from the
determination of the leaves – provided by an initial partition of
the image – to the root. This is done via an iterative process,
that chooses and merges, at each step, two adjacent regions
minimizing a criterion reflecting their likeness. This merging
sequence is stored in a hierarchical structure which allows the
regions of the image to be modeled at different scales. The
BPT construction is illustrated in the right part of Figure 1.

A huge number of distinct BPTs may be obtained for a given
initial partition of Ω. In order to decide which one among
them will be the most relevant, it is necessary to define a
merging order, i.e., to decide of the priority of the fusions
between nodes. Let Ni, Nj ∈ P be two distinct and adjacent
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Fig. 1. Illustration of the algorithm for the creation of a BPT from one
image. Left: two input information which are (1) a graph GL = (L, AL)
that models the initial partition of the image; and (2) a valuation function
W : (2Ω)2×V Ω → R that allows us to choose, at each step of the process,
the next pair of nodes to be merged (see Section III-C). Right: progressive,
bottom-up, creation of the tree from To to T6 by iterative fusions of two
neighbouring regions.

regions / nodes. A BPT generation relies on two main notions:
a region model, denoted as Mr(Ni), which specifies how a
region Ni is characterized (e.g., color, shape), and a merging
criterion, denoted as Or(Ni, Nj), which defines the similarity
of neighbouring regions Ni, Nj and thus the merging order.

A strategy commonly adopted to represent each region
is to consider their average color in a specific color space
(e.g., RGB, HSV), and to iteratively merge pairs of adjacent
regions that either have region models similar one to each
other, or similar to the region model of the novel region built
from their potential union. Another strategy [49] considers
a region model based on a combination of radiometric and
geometric features, with a merging criterion that weights both
radiometric and geometric region similarities, evolving during
the construction of the BPT, to provide a heavier weight to
the geometric similarities according to the size of the BPT
nodes. The choice for these parameters is strongly application-
dependent. However, in any case, the merging criterion is a
scalar function, which imposes to fuse various elements of
expert knowledge, and cannot be handled on the flight by the
process, in a more flexible and dynamic way.

C. Structural Description: A Graph-based Point of View

1) Graph and valuation function: The way to describe the
construction of a BPT is generally considered from spatial (the
way regions are built) and descriptive (the way regions are
characterized and how they can be considered similar) points
of view. Indeed, the classical – image and application-oriented
– description of the BPT construction algorithm considers as
input: the image I (i.e., the geometrical embedding of Ω, and
the value associated to each point of Ω); a region model, that
allows us to “describe” the nodes; and a merging criterion, that
allows us to quantify the homogeneousness of nodes before
and after a putative fusion. These information are important
from an applicative point of view.

However, beneath these image and knowledge-based no-
tions, the construction of a BPT is intrinsically a process of
graph collapsing. Indeed, from an algorithmic point of view,
the only use of region models and merging criteria is to define
a valuation on the edges that allows us to choose which nodes

to fuse at any given step. In the sequel, we will then consider
– without loss of correctness – that a BPT is fully1 defined,
by only two input information (see left part of Figure 1):

1) a graph GL = (L, AL) that models the initial partition
of the image;

2) a valuation function W : (2Ω)2 × V Ω → R that allows
us to choose (relatively to a specific metric), at each step
of the process, the next pair of nodes to be merged.

2) Structural description of the algorithm: Now, let us
consider an initial partition L of Ω. (Each node L ⊆ Ω of
L is generally assumed to be connected with respect to AΩ.)
This partition L defines the set of the leaves of the BPT we are
going to build (e.g., L can be the set of the image flat zones). It
is equipped by the adjacency AL inherited from AΩ, leading
to a graph GL = (L, AL) that models the structure of the
partition of the image I .

The BPT is the data-structure that describes the progressive
collapse of GL onto the trivial graph (Ω, ∅). This process
consists of defining a sequence (Gi = (Ni, ANi))

n
i=0 (with

n = |L| − 1) as follows. First, we set G0 = GL. Then, for
each i from 1 to n, we choose the two nodes Ni−1 and N ′i−1

of Gi−1 linked by the edge (Ni−1, N
′
i−1) ∈ ANi−1

that min-
imizes the valuation function W , and we define Gi such that
Ni = Ni−1\{Ni−1, N

′
i−1}∪{Ni−1∪N ′i−1}; in other words,

we replace these two nodes by their union. The adjacency
ANi

is defined accordingly from ANi−1
: we remove the edge

(Ni−1, N
′
i−1), and we replace each edge (Ni−1, N

′′
i−1) and

/ or (N ′i−1, N
′′
i−1) by an edge (Ni−1 ∪ N ′i−1, N

′′
i−1) (in

particular, two former edges may be fused into a single).
From a structural point of view, the BPT T is the Hasse

diagram of the partially ordered set (
⋃n

i=0Ni,⊆). From an
algorithmic point of view2, T is built in parallel to the
progressive collapse from G0 to Gn; in other words, T stores
the node fusion history. More precisely, we define a sequence
(Ti)

n
i=0 as follows. We set T0 = (N0, ∅) = (L, ∅). Then, for

each i from 1 to n, we build Ti from Ti−1 by adding the new
node Ni−1∪N ′i−1, and the two edges (Ni−1∪N ′i−1, Ni−1)
and (Ni−1∪N ′i−1, N

′
i−1). The BPT T is then defined as Tn.

3) Data-structures: The above description of the BPT
construction algorithm implies to define – and update during
the whole process – several data-structures, namely:

• the graph G, that allows us to know what nodes remain
to be merged and what are their adjacency links; and

• the tree T that is progressively built.

In order to efficiently compute the valuation W , it is also
important to associate each node of G to the corresponding
part of the image I , e.g., via a mapping between G and Ω.

The last – but not least – required data-structure is a sorted
list W that gathers the scalar valuations of each remaining
edge of G. This list contains the information that will autho-
rise, at each of the n iterative steps of the process, to choose

1The construction of a BPT is not fully deterministic since it may happen
that the valuation function W has a common minimal value for several edges.

2In [50], a graph-based definition of BPT construction is also proposed, that
relies on a minimum spanning tree paradigm. However, this formalization is
valid only if the merging order is associated to a valuation of the edges that
is fixed and defined a priori on the initial partition.
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Fig. 2. One step of the building of a BPT from one image. From the left to the right: First: the partition of Ω before and after the fusion of two nodes.
Second: the associated graph G, before and after the fusion of N3 and N4, forming the new node N8; the red edge is removed; the blue and orange edges
are updated, e.g., (N1, N3) becomes (N1, N8); the orange are merged by pairs, e.g., (N7, N3) and (N7, N4) become (N7, N8); the green edges are not
affected. Third: the sorted list that gathers the scalar valuations of each remaining edge of G; the red cells are removed, as the edge (N3, N4) is suppressed;
this edge had been chosen due to its highest position in the list; the scores of blue and orange cells are updated with respect to N8; the orange cells are
merged by pairs; the positions of the blue and orange cells are updated with respect to their new scores; the scores of the green cells are not affected. Last:
a new part of the BPT T is created by adding the new node N8, and linking it to its two children nodes N3 and N4.

the couple of nodes to be merged relatively to a given metric.
One iteration of this algorithm is illustrated in Figure 2.

This choice is made in constant time O(1), since W is
sorted. After the merging operation, W has to be updated: (1)
to remove the edge between the two nodes; (2) to update the
edges affected by the merging operation; and (3) to re-order
these updated edges. Operation (1) is carried out in constant
time O(1). Operation (2) is carried out in O(α.TW ), where
TW is the cost of the computation of W for an edge, and α is
the number of neighbours of the merged nodes (α is generally
bounded by a low constant value). Operation (3) is carried out
in O(α. log2 |W|).

IV. MULTIPLE FEATURE GENERALIZATION OF THE BPT
CONSTRUCTION

In this section, we investigate a multi-feature generalization
of the BPT construction algorithm. Indeed, we now consider
that this construction, viewed as a graph collapsing problem,
still takes as input the graph GL = (L, AL). By contrast, we
now consider several valuation functions W? : (2Ω)2×V Ω →
R. These functions are still devoted to allow us to choose,
at each step of the process, the next pair of nodes to be
merged. We discuss the structural and algorithmic side effects
of using several valuation functions “at the same time”, instead
of only one. Our purpose is still to build one BPT from these
input information. Practically, introducing several valuation
functions allows us to model and embed several features in an
independent way in the construction process. These features
can in particular represent several metrics associated to a same
image; a same metric associated to several images of a same
scene; or even various metrics on various images of a same
scene. In other words, this generalized paradigm opens the
way to a versatile handling of multi-image (e.g., multimodal,
multi-time, etc.) and / or multi-criteria definition of consensual
BPTs, without the constraint of defining beforehand any ad
hoc, hard, unified metric.

A. Structural Evolutions

The proposed generalization deals with the “feature” part
of the construction. As stated in Section III-C1, we need
a graph that models the initial partition L of the image(s).
Here, we still have one such initial graph; which means that
– fundamentally – our purpose is still to collapse a unique
graph, while – practically – our purpose is to build the BPT
associated to a unique spatial scene, topologically modeled by
this graph. From a semantic point of view, this implies that the
(potentially multiple) images involved in the BPT construction
process have to be defined in a same spatial reference3, i.e.,
the same support Ω. A graph GL – which is isomorphic to
(Ω, AΩ) – can be obtained easily, either by subdividing Ω into
one-point singleton sets or by considering flat zones.

The “graph” part of the BPT construction process thus re-
mains unchanged. In terms of data-structures, the generalized
BPT construction algorithm will still handle one graph G, that
will be progressively collapsed; and one tree T that will be
built to finally provide the BPT. A unique mapping between
N and Ω will still allow us to have access to the values of a
node for the different images.

Let us now consider the “feature” part of the data-structure.
In the initial BPT construction approach, the valuation function
W : (2Ω)2×V Ω → R was explicitly modeled by a sorted list
W of the values of all edges of the graph. This list was updated
during the progressive collapsing of G, by removing elements
from the list; updating the values of some edges (in particular,
thanks to the mapping between N and Ω); and (re)sorting
edges with respect to their updated values.

We now consider n > 1 valuation functions W? : (2Ω)2 ×
V Ω → R, which means that each edge is associated to n
values, one for each function. For instance, by assuming that
we consider k distinct images, and l distinct metrics, we may

3This constraint is not actually a real issue, since this spatial coherence
assumption is generally a standard requirement in image processing (e.g., in
medical imaging where several modalities are superimposed via registration
processes; in remote sensing where the acquired data are georeferenced; etc.).
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...

...

...

Fig. 3. General structure of a BPT creation involving n valuation functions /
sorted lists. Each sorted listWi gathers edges information computed by using
one valuation function corresponding to a given metric on a given image. A
BPT is obtained by applying a collaborative strategy leading to a consensus
between the information carried by these n sorted lists (see Section IV-B).

have up to n = k.l such valuation functions. This leads us to
define no longer one, but n sorted lists Wi (1 ≤ i ≤ n). Each
sorted list Wi is associated with a specific valuation function
Wi : (2Ω)2×V Ω

j → R that is defined in particular with respect
to a value set Vi (see Figure 3). The handling of these sorted
lists remains the same in terms of removal, value updating /
resorting, as for one list.

Our purpose is now to build a BPT from these n lists,
by generalizing the algorithmic framework described in Sec-
tion III-B, which initially depended on one list W .

B. Algorithmic Evolutions

From an algorithmic point of view, each iteration of the
construction process preserves the same organization. An edge
is chosen and the two incident nodes of the graph are merged.
This operation leads to update the nodes and edges of G, and
adds a new node plus two edges in T. The main differences are
that: (1) n > 1 sorted lists then have to be updated; and (2)
the choice of the optimal edge has to be made with respect to
the information carried by these n sorted lists instead of only
one, for a standard BPT.

At each iteration of the algorithm (see Figure 4), the choice
of the optimal edge to remove, leading to the fusion of its
two incident nodes, depends on a decision, i.e., a consensus,
made with respect to the information provided by these n lists.
In particular, useful information are carried, on the one hand,
by the sorted lists Wi, that give a relative information on
edges, induced by their ordering with respect to Wi; on the
other hand, by the valuation functions Wi : (2Ω)2 × V Ω

j → R
that give an absolute value to each edge. These information
are of distinct natures; we study their relevance according to

various kinds of consensus policies. In particular, we identify,
hereinafter, three main families of consensus strategies.

1) Absolute information consensus: Let us consider that
the consensus policy consists of choosing the edge of low-
est mean valuation among the n lists Wi, or the edge
of minimal valuation among all lists. The first consensus
(namely min of mean) is defined by a linear formula-
tion: arg(N,N ′)∈N min

∑n
i=1Wi((N,N

′)), while the second
(namely min of min) is defined by a non-linear formula-
tion: arg(N,N ′)∈N min minn

i=1Wi((N,N
′)). In both cases the

decision is made by considering the absolute information
carried by the edges. In such conditions – and more generally
whenever the information carried by the values of each edge
is a sufficient knowledge, independently of the relative values
between edges – n sorted lists Wi are not necessary, and a
single sorted list W that contains the information of these,
linear or non-linear, formulations is indeed sufficient. The BPT
construction involving n lists is then equivalent to that from
one list.

The main difficulty raised by this policy derives from the
potential heterogeneity of the values carried by the different
W? valuation functions. Indeed, to be tractable, this policy
requires that all values are comparable. This implies in partic-
ular that they must be of same nature, but also that they should
be normalized to allow for the definition of adequate fusion
/ comparison operators. This issue is mainly the same that
occurs in most optimization problems where a given metric is
built from several terms of varying semantics. This drawback
argues in favour of using the next two proposed policies.

2) Relative local information consensus: Let us now con-
sider that the consensus policy consists of choosing the edge
that is the most often in first position in the n sorted lists Wi,
or the most frequently present in the r � |Wi| first positions in
the n sorted lists Wi. These consensus (namely, majority vote
and most frequent, potentially weighted) policies do not act
on the absolute valuations of the edges, but on their relative
positions in the lists. In such case, it is then mandatory to
maintain n sorted lists. However, the decision process does
not require to explicitly access the whole lists, but it can be
restricted to the first (or the first r) element(s) of each, leading
to a local decision process.

3) Relative global information consensus: Let us finally
consider that the consensus policy consists of choosing the
edge that has the best global ranking among the n sorted
lists Wi. As previously, such consensus (e.g., best average, or
best median ranking) policy, also acts on the relative positions
of the edges in the lists, and does not need to consider the
absolute values of the edges. However, by contrast with the
above case, the decision process requires to explicitly access
the whole content of all these lists, leading to a global decision
process of higher computational cost.

C. Complexity Analysis

Computationally, choosing the edge to remove is no longer
a constant time operation, but will depend on the way infor-
mation are used and compared. Afterwards, operations (1–3)
described in the standard BPT construction algorithm, for the
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Fig. 4. One step of the building of a BPT involving n listsWi. Left: the partition of Ω before and after the fusion of two nodes. Center: the associated graph
G, before and after the fusion of N3 and N4, forming the new node N8; the red edge is removed; the blue and orange edges are updated, e.g., (N1, N3)
becomes (N1, N8); the orange edges are merged by pairs, e.g., (N7, N3) and (N7, N4) become (N7, N8); the green edges are not affected. Right: the n
listsWi, each corresponding to a valuation function Wi; the red cells are removed, as the edge (N3, N4) is suppressed; this edge had been chosen according
to a given consensus policy, due to its “optimal” position and / or valuation in the n lists; the scores of blue and orange cells are updated with respect to N8;
the orange cells are merged by pairs; the positions of the blue and orange cells are updated with respect to their new scores; the scores of the green cells are
not affected.

sorted list maintenance, have to be duplicated for each list.
These operations are then carried out in O(n), O(n.α.TW?)
and O(n.α. log2 |W?|), respectively, where TWi

is the cost for
computing Wi for a given edge, while α is an upper bound
for the nodes degree within the graph G.

However, this initial generalization of the BPT construction
algorithm can be refined by studying more precisely the
policies that are considered to choose an edge, with respect
to the information carried by the valuation functions Wi and
/ or the sorted lists Wi.

Besides, the choice of a consensus strategy is strongly
application-dependent. As a consequence, it is important to
consider a trade-off between the structural and computational
cost of the approach versus the benefits in terms of results
accuracy. In particular, these costs are summarized in Table I.

This table provides the cost of an elementary step of the
BPT construction process. The number of these steps is equal
to the size of the initial graph GL, namely |L|, and more
precisely to the number of vertices in this initial graph (minus
one), as each step merges two of these vertices, until obtaining
a graph formed by exactly one node. At each step, at least one
edge is removed from the graph; the number of remaining
edges is in particular equal to the size of the list(s) |Wi|. We
can assume that the number of edges is bounded by the number
of vertices of the graph, up to a multiplicative constant α (gen-
erally low for images defined on discrete grids, 4 in general on
pixel 2D images). Based on these assumptions, an upper bound
for the overall computational cost of the standard BPT con-
struction [4] is

∑|L|
i=1(O(1) +O(log2 |W|)) =

∑|L|
i=1O(1) +∑|L|

i=1O(log2(α.i)) = O(|L|) + logα.O(log2(|L|!)) =
O(|L| log2 |L|), and so is the cost for the first consensus policy
(Section IV-B1). Following the same kind of calculation,

the cost for the second consensus policy (Section IV-B2) is
O(n.|L| log2 |L|), while that of the third (Section IV-B3) is
O(n.|L|2).

V. SCALING UP THE MULTI-FEATURE BPT
CONSTRUCTION

A. Bottlenecks

The above complexity analysis emphasises three main bot-
tlenecks for the computational cost of BPTs in general, and
in particular for multi-feature BPTs. These bottlenecks are:

(1) the size of the edge lists, that is linearly dependent on the
size |L| of the initial graph, which leads to the log2 |L|
part of the cost (and a |L| part for the third policy);

(2) the number of steps of the construction process, that is
linearly dependent on the size |L| of the initial graph,
which leads to the |L| part of the cost;

(3) the number of valuation functions, which leads to the n
part of the cost.

We discuss hereinafter some sequential and distributed strate-
gies devoted to decrease these bottleneck parameters, thus
leading to algorithms that will lead to fairly similar results as
the exhaustive algorithm, but with a lower overall complexity.

B. Heuristics for Sequential Algorithmics

The bottleneck deriving from the number of valuation
functions can be hardly avoided when considering a sequential
algorithmics. In such case, the optimization of the framework
mainly relies on heuristic strategies designed for standard
mono-feature BPT construction; they can of course also allow
us to decrease that of multi-feature BPTs.

The first way to reduce the computational complexity of
the BPT construction consists of initiating the process from a
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TABLE I
COST OF THE BPT CONSTRUCTION FOR VARIOUS FAMILIES OF CONSENSUS POLICIES. FOR THE SAKE OF READABILITY, α AND TW? , WHICH ARE

PRACTICALLY BOUNDED BY LOW CONSTANT VALUES HAVE BEEN OMITTED HERE.

# W? Edge choice Edge removal Edges update Edges sorting
Standard BPT construction [4] 1 O(1) O(1) O(1) O(log2 |W|)
Absolute inf. (Section IV-B1) 1 O(1) O(1) O(1) O(log2 |W|)
Relative local inf. (Section IV-B2) n O(n) O(n) O(n) O(n. log2 |W?|)
Relative global inf. (Section IV-B3) n O(n.|W?|) O(n) O(n) O(n. log2 |W?|)

partition L with a lower number of regions. Instead of using
singleton sets, which is equivalent to setting L isomorphic to
Ω, and thus of same cardinality, flat zones or superpixels [51]
can be considered. In such case, the gain of complexity derives
from the reduction of |L| with the counterpart of adding a cost
for flat zones (or superpixels) computation.

Another solution to optimize the overall cost is to reduce
the cost of each elementary step. In particular, the update
of the edges – and more precisely their resorting within the
list(s) – after node fusions, can be carried out only after a
given number ρ of iterations. This optimization is however
marginal, since these edges still have to be resorted, while
the gain concerns the lower size of the list at the resorting
time. This optimization only influences the log2 |L| part of the
computational complexity. In addition, the risks of choosing
non-optimal edges for the merging, increase linearly with ρ.

An alternative consists of working with lists that do not
contain all the edges [52]. This heuristic relies on decreasing
the number of edges by only adding in the list(s) those of lower
values during each update stage. This strategy leads to work on
lists of lower complexities, acting on the |L| log2 |L| term of
the cost. As the previous one, this algorithm does not guarantee
that the BPT structure will be topologically equivalent to the
one of a BPT built using the original algorithm.

C. From Sequential to Distributed Algorithmics

As observed above, the sequential optimizations of the
mono-feature BPT construction algorithm necessarily affect
the result, by providing an approximate BPT, compared to the
original algorithm. In addition, such heuristics do not tackle
the issue of efficiently handling multiple lists, in the case of
multi-feature BPT construction. In this context, we explore
strategies based on distributed algorithmics that enable to build
– approximate but fairly close – BPTs and that will allow us
to effectively break the complexity of the initial algorithm.

The time cost of the multi-feature BPT construction is
mainly due to the space cost of the handled data-structures, and
in particular the number (n) and size (|L|) of the lists Wi. To
reduce this time cost via distributed algorithmic paradigms, it
is mandatory to split this space cost, by partitioning the amount
of information to be stored and processed. In this context, two
alternatives can be considered: either distributing each whole
list on a given computing core; or splitting the graph G to be
processed and distributing each subgraph on these cores.

1) List-based distribution algorithmics: By assuming that
n cores can be used, one list Wi can be assigned to each
core. In such case, each core is able to process – in parallel

and without interaction with the others – some list-dependent
operations such that the removal of an edge from the list; the
update of the edges impacted by the fusion of the two vertices
incident to the removed edge; and the re-sorting of the lists
after these updates. The speed-up for these operations is then
linear, and we preserve the same cost as for standard BPT
construction for these parts of the building process.

However, the choice of the edge to be removed at each step
still requires to exchange information between the n lists /
cores. Then the distribution of the lists has no speed-up effects
on this part of the process.

In summary, the properties, advantages, and drawbacks of
this distribution strategy are the following:

• the number of algorithmic cores is constant and deter-
mined a priori as the number n of lists;

• only the lists are distributed on the cores, while the graph
and image structures are shared;

• the distributed algorithm is equivalent to the sequential
one in terms of result;

• the time complexity of the overall process remains
bounded by a n factor, due to the communications
between lists for choosing the best edge at each step;

• the time cost is however reduced due to the linear speed-
up of the other operations on lists.

2) Graph-based distribution algorithmics: The dual solu-
tion to distributing one list on each algorithmic core, is to split
the image space into p sets of nodes, and to distribute each
node set – and the associated edges – onto p cores. In such
condition, each core still has to handle n lists Wi, but each of
these lists can be restricted only to the edges of the associated
sub-image / sub-graph. Then, the spatial coherence of each
split sub-image / sub-graph is crucial; indeed, at each step, the
removal of an edge due to the fusion of two nodes, implies to
update and resort the edges in a direct neighbourhood. As a
consequence, a regular subdivision of the image into squares
(or via superpixels) is mandatory.

This space-partitioning strategy also implies to deal with
the case of the edges that are shared by two sub-images, i.e.,
the edges whose the two vertices are located in different sub-
graphs, respectively. The handling of these edges is directly
linked to the policy for handling the evolution of the partition,
during the iterative construction of the BPT. Indeed, each core
processes its own edges, within its own subgraph. In other
words, each core builds a BPT for its handled sub-image,
independently from the other cores. This modus operandi is
a fair approximation, in terms of results, of what should be
obtained with a sequential algorithm. This assertion is notably
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justified when the distribution of the Wi values of edges is
homogeneous over the image, thus ensuring that each sub-
image contains similar values at a same step.

In particular, this is verified for sub-images that are correctly
designed with respect to the evolution of the BPT construction.
More precisely, it is important to progressively fuse the sub-
images and their associated partial BPTs, and to carry out
these merging just in time. In this context, two approaches
can be considered. The first is deterministic and parametrised
beforehand, by experimentally assessing the number of iter-
ations required before each merging of a regular (e.g., quad-
/ octree) hierarchical partitioning, to approximate at best a
sequential BPT construction by a distributed one. The second
is non-deterministic, and consists of merging two subgraphs
whenever an edge that links these two sub-graphs presents a
Wi value that is lower that any edge in both sub-graphs.

In summary, the properties, advantages, and drawbacks of
this distribution strategy are the following:
• the number of algorithmic cores is scalable, and requires

to be sufficiently high to handle a hierarchical decompo-
sition into sub-images;

• each one of the p core contains n lists, but their size is
p times lower than in the sequential case;

• each core contains the subgraph it handles;
• the distributed algorithm is not equivalent to the sequen-

tial one in terms of result, as some merging operations
are carried out in parallel and without communication;
however the result can be designed to be similar to the
one obtained with a sequential approach;

• the speed-up of the process is directly correlated with the
parallelization degree over the hierarchy of subgraphs.

VI. APPLICATION EXAMPLES

To illustrate our framework, two application cases have
been considered, respectively in the domain of remote sensing
and medical imaging. In Section VI-A, we show how a
multi-feature BPT can be built from a single satellite image
by considering simultaneously, and in a consensual manner,
various metrics. In Section VI-B, we show how a multi-feature
BPT can be built from radiological images by considering
simultaneously information provided by multimodal images.
Our purpose is to highlight the versatility of the multi-feature
framework by demonstrating how it can be used to build
BPTs from either multiple images and / or multiple metrics
computed through the image content.

For the sake of reproducibility, we developed a JAVA library4

that implements the multi-feature BPT creation algorithm.
In this library, each BPT can be interactively browsed, in a
threshold-like fashion, thus enabling to easily determine the
desired segmentation (globally, and / or by refining one or
several branches). We have also developed and integrated in
this software, a tiff library which allows to load only the
subdivisions of the images that are necessary to the current
segmentations. This enables to reduce the memory resources
required by the application, which is useful when dealing with
large images.

4Available at https://bitbucket.org/agat-team/agat-application.

The BPT construction and segmentation approaches were
voluntarily chosen as very simple, in order to avoid any bias
related to these choices, thus better focusing on the actual
structural effects of multi-feature BPT versus standard BPT.
These experiments then have to be considered as illustrative
examples, since neither quantitative validation nor fine param-
eter tuning were carried out. Our purpose is mainly to give the
intuition of potential uses of such BPTs in various complex
imaging domains.

A. Illustrative example 1: Multi-criteria segmentation

The segmentation of very-high spatial resolution (VHSR)
satellite images is a challenging task since the latest gener-
ation of images presents high spectral and spatial resolution
properties, leading to huge volumes of data. In this context, the
segmentation of satellite images using classical mono-metric
BPTs has already been widely studied [38], [39], [40], [42],
[43]. This motivates in particular the experimentation of multi-
criteria segmentation procedures on such kinds of images.

1) Data: The dataset used here (courtesy LIVE, UMR
CNRS 7263) was sensed over the town of Strasbourg (France).
The original sample is an urban VHSR image (1024 × 1024
pixels) acquired by the PLÉIADES satellite in 2012 (Fig-
ure 5(a–d)). It is a pansharpened image at a spatial resolution
of 60 cm with four spectral bands (NIR, R, G, B). A ground-
truth map of the urban objects represented in the scene is also
available (Figure 5(e–h)).

2) Method and results: To reduce the spatial complexity of
this approach, the BPTs are built from an initial partition L
composed of 4484 regions obtained by applying a Mean-Shift
clustering (spatial radius = 30, spectral value = 10, minimum
region size = 100). We considered here various valuation
functions W? : (2Ω)2 × V Ω → R:
• the increase of the ranges of the intensity values (for each

spectral band);
• the change of region elongation values;
• the change of region smoothness values;

induced by the fusion of the regions. In the case of multi-
criteria BPTs, the relative local information consensus policy
mean-of-ranks, according to the position of the edges within
the lists is applied for the first 20% of the lists W?. We
only consider the intensity value criterion for building the
“standard” BPT.

The “standard” BPT of the satellite image of Figure 5(a–
d) is first segmented by considering a user-defined horizontal
cut to produce the same number of regions as in the ground-
truth map, see Figure 5(i–l). The multi-criteria BPT is then
segmented in the same way, leading to the same number
of regions, see Figure 5(m–t). For visualisation purpose, the
segmentation results are depicted here in random false colours.

From the “standard” BPT result, we observe that the ob-
tained regions are quite radiometrically homogeneous and
are well adapted to extract simple urban objects (e.g., small
house roofs, forest and vegetation areas). Concerning more
complex urban objects, which are strongly structured by their
geometrical shapes (e.g., rivers and roads with elongated
structures), the regions produced with the “standard” BPT
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(a) VHSR image crop (1). (b) VHSR image crop (2). (c) VHSR image crop (3). (d) VHSR image crop (4).

(e) Ground truth crop (1). (f) Ground truth crop (2). (g) Ground truth crop (3). (h) Ground truth crop (4).

(i) Standard BPT result (1). (j) Standard BPT result (2). (k) Standard BPT result (3). (l) Standard BPT result (4).

(m) Multi-criteria BPT result (1). (n) Multi-criteria BPT result (2). (o) Multi-criteria BPT result (3). (p) Multi-criteria BPT result (4).

(q) Boundary image of (m). (r) Boundary image of (n). (s) Boundary image of (o). (t) Boundary image of (p).

Fig. 5. Segmentation of very-high spatial resolution (VHSR) satellite images, see Section VI-A.
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(a) CT image. (b) CT segmentation from a standard BPT. (c) PET / CT segmentation from multi-image BPT.

(d) PET image. (e) PET segmentation from a standard BPT. (f) PET / CT segmentation from multi-image BPT.

Fig. 6. Multi-image segmentation in the context of radiological multimodal PET / CT imaging.

are not relevant since the considered urban objects are of-
ten composed of several small sub-regions (see the river in
Figure 5(j)). In comparison, the cut extracted from the multi-
criteria BPT enables to directly gather, in a same partition,
regions corresponding both to simple urban objects and to
complex ones (see the house roofs on top of Figure 5(o) and
river and road sections in Figure 5(o,p)). Our assumption is
that complex urban objects appearing in the image content as
homogeneous and elongated can be extracted from a cut of
the multi-criteria BPT thanks to the consensus made between
the different criteria during the BPT creation. However, some
complex urban objects, represented as a single segment in the
ground-truth image (see the curved road part on left bottom of
Figure 5(g)) are still divided in the partition obtained with the
multi-criteria BPT (see Figure 5(o)). This is probably due to
the definition of the elongation criterion implemented as the
ratio between the bounding box sides of the segment.

B. Illustrative example 2: Multi-image segmentation

We now illustrate the interest of multi-criteria BPT for
multimodal imaging, in the context of radiological multi-
image segmentation. It has to be noticed that the application
of BPTs for medical image segmentation is innovative since
BPTs have only been used in this context for anatomical object
recognition [53].

1) Data: The proposed example involves both PET
(Positron Emission Tomography) and standard CT (Computed
Tomography) X-ray data. From these volumes, we extract
2D slices representing the lungs of the patient affected by
a tumour lesion. The CT image provides homogeneous zones
that characterise specific tissues and organs while the PET
image provides local intensity minima where tumours are
active, but with a spatial accuracy that is lower than CT

information. Consequently, by coupling both grey-level value
spaces into a single value space V , it may be possible to extract
some homogeneous regions that gather the spatial accuracy
of CT images and the spectral accuracy of PET ones, thus
leading to accurate segmentation of organs and tumours. In
the considered example (Figure 6(a,d)), the resolution of the
registered images is 1318× 864 and V = [0, 255]2.

2) Method and results: To reduce the spatial complexity of
this approach, the BPTs are built from an initial partition L
composed of 862 234 regions obtained by applying a Mean-
Shift clustering (spatial radius: 10, spectral value: 7, minimum
region size: 12) on the CT image (Figure 6(a)). The valuation
function W? : (2Ω)2 × V Ω → R is defined as the increase of
the ranges of the intensity values (for each image modality),
potentially induced by the fusion of the incident regions.

The “standard” mono-image BPTs of the CT and PET
images are first segmented independently by considering a
user-defined horizontal cut, see Figure 6(b,e). The multi-image
BPT, built from both the CT and the PET images, is then
segmented in the same way, leading to the same number of
regions, see Figure 6(c,f).

From the mono-image BPT results, one can note that dif-
ferent (but complementary) regions are obtained from the two
modalities. The cut extracted from the mono-image BPT built
from CT enables to capture different organs represented in the
image (e.g., rib cage, vertebral column) while the cut extracted
from the mono-image BPT built from PET enables to delineate
the main lesion from the lungs of the patient (see light-pink
region in Figure 6(e)). The cut extracted from the multi-image
BPT enables to directly gather in a same partition the organs
extracted from the CT image and the lesion extracted from
the PET image (Figure 6(c,f)). However, some homogeneous
segments shown on Figure 6(b) are divided or modified on
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Figure 6(c,f). We assume that the information carried by the
PET image takes part in such phenomenon which may help
to highlight unexpected sub-parts on the organs, that could
correspond to lesions.

VII. CONCLUSION

In this article, we proposed a generalization of the BPT con-
struction framework, classically built in a mono-feature way,
thus allowing to consider various multi-feature paradigms.
Such a multi-feature framework enables to reduce the task
of the user, by offering more flexibility for the BPT creation.
Indeed, the negotiation between the different features, at each
step of the BPT construction, is intrinsically dealt with by the
algorithm, with respect to the chosen consensus policies. This
reduces the hard prior knowledge mandatory from the user to
the only choice of the involved features and the global strate-
gies for their collaboration. Experimental evaluations of this
framework on two application cases highlight its versatility
and its interest by demonstrating how it can be used to build
consensual multi-feature BPTs from multiple images and / or
multiple metrics computed through the image content.

The algorithmic evolutions related to the multi-feature BPT
construction require the handling of more complex data-
structures and consensual algorithms, compared to “standard”
BPTs. In order to tackle the induced memory and time com-
plexity issues raised by this generalized framework, the short-
term perspective of this work will be to implement distributed
heuristics based on graph-based distribution algorithmics. In-
tegrating higher-level consensus may also allow us to improve
the relevance of the hierarchies and the induced segmentation.

Beyond the application examples described in this article,
other relevant applications could also be considered for the
processing of different families of images. As an example, it is
possible to apply multi-feature BPTs to segment hyperspectral
images, by establishing a consensus between the complemen-
tary (and potentially correlated) information carried by the
different spectral bands. Multi-temporal imaging can also be
considered, by establishing a higher-level “temporal” consen-
sus between the different image acquisitions of the same scene.

Another methodological challenge is raised by the possible
divergences between the different values gathered by the
metrics / images, which may lead to occasional irrelevant
consensual decisions. We plan to study how non-consensual
information could be used to follow local consensus between
metrics / images leading to hypertrees where the branches
model local fusion decisions.
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[27] E. Carlinet and T. Géraud, “MToS: A tree of shapes for multivariate
images,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp.
5330–5342, 2015.

[28] N. Passat and B. Naegel, “Component-hypertrees for image segmen-
tation,” in ISMM, International Symposium on Mathematical Morphol-
ogy, Proceedings, ser. Lecture Notes in Computer Science, vol. 6671.
Springer, 2011, pp. 284–295.



RANDRIANASOA et al.: BINARY PARTITION TREE CONSTRUCTION FROM MULTIPLE FEATURES FOR IMAGE SEGMENTATION 13

[29] B. Perret, J. Cousty, O. Tankyevych, H. Talbot, and N. Passat, “Directed
connected operators: Asymmetric hierarchies for image filtering and
segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 6, pp. 1162–1176, 2015.
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N. Passat, “Hierarchical extraction of landslides from multiresolution
remotely sensed optical images,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 87, pp. 122–136, 2014.

[42] S. Valero, P. Salembier, and J. Chanussot, “Hyperspectral image repre-
sentation and processing with binary partition trees,” IEEE Transactions
on Image Processing, vol. 22, no. 4, pp. 1430–1443, 2013.

[43] M. A. Veganzones, G. Tochon, M. Dalla Mura, A. J. Plaza, and
J. Chanussot, “Hyperspectral image segmentation using a new spectral
unmixing-based binary partition tree representation,” IEEE Transactions
on Image Processing, vol. 23, no. 8, pp. 3574–3589, 2014.
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Université Strasbourg 1, France, in 2002 and 2005,
and Habilitation from Université de Strasbourg, in
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