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Languages associated with

saturated formations of groups ∗

Adolfo Ballester-Bolinches1,

Jean-Éric Pin2, Xaro Soler-Escrivà3

Abstract

In a previous paper, the authors have shown that Eilenberg’s variety
theorem can be extended to more general structures, called formations.
In this paper, we give a general method to describe the languages cor-
responding to saturated formations of groups, which are widely studied
in group theory. We recover in this way a number of known results
about the languages corresponding to the classes of nilpotent groups,
soluble groups and supersoluble groups. Our method also applies to
new examples, like the class of groups having a Sylow tower.

Warning. By default, all semigroups, monoids, and groups considered in
this paper are finite or free. A few exceptions are explicitly stated.

This paper is the second step of a programme aiming at exploring the
connections between the formations of finite groups and regular languages.

The first step was to extend Eilenberg’s correspondence theorem between
varieties of monoids and varieties of languages [9] to the more general set-
ting of formations. The result proved in [3] is quite similar to Eilenberg’s
theorem: there in a bijective correspondence between formations of finite
monoids and the so-called formations of languages. The question is now
to effectively describe the languages corresponding to well-studied families
of finite groups. Only a few cases have been investigated in the literature:
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abelian groups [9], p-groups [9, 30, 31, 32], nilpotent groups [9, 28], soluble
groups [24, 31] and supersoluble groups [7].

An important step forward would be to find a language theoretic coun-
terpart to the decomposition results in group theory. Indeed, an large part
of the research on formations is devoted to the construction of a given for-
mation from simpler ones. For instance, if F is a group formation, the class
Gp ∗ F of all groups G with a normal p-subgroup N such that G/N ∈ F
is also a formation. This construction plays a crucial role in the study of
saturated formations, because the canonical local definition of a saturated
formation [8] is precisely of the form Gp ∗F.

Coming back to languages, the following question naturally arises:

Given the formation of languages corresponding to F, describe
the formation of languages corresponding to Gp ∗ F.

Although this problem was the original motivation of this paper, we were
quickly led to a more general question. The point is that, for technical rea-
sons, monoid formations are more suitable than group formations to address
this problem. Unfortunately, the notion of normal subgroup does not extend
to monoids and it is preferable to replace the operation Gp ∗F by a Mal’cev
product LGp M©F, where LGp denotes the class of semigroups which are
locally a p-group. This trick has been used several times in the study of
varieties of monoids [1, 10, 32]. It does not make any change for groups
since then Gp ∗F = LGp M©F if F is a group formation, but it gives access
to advanced tools of semigroup and automata theory in the general case.

This leads to another problem, in which F denotes now a formation of
monoids:

Given the formation of languages F corresponding to F, describe
the formation of languages F ′ corresponding to LGp M©F.

The solution to this problem makes use of the p-modular product, an opera-
tion on languages first introduced in [23, 24] and widely studied in the litera-
ture [1, 7, 10, 11, 27, 30, 31, 32]. The p-modular product (L0a1L1 · · · akLk)r,p
is the set of all words u with r factorizations modulo p of the form u =
u0a1u1 · · · akuk with each ui in Li. Our main result can now be stated as
follows:

A language belongs to F ′ if and only if it is a finite Boolean
combination of p-modular products of languages of F .

A similar result was already known for varieties [1, 10, 32]. However, the
proofs given in these papers rely on properties of the Schützenberger product
and the two-sided semidirect product of monoids. Although these notions
can be readily extended to varieties of monoids, it is not clear how to extend
them to formations. For this reason, we have chosen another road, which
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leads to results of independent interest. The key idea is to decompose LGp-
morphisms of monoids into irreducible pieces. It follows from the results of
[18, 20] that the local monoids of the kernel category of these morphisms
are products of cyclic groups of order p. Now, if π : M → N is such an
irreducible morphism, we prove the following result:

Every language recognised by M is a finite Boolean combina-
tion of languages recognised by N and of p-modular products
(L0aL1)r,p, where L0 and L1 are recognised by N .

Then we prove our main result by induction on the number of irreducible
pieces in the decomposition of a LGp-morphism.

Our results allow us to describe the regular languages corresponding to
various classes of groups. We first recover as particular cases the known re-
sults about languages associated with nilpotent groups, supersoluble groups
and soluble groups. Next we treat some new examples, as the languages
associated with the class of groups having a Sylow tower. Finally, our result
can also be used for formations of monoids. For instance, we describe the
languages corresponding to the formation of monoids whose minimal ideal
is a p-group.

We did our best to keep our paper self-contained, a difficult task since it
covers three different areas: semigroup theory, group theory and language
theory. With this idea in mind, we tried to organize our material so that a
specialist of one of the above-mentioned areas might skip the corresponding
section. Accordingly, Section 1 covers various topics of semigroup theory
(notably relational morphisms and kernel categories) and Section 2 is de-
voted to group formations. Section 3 is dedicated to Mal’cev products. The
formation theorem is presented in Section 4 and the p-modular product is
studied in Section 5. Finally, Section 6 contains our main results, Theorem
6.1 and 6.2.

1 Background in semigroup theory

1.1 Semigroups

An element e of a semigroup is idempotent if e2 = e. The set of idempotents
of a semigroup S is denoted by E(S).

If e is an idempotent of S, the set eSe = {ese | s ∈ S} is a monoid with
identity e, called the local submonoid if S at e. A semigroup S is locally a
group [p-group] if all of its local submonoids are groups [p-groups].

1.2 Subdirect products

Recall that a monoid M is a subdirect product of a family of monoids (Mi)i∈I
if M is a submonoid of the direct product

∏

i∈I Mi and if each induced
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projection πi from M onto Mi is surjective. The next two propositions relate
subdirect products and quotients. We refer to [21, the proof of Lemma 3.2]
or to [3, Proposition 1.3]) for the first one and we give a selfcontained proof
for the second one.

Proposition 1.1 Let M be a subdirect product of a family of monoids
(Mi)i∈I . Suppose that, for each i ∈ I, Mi is the quotient of a monoid
Ti. Then M is a quotient of a subdirect product of the family (Ti)i∈I .

Let (Ti)i∈I be a family of monoids and, for i ∈ I, let µi : Ti → Ni

be a surjective monoid morphism. The product of these morphisms is the
surjective morphism µ :

∏

i∈I Ti →
∏

i∈I Ni defined by µ(x) = (µi(x))i∈I .

Proposition 1.2 Let T be a subdirect product of the family (Ti)i∈I . Then
µ(T ) is a subdirect product of the family (Ni)i∈I .

Proof. Let πi :
∏

i∈I Ti → Ti and by γi :
∏

i∈I Ni → Ni be the canonical
projections. By construction γi ◦ µ = µi ◦ πi.

∏

i∈I Ti

∏

i∈I Ni

Ti Ni

πi

µ

µi

γi

Since T is a subdirect product of the family (Ti)i∈I , one has πi(T ) = Ti.
It follows that γi(µ(T )) = µi(πi(T )) = µi(Ti) = Ni. Therefore µ(T ) is a
subdirect product of the family (Ni)i∈I .

1.3 Formations and varieties

A formation of monoids is a class of monoids F satisfying the two conditions:

(1) any quotient of a monoid of F also belongs to F,

(2) the subdirect product of any finite family of monoids of F is also in F.

Formations of semigroups and formations of groups are defined in a similar
way. For instance, it is shown in [3] that if F is a formation of groups, then
the monoids whose minimal ideal is a group of F constitute a formation of
monoids, denoted by IF. In particular, the class Z of monoids having a zero
is a formation of monoids.

A variety of semigroups is a class of semigroups V satisfying the three
conditions:

(1) any subsemigroup of a semigroup of V also belongs to V,

(2) any quotient of a semigroup of V also belongs to V,
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(3) the direct product of any finite family of semigroups of V is also in V.

Varieties of monoids [groups] are defined analogously.

It follows from the definition that a formation of semigroups [monoids,
groups] is a variety if and only if it is closed under taking subsemigroups
[submonoids, subgroups]. Therefore a formation is not necessarily a variety.
For instance, the formation of groups generated by the alternating group A5

is known to be the class of all direct products of copies of A5, which is not a
variety [8, II.2.13]. It is also shown in [3] that if F is a formation of groups,
then IF is a formation of monoids, but is not in general a variety.

If C is a class of monoids, we denote by LC the class of all semigroups
whose local submonoids are in C.

Proposition 1.3

(1) If V is a variety of monoids, then LV is a variety of semigroups.

(2) If F is a formation of monoids, then LF is a formation of semigroups.

Proof. The first part of the proposition is a classical result [9, 13]. Let us
prove the second part.

Let S ∈ LF and let π : S → T be a surjective morphism. Let f be an
idempotent of T and let e be an idempotent of S such that π(e) = f . Then
eSe belongs to F and since π(eSe) = fTf , the monoid fTf also belongs to
F. It follows that LF is closed under quotient.

Let now S be a subdirect product of a family (Si)16i6n of semigroups
of LF and let e be an idempotent of S. Since S is a subsemigroup of the
product S1×· · ·×Sn, one has e = (e1, . . . , en) for some idempotents e1 ∈ S1,
. . . , en ∈ Sn. Let πi : S → Si be the i-th projection, which is surjective,
since S is a subdirect product. Then πi(e) = ei and πi(eSe) = eiSiei. It
follows that eSe is a subdirect product of the monoids eiSiei. But since
Si is in LF, each monoid eiSiei belongs to F and thus eSe belongs to F.
Therefore S belongs to LF, which concludes the proof.

For instance, if G is the variety of all groups, then LG is the variety of
all semigroups whose local submonoids are groups. Similarly, given a prime
p, we denote by Gp the variety of all p-groups and by LGp the variety of all
semigroups whose local submonoids are p-groups.

1.4 Relational morphisms

Given a monoid N , the set of subsets of N , denoted P(N), is a monoid
under the multiplication defined, for all X,Y ⊆ N , by

XY = {xy | x ∈ X, y ∈ Y }

A relational morphism between two monoids M and N is a function τ from
M into P(N) such that:
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(1) for all m ∈ M , τ(m) 6= ∅,

(2) 1 ∈ τ(1),

(3) for all m,n ∈ M , τ(m)τ(n) ⊆ τ(mn)

The composition of two relational morphisms is a relational morphism. Mor-
phisms and inverses of surjective morphisms are standard examples of rela-
tional morphisms. In fact, every relational morphism is the composition of
a morphism and the inverse of a surjective morphism (See [13, p. 67]).

Proposition 1.4 Let τ : M → N be a relational morphism. Then the set
R = {(m,n) ∈ M × N | n ∈ τ(m)} is a submonoid of M × N and the
projections from M ×N onto M and N induce morphisms α : R → M and
β : R → N such that α is surjective and τ = β ◦ α−1.

M N

R

α

τ

β

The factorization of τ given in Proposition 1.4 is called the canonical fac-
torization of τ .

1.5 Kernel categories

The kernel of a group morphism is a central notion of group theory. The
corresponding notion for monoid morphisms is more difficult to handle and
requires the use of categories. We refer to [19, 18] for more details on this
topic.

Let π : M → N be a monoid morphism. Then M acts naturally on N
on the right and on the left by setting, for all m ∈ M and n ∈ N ,

mn = π(m)n and nm = nπ(m).

Let us consider the category Cπ whose objects are the pairs (n0, n1) with
(n0, n1) ∈ N ×N and whose arrows are of the form

n0,mn1 n0m,n1
m

where m ∈ M . Thus m acts by right multiplication on the first compo-
nent and acts “backwards” by left multiplication on the second component.
Composition of arrows is obtained by multiplying their labels:
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n0,mm′n1 n0m,m′n1 n0mm′, n1

n0,mm′n1 n0mm′, n1

m m′

mm′

=

Two arrows

n0,mn1 n0m,n1
m

n′

0
,m′n′

1
n′

0
m′, n′

1
and m′

are coterminal if they have same origin and same end, that is, if n0 = n′
0,

n1 = n′
1, n0m = n0m

′ and mn1 = m′n1.
The kernel category of π, denoted ker(π), is the quotient of Cπ by the

following congruence: two coterminal arrows

n0,mn1 n0m,n1
m n0,mn1 n0m,n1and m′

are equivalent if, for all m0 ∈ π−1(n0) and m1 ∈ π−1(n1), one has m0mm1 =
m0m

′m1.
There is a similar notion for relational morphisms. Let τ : M → N be

a relational morphism. We define a category Cτ as follows: its objects are
the pairs (n0, n1) ∈ N ×N and its arrows are of the form

n0, nn1 n0n, n1

(m,n)

where n ∈ τ(m). The kernel category of τ , denoted ker(τ), is the quotient
of Cτ by the following congruence: two coterminal arrows

n0, nn1 n0n, n1

(m,n)
n0, nn1 n0n, n1and

(m′, n′)

are equivalent if, for all m0 ∈ τ−1(n0) and m1 ∈ τ−1(n1), one has m0mm1 =
m0m

′m1.

2 Group formations

2.1 Groups

LetH, K be two normal subgroups of a groupG such thatK is a subset ofH.
We say thatH/K is a chief factor of G ifH/K is a minimal normal subgroup
of G/K. A chief factor H/K of a group G is said to be complemented if there
exists a maximal subgroup M of G such that G = MH and M ∩H = K.
The Frattini subgroup Φ(G) of a group G is the intersection of all maximal
subgroups of G. If H is contained in Φ(G), then the chief factor H/K is

7



Saturated formations January 22, 2013 21 h 39

not complemented. We say in this case that H/K is a Frattini chief factor.
Finally, the centraliser of a chief factor H/K in G, denoted by CG(H/K),
is the set of all g ∈ G that commute with all elements hK of H/K.

Given two classes of groups V and W, the product V ∗W denotes the
class of groups G having a normal subgroup N ∈ V such that G/N ∈ W.
If V and W are group formations then the product class V ∗W is not in
general a formation of groups (see [8, IV, Example (1.6)]). Nevertheless, if
V is closed under taking subnormal subgroups then V ∗W is a formation
of groups [8, IV, (1.7)]. In particular, given a formation of groups W and a
prime p, the product Gp ∗W is always a group formation.

2.2 Saturated formations

A formation F of groups is said to be saturated if G/Φ(G) ∈ F implies
G ∈ F. For instance, the class N of nilpotent groups is a saturated formation
whereas the class Ab of abelian groups is a nonsaturated formation.

A formation function f associates with each prime p a (possibly empty)
formation of groups f(p). A formation F of groups is said to be local if it
can be defined locally in the following sense: a group G is in F if and only
if for any complemented chief factor H/K of G and any prime p dividing
the order of H/K, one has G/CG(H/K) ∈ f(p). We write F = LF (f) if
F is locally defined by f . For instance, the class N is a local formation,
locally defined by f(p) = (1), for all primes p. Indeed, a chief factor H/K
of a nilpotent group is always central, that is, CG(H/K) = G [8, IV, (3.4)].
Another standard example of a local formation is the class of supersoluble
groups. A chief factor of a supersoluble group has always prime order. Thus,
the formation of supersoluble groups is locally defined by f(p) = Ab(p−1),
the class of abelian groups of exponent dividing p − 1, for all primes p [8,
IV, (3.4)].

A well-known theorem of group theory states that a formation of groups
is saturated if and only if it is local [8, IV, Theorem (4.6)]. In particular, a
nonsatured formation cannot be defined locally. For instance, the formation
of all abelian groups is not saturated and thus it is not possible to find a
local definition for it.

Let P be the set of all prime numbers. A local formation function f is
full if f(p) = Gp ∗ f(p), for all p ∈ P. Moreover, if f is formation function
defining locally a formation F, we say that f is integrated if f(p) ⊆ F for
all p ∈ P (see [8, III, (5.5)]).

In general, a saturated formation F possesses many local definitions but
it has a unique full and integrated local formation function [8, IV, (3.7)],
which is said to be its canonical local definition. Given a saturated formation
F locally defined by a formation function f , the canonical local definition F
of F is defined by F (p) = Gp ∗ (f(p) ∩F), for all p ∈ P [8, IV, (3.8)]. Thus,
the canonical local definition of N is Gp, for all primes p and the canonical
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local definition of the supersoluble groups is Gp ∗Ab(p− 1), for all primes
p. We refer the reader to [8, IV] for a complete account on this topic.

Denote by
∨

i∈I Hi the join of a family of formations of groups (Hi)i∈I ,
that is, the smallest formation which contains Hi for all i ∈ I.

Lemma 2.1 Let F be a saturated formation of groups and let F be the
canonical local definition of F. Then F =

∨

p∈P F (p).

Proof. Let X =
∨

p∈P F (p). Since F is an integrated formation function,
one has F (p) ⊆ F for all primes p. Thus X ⊆ F. Conversely, suppose that
F \X 6= ∅ and consider a group G ∈ F \X of minimal order. Then G has a
unique minimal normal subgroup, say N [8, II, (2.5)(a)]. Let p be a prime
dividing the order of N . We know that F =

⋂

q∈Char(F)Gq′ ∗ F (q) [8, (IV),
(3.2)], where Char(F) is the set of primes p such that F contains a cyclic
group of order p and Gq′ is the class of groups whose orders are prime to q.
Since p divides the order of G ∈ F, it follows that p ∈ Char(F) [8, IV, (4.2)].
Thus G ∈ Gp′ ∗ F (p). Then G ∈ F (p) ⊆ X because G has no nontrivial
normal subgroups of p′-order.

The preceding lemma is not true if the local definition of F is not the canon-
ical one. For instance, consider the formation of supersoluble groups and its
local definition f(p) = Ab(p−1), for all primes p. This is an integrated local
definition which is not full. Clearly, the join of the formations Ab(p−1) for
all primes p is properly contained in the class of supersoluble groups.

3 Mal’cev products

The Mal’cev product is an important tool in the study of varieties of semi-
groups [16]. We propose in this section an extension of this definition to
more general classes than varieties.

3.1 C-morphisms and ℓC-morphisms

LetC be a class of semigroups. A [relational] morphism τ : M → N is said to
be a [relational] C-morphism if for every idempotent e of N , the semigroup
τ−1(e) belongs to C. The following result is very convenient in practice
since it allows one to replace relational C-morphisms by C-morphisms.

Proposition 3.1 Let M
α−1

−→ R
β

−→ N be the canonical factorization of a
relational morphism τ : M → N . Then τ is a relational C-morphism if and
only if β is a C-morphism.

Proof. Let e be an idempotent of N . Then by definition,

τ−1(e) = {m ∈ M | e ∈ τ(m)} and β−1(e) = {(m, e) ∈ M ×N | e ∈ τ(m)}.

9
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It follows that τ−1(e) and β−1(e) are isomorphic semigroups. The result
follows.

We are mostly interested in [relational] LGp-morphisms in this paper.
They share the same properties as relational LG-morphisms and the proof of
the following result can be readily adapted from the proof of [13, Proposition
5.8, p. 71].

Proposition 3.2 Let τ : M → N be a relational morphism. Then τ is
a relational LGp-morphism if and only if for each subsemigroup S of N
belonging to LGp, the semigroup τ−1(S) also belongs to LGp. It follows
that the composition of two relational LGp-morphisms is a relational LGp-
morphism.

If n is an object of a category, the arrows from n to n form a monoid,
called the local monoid the category at n. Let C be a class of monoids. A
category is said to be locally in C if its local monoids belong to C. Similarly,
a [relational] morphism π : M → N is said to be a [relational] ℓC-morphism
if the category ker(π) is locally in C. The next proposition can be viewed
as a counterpart of Proposition 3.1.

Proposition 3.3 Let M
α−1

−→ R
β

−→ N be the canonical factorization of a
relational morphism τ : M → N . Then τ is a relational ℓC-morphism if
and only if β is a ℓC-morphism.

Proof. Let (n0, n1) ∈ N × N . By definition, the local monoids of Cβ and
Cτ at (n0, n1) are both equal to

T = { (m,n) ∈ R | n0n = n0 and nn1 = n1 }

It follows that the local monoids of ker(β) and ker(τ) at (n0, n1) are isomor-
phic monoids, obtained as the quotient of T by the congruence defined by
m ∼ m′ if for all (m0, n0), (m1, n1) ∈ R, m0mm1 = m0m

′m1. The result
follows.

The next proposition, a slight extension of [1, Proposition 5.3], gives the
connection between the notions of ℓC-morphisms and LC-morphisms.

Proposition 3.4 Let C be a class of monoids closed under taking sub-
monoids and quotients. Then every [relational ] ℓC-morphism is a [relational ]
LC-morphism.

Propositions 3.1 and 3.3 show that it suffices to give the proof in the
case of morphisms. We need an elementary lemma.

Lemma 3.5 Let M be a monoid. Any subsemigroup of M which is also a
monoid is a quotient of a submonoid of M .

10
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Proof. Let S be a subsemigroup of M and suppose that S is a monoid with
identity e. The subtle point is that e might be different from the identity 1
of M , and thus S is not in general a submonoid of M . However, S ∪ {1} is
a submonoid of M . Further, the map from S ∪{1} to S defined by π(1) = e
and π(s) = s if s ∈ S defines a monoid morphism from S∪{1} onto S.

We now come back to the proof of Proposition 3.4. Let us denote by
∼ the congruence introduced in the definition of the kernel category of a
morphism.

Proof. Let π : M → N be a ℓC-morphism and let e be an idempotent
of N . Let T be the local monoid of the kernel category of π at (e, e).
Since π is ℓC-morphism, T is in C. Let S = π−1(e) and let f be an
idempotent of S. We claim that fSf is a subsemigroup of T . Let s be
an element of fSf . Since eπ(fsf) = π(fsf)e = ee = e, there is an arrow

(e, e)
fsf
−→ (e, e). Further, two ∼-equivalent arrows, labelled respectively by

fsf and fs′f , are necessarily equal, since, by the definition of ∼, one has
in particular f(fsf)f = f(fs′f)f , that is, fsf = fs′f . It follows that fSf
is a subsemigroup of T and is also a monoid with f as an identity. By
Lemma 3.5, the monoid fSf is a quotient of a submonoid of T and thus
belongs to C. Consequently, S is in LC and π is a LC-morphism.

Example 3.1 below shows that the converse of Proposition 3.4 does not
hold, even if C is the trivial class 1 containing only the trivial monoid.

Example 3.1 Let M = {1, a, a2, 0}, with a3 = 0 and let N = {1, 0}. Let
π : M → N be the morphism defined by π(1) = 1 and π(a) = π(a2) =
π(0) = 0. Then π−1(1) = 1 and π−1(0) = {a, a2, 0}. The unique idempotent
of π−1(0) is 0 and 0π−1(0)0 = 0. Thus π is a L1-morphism. However, in
the category ker(π), the local monoid at (0, 0) is nontrivial. Indeed, the two
loops of Cπ

0, 0

1, a

are not equivalent in ker(π) since a ∈ π−1(0), but a1a = a2 and aaa = 0.
Therefore, π is not a ℓ1-morphism.

3.2 The Mal’cev product C M©D

Let C be class of semigroups and let D be a class of monoids. The Mal’cev
product C M©D is the class of all monoids T with the following property: T

11
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is a quotient of a monoid M for which there exists a surjective C-morphism
from M onto a monoid N of D.

This is pictured in Figure 3.1, in which a surjective [relational] morphism
is represented by a double arrow.

T N ∈ D

M

α

τ = π ◦ α−1

π (C-morphism)

Figure 3.1: A monoid T in C M©D.

The next proposition gives an alternate definition of the Mal’cev product
C M©D when C is closed under quotients.

Proposition 3.6 Let C be a class of semigroups closed under quotients and
let D be a class of monoids. A monoid M belongs to C M©D if and only if
there is a relational C-morphism from M onto a monoid of D.

Proof. Let M be a monoid of C M©D. Let τ be the relational morphism
defined by Figure 3.1. We claim that τ is a relational C-morphism. Let e ∈
E(N) and let R = π−1(e). Then R belongs to C since π is a C-morphism.
Now, τ−1(e) is equal to α(R) and thus is a quotient of R. Consequently, it
also belongs to C, which proves the claim.

Suppose now there is a relational C-morphism τ from T onto a monoid

N of D. Let T
α−1

−→ R
β

−→ N be the canonical factorization of τ . By
Proposition 3.1, β is a surjective C-morphism and T is a quotient of R.
Therefore T belongs to C M©D.

Proposition 3.7 Let V be a variety of semigroups. If W is a formation
[variety ] of monoids, then so is V M©W.

Proof. The result is well-known for varieties and thus we give only the proof
for formations. Let F = V M©W.

It follows directly from the definition that F is closed under quotients.
Let M be a subdirect product of some monoids M1, . . . ,Mr of F. By defi-
nition, each Mi is a quotient of a monoid Ti for which there is a surjective
V-morphism µi from Ti onto a monoid Ni of W. It follows from Proposition
1.1 that M is a quotient of a subdirect product T of T1, . . . , Tr. Let us take
the notation of Proposition 1.2. Let N = µ(T ). Then N is a subdirect
product of N1, . . . , Nr and thus N ∈ W. We claim that µ is a V-morphism.
Let e = (e1, . . . , er) be an idempotent of N . Setting Ri = µ−1

i (ei) and

12
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R = R1 × · · · × Rr, we get µ−1(e) = T ∩R. Now since each µi is a V-
morphism, each semigroup Ri belongs to V and so does R. Finally, T ∩ R
is a subsemigroup of R and thus also belongs to V. This proves the claim
and shows that M ∈ F. Therefore F is a formation of monoids.

3.3 The Mal’cev product ℓC M©D

The Mal’cev product ℓC M©D can be defined in a similar way: it is the class
of all monoids T with the following property: T is a quotient of a monoid M
for which there exists a surjective ℓC-morphism π from M onto a monoid
of D.

Again, an alternative definition can be given when C is closed under
quotients.

Proposition 3.8 Let C be a class of semigroups closed under quotients and
let D be a class of monoids. A monoid M belongs to ℓC M©D if and only if
there is a relational ℓC-morphism from M onto a monoid of D.

Proof. The proof is similar to that of Proposition 3.6 but makes use of
Proposition 3.3 instead of Proposition 3.1.

Proposition 3.9 Let V be a variety of semigroups. If W is a formation
[variety ] of monoids, then so is ℓV M©W.

Proof. The result is already known for varieties and we prove it only for
formations. Let F = ℓV M©W. It follows directly from the definition of the
Mal’cev product that F is closed under quotients. Let M be a subdirect
product of a finite family (Mi)i∈I of monoids of F. By definition, each Mi

is a quotient of a monoid Ti for which there is a surjective ℓV-morphism µi

from Ti onto a monoid Ni of W. It follows from Proposition 1.1 that M is
a quotient of a subdirect product T of the family (Ti)i∈I . It suffices now to
prove that T belongs to F. Let us take the notation of Proposition 1.2 and
let N = µ(T ).

M

Mi

T N

Ti Ni

πi

µ

µi

γi

Then N is a subdirect product of the family (Ni)i∈I and thus belongs to W.
Therefore, it just remains to show that µ is a ℓV-morphism to complete the
proof. Let n0 = (n0)i∈I and n1 = (n1)i∈I be elements of N . Let Loc(n0, n1)
be the local monoid of ker(µ) at (n0, n1). Similarly, for each i ∈ I, let

13
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Loci(n0, n1) be the local monoids of ker(µi) at ((n0)i, (n1)i). We need to
prove that Loc(n0, n1) belongs to V. This will be a consequence of the
following lemma:

Lemma 3.10 The semigroup Loc(n0, n1) is a subsemigroup of the product
of the family (Loci(n0, n1))i∈I .

Proof. The monoid Loc(n0, n1) is the quotient of the monoid

Stab(n0, n1) = {t ∈ T | n0µ(t) = n0 and µ(t)n1 = n1}

by the congruence∼ defined by t ∼ t′ if, for all t0, t1 ∈ T such that µ(t0) = n0

and µ(t1) = n1, one has t0tt1 = t0t
′t1. In the same way, for each i ∈ I,

Loci(n0, n1) is the quotient of the monoid

Stabi(n0, n1) = {ti ∈ Ti | (n0)iµi(ti) = (n0)i and µi(ti)(n1)i = (n1)i}

by the corresponding congruence ∼i. Let us denote by γi be the canon-
ical morphism from Stabi(n0, n1) to Loci(n0, n1). If t is an element of
Stab(n0, n1), then πi(t) belongs to Stabi(n0, n1). Thus πi induces a mor-
phism from Stab(n0, n1) to Stabi(n0, n1). Let α be the morphism from
Stab(n0, n1) to

∏

i∈I Loci(n0, n1) defined by α(t) = (γi ◦ πi(t))i∈I . One has
α(t) = α(t′) if and only if, for each i ∈ I, ti ∼i t

′
i, that is, t ∼ t′. It follows

that Loc(n0, n1) is a subsemigroup of
∏

i∈I Loci(n0, n1).

Let us now conclude the proof of Proposition 3.9. Since µi is a ℓV-
morphism, Loci(n0, n1) belongs to V. Since V is a variety of semigroups,
Lemma 3.10 shows that Loc(n0, n1) also belongs to V. Therefore µ is a
ℓV-morphism and thus T and M are in F. Consequently, F is a formation
of monoids.

3.4 Factorisations of morphisms

A surjective morphism π between monoids is said to be irreducible if it is not
an isomorphism and if π = π0 ◦ π1, then one of π0 or π1 is an isomorphism.
By a theorem of Rhodes [17], every surjective morphism between monoids
is a composition of irreducible morphisms. Similarly, every surjective LGp-
morphism between monoids is a composition of irreducible LGp-morphisms.

Irreducible morphisms have been widely studied and we refer to [20,
18] for an overview. The following result is an easy consequence of [18,
Theorem 5.3.2], which itself summarizes the results of [20]. Let Cp be the
class consisting of the cyclic group Cp and of the trivial group 1.

Proposition 3.11 An irreducible LGp-morphism is a ℓCp-morphism.

14
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Proof. Let π : M → N be an irreducible LGp-morphism. By [18, Theorem
5.3.2], an irreducible morphism is either LG but not aperiodic, aperiodic
but not L1, or L1. Since π is a LG-morphism and since an aperiodic LG-
morphism is L1, the second case does not arise. By the same result, an
irreducible L1-morphism is ℓ1 and hence also ℓCp. Finally, Property (1) of
the same result shows that if π is not aperiodic, then for each idempotent e
of N , π−1(e) is a product of simple p-groups. But the only simple p-group
is Cp and thus π is an ℓCp-morphism.

Example 3.2 Let us come back on the morphism π defined in Example
3.1. For each prime p, π is a LGp-morphism, but it is not a ℓCp-morphism.
However, it is the composition of the two irreducible ℓ1-morphisms π1 :
M → R and π2 : R → N defined as follows: π1(1) = 1, π1(a) = a and
π1(a

2) = π1(0) = 0, π2(1) = 1 and π2(a) = π2(0) = 0.

3.5 Mal’cev products of the form LGp M©W and ℓAb(p) M©W

In this paper, we are mostly interested in Mal’cev products of the form
LGp M©W and ℓAb(p) M©W. In this case, the definition of the Mal’cev
product can be simplified. We shall use the following results of [1]. First
of all, for each monoid M , there is a largest monoid congruence Radp(M)
such that the morphism M → M/Radp(M) is a LGp-morphism. Further, if
ϕ : M → N is a surjective morphism of monoids, then ϕ induces a surjective
morphism ϕ̄ : M/Radp(M) → N/Radp(N). We can now formulate the
following extension of [1, Theorem 3.8], the proof of which is unchanged.

Proposition 3.12 Let W be a formation of monoids and let M be a monoid.
The following conditions are equivalent:

(1) M belongs to LGp M©W,

(2) there is a surjective LGp-morphism from M onto a monoid of W,

(3) M/Radp(M) ∈ W.

The next proposition gives the precise connection between LGp M©W
and ℓAb(p) M©W.

Proposition 3.13 The formation LGp M©W is the least formation contain-
ing W and closed under Mal’cev product (on the left) by ℓAb(p).

Proof. Let F be the least formation containingW and closed under Mal’cev
product (on the left) by ℓAb(p).

To prove the inclusion F ⊆ LGp M©W, we show that LGp M©W is
closed under Mal’cev product (on the left) by ℓAb(p). If T belongs to
ℓAb(p) M©(LGp M©W), there exists a surjective ℓAb(p)-morphism γ : T →
M , where M ∈ LGp M©W. Further, by Proposition 3.12, there is a surjec-
tive LGp-morphism π from M onto a monoid N of W. By Proposition 3.4,
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γ is a LAb(p)-morphism and hence a LGp-morphism. Since the composi-
tion of two LGp-morphisms is a LGp-morphism by Proposition 3.2, π ◦ γ is
a LGp-morphism from T onto N , which shows that T belongs to LGp M©W.

To prove the opposite inclusion, consider a monoid M in LGp M©W.
Then there is a surjective LGp-morphism π from M onto a monoid of W.

Let us write π as a composition of irreducible morphisms: M = Mk
πk−→

Mk−1 . . .
π1−→ M0. By Proposition 3.11, each πi is a ℓAb(p)-morphism and

it follows by induction on i that Mi belongs to F. Finally M also belongs
to F, which concludes the proof.

Let us conclude this section by two examples.

Proposition 3.14 If H is a variety of groups and W is a formation of
groups, then LH M©W = H ∗W.

Proof. Let G be a group of H∗W. By definition, G has a normal subgroup
N ∈ H such that G/N ∈ W. We claim that the morphism π : G → G/N is a
LH-morphism. Indeed, 1 is the unique idempotent of G/N and π−1(1) = N .
Since N is a group, its unique idempotent is 1 and the local monoid 1N1 is
equal to N . Thus N belongs to LH, which proves the claim. It follows that
G belongs to LH M©W and thus H ∗W ⊆ LH M©W.

To establish the opposite inclusion, consider a monoid M in LH M©W.
By definition, M is a quotient of a monoid R for which there exists a surjec-
tive LH-morphism π from R onto a group G of W. It suffices now to prove
that R is a group of H ∗W. Let K = π−1(1). If e is an idempotent of R,
then π(e) is idempotent and hence is equal to 1. Therefore K contains all
the idempotents of R. It also belongs to LH since π is a LH-morphism. In
particular, 1K1 ∈ H and thus K is a group of H. Consequently K, and thus
R, contain only one idempotent. Since a monoid with only one idempotent
is a group, R is a group and π : R → G is a group morphism with kernel K
in H. Thus R belongs to H ∗W as required.

Our second example relates the formation of all monoids with zero to the
formation ILGp of all monoids whose minimal ideal is a p-group.

Proposition 3.15 The formula LGp M©Z = ILGp holds.

Proof. LetM be a monoid of ILGp: its minimal ideal I belongs to LGp and
M/I is a monoid with zero. Let π : M → M/I be the quotient morphism.
Then π−1(0) = I and if s 6= 0, π−1(s) = {s}. Thus π is a LGp-morphism
and M ∈ LGp M©Z.

Let now M be a monoid of LGp M©Z. By Proposition 3.12, there is
a surjective LGp-morphism π from M onto a monoid with zero N . Since
the minimal ideal of M is a subsemigroup of π−1(0), it belongs to LGp.
Therefore M ∈ ILGp.
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4 The Formation Theorem

4.1 Regular languages

In this first three paragraphs of this subsection, we make no assumption on
the finiteness of the monoids. We will return to finite monoids in the fourth
paragraph, for the definition of regular languages.

Recall that a monoid morphism ϕ : A∗ → M recognises a language L of
A∗ if there is a subset P of M such that L = ϕ−1(P ). It is equivalent to say
that L is saturated by ϕ, that is, L = ϕ−1(ϕ(L)). If ϕ is surjective, we say
that ϕ fully recognises L. By extension, one says that a language is [fully ]
recognised by a monoid M if there exists a morphism from A∗ into M which
[fully] recognises L.

Let L be a language and let x and y be words. The quotient x−1Ly−1

of L by x and y is defined by the formula

x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}

Note that if a morphism fully recognises a language L, then it also fully
recognises its quotients.

The syntactic monoid of a language L of A∗ is the quotient of A∗ by the
syntactic congruence of L, defined on A∗ as follows: u ∼L v if and only if,
for every x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L

The natural morphism η : A∗ → A∗/∼L is the syntactic morphism of L.
Note that η fully recognises L.

A language is regular (or recognisable) if it is recognised by some finite
monoid or equivalently, if its syntactic monoid is a finite monoid. A regular
language is a group language if it is recognised by some finite group or
equivalently, if its syntactic monoid is a finite group.

A class of regular languages C associates with each finite alphabet A a
set C(A∗) of regular languages of A∗. It is closed under quotients if for each
language L ∈ C(A∗) and for each pair of words (x, y) of A∗, the language
x−1Ly−1 belongs to C.

4.2 Formations of languages

The following definition was first given in [3]. A formation of languages is
a class of regular languages F satisfying the following conditions:

(F1) for each alphabet A, F(A∗) is closed under Boolean operations and
quotients,

(F2) if L is a language of F(B∗) and η : B∗ → M denotes its syntactic
morphism, then for each monoid morphism α : A∗ → B∗ such that
η ◦ α is surjective, the language α−1(L) belongs to F(A∗).
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Observe that a formation of languages is closed under inverse of surjective
morphisms, but this condition is not equivalent to (F2). However, one could
also use another equivalent condition:

(F′
2) if L is a language of F(B∗) and ϕ : B∗ → M is a morphism fully
recognising L, then for each monoid morphism α : A∗ → B∗ such that
ϕ ◦ α is surjective, the language α−1(L) belongs to F(A∗).

Let us also give a third equivalent definition. A class of regular languages
F is a formation of languages if and only if it satisfies conditions (F1) and
(F3):

(F3) if L is a language of F(B∗) and K is a language of A∗ whose syntactic
monoid is a quotient of the syntactic monoid of L, then K belongs to
F(A∗).

To each formation of monoids F, let us associate the class of languages F(F)
defined as follows: for each alphabet A, F(F)(A∗) is the set of languages of
A∗ fully recognised by some monoid of F, or, equivalently, whose syntactic
monoid belongs to F.

Given a formation of languages F , let us denote by F(F) the formation
of monoids generated by the syntactic monoids of the languages of F . The
following statement is the main result of [3].

Theorem 4.1 (Formation Theorem) The correspondences F → F(F)
and F → F(F) are two mutually inverse, order preserving, bijections be-
tween formations of monoids and formations of languages.

As an example, let us describe the formation of languages corresponding
to Z, the formation of monoids having a zero. Recall that a language L of
A∗ is nondense if there exists a word u ∈ A∗ which cannot be completed into
a word of L, that is, such that L ∩ A∗uA∗ = ∅. A language is co-nondense
if its complement is nondense.

Proposition 4.2 The formation of languages corresponding to Z consists
of the regular nondense or co-nondense languages.

Proof. Let L be a regular nondense language and let η : A∗ → M be the
syntactic monoid of L. Let u be a word of A∗ such that L ∩ A∗uA∗ = ∅.
Then for all x ∈ A∗, xu ∼L u ∼L ux and hence η(u) is a zero in M . If L
is co-nondense, then its syntactic monoid is equal to the syntactic monoid,
which has a zero.

Let M be a monoid with zero and let L be a language recognised by a
surjective morphism ϕ : A∗ → M . Also let u be a word such that ϕ(u) = 0.
If 0 /∈ ϕ(L), then u cannot be completed into a word of L and thus L is
nondense. If 0 ∈ ϕ(L), then 0 /∈ ϕ(A∗ − L) since L = ϕ−1(ϕ(L)). It follows
that A∗ − L is nondense and thus L is co-nondense.
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4.3 Languages of saturated formations of groups

Let F be a saturated formation of groups and let F be its canonical local
definition. By virtue of [3, Theorem 4.2], each formation of groups F (p)
is associated with a formation of languages Fp. Lemma 2.1 allows one to
describe the formation of languages F associated with F.

Corollary 4.3 The formation of languages F is the join of the formations
of languages Fp, for all primes p.

Corollary 4.3 shows that computing F amounts to computing Fp for all
primes p. We know that F (p) = Gp ∗ (f(p) ∩ F), for all primes p, where f
is an arbitrary local definition of F. Further, Proposition 3.14 shows that
Gp ∗ F = LGp M©F. It now remains to describe the formation of languages
corresponding to LGp M©F, given the formation of languages corresponding
to F. The solution to this problem relies on an operation on languages
first introduced in [24], the modular product, which is the topic of the next
section.

5 Modular product of languages

Let p be a prime number. Let L0, . . . , Lk be languages of A∗, let a1, . . . , ak
be letters of A. Let also r be an integer such that 0 6 r < p. We define
the modular product of the languages L0, . . . , Lk with respect to r and p,
denoted (L0a1L1 · · · akLk)r,p, as the set of all words u in A∗ such that the
number of factorizations of u in the form u = u0a1u1 · · · akuk, with ui ∈ Li

for 0 6 i 6 k, is congruent to r modulo p. A language is a p-modular product
of the languages L0, . . . , Lk if it is of the form (L0a1L1 · · · akLk)r,p for some
r.

5.1 Péladeau’s results

In this section, we briefly survey the results of Péladeau [10]. They were
originally stated for varieties of languages but can be readily extended to a
Boolean algebra of regular languages closed under quotient.

Let Fp be the p-element field and let F (A∗,Fp) be the ring of all functions
fromA∗ to Fp. We consider in particular the functions [L0, a1, L1, · · · ak, Lk]p :
A∗ → Fp which map a word u to the residue modulo p of the number of
distinct factorizations of u in the form u = u0a1u1 · · · akuk, with ui ∈ Li for
0 6 i 6 k.

Let B be a Boolean algebra of regular languages of A∗. We denote by
Polp(B) the set of all languages which can be written as a finite union of p-
modular products of languages of B and by Polp(B,Fp) the vector space (over
Fp) of all linear combinations of functions of the form [L0, a1, L1, · · · ak, Lk]p,
with L0, . . . , Lk in B.

19



Saturated formations January 22, 2013 21 h 39

Note that since L = (L)1,p, Polp(B) always contains B. Péladeau’s results
can be summarized as follows.

Theorem 5.1 (Péladeau) Let B be a Boolean algebra of languages of A∗

closed under quotients. Then the following properties hold:

(1) Polp(B) is a Boolean algebra,

(2) Polp(B,Fp) is a subring of F (A∗,Fp),

(3) A language L belongs to Polp(B) if and only if there is a function
f ∈ Polp(B,Fp) such that L = f−1(1),

(4) Polp(Polp(B)) = Polp(B).

5.2 Schützenberger products and modular product

An algebraic tool adapted to the study of the p-modular product is the
Schützenberger product over Fp of a family of monoids.

Let M0, . . . ,Mk be monoids. Denote by K = Fp[M0 × · · · × Mk] the
monoid algebra of M0×· · ·×Mk over Fp and by Mk+1(K) the multiplicative
monoid of square matrices of size k+1 with entries inK. The Schützenberger
product over Fp of the monoids M0, . . . ,Mk, denoted by Fp♦(M0, . . . ,Mk),
is the submonoid of Mk+1(K) made up of matrices m = (mi,j) such that

(1) mi,j = 0, for i > j,

(2) mi,i = (1, . . . , 1,mi, 1, . . . , 1) for some mi ∈ Mi,

(3) mi,j ∈ Fp[1× · · · × 1×Mi × · · · ×Mj × 1× · · · × 1], for i < j.

It turns out that Fp♦(M0, . . . ,Mk) recognises the p-modular products of
languages recognised by M0, . . . ,Mk. More specifically, let, for 0 6 i 6 k,
Li be a language of A∗ and let ηi : A

∗ → Mi be its syntactic morphism. Let
p be a prime, let a1, . . . , ak be letters of A and let L = (L0a1L1 · · · akLk)r,p
where 0 6 r < p. Let µ : A∗ → Fp♦(M0, . . . ,Mk) be the morphism defined
for each letter a ∈ A by

µi,i(a) = (1, . . . , 1, ηi(a), 1, . . . , 1) for 0 6 i 6 k

µi,i+1(a) = (1, . . . , 1) if a = ai+1 for 0 6 i 6 k − 1

µi,j(a) = 0 otherwise.

It follows immediately from the definition that, for each u ∈ A∗, and for
0 6 i 6 k, µi,i(u) is equal to (1, . . . , 1, ηi(u), 1, . . . , 1) and therefore can be
identified with the element ηi(u) of Mi. We can now state [12, 14, 31]:

Proposition 5.2 The language (L0a1L1 · · · akLk)r,p is recognised by the mor-
phism µ : A∗ → Fp♦(M0, . . . ,Mk).

We shall use an algebraic property due to Weil [32, Corollary 3.6]. Let
π : Fp♦(M0, . . . ,Mk) → M0 × · · · ×Mk be the morphism which maps each
matrix onto its diagonal.
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Proposition 5.3 The morphism π is a LGp-morphism.

For k = 2, a more precise result holds, as a consequence of [1, Lemma 5.4].

Proposition 5.4 The morphism π : Fp♦(M0,M1) → M0×M1 is a ℓAb(p)-
morphism.

One can actually use Propositions 5.3 and 5.4 to give another proof of Propo-
sitions 5.6 and 5.5, respectively.

5.3 Relational morphisms and modular product

An important question regarding the modular product is to understand the
algebraic relations between the syntactic monoids of the languages L0, . . . ,
Lk on the one hand, and the syntactic monoid of (L0a1L1 · · · akLk)r,p on the
other hand. We first treat the case k = 1.

Let η0 : A
∗ → M(L0) and η1 : A

∗ → M(L1) be the syntactic morphisms
of L0 and L1 respectively and let η : A∗ → M(L0)×M(L1) be the morphism
defined by η(u) = (η0(u), η1(u)). Let a be a letter of A, let L = (L0aL1)r,p
and let γ : A∗ → M(L) be the syntactic morphism of L. Consider the
relational morphism τ = η ◦ γ−1 : M(L) → M(L0)×M(L1).

M(L) M(L0)×M(L1)

A∗

γ

τ = η ◦ γ−1

η

The following result is inspired by the results of Straubing [25].

Proposition 5.5 The relational morphism τ : M(L) → M(L0)×M(L1) is
a relational ℓAb(p)-morphism.

Proof. We must show that for each x0, x1, u, v ∈ A∗ such that

x0u ∼L0
x0v ∼L0

x0 and ux1 ∼L1
vx1 ∼L1

x1, (∗)

one has x0uvx1 ∼L x0vux1 and x0u
px1 ∼L x0x1. Given s, t ∈ A∗, we set

f = sx0uvx1t and g = sx0vux1t. Consider a factorization of f of the form
z0az1 with z0 ∈ L0 and z1 ∈ L1. We call such a factorization fit. Depending
of the position of a in this factorization, we obtain a factorization of g as
follows:

(1) if a occurs on the left of uv, that is, if z1 = z′1uvx1t for some z′1 ∈ A∗,
then we take g = (z0)a(z

′
1vux1t),

(2) if a occurs on the right of uv, that is, if z0 = sx0uvz
′
0 for some z′0 ∈ A∗,

then we take g = (sx0vuz
′
0)a(z1),
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(3) if a occurs inside u, that is, if z0 = sx0u
′ and z1 = u′′vx1t, with

u = u′au′′, then we take g = (sx0vu
′)a(u′′x1t),

(4) if a occurs inside v, that is, if z0 = sx1uv
′ and z1 = v′′x1t, with

v = v′av′′, then we take g = (sx1v
′)a(v′′ux1t).

Note that, in each case, (∗) ensures that the resulting factorization of g is
fit. This correspondence actually defines a bijection between the fit factor-
izations of f and g. It follows that f and g have exactly the same number
of fit factorizations and hence f ∈ L if and only if g ∈ L. This proves that
x0uvx1 ∼L x0vux1.

We now prove that x0u
px1 ∼L x0x1. Given s, t ∈ A∗, we set f =

sx0u
px1t and g = sx0x1t. We claim that the number of fit factorizations of

f is congruent modulo p to the the number of fit factorizations of g. We
consider again the position of a in a fit factorization z0az1 of f . If a occurs
on the left of up, that is, if z1 = z′1u

px1t for some z′1 ∈ A∗, then (z0)a(z
′
1x1t)

is a fit factorization of g. Similarly, if a occurs on the right of up, that is,
if z0 = sx0u

pz′0 for some z′0 ∈ A∗, then (sx0z
′
0)a(z1) is a fit factorization of

g. It follows that the number of fit factorizations of f in which a does not
occur in up is equal to the number of fit factorizations of g.

Suppose now that a occurs in one of the factors u, that is, z0 = sx0u
iu′,

z1 = u′′ujx1t with u′au′′ = u and i + j + 1 = p. Since p is a prime, one
has p > 2 and thus i + j > 1. Therefore each fit factorization of f of this
type gives rise to p fit factorizations of f , given by (sx0u

ku′)a(u′′uℓx1t) with
k + ℓ = p− 1. It follows that the number of fit factorizations of f in which
a occurs inside up is a multiple of p. This proves the claim and shows that
f ∈ L if and only if g ∈ L. It follows that x0u

px1 ∼L x0x1 as required.

In the general case where L = (L0a1L1 · · · akLk)r,p, a slightly weaker result
holds. Let, for 0 6 i 6 k, ηi : A

∗ → M(Li) be the syntactic morphism of
Li and let N = M(L0) × · · · ×M(Lk). Let η : A∗ → N be the morphism
defined by η(u) = (η0(u), · · · , ηk(u)) and let τ : M(L) → N be the relational
morphism defined by τ = η ◦ γ−1.

Proposition 5.6 The relational morphism τ : M(L) → M(L0) × · · · ×
M(Lk) is a relational LGp-morphism.

Proof. Let µ : A∗ → Fp♦(M0, . . . ,Mk) and let T = µ(A∗). Recall that
π : Fp♦(M0, . . . ,Mk) → N denotes the morphism which maps each matrix
onto its diagonal. Since π ◦ µ = η, one has π(T ) = N . By Proposition 5.2,
the monoid T fully recognises L and thus there is a surjective morphism
θ : T → M(L) such that γ = θ ◦ µ.
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M(L)

NT

A∗

γ

τ

η

π

µ

θ

We also have τ−1 = γ ◦ η−1 = θ ◦ µ ◦ η−1 = θ ◦ π−1. Let e be an idempotent
of N and let S = τ−1(e) = θ(π−1(e)). Since π is a LGp-morphism by
Proposition 5.3, π−1(e) belongs to LGp. Since LGp is a variety, S also
belongs to LGp and thus τ is a relational LGp-morphism.

Propositions 5.5 and 5.6 give immediately the following corollaries. Let
F be a formation of monoids and let F be the corresponding formation of
languages.

Corollary 5.7 Let L0 and L1 be languages of F(A∗). Then the syntactic
monoid of the modular product (L0a1L1)r,p belongs to ℓAb(p) M©F.

Corollary 5.8 Let L0, . . . , Lk be languages of F(A∗). Then the syntactic
monoid of the modular product (L0a1L1 · · · akLk)r,p belongs to LGp M©F.

The next propositions can be viewed as a partial converse to Propositions
5.5 and 5.6, respectively. This result and its proof are inspired by the cor-
responding result for the unambiguous product [15, Proposition 2.2].

Theorem 5.9 Let π : M → N be a surjective ℓAb(p)-morphism. Then
every language fully recognised by M is a finite union of finite intersections
of languages fully recognised by N and of modular products (L0aL1)r,p, where
L0 and L1 are fully recognised by N .

Proof. Let B be the set of languages that are finite union of finite intersec-
tions of languages fully recognised byN and of modular products (L0aL1)r,p,
where L0 and L1 are fully recognised by N . We claim that B is actually a
Boolean algebra. It suffices to prove that the complements of the generators
of B are also in B. Indeed, the complement of a language fully recognised
by N is also fully recognised by N . Further,

(L0aL1)
c
r,p =

⋃

06s<p

s6=r

(L0aL1)s,p
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Let ≡ be the relation on A∗ defined by u ≡ v if and only if, for all languages
L, L0 and L1 fully recognised by N and for all r such that 0 6 r < p, one
has

u ∈ L ⇐⇒ v ∈ L

u ∈ (L0aL1)r,p ⇐⇒ v ∈ (L0aL1)r,p

Lemma 5.10 The relation ≡ is a congruence of finite index on A∗.

Proof. We first prove that ≡ is a congruence. It suffices to show that if c
is a letter, u ≡ v implies cu ≡ cv and uc ≡ vc. By symmetry, it suffices
to prove the first property. Let L be a language fully recognised by N . If
cu ∈ L, then u ∈ c−1L, and since c−1L is fully recognised by N , this is
equivalent to v ∈ c−1L and finally to cv ∈ L. Thus cu ∈ L if and only if
cv ∈ L.

Assume now that cu ∈ (L0aL1)r,p. Suppose first that u meets the fol-
lowing condition:

(1) every factorization of cu in L0aL1 is of the form cx0ax1 with cx0 ∈ L0

and x1 ∈ L1.

Then each factorization of cu in L0aL1 yields a factorization of u in (c−1L0)aL1.
It follows that u ∈ ((c−1L0)aL1)r,p, which is equivalent to v ∈ ((c−1L0)aL1)r,p
and finally to cv ∈ (L0aL1)r,p. The only case where Condition (1) is not
satisfied is when c = a, the empty word belongs to L0 and u belongs to
L1. In this case, 1au is another factorization of cu in (L0aL1)r,p. It follows
that u belongs to ((c−1L0)aL1)r−1,p. But then again, this is equivalent to
v ∈ ((c−1L0)aL1)r−1,p and then to cv ∈ (L0aL1)r,p. Thus cu ≡ cv in all
cases.

Finally, since there are |N ||A| functions from the finite alphabet A to
the finite monoid N , there are |N ||A| morphisms from A∗ to N . Therefore,
there are finitely many languages fully recognised by N and finitely many
languages of the form (L0aL1)r,p with L0 and L1 fully recognised by N . It
follows that the equivalence ≡ has finite index.

Let ϕ : A∗ → M be a surjective morphism.

Lemma 5.11 If u ≡ v implies ϕ(u) = ϕ(v), then every language recognised
by ϕ is a Boolean combination of languages fully recognised by N and of
modular products (L0a1L1)r,p, where L0 and L1 are fully recognised by N .

Proof. Suppose that u ≡ v implies ϕ(u) = ϕ(v). Then every language
recognised by ϕ is a finite union of ≡-classes. By construction of ≡, an
≡-class is a Boolean combination of languages fully recognised by N and
of modular products (L0a1L1)r,p, where L0 and L1 are fully recognised by
N .
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It remains to prove that u ≡ v implies ϕ(u) = ϕ(v). We start by proving a
weaker property. Let µ = π ◦ ϕ.

A∗

M N

ϕ

π

µ

Lemma 5.12 If u ≡ v then µ(u) = µ(v).

Proof. Let n = µ(u) and let L = µ−1(n). By construction, L is fully
recognised by N and u ∈ L. If u ≡ v, then v ∈ L and thus µ(v) = n.
Therefore µ(u) = µ(v).

Observe now that A acts on N on the left and on the right by setting
na = nµ(a) and an = µ(a)n. Let C be the category whose objects are the
pairs (n0, n1) with (n0, n1) ∈ N ×N and whose arrows are of the form

n0, an1 n0a, n1
a

Each word u = b1 · · · bn, where b1, . . . , bn ∈ A, defines a path p(u) in C:

p(u) =
(

µ(1), µ(u)
) b1−→

(

µ(b1), µ(b2 · · · bn)
) b2−→ · · ·

bn−→
(

µ(u), µ(1)
)

If p is a path in C and e is an arrow, we denote by |p|e the number of
occurrences of e in p.

Lemma 5.13 If u ≡ v, then the paths p(u) and p(v) are coterminal and
satisfy |p(u)|e ≡ |p(v)|e mod p for each arrow e of C.

Proof. If u ≡ v, then µ(u) = µ(v) by Lemma 5.12 and thus the paths p(u)
and p(v) are coterminal. Let e = ((n0, an1), a, (n0a, n1)) be an arrow of
C and let L0 = µ−1(n0) and L1 = µ−1(n1). There is a natural bijection
between the occurrences of e in p(u) and the factorisations of u in L0aL1.
But since u ≡ v, one has for 0 6 r < p, u ∈ (L0aL1)r,p if and only if
v ∈ (L0aL1)r,p. Therefore |p(u)|e ≡ |p(v)|e mod p.

We now need a graph-theoretic result inspired by an analogous result
of Simon [22]. We mix freely the vocabulary of graph theory and category
theory in the next statement and its proof.

Lemma 5.14 Let C be a finite graph and let C∗ be the free category on C.
Let ∼ be a congruence of category on C∗ such that, for all loops s and t
around the same vertex u, sp ∼ 1u and st ∼ ts. Let x, y be two coterminal
paths such that, for each e in C, |x|e ≡ |y|e mod p. Then x and y are
∼-equivalent.

25



Saturated formations January 22, 2013 21 h 39

Lemma 5.14 actually follows from the results of Straubing [26] and Thérien
[29], but we give a self-contained proof for the convenience of the reader.
We use freely the graph-theoretic notions of vertices and edges rather than
objects and arrows.

Proof. Suppose that x and y are coterminal paths from u to v and let c(x)
[c(y)] be the set of edges of x [y]. Let us prove the lemma by induction on
n = |c(x)| + |c(y)|, the case n = 0 being trivial. Let G be the subgraph of
C consisting of the edges of c(x)∪ c(y). We need to consider separately two
cases, depending on whether G is strongly connected or not. Let {0, . . . , n}
be the set of vertices of G.

If G is strongly connected, let us fix for each vertex v of G a path rv,0
from v to 0 and a path r0,v from 0 to v. Let Loc(0) be the local monoid of
C∗ at 0 and let ϕ : C → Loc(0) be the map defined as follows: if e ∈ C is
an edge from i to j, then ϕ(e) = r0,ie(rj,0r0,j)

p−1rj,0.

i j

0

e

rj,0

r0,j

r0,i

The map ϕ extends uniquely to a category morphism from C∗ to Loc(0).
Observe that if (i, e1, j) and (j, e2, k) are two consecutive edges, then

ϕ(e1e2) =
(

r0,ie1(rj,0r0,j)
p−1rj,0

)(

r0,je2(rk,0r0,k)
p−1rk,0

)

= r0,ie1(rj,0r0,j)
pe2(rk,0r0,k)

p−1rk,0 ∼ r0,ie1e2(rk,0r0,k)
p−1rk,0

since rj,0r0,j is a loop around 0. Thus e1e2 ∼ (ri,0r0,i)
p−1ri,0ϕ(e1e2)r0,k.

More generally, if x is a path from u to v, then x ∼ (ru,0r0,u)
p−1ru,0ϕ(x)r0,v.

Let now x and y be two paths from u to v such that |x|e ≡ |y|e mod p for
each e in C. It follows from the definition of the congruence ∼ that ϕ(x) ∼
ϕ(y) and thus x ∼ ru,0(r0,uru,0)

p−1ϕ(x)r0,v ∼ ru,0(r0,uru,0)
p−1ϕ(y)r0,v ∼ y.

Suppose now that G is not strongly connected. Then there is an edge
a of G from i to j for which there is no path from j to i. Without loss of
generality, we may assume that a is an edge of x. Thus there is a factorisation
x = x0ax1 such that |x0|a = |x1|a = 0 and c(x) is the disjoint union of c(x0),
{a} and c(x1). Since |x|a ≡ |y|a mod p, the vertex a also occurs in y and
there is a factorisation y = y0ay1. Further, an edge of y1 can not belong to
c(x0) ∪ c(y0), otherwise, there would be a path from j to i. Similarly, an
edge of y0 does not belong to c(x1) ∪ c(y1) for the same reason. It follows
that for each edge e, |x0|e = |y0|e and |x1|e = |y1|e. Therefore x0 ∼ y0 and
x1 ∼ y1 by the induction hypothesis, and finally x ∼ y.
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We now apply Lemma 5.14 to the congruence ∼ on C∗ defining ker(π).
This congruence satisfies the condition sp ∼ 1 and st ∼ ts for all loops
around the same object. Consequently, if u ≡ v, then by Lemma 5.13, u
and v define equal paths in ker(π) from (1, µ(u)) to (µ(u), 1). In particu-
lar, 1ϕ(u)1 = 1ϕ(v)1, that is, ϕ(u) = ϕ(v). This concludes the proof of
Proposition 5.9.

6 Formations of languages and modular product

The aim of this section is to describe the algebraic counterpart to the closure
of a formation of languages under modular product. The next two results
extend and improve the results of [1, 10, 31, 32].

Theorem 6.1 Let F be a formation of monoids and let W = ℓAb(p) M©F.
Let F and W be the formations of languages corresponding to F and W,
respectively. Then, for each alphabet A, W(A∗) is the Boolean algebra gen-
erated by the languages of F(A∗) and by the modular products (L0a1L1)r,p,
where L0, L1 belong to F(A∗).

Proof. This is a direct consequence of Proposition 5.9.

Theorem 6.2 Let F be a formation of monoids and let W = LGp M©F.
Let F and W be the formations of languages corresponding to F and W,
respectively. Then, for each alphabet A, W(A∗) is

(1) the lattice generated by the p-modular products of members of F(A∗),

(2) the Boolean algebra generated by the p-modular products of members
of F(A∗),

Further, W(A∗) is closed under p-modular products.

Property (2) is proved for varieties of languages in [1, Corollary 6.3] and
[32, Corollary 4.5]. Property (1) is implicitly proved in [10], again only for
varieties of languages.

Proof. Corollary 5.8 shows that any p-modular product of languages of
F(A∗) belong to W(A∗). Since W is a formation of languages, it follows that
the classes of languages W1 and W2, defined respectively by the conditions
(1) and (2), are contained in W. Further, the complement of a p-modular
product is a finite union of p-modular products since, for 0 6 r < p, one
gets

(L0a1L1 · · · akLk)
c
r,p =

⋃

06s<k
s 6=r

(L0a1L1 · · · akLk)s,p

It follows that W1 = W2 and it suffices now to prove the inclusion W ⊆ W2.

27



Saturated formations January 22, 2013 21 h 39

Let L be language of W(A∗). By definition, its syntactic monoid M
belongs to LGp M©F and by Proposition 3.12, there is a surjective LGp-
morphism π : M → N , where N is a monoid of F. Let us factorize π as a
composition of irreducible morphisms

M = Mr
πr−→ Mr−1 · · · M1

π1−→ M0 = N

By Proposition 3.11, each πi is a ℓAb(p)-morphism. We now prove by induc-
tion on i that every language recognised by Mi belongs to Polp(F(A∗)). For
i = 1, the result follows from Theorem 5.9, since π1 is a surjective ℓAb(p)-
morphism and since N ∈ F. Suppose by induction that the result holds
for Mi. Then by Theorem 5.9, every language fully recognised by Mi+1 be-
longs to Polp(Polp(F(A∗))), which is equal to Polp(F(A∗)) by Theorem 5.1.
This proves the theorem since Polp(F(A∗) is contained in W2(A

∗).

The simplest instance of Theorem 6.2 is obtained by taking for F the
trivial formation of monoids. In that case, one has F(A∗) = A∗ for each
alphabet A. Then LGp M©F = Gp and Theorem 6.2 states that, for each
alphabet A, the formation of languages associated with Gp is the Boolean
algebra generated by (A∗a1A

∗ · · · akA
∗)r,p, where 0 6 r < p, k > 0 and

a1, . . . , ak ∈ A and we obtain Weil’s result [30, 31, 32].
Taking for F the formation Z, Propositions 4.2, 3.15 and Theorem 6.2

give immediately:

Proposition 6.3 Let W be the formation of languages corresponding to
ILGp. Then for each alphabet A, W(A∗) is the Boolean algebra generated
by the languages of the form (L0a1L1 · · · akLk)r,p, where each Li is either
nondense or co-nondense.

Theorem 6.2 works with any formation of groups. Consider for instance
the formation F generated by A5, the alternating group of degree 5. By [8,
II.2.13] F is known to be the class of all direct products of copies of A5 and
therefore F is not a variety. The corresponding formation of languages F
was described in [3]. Now, Theorem 6.2 allow us to describe all languages
of the class Gp ∗ F.

Theorem 6.2 is of special interest for saturated formations. Let F be
a saturated formation of groups locally defined by a formation function f .
As we have seen, the canonical local definition F of F can be obtained by
setting F (p) = Gp ∗ (f(p) ∩ F), for each prime p. Let Cp be the formation
of languages associated with the formation of groups f(p) ∩F.

Corollary 6.4 Let F be the formation of languages associated with F. For
each alphabet A, F(A∗) is the Boolean algebra generated by the languages of
the form (L0a1L1 · · · akLk)r,p, where Li ∈ Cp(A

∗), 0 6 i 6 k, 0 6 r < p and
p runs over all primes.
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The precedent result shows that in order to describe the languages as-
sociated with a saturated formation F it is enough to know a description
of the languages associated to any local definition of F. We are now going
to apply this method to several examples of local formations of groups and
recover in this way a number of known results.

Example 6.1 (Nilpotent groups) As we have seen, the formation N of
nilpotent groups is locally defined by f(p) = (1), for all primes p. Since the
formation of languages corresponding to f(p) = (1) is, for each alphabet
A, Cp(A

∗) = A∗, Corollary 6.4 states that, for each alphabet A, the for-
mation of languages associated with N is the Boolean algebra generated by
(A∗a1A

∗ · · · akA
∗)r,p, where a1, . . . , ak ∈ A , 0 6 r < p and p runs over all

primes. Thus, we obtain Weil’s result [30, 31] (see also [9, 23, 27, 28, 11]).

Example 6.2 (Soluble groups) Given a formation of groups F, the class
N∗F is locally defined by f(p) = F for all primes p [8, IV, (3.4)]. Therefore,
knowing the languages of a formation F, Corollary 6.4 allows us to describe
the languages of the class N ∗ F. We can apply this result to obtain, in
particular, a description of the languages associated with the class of all
soluble groups, first given by Straubing [23, 24].

Let (Ni)i>0 be the family of formations of languages defined, for each
alphabet A, by N0(A

∗) = {∅, A∗} and for i > 1, Ni(A
∗) is the Boolean

algebra generated by the languages (L0a1L1 · · · akLk)r,p, where a1, . . . , ak ∈
A , 0 6 r < p, p runs over all primes and each Lj ∈ Ni−1(A

∗).
First, we know that the formation of languages associated with N is,

for each alphabet A, N1(A
∗) (Example 6.1). Thus, by Corollary 6.4, the

formation of languages associated with N2 = N ∗ N, is N2(A
∗) and, in

general, the formation of languages corresponding to Ni = N ∗ · · · ∗N (the
saturated formation of soluble groups with nilpotent length at most i > 1)
is Ni(A

∗).
Since the variety S of all soluble groups is the join of the varieties Ni for

all integers i > 0, we deduce that the variety of languages corresponding to
S is the join of the language varieties Ni, for i > 0.

More generally, let π be a set of primes and let Sπ the variety of all
soluble groups which orders are divisible only by primes in π. Let also
(Nπ,i)i>0 denote the family of formations of languages defined as (Ni)i>0 but
considering only primes p ∈ π. The variety of languages Sπ corresponding
to Sπ is the join of the language varieties (Nπ,i)i>0.

Example 6.3 (Supersoluble groups) The formation (or variety) of su-
persoluble groups is locally defined by f(p) = Ab(p − 1), for all primes p,
[6], [8, IV, (3.4)]. The formation of languages corresponding to Ab(n) was
described in [9] and, for each alphabet A, it is the Boolean algebra gener-
ated by the languages of the form F (a, s, n) = {u ∈ A∗ | |u|a ≡ s mod n},
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where a ∈ A and 0 6 s < n. Thus, Corollary 6.4 states that the formation
of languages associated with the variety of supersoluble groups is, for each
alphabet A, the Boolean algebra generated by (L0a1L1 · · · akLk)r,p, where
a1, . . . , ak are letters of A, 0 6 r < p, p runs over all primes and each Li is
a language of the form F (a, s, p − 1), for some a ∈ A and 0 6 s < p− 1, as
it was obtained in [7].

Example 6.4 (Sylow tower groups of type ≺) Let ≺ be an arbitrary
linear ordering on the set P of all primes. Let G be a group such that
|G| = pn1

1 . . . pnr
r , with p1, . . . , pr primes such that p1 ≺ p2 ≺ · · · ≺ pr−1 ≺ pr.

We say that G has a Sylow tower of type ≺ if G ∈ Gp1 ∗Gp2 ∗ · · · ∗Gpr . The
class T≺ of all soluble groups with a Sylow tower of type ≺ is a saturated
formation. Given a prime p, let π(p) = {q ∈ P | p ≺ q} and put f(p) = Sπ(p).
It follows that T≺ is locally defined by f [8, IV, (3.4)]. Consequently, by
Corollary 6.4, the formation of languages associated whith T≺ is, for each
alphabet A, the Boolean algebra generated by (L0a1L1 · · · akLk)r,p, where
a1, . . . , ak are letters of A, 0 6 r < p, p runs over all primes and each Li is
a language of Sπ(p).

Example 6.5 (Fitting varieties of soluble groups) A Fitting variety is
a variety F which is closed by the following property: whenever a group G is
generated by subnormal subgroups N1, . . . , Nr ∈ F then G ∈ F. Whereas N
and S are examples of Fitting varieties, the classes of abelian groups and of
supersoluble groups are not. In general, Fitting varieties are not saturated.
In fact, in [2] Ezquerro and the first author characterised the Fitting vari-
eties of groups which are saturated. Nevertheless, in the soluble universe a
Fitting variety is always saturated [5], [4] and, therefore, it can be defined
locally. If F is the canonical local definition of a Fitting variety F of soluble
groups, then F (p) is again a Fitting variety for all primes p [8, IV, (3.16)].
In particular, F (p) is saturated and can be defined locally for all primes p.
Since the languages of Sπ are known for any set π of primes, our results give
a way to construct the class of languages associated to any Fitting variety
of soluble groups.
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