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INTRODUCTION

Analytical and numerical modeling of contact problems related to rough surfaces can be surely considered as an open and challenging research topic, strictly associated to many industrial applications. From a computational point of view, it is possible to identify a class of modeling problems in which it is neither possible nor useful to account for a fine and detailed description of the contact regions, although contact may strongly affects, the overall mechanical response for the problem in object. In these cases, a possible strategy is based on modeling contact features by means of equivalent stiffness and dashpot distributions at the contact nominal interface. One of the earliest contact model for elastic rough surfaces was proposed by Greenwood and Williamson [START_REF] Greenwood | Contact of nominally flat surfaces[END_REF]. This model implies a Hertzian contact solution [START_REF] Mindlin | Compliance of elastic bodies in contact[END_REF] for curved elastic nominally-flat surfaces by considering a population of non-interacting asperities following a given statistical distribution. Starting from the analytical solution of Westergaard [START_REF] Westergaard | Bearing pressures and cracks[END_REF], Johnson et al. [START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF] developed a contact model that concerns the elastic contact between a two-dimensional wavy surface and a flat plane. They found the expressions of the contact area in the asymptotic limit cases of early contact and of nearly full contact conditions. Krolikowski and Szczepec [START_REF] Krolikowski | Assessment of tangential and normal stiffness of contact between rough surfaces using ultrasonic method[END_REF] provided an analytical formulation of the interface stiffness both in normal and in the tangential directions, that combines the Hertz-Mindlin theory [START_REF] Mindlin | Compliance of elastic bodies in contact[END_REF], the Greenwood-Williamson contact model [START_REF] Greenwood | Contact of nominally flat surfaces[END_REF], and the Johnson model [START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF][START_REF] Johnson | Contact Mechanics[END_REF]. Their statistical approach models the contact between rough surfaces as the contact between two elastic wavy surfaces, ideally covered with asperities of spherical shape. Yoshioka and Scholz [START_REF] Yoshioka | Elastic properties of contacting surfaces under normal and shear loads. 1. Theory[END_REF] proposed a contact model for elastic problems via a statistical approach that allows to account for possible oblique contact among asperities. Many studies can be found in the specialized literature addressing experimental characterization of the mechanical behavior of rough surfaces in contact under closure-pressure conditions [START_REF] Sherif | Relationship between normal and tangential contact stiffness of nominally flat surfaces[END_REF][START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF][START_REF] Baltazar | On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces[END_REF][START_REF] Dwyer-Joyce | Ultrasonic determination of normal and shear interface stiffness and the effect of Poisson's ratio[END_REF], providing estimates for normal and tangential contact stiffnesses. For instance, Sherif and Kossa [START_REF] Sherif | Relationship between normal and tangential contact stiffness of nominally flat surfaces[END_REF] employed an experimental technique based on the evaluation of the local natural frequencies at the contact region. Gonzalez-Valadez et al. [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF] proposed experimental results based on ultrasonic tests. As a matter of fact, experimental approaches highlight that: stresses are highly concentrated in the contact region and they are mainly not affected by the shape of the bodies in contact at a suitable distance from the contact area [START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF][START_REF] Johnson | Contact Mechanics[END_REF]; an hysteresis phenomenon occurs at the interface level (as a result of the plastic deformation localized at the asperity tips) in the case of cycling loads [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF]; null values of the interfacial stiffnesses are achieved when the closure pressure tends to zero [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF]. In this paper a spring-like contact model is proposed. Normal and tangential interfacial stiffnesses per unit area are consistently derived by coupling a homogenization approach for microcracked media under the non-interacting approximation (NIA) [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF][START_REF] Sevostianov | Non-interaction approximation in the problem of effective properties[END_REF], and arguments of asymptotic analysis [START_REF] Lebon | Asymptotic analysis of a thin interface: The case involving similar rigidity[END_REF][START_REF] Lebon | Asymptotic behavior of a hard thin linear elastic interphase: An energy approach[END_REF][START_REF] Rizzoni | Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases[END_REF][START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF]. The model is detailed in Section 2, and its validation is provided, by comparing numerical results with both theoretical and experimental findings, in Section 3. Finally, some conclusions are traced in Section 4.

CONTACT MODEL

In what follows and as a notation rule (Einstein summation rule is assumed): (a ⊗ b) ij = a i b j is the dyadic product between vectors; (A • b) i = A ij b j is the tensor product between a two-rank tensor and a vector; (A * B) ik = A ij B jk is the standard tensor product between two-rank tensors; A : B = A ij B ji is the double contraction between two-rank tensors.

General framework

Let two continuous bodies, comprising of linearly elastic isotropic materials (E i , ν i with i = 1, 2, being Young modulus and Poisson ratio, respectively), be in contact via non-conforming rough surfaces. Moreover, referring to the local tangent plane π at the contact nominal interface, let K C N and K C T be the normal and tangential incremental contact stiffnesses per unit nominal contact area, defined as:

K C N = dF N dw ; K C T = dF T ds (1) 
where w and s are the relative displacements of far points in the normal-and tangential-to-the-contactplane directions, respectively, and F N and F T are the normal and tangential forces transmitted through the unit contact area. Let a local Cartesian frame related to the orthonormal basis (e 1 , e 2 , e 3 ) be introduced, with e 3 orthogonal to π. Moreover, let the contact surfaces be characterized by a periodical distribution of asperities, and let the randomness aspect of the roughness be regularized by assuming a simply regular periodic wavy-like shape of the contacting surfaces in the reference configuration. The two wavy surfaces are assumed to be geometrically isotropic, with a bi-sinusoidal shape characterized by wavelength λ and amplitude ∆ (with ∆ λ). As a result, the tangential contact stiffness K C T is isotropic in the local tangent plane π. Moreover, any sliding phenomena between the nominal surfaces in contact is assumed to be prevented at the macroscale, and a frictionless behavior is locally considered at the asperity scale. As it is well established [START_REF] Westergaard | Bearing pressures and cracks[END_REF][START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF], when two non-conforming surfaces are in contact under pressure conditions, the no-contact areas can be assumed to behave as almost independent penny-shaped cracks. Accordingly, it is possible to identify a ε-thick representative elementary volume (REV) at the contact interface (Fig. 1), and to treat the whole ε-thick contact zone as an imperfect interphase characterized by a periodical distribution of non-interacting penny-shaped cracks. In the following reference is made to an isotropic interphase weakened by one family of penny-shaped microcracks only, characterized by a transversely isotropic crack distribution with symmetry axis e 3 and with an average radius b. Moreover, the undamaged interphase is assumed to behave as a linearly elastic material, and crack faces undergo frictionless conditions. The adopted imperfect-interface approach, proposed by authors in former papers [START_REF] Rekik | Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry[END_REF][START_REF] Rekik | Homogenization methods for interface modeling in damaged masonry[END_REF][START_REF] Fouchal | An interface model including cracks and roughness applied to masonry[END_REF], is employed to consistently derive effective mechanical properties at the contact zone, in terms of contact stiffness distributions, by coupling a NIA-based homogenization approach for microcracked media [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF][START_REF] Sevostianov | Non-interaction approximation in the problem of effective properties[END_REF] and the matched asymptotic method [START_REF] Lebon | Asymptotic behavior of a hard thin linear elastic interphase: An energy approach[END_REF][START_REF] Rizzoni | Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases[END_REF][START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF][START_REF] Lebon | Asymptotic modelling of interfaces taking contact conditions into account: Asymptotic expansions and numerical implementation[END_REF]. Basic elements of the imperfect-interface procedure are detailed in the following.

Imperfect interface approach

Homogenization of the microcracked interphase

Within the framework of the NIA [START_REF] Sevostianov | Non-interaction approximation in the problem of effective properties[END_REF], each penny-shaped crack, embedded into a Cauchy-type stressfield σ σ σ, does not experience mechanical interactions by surrounding cracks. Let n = e 3 be the unit vector normal to the crack middle surface Γ on π, and let u + and u -be the displacements at the top and bottom crack boundaries, respectively. Denote also as

u cod = u + -u -= [ Γ (u + -u -)dΓ]/|Γ|
the average measure of the displacement jump through the crack, in the following referred to as crack opening displacement (COD) vector. In agreement with the homogenization technique employed in [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF], and considering a plane-stress assumption, u cod can be expressed in terms of the stress vector [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]:

T n = σ σ σ • n as
u cod = β b E 0 [(n ⊗ n) • T n ] + γ b E 0 [T n -(n ⊗ n) • T n ] (2) 
where

β = 16(1 -ν 2 0 )/3π, γ = 16(1 -ν 2 0 ) 1 -ν 0 2 -1 /3π
, and E 0 and ν 0 are the Young modulus and the Poisson ratio of the undamaged interphase, respectively. It is worth pointing out that E 0 and ν 0 can be obtained in terms of the elastic properties (E i , ν i with i = 1, 2) of the two materials in contact, as the result of a homogenization of the undamaged ε-thick REV. Thereby, the complementary potential f (σ σ σ) of the cracked material can be expressed as [START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF]:

f = f 0 (σ σ σ) + ∆f = f 0 + 8(1 -ν 2 0 ) 3 1 -ν 0 2 E 0 ρ (n ⊗ n) : (σ σ σ * σ σ σ) - ν 0 2 [(n ⊗ n) : σ σ σ] 2 (3) 
where

f 0 = 1 + ν 0 2E 0 [(n ⊗ n) : (σ σ σ * σ σ σ)] - ν 0 2E 0 [(n ⊗ n) : σ σ σ] 2 (4) 
is the complementary elastic potential of the undamaged interphase, expressed in terms of the compliance tensor S 0 = S 0 (E 0 , ν 0 ), ∆f is a perturbation contribution depending on microstructural crack features, and ρ is the scalar crack density, expressed in agreement with [START_REF] Bristow | Microcracks, and the Static and Dynamic Elastic Constants of Annealed and Heavily Cold-worked Metals[END_REF] by (Fig. 1):

ρ = b 3 |REV | = 2b 3 λ 2 ε (5) 
Due to Eq. ( 3), the effective compliance tensor S of the microcracked interphase can be derived as:

(S) ijkl = (S 0 ) ijkl + (∆S) ijkl = ∂ 2 f ∂σ ij ∂σ kl ( 6 
)
where ∆S is the contribution compliance tensor associated to ∆f . Accordingly, the effective moduli of the cracked interphase in the normal (N ) and tangential-to-interface (T ) directions are obtained as:

E N = E 0 1 + 16(1 -ν 2 0 ) 3 ρ -1 ; G N T = G 0 1 + 8(1 -ν 0 ) 3 1 -ν 0 2 ρ -1 (7) 

Asymptotic expansion method and interface stiffnesses

Let the REV thickness ε (see Fig. 1) be considered as a small parameter. Accordingly, an asymptotic expansion with respect to ε can be conveniently performed starting from the effective mechanical properties in Eqs. [START_REF] Yoshioka | Elastic properties of contacting surfaces under normal and shear loads. 1. Theory[END_REF] of the cracked ε-thick interphase. The asymptotic technique herein adopted and briefly outlined in the following, refers to the so-called matched asymptotic expansion method employed in [START_REF] Lebon | Asymptotic behavior of a hard thin linear elastic interphase: An energy approach[END_REF][START_REF] Rizzoni | Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases[END_REF][START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF].

In detail, the elastic equilibrium problem for the interphase region and for the bodies in contact can be formulated in terms of asymptotic expansions with respect to ε of the Cauchy-type stress filed (σ σ σ), of the strain field (e), and of the displacement field (u):

σ σ σ ε = σ σ σ 0 + εσ σ σ 1 + o(ε) u ε = u 0 + εu 1 + o(ε) e(u ε ) = ε -1 e -1 + e 0 + O(ε) (8) 
Moreover, reference is herein made to a soft interface assumption [START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF] within the interphase domain. Thereby, the material stiffness tensor in the ε-thick interphase region can be expanded as:

C ε = εC + o(ε) (9) 
where C = S -1 is computed in agreement with Eqs. [START_REF] Yoshioka | Elastic properties of contacting surfaces under normal and shear loads. 1. Theory[END_REF]. By performing a rescaling process of the equilibrium problem for the domains under investigation (bodies in contact and interphase) and by adopting a matching procedure as described by Rizzoni et al. [START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF], the soft interface law, relating the stress vector T n at the nominal contact interface (with n = e 3 ) and the displacement jump [u] at interface, can be expressed as:

T n = diag [K T K T K N ] • [u] (10) 
where the tangential (T) and normal (N) stiffnesses result in:

K T = 3 E 0 λ 2 (2 -ν 0 ) 64 b 3 (1 -ν 2 0 ) ; K N = 3 E 0 λ 2 32 b 3 1 -ν 2 0 (11)

Effective contact stiffnesses

In agreement with Johnson et al. [START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF][START_REF] Johnson | Contact Mechanics[END_REF], the average radius b of each penny-shaped microcrack is assumed to be dependent on the closure nominal pressure p (Fig. 1), such that 0

≤ 2 b ≤ λ √ 2 .
In detail, 2 b ≤ λ √ 2 when p < p * and 2 b → 0 + when p → p * , where p * is the average value of the nominal pressure which brings the surfaces into complete contact, in the following referred to as complete contact pressure. According to the Hertzian elastic contact theory it is defined as:

p * = √ 2πE ∆ 0 λ (12) 
with

(E ) -1 = (1-ν 2 1 ) E 1 + (1-ν 2 
2 ) E 2 being the reduced Hertzian modulus and ∆ 0 being the amplitude of the bi-sinusoidal shape modeling rough surfaces at the reference configuration. The contact regions are described by introducing the contact radius a, such that a → 0 + when p → 0 + and a → λ √ 2 when p → p * . With reference to the sketch in Fig. 2, contact areas are described as circular (i.e., contact point condition) and no-contact zones are almost square in shape when p → 0 + . Figure 2: Outline of the asymptotic behaviors of contact and no-contact areas On the contrary, in the near complete closure condition (p → p * ), the contact areas are assumed to be almost square in shape and the no-contact area as quasi-circular. Let a 0 and b 0 (respectively, a 1 and b 1 ) be the values of the no-contact and contact radii, respectively, when p → 0 + (resp., p → p * ). In agreement with asymptotic estimates provided by Johnson et al. [START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF], the following relationships are assumed to hold:

a 0 p p * = λ √ 2 3 8π p p * 2/3 (13) b 0 p p * = λ 2 8 1 -π 3 8π p p * 2/3 (14) a 1 p p * = λ 2 √ 2 1 - 3 2π 1 - p p * (15) b 1 p p * = 3λ 2 4π 2 1 - p p * (16) 
The contact and no-contact radius evolution with p is simply described by the following area-based weighted averages:

a p p * = πa 2 0 1 -p p * + 4a 2 1 p p * π 1 -p p * + 4 p p * (17) b p p * = 4b 2 0 1 -p p * + πb 2 1 p p * 4 1 -p p * + π p p * (18) 
It is worth pointing out that Eqs. ( 17) and ( 18) satisfy the consistency condition:

A c + A nc = A n = λ 2 2 ( 19 
)
where A c = 2 π 1 -p p * + 4 p p * is the contact area and A nc = b 2 4 1 -p p * + π p p * is the nocontact one for a given value p of the nominal closure pressure. Moreover, they recover the asymptotic relationships previously introduced (Eqs. [START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF][START_REF] Sevostianov | Non-interaction approximation in the problem of effective properties[END_REF][START_REF] Lebon | Asymptotic analysis of a thin interface: The case involving similar rigidity[END_REF]), and in particular the following limits for p → 0 + hold:

a → a 0 → O( p p * 1 3 ) ; b → b 0 → λ 2 √ 2 (20) 
Following the classical Hertzian theory for the elastic contact case, theoretical estimates of interfacial contact stiffnesses in normal (N ) and tangential (T ) directions can be expressed as [START_REF] Sevostianov | Contact of rough surfaces: A simple model for elasticity, conductivity and cross-property connections[END_REF]:

K th N = 4 E a λ 2 ; K th T = K th N 2(1 -ν 0 ) (2 -ν 0 ) (21) 
It immediately results that, due to the limit conditions in Eqs. [START_REF] Rekik | Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry[END_REF], stiffnesses expressed by Eqs. [START_REF] Dwyer-Joyce | Ultrasonic determination of normal and shear interface stiffness and the effect of Poisson's ratio[END_REF] do not recover the physical behavior associated to stiffness null values when p → 0 + and described by the Hertzian theory (Eqs. ( 21)). In order to enforce such a physical constraint, the effective contact stiffnesses are arranged as:

K C i = K i 1 -e -γ 0 i p p * 1/3 i = N,T (22) 
where K N and K T are obtained from the imperfect interface approach (Eqs. ( 11)). It is worth to remark that stiffnesses expressed by Eq. ( 22) straight recover the asymptotic behavior for p → 0 + provided by the Hertzian estimate (Eqs. ( 21) and ( 20)) when model parameters γ 0 N and γ 0 T assume the theoretical values:

γ 0 N,th = (9π) -1/3 ; γ 0 T,th = 2γ 0 N,th 2(1 -ν 0 ) (2 -ν 0 ) 2 (23) 
In particular, for ν 0 = 0.3 it results: γ 0 N,th = 0.33, γ 0 T,th = 0.32.

RESULTS AND DISCUSSIONS

The experimental results obtained by Gonzalez-Valadez et al. [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF] are herein chosen to validate the proposed model. They provide experimental measures, by means of ultrasonic pulser-receivers, of interfacial contact stiffnesses for steel specimens in contact through rough nominally-flat surfaces under closure pressure conditions. The specimens were subjected to loading-unloading cycles of compressive pressure in a hydraulic frame operating in loading control mode. The load is applied in a quasi-static way, up to the nominal pressure value of 400 MPa. Steel specimens are characterized by the following mechanical properties: E = 200 GPa and ν = 0.3. Accordingly, the Hertzian reduced modulus value is E = 109.89 GPa, and E 0 = E and ν 0 = ν. Moreover, in agreement with data proposed in [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF], contact rough surfaces in the reference configuration can be modeled as regularized shapes (see Fig. 1) characterized by λ = 130 µm and ∆ 0 = 1.58 µm. A comparison procedure among numerical results based on the proposed model and experimental data by Gonzalez-Valadez et al. [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF] relevant to the 11-th loading cycle is carried out, deriving (via a least-squares fitting procedure) the optimal values for parameters γ 0 N and γ 0 T (Fig. 3). As a result, the best-fitting values are: γ 0 N,num = 0.96, γ 0 T,num = 0.58. It is worth pointing out that this numerical estimates for γ 0 N and γ 0 T are in the same order of magnitude of the corresponding Hertz-based theoretical ones: γ 0 N,th = 0.33, γ 0 T,th = 0.32. Previously-proposed results are obtained by referring to the complete contact pressure p * introduced in Eq. [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]. The latter strictly holds in elastic regime. Nevertheless, due to localization mechanisms associated to tips plastic deformation and fatigue effects, the pressure that brings the surfaces into a complete contact condition can be retained as a function of the pressure loading history, as well as of the number of loading cycles. Accordingly, a suitable description of the actual closure pressure can be introduced as:

p * h = h p * = h √ 2πE ∆ 0 λ (24) 
where h ≤ 1 is a history-based correction parameter. As a really first approximation, in the case of loading cycles characterized by the same maximum value of the closure pressure, a measure of h can be put in the form h = ∆ ∆ 0 , with ∆ a measure of the actual amplitude for the wavy surfaces. With reference to the experimental results by Gonzalez-Valadez et al. [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF] the following estimates can be consistently considered: ∆ = 1. with the previously-introduced value of h, the numerical predictions of the contact stiffnesses remain in good agreement with the benchmark experimental results, when best-fitting values of parameters γ 0 N and γ 0

T are: γ 0 N,num = 0.83 and γ 0 T,num = 0.51. Thereby, a history-based correction of the closure pressure leads to a consistent reduction of the γ 0 -type parameters towards their theoretical prediction (Fig. 4). Many studies on contacting rough surfaces [START_REF] Greenwood | Contact of nominally flat surfaces[END_REF][START_REF] Mindlin | Compliance of elastic bodies in contact[END_REF][START_REF] Johnson | The contact of elastic regular wavy surfaces[END_REF][START_REF] Krolikowski | Assessment of tangential and normal stiffness of contact between rough surfaces using ultrasonic method[END_REF] revealed that the ratio of tangential to normal stiffness is solely dependent on the Poisson ratio of the contacting materials. Under the assumption that the two bodies in contact are made by the same material, it results in: Many approaches are available in literature, providing relationships identical to that in Eq. ( 25), characterized by the same function φ(ν) as in the Hertz-Mindlin theory but with different values of A. Sherif and Kossa [START_REF] Sherif | Relationship between normal and tangential contact stiffness of nominally flat surfaces[END_REF] found A = π/2. Yoshioka and Scholz [START_REF] Yoshioka | Elastic properties of contacting surfaces under normal and shear loads. 1. Theory[END_REF] obtained the approximated estimate A = 0.71. Moreover, following the contact model by Baltazar et al. [START_REF] Baltazar | On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces[END_REF], coefficient A can be expressed as A = 2ξ Ψ , where ξ and Ψ are correction factors accounting for the geometrical misalignments with respect to the shear and longitudinal directions, respectively. The resulting values of the tangential to normal stiffness ratio for the above cited models are plotted in Fig. 5, in comparison with the available experimental data, [START_REF] Gonzalez-Valadez | Study of interfacial stiffness ratio of a rough surface in contact using a spring model[END_REF] and with present numerical results. It is worth noting that the experimental curves show a significant dependence of the stiffness ratio on the closure pressure, that is successfully reproduced by the proposed model.

K C T K C N = A φ(ν) (25 

CONCLUSIONS

In the present paper a new micromechanical method for obtaining the interfacial stiffnesses of rough surfaces in contact under closure pressure condition is proposed. To this aim a homogenization technique for microcracked media [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Tsukrov | Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF][START_REF] Sevostianov | Non-interaction approximation in the problem of effective properties[END_REF] and an asymptotic expansion method [START_REF] Lebon | Asymptotic behavior of a hard thin linear elastic interphase: An energy approach[END_REF][START_REF] Rizzoni | Higher order model for soft and hard elastic interfaces[END_REF] are consistently combined in the framework of an imperfect interface model. Normal and tangential-to-interface contact stiffnesses have been analytically established. Comparisons among present results with theoretical predictions and available experimental data highlighted soundness and effectiveness of such an approach. Moreover, proposed results proved the model to be able in catching the proper dependence of the contact stiffness ratio on the closure pressure, fully in agreement with the experimental evidence. 

Figure 1 :

 1 Figure 1: Exemplary sketch of the "regularized" contact/interphase zone with the identification of the REV (representative elementary volume) herein considered

Figure 3 :

 3 Figure 3: Comparison among numerical and experimental [9] results for normal (on the left) and tangential (on the right) contact stiffnesses vs. closure pressure Hertz-based theoretical predictions are also provided

Figure 4 :

 4 Figure 4: Numerical and experimental contact stiffnesses vs. normal pressure p, computed considering both the Hertzian-based closure pressure p * (the same notation rule in Fig. 3 applies) and the corrected one p * h (red curves, ----K num N and --K num T )

) where 0. 5 ≤

 5 A ≤ 2 is a constant and φ(ν) is a function of the Poisson ratio ν. In the case of the classic Hertz-Mindlin contact theory [1,2,5], A = 2 and φ(ν) = (1 -ν)/(2 -ν).

Figure 5 :

 5 Figure 5: Tangential-to-the-normal stiffness ratio as function of the closure pressure. Comparison among present results (----, computed with p * ) and both experimental (by [9], ) and theoretical prediction: (1) Hertz-Mindlin [2], (2) Sherif and Kossa [8], (3) Baltazar et al. [10], (4) Yoshioka and Scholz [7] . Results relevant to the model by Baltazar et al. [10] have been computed considering ξ = 0.65 and Ψ = 1
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