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Abstract
In this paper, a spring-like micromechanical contact model is proposed, aiming to catch in an accurate
way the mechanical behavior of two rough surfaces in contact under a closure pressure. The contact
region between two elastic bodies is treated as a thin damaged interphase characterized by a periodical
distribution of non-interacting penny-shaped cracks. By combining a homogenization approach with
an asymptotic technique, the analytical expressions of the tangential and normal contact stiffnesses are
obtained. Besides, analytical formulations describing the evolution of contact and no-contact radii with
respect to the closure pressure are proposed, resulting to be consistent with theoretical asymptotic pre-
dictions and with the Hertz contact theory. The proposed model has been successfully validated through
some comparisons with theoretical and experimental results available in literature.

Sommario
Nel presente lavoro si propone un modello di contatto micromeccanico a rigidezze distribuite allo scopo
di descrivere in modo accurato il comportamento meccanico di due superfici rugose in contatto e soggette
ad una pressione di chiusura. La zona di contatto tra due corpi elastici è assimilata ad un’interfase sot-
tile e microfessurata, caratterizzata da una distribuzione periodica di fessure circolari non interagenti tra
loro. Attraverso un approccio di omogeneizzazione combinato con una tecnica asintotica, si deducono
le espressioni analitiche delle rigidezze di contatto tangenziali e normale. Si propone, inoltre, una de-
scrizione semplificata delle aree di contatto e di non contatto in funzione della pressione di chiusura,
consistente con i comportamenti limite teorici e con la teoria di contatto Hertziano. Il modello pro-
posto è stato validato con successo attraverso una serie di confronti con risultati teorici e sperimentali
disponibili in letteratura.

Keywords: interfacial contact stiffness; wavy surfaces; roughness; imperfect interfaces.

1. INTRODUCTION

Analytical and numerical modeling of contact problems related to rough surfaces can be surely consid-
ered as an open and challenging research topic, strictly associated to many industrial applications. From
a computational point of view, it is possible to identify a class of modeling problems in which it is neither
possible nor useful to account for a fine and detailed description of the contact regions, although contact
may strongly affects, the overall mechanical response for the problem in object. In these cases, a possible
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strategy is based on modeling contact features by means of equivalent stiffness and dashpot distributions
at the contact nominal interface.
One of the earliest contact model for elastic rough surfaces was proposed by Greenwood and Williamson
[1]. This model implies a Hertzian contact solution [2] for curved elastic nominally-flat surfaces by con-
sidering a population of non-interacting asperities following a given statistical distribution. Starting from
the analytical solution of Westergaard [3], Johnson et al. [4] developed a contact model that concerns the
elastic contact between a two-dimensional wavy surface and a flat plane. They found the expressions of
the contact area in the asymptotic limit cases of early contact and of nearly full contact conditions. Kro-
likowski and Szczepec [5] provided an analytical formulation of the interface stiffness both in normal and
in the tangential directions, that combines the Hertz-Mindlin theory [2], the Greenwood-Williamson con-
tact model [1], and the Johnson model [4,6]. Their statistical approach models the contact between rough
surfaces as the contact between two elastic wavy surfaces, ideally covered with asperities of spherical
shape. Yoshioka and Scholz [7] proposed a contact model for elastic problems via a statistical approach
that allows to account for possible oblique contact among asperities.
Many studies can be found in the specialized literature addressing experimental characterization of the
mechanical behavior of rough surfaces in contact under closure-pressure conditions [8-11], providing
estimates for normal and tangential contact stiffnesses. For instance, Sherif and Kossa [8] employed an
experimental technique based on the evaluation of the local natural frequencies at the contact region.
Gonzalez-Valadez et al. [9] proposed experimental results based on ultrasonic tests. As a matter of
fact, experimental approaches highlight that: stresses are highly concentrated in the contact region and
they are mainly not affected by the shape of the bodies in contact at a suitable distance from the contact
area [4,6]; an hysteresis phenomenon occurs at the interface level (as a result of the plastic deformation
localized at the asperity tips) in the case of cycling loads [9]; null values of the interfacial stiffnesses are
achieved when the closure pressure tends to zero [9].
In this paper a spring-like contact model is proposed. Normal and tangential interfacial stiffnesses per
unit area are consistently derived by coupling a homogenization approach for microcracked media under
the non-interacting approximation (NIA) [12-15], and arguments of asymptotic analysis [16-19]. The
model is detailed in Section 2, and its validation is provided, by comparing numerical results with both
theoretical and experimental findings, in Section 3. Finally, some conclusions are traced in Section 4.

2. CONTACT MODEL

In what follows and as a notation rule (Einstein summation rule is assumed): (a ⊗ b)ij = ai bj is the
dyadic product between vectors; (A ·b)i = Aij bj is the tensor product between a two-rank tensor and a
vector; (A ∗B)ik = Aij Bjk is the standard tensor product between two-rank tensors; A : B = AijBji
is the double contraction between two-rank tensors.

2.1 General framework

Let two continuous bodies, comprising of linearly elastic isotropic materials (Ei, νi with i = 1, 2, be-
ing Young modulus and Poisson ratio, respectively), be in contact via non-conforming rough surfaces.
Moreover, referring to the local tangent plane π at the contact nominal interface, let KC

N and KC
T be the

normal and tangential incremental contact stiffnesses per unit nominal contact area, defined as:

KC
N =

dFN
dw

; KC
T =

dFT
ds

(1)

where w and s are the relative displacements of far points in the normal- and tangential-to-the-contact-
plane directions, respectively, and FN and FT are the normal and tangential forces transmitted through
the unit contact area.
Let a local Cartesian frame related to the orthonormal basis (e1, e2, e3) be introduced, with e3 orthogonal
to π. Moreover, let the contact surfaces be characterized by a periodical distribution of asperities, and let
the randomness aspect of the roughness be regularized by assuming a simply regular periodic wavy-like
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shape of the contacting surfaces in the reference configuration. The two wavy surfaces are assumed to
be geometrically isotropic, with a bi-sinusoidal shape characterized by wavelength λ and amplitude ∆
(with ∆ � λ). As a result, the tangential contact stiffness KC

T is isotropic in the local tangent plane π.
Moreover, any sliding phenomena between the nominal surfaces in contact is assumed to be prevented at
the macroscale, and a frictionless behavior is locally considered at the asperity scale.

Figure 1: Exemplary sketch of the ”regularized” contact/interphase zone with the identification of the
REV (representative elementary volume) herein considered

As it is well established [3,4], when two non-conforming surfaces are in contact under pressure con-
ditions, the no-contact areas can be assumed to behave as almost independent penny-shaped cracks.
Accordingly, it is possible to identify a ε-thick representative elementary volume (REV) at the contact
interface (Fig. 1), and to treat the whole ε-thick contact zone as an imperfect interphase characterized by
a periodical distribution of non-interacting penny-shaped cracks. In the following reference is made to
an isotropic interphase weakened by one family of penny-shaped microcracks only, characterized by a
transversely isotropic crack distribution with symmetry axis e3 and with an average radius b. Moreover,
the undamaged interphase is assumed to behave as a linearly elastic material, and crack faces undergo
frictionless conditions.
The adopted imperfect-interface approach, proposed by authors in former papers [20-22], is employed
to consistently derive effective mechanical properties at the contact zone, in terms of contact stiffness
distributions, by coupling a NIA-based homogenization approach for microcracked media [12-15] and
the matched asymptotic method [17-19,23]. Basic elements of the imperfect-interface procedure are
detailed in the following.

2.2 Imperfect interface approach

2.2.1 Homogenization of the microcracked interphase

Within the framework of the NIA [15], each penny-shaped crack, embedded into a Cauchy-type stress-
field σσσ, does not experience mechanical interactions by surrounding cracks. Let n = e3 be the unit
vector normal to the crack middle surface Γ on π, and let u+ and u− be the displacements at the top
and bottom crack boundaries, respectively. Denote also as ucod = 〈u+ − u−〉 = [

∫
Γ(u+ − u−)dΓ]/|Γ|

the average measure of the displacement jump through the crack, in the following referred to as crack
opening displacement (COD) vector. In agreement with the homogenization technique employed in
[12-14], and considering a plane-stress assumption, ucod can be expressed in terms of the stress vector
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Tn = σσσ · n as [12]:

ucod = β
b

E0
[(n⊗ n) ·Tn] + γ

b

E0
[Tn − (n⊗ n) ·Tn] (2)

where β = 16(1− ν2
0)/3π, γ = 16(1− ν2

0)
(
1− ν0

2

)−1
/3π, and E0 and ν0 are the Young modulus and

the Poisson ratio of the undamaged interphase, respectively. It is worth pointing out that E0 and ν0 can
be obtained in terms of the elastic properties (Ei, νi with i = 1, 2) of the two materials in contact, as the
result of a homogenization of the undamaged ε-thick REV. Thereby, the complementary elastic potential
f(σσσ) of the cracked material can be expressed as [14]:

f = f0(σσσ) + ∆f = f0 +
8(1− ν2

0)

3
(
1− ν0

2

)
E0
ρ
{

(n⊗ n) : (σσσ ∗ σσσ)− ν0

2
[(n⊗ n) : σσσ]2

}
(3)

where

f0 =
1 + ν0

2E0
[(n⊗ n) : (σσσ ∗ σσσ)]− ν0

2E0
[(n⊗ n) : σσσ]2 (4)

is the complementary elastic potential of the undamaged interphase, expressed in terms of the compliance
tensor S0 = S0(E0, ν0), ∆f is a perturbation contribution depending on microstructural crack features,
and ρ is the scalar crack density, expressed in agreement with [24] by (Fig. 1):

ρ =
b3

|REV |
=

2b3

λ2ε
(5)

Due to Eq. (3), the effective compliance tensor S of the microcracked interphase can be derived as:

(S)ijkl = (S0)ijkl + (∆S)ijkl =
∂2f

∂σij∂σkl
(6)

where ∆S is the contribution compliance tensor associated to ∆f . Accordingly, the effective moduli of
the cracked interphase in the normal (N ) and tangential-to-interface (T ) directions are obtained as:

EN = E0

[
1 +

16(1− ν2
0)

3
ρ

]−1

; GNT = G0

[
1 +

8(1− ν0)

3
(
1− ν0

2

)ρ]−1

(7)

2.2.2 Asymptotic expansion method and interface stiffnesses

Let the REV thickness ε (see Fig. 1) be considered as a small parameter. Accordingly, an asymptotic
expansion with respect to ε can be conveniently performed starting from the effective mechanical prop-
erties in Eqs. (7) of the cracked ε-thick interphase. The asymptotic technique herein adopted and briefly
outlined in the following, refers to the so-called matched asymptotic expansion method employed in
[17-19].
In detail, the elastic equilibrium problem for the interphase region and for the bodies in contact can be
formulated in terms of asymptotic expansions with respect to ε of the Cauchy-type stress filed (σσσ), of the
strain field (e), and of the displacement field (u):

σσσε = σσσ0 + εσσσ1 + o(ε)
uε = u0 + εu1 + o(ε)
e(uε) = ε−1e−1 + e0 +O(ε)

(8)

Moreover, reference is herein made to a soft interface assumption [19] within the interphase domain.
Thereby, the material stiffness tensor in the ε-thick interphase region can be expanded as:

Cε = εC + o(ε) (9)
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where C = S−1 is computed in agreement with Eqs. (7). By performing a rescaling process of the equi-
librium problem for the domains under investigation (bodies in contact and interphase) and by adopting
a matching procedure as described by Rizzoni et al. [19], the soft interface law, relating the stress vector
Tn at the nominal contact interface (with n = e3) and the displacement jump [u] at the interface, can be
expressed as:

Tn = diag [KT KT KN ] · [u] (10)

where the tangential (T) and normal (N) stiffnesses result in:

KT =
3E0 λ

2(2− ν0)

64 b3 (1− ν2
0)

; KN =
3E0 λ

2

32 b3
(
1− ν2

0

) (11)

2.3 Effective contact stiffnesses

In agreement with Johnson et al. [4,6], the average radius b of each penny-shaped microcrack is assumed
to be dependent on the closure nominal pressure p̄ (Fig. 1), such that 0 ≤ 2 b ≤ λ√

2
.

In detail, 2 b ≤ λ√
2

when p̄ < p∗ and 2 b → 0+ when p̄ → p∗, where p∗ is the average value of
the nominal pressure which brings the surfaces into complete contact, in the following referred to as
complete contact pressure. According to the Hertzian elastic contact theory it is defined as:

p∗ =
√

2πE′
∆0

λ
(12)

with (E′)−1 =
(1−ν2

1 )
E1

+
(1−ν2

2 )
E2

being the reduced Hertzian modulus and ∆0 being the amplitude of
the bi-sinusoidal shape modeling rough surfaces at the reference configuration. The contact regions are
described by introducing the contact radius a, such that a → 0+ when p̄ → 0+ and a → λ√

2
when

p̄→ p∗. With reference to the sketch in Fig. 2, contact areas are described as circular (i.e., contact point
condition) and no-contact zones are almost square in shape when p̄→ 0+.

Figure 2: Outline of the asymptotic behaviors of contact and no-contact areas

On the contrary, in the near complete closure condition (p̄ → p∗), the contact areas are assumed to be
almost square in shape and the no-contact area as quasi-circular.
Let a0 and b0 (respectively, a1 and b1) be the values of the no-contact and contact radii, respectively,
when p̄ → 0+ (resp., p̄ → p∗). In agreement with asymptotic estimates provided by Johnson et al. [4],
the following relationships are assumed to hold:

a0

(
p̄

p∗

)
=

λ√
2

√(
3

8π

p̄

p∗

)2/3

(13)
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b0

(
p̄

p∗

)
=

√√√√λ2

8

[
1− π

(
3

8π

p̄

p∗

)2/3
]

(14)

a1

(
p̄

p∗

)
=

λ

2
√

2

√
1− 3

2π

(
1− p̄

p∗

)
(15)

b1

(
p̄

p∗

)
=

√
3λ2

4π2

(
1− p̄

p∗

)
(16)

The contact and no-contact radius evolution with p̄ is simply described by the following area-based
weighted averages:

a

(
p̄

p∗

)
=

√√√√√πa2
0

(
1− p̄

p∗

)
+ 4a2

1
p̄
p∗

π
(

1− p̄
p∗

)
+ 4 p̄

p∗

(17)

b

(
p̄

p∗

)
=

√√√√√4b20

(
1− p̄

p∗

)
+ πb21

p̄
p∗

4
(

1− p̄
p∗

)
+ π p̄

p∗

(18)

It is worth pointing out that Eqs. (17) and (18) satisfy the consistency condition:

Ac +Anc = An =
λ2

2
(19)

where Ac = a2
[
π
(

1− p̄
p∗

)
+ 4 p̄

p∗

]
is the contact area and Anc = b2

[
4
(

1− p̄
p∗

)
+ π p̄

p∗

]
is the no-

contact one for a given value p̄ of the nominal closure pressure. Moreover, they recover the asymptotic
relationships previously introduced (Eqs. (13-16)), and in particular the following limits for p̄ → 0+

hold:

a→ a0 → O(

(
p̄

p∗

) 1
3

) ; b→ b0 →
λ

2
√

2
(20)

Following the classical Hertzian theory for the elastic contact case, theoretical estimates of interfacial
contact stiffnesses in normal (N ) and tangential (T ) directions can be expressed as [26]:

Kth
N =

4E′ a

λ2
; Kth

T = Kth
N

2(1− ν0)

(2− ν0)
(21)

It immediately results that, due to the limit conditions in Eqs. (20), stiffnesses expressed by Eqs. (11)
do not recover the physical behavior associated to stiffness null values when p̄ → 0+ and described
by the Hertzian theory (Eqs. (21)). In order to enforce such a physical constraint, the effective contact
stiffnesses are arranged as:

KC
i = Ki

[
1− e−γ

0
i

(
p̄
p∗

)1/3
]

i = N,T (22)

where KN and KT are obtained from the imperfect interface approach (Eqs. (11)). It is worth to remark
that stiffnesses expressed by Eq. (22) straight recover the asymptotic behavior for p̄ → 0+ provided by
the Hertzian estimate (Eqs. (21) and (20)) when model parameters γ0

N and γ0
T assume the theoretical

values:

γ0
N,th = (9π)−1/3 ; γ0

T,th = 2γ0
N,th

2(1− ν0)

(2− ν0)2
(23)
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In particular, for ν0 = 0.3 it results: γ0
N,th = 0.33, γ0

T,th = 0.32.

3. RESULTS AND DISCUSSIONS

The experimental results obtained by Gonzalez-Valadez et al. [9] are herein chosen to validate the pro-
posed model. They provide experimental measures, by means of ultrasonic pulser-receivers, of interfa-
cial contact stiffnesses for steel specimens in contact through rough nominally-flat surfaces under closure
pressure conditions. The specimens were subjected to loading-unloading cycles of compressive pressure
in a hydraulic frame operating in loading control mode. The load is applied in a quasi-static way, up to
the nominal pressure value of 400 MPa. Steel specimens are characterized by the following mechanical
properties: E = 200 GPa and ν = 0.3. Accordingly, the Hertzian reduced modulus value isE′ = 109.89
GPa, and E0 = E and ν0 = ν. Moreover, in agreement with data proposed in [9], contact rough sur-
faces in the reference configuration can be modeled as regularized shapes (see Fig. 1) characterized by
λ = 130 µm and ∆0 = 1.58 µm.
A comparison procedure among numerical results based on the proposed model and experimental data by
Gonzalez-Valadez et al. [9] relevant to the 11-th loading cycle is carried out, deriving (via a least-squares
fitting procedure) the optimal values for parameters γ0

N and γ0
T (Fig. 3).
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Figure 3: Comparison among numerical and experimental [9] results for normal (on the left) and tangen-
tial (on the right) contact stiffnesses vs. closure pressure p̄. Hertz-based theoretical predictions
are also provided

As a result, the best-fitting values are: γ0
N,num = 0.96, γ0

T,num = 0.58. It is worth pointing out that this
numerical estimates for γ0

N and γ0
T are in the same order of magnitude of the corresponding Hertz-based

theoretical ones: γ0
N,th = 0.33, γ0

T,th = 0.32.
Previously-proposed results are obtained by referring to the complete contact pressure p∗ introduced
in Eq. (12). The latter strictly holds in elastic regime. Nevertheless, due to localization mechanisms
associated to tips plastic deformation and fatigue effects, the pressure that brings the surfaces into a
complete contact condition can be retained as a function of the pressure loading history, as well as of
the number of loading cycles. Accordingly, a suitable description of the actual closure pressure can be
introduced as:

p∗h = h p∗ = h
√

2πE′
∆0

λ
(24)

where h ≤ 1 is a history-based correction parameter.
As a really first approximation, in the case of loading cycles characterized by the same maximum value
of the closure pressure, a measure of h can be put in the form h = ∆

∆0
, with ∆ a measure of the actual

amplitude for the wavy surfaces.
With reference to the experimental results by Gonzalez-Valadez et al. [9] the following estimates can be
consistently considered: ∆ = 1.18 (at the 11-th loading cycle) and h = 0.75. By adopting p∗h computed

7



44◦ CONVEGNO NAZIONALE - MESSINA, 2-5 SETTEMBRE 2015

õ

õ

õ

õ

õ

õ

õ

õ

õ

õ

õ

õ

÷

÷
÷
÷

÷

÷

÷

÷

÷

÷
÷

÷

õ

õ
õ
õ
õ

õ
õ

õ
õ

õ
õ

õ

ì

ì
ì
ì
ì

ì

ì

ì

ì
ì

ì ì

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó
ó

÷

÷
÷
÷

÷

÷

÷

÷

÷

÷
÷

÷

ó

ó
ó
ó
ó

ó
ó

ó
ó

ó
ó

ó

ì

ì
ì
ì
ì

ì

ì

ì

ì
ì

ì ì

100 200 300 400
p HMPaL

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KC
HGPa�ΜmL

Figure 4: Numerical and experimental contact stiffnesses vs. normal pressure p̄, computed considering
both the Hertzian-based closure pressure p∗ (the same notation rule in Fig. 3 applies) and the
corrected one p∗h (red curves, - - 5 - - Knum

N and —5— Knum
T )

with the previously-introduced value of h, the numerical predictions of the contact stiffnesses remain in
good agreement with the benchmark experimental results, when best-fitting values of parameters γ0

N and
γ0
T are: γ0

N,num = 0.83 and γ0
T,num = 0.51. Thereby, a history-based correction of the closure pressure

leads to a consistent reduction of the γ0-type parameters towards their theoretical prediction (Fig. 4).
Many studies on contacting rough surfaces [1,2,4,5] revealed that the ratio of tangential to normal stiff-
ness is solely dependent on the Poisson ratio of the contacting materials. Under the assumption that the
two bodies in contact are made by the same material, it results in:

KC
T

KC
N

= Aφ(ν) (25)

where 0.5 ≤ A ≤ 2 is a constant and φ(ν) is a function of the Poisson ratio ν. In the case of the classic
Hertz-Mindlin contact theory [1,2,5], A = 2 and φ(ν) = (1− ν)/(2− ν).
Many approaches are available in literature, providing relationships identical to that in Eq. (25), charac-
terized by the same function φ(ν) as in the Hertz-Mindlin theory but with different values of A. Sherif
and Kossa [8] found A = π/2. Yoshioka and Scholz [7] obtained the approximated estimate A = 0.71.
Moreover, following the contact model by Baltazar et al. [10], coefficientA can be expressed as A = 2ξ

Ψ ,
where ξ and Ψ are correction factors accounting for the geometrical misalignments with respect to the
shear and longitudinal directions, respectively. The resulting values of the tangential to normal stiffness
ratio for the above cited models are plotted in Fig. 5, in comparison with the available experimental data,
[9] and with present numerical results.
It is worth noting that the experimental curves show a significant dependence of the stiffness ratio on the
closure pressure, that is successfully reproduced by the proposed model.

4. CONCLUSIONS

In the present paper a new micromechanical method for obtaining the interfacial stiffnesses of rough
surfaces in contact under closure pressure condition is proposed. To this aim a homogenization technique
for microcracked media [12-15] and an asymptotic expansion method [17,19] are consistently combined
in the framework of an imperfect interface model. Normal and tangential-to-interface contact stiffnesses
have been analytically established. Comparisons among present results with theoretical predictions and
available experimental data highlighted soundness and effectiveness of such an approach. Moreover,
proposed results proved the model to be able in catching the proper dependence of the contact stiffness
ratio on the closure pressure, fully in agreement with the experimental evidence.
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Figure 5: Tangential-to-the-normal stiffness ratio as function of the closure pressure. Comparison among
present results (- - 4 - -, computed with p∗) and both experimental (by [9], ?) and theoretical
prediction: (1) Hertz-Mindlin [2], (2) Sherif and Kossa [8], (3) Baltazar et al. [10], (4) Yosh-
ioka and Scholz [7] . Results relevant to the model by Baltazar et al. [10] have been computed
considering ξ = 0.65 and Ψ = 1
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