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Abstract. Sometimes the analysis of the stress state, crack initiation and some others phenomenon in heterogeneous

media is complicated. In order to facilitate the ulterior study of such problems, we apply the asymptotic homogenization

method (AHM) to a general laminated shell composite and an equivalent homogeneous elastic problem with effective

properties is obtained. The physical and material properties of the bio-composites are studied using the two scale of

AHM. The heterogeneous elastic problem is solved. As examples of the application of the AHM the cornea is considered

as a laminated shell bio-composite. The cornea is composed with three cell layers: the outer epithelial cells, stromal cells

and endothelial cells. Between these layers are extracellular structures called Bowman’s and Descemet’s membranes.

The cornea has a variable thickness. The polar coordinates system is introduced to study the geometry of this media. A

function that describes the variation of the thickness is used to generate the model of the cornea. The effective elastic

tensor is calculated by AHM and FEM considering two models, one where the thickness is constants along the cornea

and other considering thickness variation. These two models by AHM and FEM are compared and the influence of the

variation of the thickness in the effective properties of the cornea is shown. The effective stress is determinate solving the

homogenized problem for constant and variable thickness.

Keywords: Effective elastic properties, Asymptotic Homogenization Method, Bio-composites, Laminated structures, Nu-

merical analysis, Finite Element Methods

1. INTRODUCTION

The cornea possesses a unique combination of mechanical stiffness, strength, and optical transparency that enables it
to serve as both a protective covering and the primary refractive component of the eye. These properties depend on the
composition and orientation of the cornea, and differ from the central cornea to the limbus, (Nguyen and Boyce, 2011).
The stress and the strain are related with the deformation and the geometry of the cornea, hence the importance of the study
of the elastic properties of the cornea (Holmes et al., 2001), (Garcia-Porta et al., 2014), (Voorhies, 2003). Otherwise, the
glaucoma and myopia are the most common problems that the cornea has on these days (Gatinel et al., 2001), (Broman
et al., 2007), (González-Méijope et al., 2008). The transplants and surgery have to be very precise proceeding, then

1



knowledge of the effective properties become an important tool because in a certain kind of eye surgery, the human eyeball
is deformed sustainably by the application of an elastic band. To many author talk about the geometry of the cornea and
its influence on the mechanical properties, (Donohue et al., 1995), (Pinsky et al., 2005), (Sigat et al., 2004). Using the
two scale Asymptotic Homogenization Method and Finite Elements Method, we determinate the effective properties of
the cornea and compare the influence of its geometry on the results.

2. LINEAR ELASTIC PROBLEM IN THE CORNEA

In (Skacel and Bursa, 2014), (Genest, 2010), (Li and Tighe, 2006), (Pandolfi and Holzapfel, 2008), (Cardoso and
Cowin, 2012), the stress-strain relationship in the cornea has an exponential behavior and the analysis of the elastic
properties is made considering a non-linear model. Otherwise, beyond a certain stress, the σ − ǫ relationship becomes
almost linear (Elsheikh et al., 2011).

In order to reduce the analysis of the elastic theory problem in the cornea, a linear constitutive equation for the stress
and the strain is considered, following the models presented in (Asher et al., 2014), (Cabrera-Fernádez et al., 2005),
(Donohue et al., 1995), (Fisher, 1971), (Anderson et al., 2004).

The cornea is considered a solid periodic structure Ω bound by the surfaces Σ1 and Σ2. Fixed a coordinate system
x = (x1, x2, x3), the geometry of the cornea is described by a function ̺̺̺(x). For small deformations, the operator relating
the strain ǫǫǫ and the stress σσσ in the cornea is the Hooke’s law,

σσσ = CCC(x,y) : ǫǫǫ, (1)

where CCC is the elastic tensor, regular in x and periodic in y; here y = ̺̺̺(x)/ε is the fast or local variable and ε is a
very small parameter which characterizes the periodicity. Following the Einstein’s convention of summing over repeated
indices, the elastic problem takes the form

σij‖j + fi = 0 on Ω, (2)

with boundary conditions

uj = u0
j on Σ1, σij · nj = Si on Σ2, (3)

where {·}‖j denotes the covariant derivative with respect to the variable xj , fi are the components of the body forces, uj

are the components of the displacement, nj is the normal vector in Σ2 and the functions u0
i and Si are the values of the

displacement and the stress in Σ1 and Σ2, respectively.
The general expression of the Cauchy’s formula is

ǫmn =
1

2
(um‖n − un‖m). (4)

Taking into account the symmetry of the elastic tensor Cijkl and substituting the equation (4) in equation (1), the
contravariant components of the stress tensor are

σij = Cijkl(uk,l − Γp
klup), (5)

where Γp
kl denotes the Christoffel’s symbols of second kind.

Substituting equation (5) into equation (2), the general expression of the linear elastic problem can be obtained:

(̺k,j
ε

Cijmn
|k + Cijmn

,j + Γi
jkC

kjmn + Γj
jkC

ikmn
)
(um,n − Γr

mnur)

+Cijmn
(
um,nj − Γr

mn,jur − Γr
mnur,j

)
+ f i = 0 on Ω, (6)

with the boundary conditions

ui = u0
i on Σ1

(
Cijmn (um,n − Γr

mnur)
)
nj = Si on Σ2, (7)

where {�}|j = ∂
∂yj

{�} denotes the differentiation with respect to the fast or local curvilinear coordinate.
One of the main difficulties in solving problem (6)-(7) resides in the rapidly oscillating coefficients. In this paper we

reduce it to an equivalent problem with homogenized coefficients, and thus obtain the effective properties of the cornea,
by using the two-scale Asymptotic Homogenization Method (AHM) described next.
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3. ASYMPTOTIC HOMOGENIZATION METHOD

The AHM is used to determine the homogenized problem and the effective properties of the solution of (6)-(7). The
general expression for the two-scale asymptotic expansion is

u(ε)
m = vm + ε

[
Np

(0)mvp +N lk
(1)mvl,k

]
+ o(ε), (8)

where the local functions N lk
m ≡ N lk

m (x,y) and Np

(0)m ≡ Np

(0)m(x,y) are y−periodic, and 〈N〉 = 0, where 〈·〉 is the

average operator, defined by 〈·〉 = 1
VY

∫
Y
(·)√gdy. Here Y is the periodic cell, VY is its volume, and g = det ([gij ])

where [gij ] is the metric tensor.
Substituting the expansion (8) into the heterogeneous problem (6)-(7) we consider the the coefficients for ε−1, which

must vanish:
(
̺q,jC

ijlk + ̺p,nC
ijmnN lk

(1)m|p̺q,j

)
|q
= 0, (9)

(
−̺l,jC

ijmnΓp
mn + ̺l,jC

ijmn̺t,nN
p

(0)m|t

)
|l
= 0. (10)

Solving the differential equation (9), the values of the local functions N lk
(1)m|p can be determined. Equation (10) allows

to calculate Np

(0)m|t as a function of N lk
(1)m|p,

(
̺l,jC

ijmn̺t,nN
p

(0)m|t

)
|l
= −Γp

mn

(
̺q,sC

ijksNmn
(1)k|q̺l,j

)
|l
. (11)

Applying the average operator to the coefficient of ε0 and grouping the coefficients of vk,jl, vk,l and vl, we get

Cijkl
e ≡ ĥijkl =

〈
Cijkl +Cijmn̺p,nN

kl
(1)m|p

〉
, (12)

as well as expressions for the homogenized coefficients,

ĥilk = ĥijlk
,j − Γl

mnĥ
ikmn + Γi

jnĥ
njlk + Γj

jnĥ
inlk, (13)

ĥil = −
(
Γl
mnĥ

ijmn
)
,j
−
(
Γi
jkĥ

kjmn + Γj
jkĥ

ikmn
)
Γl
mn, (14)

ĥijl
∗ = −Γl

mnĥ
ijmn. (15)

Using these expressions we write the homogenized problem, consequence of (6)-(7), but now with slowly oscillating
coefficients:

ĥilvl + ĥiklvl,k + ĥimlnvl,nm + f i = 0 on Ω, (16)

and with boundary conditions

vi = u0
i on Σ1

(
ĥijl
∗ vl + ĥijlkvl,k

)
nj = Si on Σ2. (17)

Now, the effective linear stress has the expression

σij
e = Cijkl

e vk,l + Cijk
e vk, (18)

where Cijkl
e are the effective coefficients (12), vk is the solution of the homogenized problem (16)-(17) and Cijk

e is

Cijk
e =

〈
CijmnNk

(0)m|n − Γk
mnC

ijmn
〉
. (19)

4. COMPOSITION AND GEOMETRY OF THE CORNEA

The cornea is laminate shell composite, with three cell layers: the outer epithelial cells (I), stromal cells (III) and
endothelial cells (V). Between these layers are extracellular structures called Bowman’s (II) and Descemet’s (IV) mem-
branes, (Anderson et al., 2004; Dupps and Wilson, 2006). The layers (I)-(V) of the cornea have central thickness of 14µm,
12µm, 450µm, 10µm and 14µm, respectively. A cross-section of the cornea is shown in Fig. 1.

The spherical coordinate system (r, ϕ, θ) is used to describe the three-dimensional model of the cornea (Cardoso and
Cowin, 2012), shown in Fig. 2a. In order to determine the effective properties of the cornea, we consider it rotationally
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I. Epithelial cells

II. Bowman´s membrane

III. Stromal cells

IV. Descemet´s membrane

V. Endothelial cells

Figure 1: Cross-section through the cornea

invariant around its symmetry axis. In other words, its elastic properties have no variation in the θ-direction. As a
consequence, we can use a two-dimensional model of the cornea, which in turn can be described by means of the polar
coordinate system (r, ϕ).

In our calculations we have used the following values of the cornea parameters: its thickness is approximately T1 =
0.5mm at its apex and T2 = 0.67mm at the limbus, (Pandolfi and Holzapfel, 2008; Ruberti et al., 2011); the length of the
half cross-section of the cornea is D1 = 6mm, with D2 = 2.5mm of height. The inner radio in the center of the cornea
is R1 = 7.56mm, at the limbus the radio is R2 = 7.51mm and the angle between the radios is α = 0.8235 (see Fig. 2b),
(Cabrera-Fernádez et al., 2005).

Figure 2: Geometry of the cornea: a) Three dimensional representation of the cornea given by the function (20). b)
Geometry of the cross section of the cornea

Taking into account the values of the parameters R1, R2, D1, D2, T1, T2 and α, we can use the following function
that describes the geometry of the cornea:

̺(r, ϕ) = r + (m · r + n) (ϕ− π/2)2, (20)

with m = 0.5014, n = −3.8643, r ∈ [7.56, 8.06] and ϕ ∈ [π/2, π/2 + α].

Figure 3: Comparison of the two-dimensional cornea: thickness varying (continuous line) and constant thickness along
the cornea structure (discontinuous line), given by (20) and (21), respectively.

Alternatively, we consider also the constant-thickness model, corresponding to

̺(r, ϕ) = r. (21)

Using the polar coordinates system both two-dimensional models of the cornea can be compared, see Fig. 3. The positions
are given by the equations

x1 = ̺ cos(ϕ), x2 = ̺ sin(ϕ), (22)

where ̺ is as in (20) and (21).

5. EFFECTIVE ELASTIC PROPERTIES OF THE CORNEA

The layers which compose the cornea are isotropic materials; the cornea is oriented un such a way that the fast
variation of its properties corresponds to the y−direction, where y = ̺/ε and ̺ is given either by (20) or (21). In the
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polar coordinate system the metric tensor is gij = diag[1, r2, 1] and the general expression for the isotropic components
of Cijkl is

Cijkl = λgijgkl + µ(gikgjl + gilgjk), (23)

where
[
gij
]
= [gij ]

−1.
Considering the polar metric tensor, the nonzero Christoffel’s symbols are

Γ1
22 = −r Γ2

12 = Γ2
21 =

1

r
. (24)

The elastic properties for the different layers of the cornea (see Fig. 1) are given in Table 1. These values were taken
from (Cabrera-Fernádez et al., 2005). The elastic tensor (23) can be determined using the input parameters of Table 1.

Table 1: Mechanical properties of the cornea.
Layers Young’s Modulus Poisson’s ratio
Epithelial cells (I) 0.622 0.49
Bowman’s membrane (II) 0.275 0.49
Stromal cells (III) 0.279 0.49
Descemet’s membrane (IV) 0.304 0.49
Endothelial cells (V) 0.331 0.49

Considering y = ̺/ε one-dimensional, the local problems (9) and (10) take the following expressions, respectively:

∂

∂y

(
̺,jC

ijlk + ̺,nC
ijmn

∂N lk
(1)m

∂y
̺,j

)
= 0, (25)

∂

∂y

(
−̺,jC

ijmnΓp
mn + ̺,jC

ijmn̺,n
∂Np

(0)m

∂y

)
= 0. (26)

In order to obtain the effective coefficients, the value of the local function ∂N lk
(1)m/∂y is determined by integrating

the local problem (25),

∂N lk
(1)m

∂y
=
(
Ailk − ̺,pC

iplk
) (

̺,nC
ijmn̺,j

)−1
, (27)

where the tensor Ailk ≡ Ailk(x). With account of the periodic condition of the local function N lk
m , the average〈

∂N lk
(1)m/∂y

〉
= 0, and the function Ailk yields

Ailk =
〈
̺,pC

iplk
(
̺,nC

ijmn̺,j
)−1
〉〈(

̺,nC
ijmn̺,j

)−1
〉−1

. (28)

Finally, functions ∂N lk
(1)m/∂y are obtained by using the values of ̺ and Cijkl, given in (20) and (23), respectively, in the

equations (27) and (28).
In this paragraph, the numerical method proposed to solve problems (25), (26) is described. Since the problem is

composed of two coupled PDE’s with singular (discontinuous) rigidity tensor, a P1 (piecewise linear) finite element
method (FEM) is used on a weak formulation of (25), (26).

Due to the properties of the finite element discretization, after the computation of an approximation of the solution
Np

(0)m and N lk
(1)m using the FEM method, the integrals (see formula (12) for example) for the calculus of the effective

coefficients are replaced by sums over each element contribution.
In what follows we use the super-indices tv and t0 in order to denote the computed coefficients corresponding to the

thickness functions (20) and (21), respectively.
In (Anderson et al., 2004), (Asher et al., 2014), (Pandolfi and Holzapfel, 2008), (Lanchares et al., 2008), (Li and

Tighe, 2006) and (Ruberti et al., 2011) the variable thickness along animal or human lens is considered. Otherwise,
(Broman et al., 2007), (Last et al., 2012), (Donohue et al., 1995) and (Huang et al., 2002) a constant average thickness in
the cornea’s structure is analyzed. In this work, we address and compare both cases in order to analyze the influence of
the thickness variation on the effective properties.

We also compare the values of the effective coefficients Cijkl
e obtained by AHM and the finite element method (FEM)

in the both models. The effective coefficients for t0, found by AHM and FEM, are shown in Table 2 for the values
r = 7.56 and ϕ = π/2.
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Table 2: Effective coefficients CCCt0
e calculated by AHM and FEM. Difference between CCCt0

e and CCCtv
e .

Coefficients CCCt0
e (AHM) CCCt0

e (FEM) ‖CCCt0
e −CCCtv

e ‖ (AHM)
C1111

e 4.8812 4.8814 8× 10−4

C1122
e 0.0821 0.0836 8× 10−8

C1133
e 4.6898 4.6936 2× 10−6

C2222
e 0.0015 0.0015 2× 10−9

C2233
e 0.0821 0.0821 4× 10−8

C3333
e 4.8886 4.8888 3× 10−15

C1112
e 0 0 1× 10−8

C2212
e 0 0 3× 10−7

C3312
e 0 0 1× 10−5

C2323
e 0.0017 0.0017 2× 10−8

C1323
e 0 0 6× 10−6

C1313
e 0.0957 0.0957 1× 10−6

C1212
e 0.0017 0.0017 8× 10−8

In the case of the varying thickness (denoted by the superscript tv), the coefficients do depend on r and ϕ (see Tables
3 and 4). Thus, in Table 2 we present also the distance between CCCt0

e and CCCtv
e .

We present also the values of the components C1111
e (Table 3) and C1112

e (Table 4) of the elastic tensor CCCtv
e for the

case of the varying thickness.

Table 3: Components C1111
e of the elastic tensor CCCtv

e for different values of r and ϕ.
ϕ → 1.5708 1.9002 2.3943
r ↓ AHM FEM AHM FEM AHM FEM
7.56 4.88123 4.88133 4.88098 4.88132 4.88083 4.88129
7.76 4.88123 4.88133 4.88132 4.88134 4.88137 4.88133
8.06 4.88123 4.88133 4.88182 4.88127 4.88211 4.88221

Table 4: Components C1112
e of the elastic tensor CCCtv

e for different values of r and ϕ.
ϕ → 1.5708 1.9002 2.3943
r ↓ AHM FEM AHM FEM AHM FEM
7.56 0 0 0.0243× 10−4 0.0272× 10−4 0.0479× 10−4 0.0535× 10−4

7.76 0 0 −0.0088× 10−4 −0.0098× 10−4 −0.0172× 10−4 −0.0193× 10−4

8.06 0 0 −0.0584× 10−4 −0.0653× 10−4 −0.1148× 10−4 −0.1285× 10−4

We can appreciate a very good coincidence between the effective properties calculated by AHM and FEM. It should
be taken into account that in the present situation even a small difference in the effective coefficients (for varying and
constant thicknesses), as in the third column of Table 2, renders important difference in the anisotropy of the material.
Namely, for the constant thickness with isotropic layers the homogenized media exhibits transversely isotropic behavior,
but in the case with varying thickness the material has a monoclinic symmetry.

A important comparison between the calculation of the effective coefficients, obtained by AHM and FEM, is the time
of the computational operations. The values of Table 2 have been reproduce using AHM in a average time of 0.051
seconds, however, the average time reported by FEM was 1.6 seconds.

6. SOLVING THE HOMOGENIZED PROBLEM OF THE CORNEA

An external uniform force is applied on a two-dimensional cornea, simulating the intra-ocular pressure (IOP). This
force f occurs in the r-direction and has contravariant components (cosϕ, 0, 0) with respect to the basis of the tangent vec-
tors gi. This force crates an internal displacement u|Σ1

= (0, 0, 0) and the traction S|Σ2
that has the same contravariants

components of the force f .
The influence of the thickness variation in the stress tensor is analyzed. We consider a particular case of the elastic

problem. The variation of the properties is in the x1 direction and the only non zero displacement is u1. Under these
assumptions, the homogenized problem (16)-(17) is

ĥ11v1 + ĥ111v1,1 + ĥ1111v1,11 + cosϕ = 0 on r ∈ (7.56, 8.06), (29)
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with the boundary conditions

v1 = 0 on r = 7.56
(
ĥ111
∗ v1 + ĥ1111v1,1

)
n1 = cosϕ on r = 8.06. (30)

for ϕ ∈ [π/2, π/2 + α].
The resulting coefficients ĥ1111 appear in Table 2; the corresponding coefficients ĥ111, ĥ11 and ĥ111

∗ are determined
using equations (13)-(15).

The problem (29)-(30) is solved at different points of the cornea. The effective stress is calculated using the equations
(18) and (19) for the angles ϕ = π/2 (corneal apex) ϕ = 1.9002 (a point between the apex and the limbus) and ϕ =
π/2 + α (limbus of the cornea).

7.55 7.65 7.75 7.85 7.95 8.05
0.5

0.7

0.9

1.1

1.3

r

s
1
1

e

j=������ �CONSTANT THICKNESS�

j=�����	 �CONSTANT THICKNESS�

j=	�	��� �CONSTANT THICKNESS�

j=������ �VARIA BLE THICKNE SS�

j=����
� �VARIA BLE THICKNE SS�

j=	�	��� �VARIA BLE THICKNE SS�

Figure 4: Comparison of the behavior of the effective stress σ11
e at different points of the cornea with constant and variable

thickness along the structure.

The component σ11
e of the effective stress is varying along the cornea and has a non-linear behavior. At the center of

the cornea (ϕ = 1.5708) the component σ11
e for variable (⋄) and constant thickness(−) coincide. However, the effective

stress has different behavior for other values of ϕ, effect being more apparent at the limbus, (ϕ = 2.2778). Notice that the
highest stress is located at the center of the cornea and the lowest one corresponds to the limbus.

7. CONSLUSIONS

The AHM is a powerful tool to determine the effective properties of the cornea quickly and with high precision. The
methodology bring the possibility to aboard problems like the analysis of the bio-mechanics properties of the cornea after
an instra-stromal ring segments implantation (Martínez-Finkelshtein et al., 2009), (Martínez-Finkelshtein et al., 2011), or
the study of the variation of the corneal thickness in a healthy eye as function of the anterior face of the cornea and inner
ocular pressure (IOP).

The difference of the length along the cornea is studied and its influence in the mechanical behavior of the cornea as a
laminated shell bio-composite. The analytic expressions of the effective coefficients are very important result of this work.
The numerical values are compared with the effective coefficients obtain by FEM, very good coincidence is reported and
significant difference between the time of the computational operations.
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