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In this paper an a
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ratio, error level, C
global h-adaptive
multilevel mesh refinement method, coupled with the Zienkiewicz and Zhu a
, is applied to solid mechanics with the objective of conduct reliable nonlinear
putational times and memory space. Our automatic approach is first verified on
nd 3D simulations. Then a nonlinear material behaviour is studied. Advantages
l defect correction method in solid mechanics problems in terms of refinement

e and memory space are discussed. This kind of resolution is also compared to a
ion.
1. Introduction

Adaptive refinement methods (e.g. [1–5]) are devoted to solve
problems with various characteristics length-scale in acceptable
computational times and memory space. The aim of this paper is
to deal with problems having local discontinuities. Among the
refinement methods available, those inducing small elements
(h-refinement method [1,6] for example) are more efficient to
simulate local discontinuities than those increasing the order of
the polynomial basis (p-refinement method [2,7] for example).
Moreover the pollution error [8,9] (i.e. the residual error due to
the non-refined part of the problem) depends on the mesh size
and may be controlled by refining the element size but not by
modifying the order of the polynomial basis. That is the reason
why we decided to use adaptive mesh refinement (AMR) tech-
niques. One of the constraints of the study was to use an existing
industrial solver, that means to change only pre-processing and
post-processing operations. Thus, we chose to use local multi-grid
methods [4] consisting in generating local sub-grids with finer and
finer discretisation step. Furthermore, it induces simple meshes
(uniform, structured and regular). As we study elliptic problems
discretised by the finite element (FE) method, it is interesting to
use structured regular meshes for the reason that it produces
well-defined problems. The local defect correction (LDC) [10,4]
method was retained because it is not specific to flux conservative
problems.

The refinement process is piloted thanks to the well-known
Zienkiewicz and Zhu (ZZ) a posteriori error estimator [11] founded
on stress smoothing.

This paper is based upon Barbié et al. [12] but the current
version includes results obtained from additional research on the
efficiency of the coupled LDC-ZZ method for linear behaviour
(see also [13]), a further study on three-dimensional test case
where different initial meshes are compared and an extended work
concerning the nonlinear test case, particularly with the use of
refinement ratio greater than 2.
2. Adaptive mesh refinement approach

2.1. Local defect correction method

The local defect correction (LDC) method was introduced by
Hackbusch [10]. Its convergence was also proved by Hackbusch
[14]. It is based on the multi-grid process [15]. A global coarse grid
is used on the whole domain, and only local fine sub-grids are set
on areas where more precision is required. An example of nested
grids is shown on Fig. 1. The local fine grid lies on a zone of interest
defined on the coarse grid. Such type of local sub-grid can be
defined recursively until reaching the desired accuracy.



Fine grid Gl∗
Prolongation and restriction operators are defined to link sev-
eral levels of computation. Coarse and fine problems are then
sequentially computed until the solution converges on the coarser
grid. Such an iterative process is traditionally represented by a
^-cycle, as on Fig. 2.
Smoothing or exact solving

Converged solution

Initialisation

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Fig. 2. Representation of LDC process: ^-cycles.

Projection of coarse
problem solution

boundary conditions
Continuous problem

Fig. 3. Prolongation step: boundary conditions on Gl (l – 0).
2.1.1. Problem definition
Let us consider the problem ðPÞ defined on an open domain X of

boundary C :

ðPÞ :
LðuÞ ¼ f in X

B:C: on C

�
ð1Þ

with:

L : usually nonlinear operator
u : solution
f : right-hand member
B:C: : boundary conditions

8>>><
>>>:
A set of nested domains Xl;0 6 l 6 l�, with X0 ¼ X and l� the num-
ber of levels, is then defined. Each domain is discretised by a grid Gl

of boundary Cl. The space step hl of the mesh Gl is defined by
hl ¼ hl�1=r ¼ h0=rl with r the refinement ratio. The local discrete
problem on each grid Gl at iteration k writes:

ðPk
l Þ :

Llðuk
l Þ ¼ f k

l in Gl

appropriate B:C: on Cl

(
ð2Þ

where Ll is the discrete operator associated to LjXl
on Gl and

f 0
l ¼ f jGl

.
The boundary conditions will be specified during the prolonga-

tion step while the right-hand member f k
l will be defined during

the restriction step.
2.1.2. Prolongation step: boundary conditions
As recommended by [13], at the prolongation step the problem

(Pk
l ) is solved with f k

l ¼ f k�1
l .

On the coarsest grid G0, the boundary conditions of the whole
problem are applied.

The boundary conditions on the other grids Gl;1 6 l 6 l� are
represented on Fig. 3:
Coarse grid

Zone of interest

Fine grid

Fig. 1. Example of nested meshes used in LDC method.
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� If Cl \ C – £, the boundary conditions of the original problem
(P) are used.
� On the other part of the boundary, Dirichlet boundary condi-

tions are applied. A projection operator Pl
l�1 applied on the next

coarser solution uk
l�1 enables us to obtain the Dirichlet values.

2.1.3. Restriction step: defect correction
At the restriction step, the boundary conditions defined on the

prolongation step are kept to solve the problem ðPk
l Þ. For each grid

level l;0 6 l 6 l� � 1, the restriction step consists in correcting the
right-hand side of the problem ðPk

l Þ via a defect calculated from
the next finer solution uk

lþ1.
Two sets of nodes of Gl have to be defined, see Fig. 4. Al contains

the nodes of the grid Gl strictly included on the domain discretised
by Glþ1. Ål is made up of the interior nodes of Al (in the sense of the
discretisation scheme).

First, the solution of the problem (Pk
lþ1) is restricted to the nodes

of Al :

~uk
l ðxÞ ¼ ðR

l
lþ1uk

lþ1ÞðxÞ 8x 2 Al ð3Þ
Fig. 4. Restriction zone Al on the left and correction zone A�l on the right (e.g. for
operator D).



where Rl
lþ1 is a restriction operator on the solution from the grid

Glþ1 to the grid Gl.
The local defect associated to this restriction is then computed

on the nodes of A�l. As the fine problem may be only smoothed, the
defect r̂k

lþ1 of the fine problem also impacts the correction term:

rk
l ðuÞðxÞ ¼ Llð~uk

l Þ � f 0
l

� �
ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coarse defect associated to fine solution

� R̂l
lþ1 r̂k

lþ1

� �
ðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

projection of fine defect

8x 2 A�l ð4Þ

with:

r̂k
lþ1 ¼ Llþ1 uk

lþ1

� �
� f k

lþ1 ð5Þ

and R̂l
lþ1 (–Rl

lþ1) a restriction operator from the fine grid Glþ1 to the
coarse grid Gl dedicated to source term interpolation. This correc-
tion term is similar to the one used in the standard multi-grid Full

Approximation Scheme [15], and the condition R̂l
lþ1 ¼ Plþ1

l

� �T
has to

be respected in order to obtain the convergence.
Remark: If the problem can be easily solved exactly or quasi-

exactly on each grid (elastic linear behaviour for example), the fine
defect r̂k

lþ1 becomes then negligible [4].
Then the coarse solution uk

l is obtained by solving the coarse
problem (Pk

l ) with the modified right-hand member:

f k
l ¼ f 0

l þ vA�l
rk

l ðuÞ ð6Þ

where vA�l
is the characteristic function of

A�l : vA�l
ðxÞ ¼ 1 if x 2 A�l

0 elsewhere

�
.

As the correction term only applies on A�l, this formulation can
not be simplified into a correction equation even for linear
problems.

Prolongation and restriction operators are usually interpolation
operators, for which the degree of interpolation has to be in agree-
ment with the expected order of the discretisation method [16].

2.2. Zienkiewicz and Zhu a posteriori error estimator

In order to detect automatically the zone of interest which will
defined the local sub-grids, an a posteriori error estimator is used.
This kind of estimator is devoted to estimate a measurement of the
discretisation error. The Zienkiewicz and Zhu (ZZ) [11,17,18] a pos-
teriori error estimator was selected because it is not time consum-
ing and it is easy to plug in a black-box context, compared to the
other existing error estimators (e.g. [19,20]).

The ZZ a posteriori error estimator consists in constructing a
stress solution r� more regular than the FE one rh. The local esti-
mator gE on an element E is defined as:

gE ¼ kr�h � rhkL2ðEÞ ð7Þ

The element value is obtained from nodes values. For more details,
the reader is referred to [11,17,18].
Fig. 5. Illustration of the hourglass shape phenomenon: before (left) and after
(right) irradiation.
3. Test case

3.1. Physical considerations

The pellet–cladding interaction (PCI) [21] appears during irradi-
ation in pressurised water reactors, which are the essential of
french nuclear reactors. The fuel is formed of cylindrical pellets
of 8.2 mm diameter, composed of uranium dioxide (UO2), piled
up in a zircaloy cladding. Two phenomena lead to PCI:
3

� The fuel pellet cracks and swells as soon as the irradiation
begins (see on Fig. 7 left). The external pressure imposed by
the water induces the cladding creeping, which results in a dis-
continuous contact between the pellet and the cladding.
� Another phenomenon, illustrated by Fig. 5 adds discontinuities.

As the fuel pellet has a finite axial size, the temperature gradi-
ent leads to a hourglass shape deformation of the pellet. Thus,
the contact between the fuel and the pellet appears first in front
of the inter-pellet plane. The hourglass shape phenomenon
results in a concentration of stresses around the inter-pellet
plane.

The PCI can produce the cladding failure. As the cladding is the
first confinement barrier of the irradiated fuel, modelling precisely
the PCI is of great importance. Research and development on this
subject are then still undertaken worldwide. From a numerical
point of view, complete 3D simulations are currently limited
because of the required unstructured and irregular meshes, induc-
ing ill-conditioned systems with an important number of degrees
of freedom. The LDC method seems then well suited for this kind
of application.
3.2. Numerical and algorithmic considerations

In all this study, a simplified PCI model is used. We are only
interested in obtaining precise simulations of the cladding
response to the pellet modifications. The elastic part of the clad-
ding behaviour is ruled by the Young’s modulus E ¼ 100 GPa and
the Poisson’s ratio m ¼ 0:3. The effect of the pellet is represented
a discontinuous pressure on the internal radius of the cladding.

The finite element solver used for this study is CAST3M [22], the
mechanical software developed by the CEA (French Atomic Energy
and Alternative Energies Commission). Quadrangular bilinear Q1

finite elements are used for modelling reasons [23]. In order to
be more realistic compared to industrial simulations where the
pellet position is a priori unknown, the meshes used are non-fitted
to pressure discontinuities. The location of the pressure disconti-
nuity will be approximated by the mesh: the distance dh on a mesh
of size step h represents the distance between the real location and
the mesh approximated location of the pressure jump. Hence, two
meshes with different mesh steps h and h0 may have dh ¼ dh0 as for
the example presented on Fig. 6.

Concerning the LDC algorithm, we have chosen to work on
hierarchical meshes between each level of refinement in order to
simplify the restriction and prolongation steps. As the mechanical



Pressure discontinuity

h

dh

Pressure discontinuity

h/
2

dh/2

Fig. 6. Definition of the distance dh to the pressure jump defined by the mesh of size
h. In this example dh ¼ dh=2.
problem is formulated in terms of displacement, the solution u of
problem (1) represents here the displacement vector.

Each local problems is solved exactly (limited number of
degrees of freedom). Hence, the prolongation and restriction oper-
ators only concern the displacements: no conservation principle
has to be respected. A bilinear interpolation based on the polyno-
mial finite element basis functions is used for the prolongation
operator Pl

l�1 while a canonical injection is used for the restriction
operator Rl

lþ1. These operators are in good agreement with the
expected first-order accuracy of the method, see [24].

As, to the best of our knowledge, the LDC method has never
been applied to solid mechanics (except in [13]), part 4 is devoted
to verify the efficiency and the convergence of the method for a
linear elastic behaviour of the cladding. These results are
complementary in more practical sense than those described in
[13]. Two-dimensional and three-dimensional test cases will be
under study. Then, the LDC method will be extended to nonlinear
behaviour in Section 5.
4. Verification study

In this paper, we focus on the effects on the cladding of the pel-
let cracking phenomenon and of the complete three-dimensional
pellet modifications (cracking and hourglass shape phenomenons).
For more details about the own effects on the cladding of the pellet
hourglass configuration, the reader is referred to [12,13].

In all this section, the behaviour of the cladding is supposed to
be linear elastic. No volume force is applied.
Constant internal
pressure (80MPa)

Sy

Free pressure (0MP

Rint = 4.1 m

Fig. 7. Problem definition – 2D
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4.1. Bi-dimensional analysis

4.1.1. Problem definition
This model is under the plane strain hypothesis in the 2Dðr; hÞ

plane. As the geometry of the cladding is curved in this plane
(see Fig. 7), the meshes used are regular structured but only
‘‘quasi’’ uniform. The goal is to verify the LDC method on a non aca-
demic case, particularly when the geometry has to be approxi-
mated. Indeed, one of the main drawbacks of hierarchical meshes
is that the curvature approximation will not be improved during
the sub-grids generation.

The boundary conditions with the cracked pellet is represented
by a pressure discontinuity on the internal radius of the cladding,
in front of the crack opening. As the pellet is assumed to crack in
a regular way, see [25], only 1/16 of the cladding is represented
(0 6 h 6 p=8). On Fig. 7, the geometry of the problem and the
boundary conditions are available. These boundary conditions
can be summarized as follows with u the displacement vector, r
the Cauchy stress tensor, n the outward normal unit vector,
Rint ¼ 4:1 mm, e ¼ 0:6 mm, Rext ¼ Rint þ e ¼ 4:7 mm, f ¼ 8 lm and
hf ¼ arctanð f

Rint
Þ:

� Symmetry conditions due to the partial representation of
the cladding:
u � n ¼ 0 on h ¼ 0 and h ¼ p=8; 8r

� Internal discontinuous pressure representing the contact
with the cracked pellet:
r n ¼ 0 Pa on r ¼ Rint and 0 6 h 6 hf

r n ¼ �80 � 106 Pa on r ¼ Rint and hf < h 6 p=8

� External pressure imposed by the coolant:
r n ¼ �15:5 � 106 Pa on r ¼ Rext 8h; 0 6 h 6 p=8

4.1.2. Mesh convergence study
On Fig. 8, an example of nested meshes used for our simulations

can be seen. At each level, the current mesh is in black and the zone
of interest is in green. This refinement zone is obtained selecting
the elements L � Gl that respect:

gL > a max
K�Gl

gK �min
K�Gl

gK

� 	
ð8Þ

where gL is the local ZZ error in stress defined in (7). Thanks to the
sensibility study made by Barbié et al. [13], we set a ¼ 0:25. In order
e = 0.6 mm

mmetry condition

a) 8 μm
Symmetry condition

Constant external
pressure (15.5MPa)

m

ðr; hÞ plane strain model.



dh0

Fig. 8. Example of nested structured meshes generated automatically thanks to the ZZ a posteriori error estimator – a ¼ 0:25 – refinement ratio r ¼ 2 – 2Dðr; hÞ plane strain
model.

dhi
dhi/2

dhi/4
dhi/8

dhi/16dhi/32dhi/64
Distance dh0

on the coarse mesh

1e-04

1e-03

1e-02

1e-01
|| e

h || L
∞
, c

om
p

l* = 0
l* = 1
l* = 2
l* = 3
l* = 4

LDC method applied to 2D plane strain model
ZZ with criterion  α = 0.25

Fig. 10. L1 error on the composite grid according to the distance to the
discontinuity on the coarsest mesh – 2D plane strain model.
to obtain nested structured meshes, some elements have to be
added to the selected ones. Indeed, working with structured regular
grids allows to avoid numerical artifacts due to reflex corners and to
increase the speed up of the solver. We can notice here that refine-
ment zones are very localised. Moreover, if the refinement zones are
compared to a crack observed experimentally in a cladding after
irradiation (see Fig. 9), we can observe that these zones are in good
coherence with the stress concentration area in the cladding. This
gives confidence in a further analysis of failure initiation.

In this case, to verify our approach, we aim to compute errors on
the obtained LDC solutions in displacement. We could use the ana-
lytical solution developed by Roberts [26]. However, this solution
is written with a Fourier decomposition, and we cannot perform
the required number of terms to obtain an enough precise solution.
So, we consider as reference solution the Q 1 FE solution obtained
on a fine mesh of cell size 1 lm in each direction (’2 millions of
degrees of freedom (DoF)), adapted to the size of the pressure dis-
continuity (8 lm).

In [13], it had been shown that for this kind of discretisation
scheme, the L2 and L1 norms are equivalent. In the sequel, we only
present results in L1 norm which is meaning from an engineering
viewpoint because it guarantees a maximal local error. The relative
maximal error between this reference displacement and the com-
posite LDC displacement, noted kehkL1 ;comp, is plotted on Fig. 10
according to the distance dh0 of the coarse mesh to be refined
(see Section 3.2 and Figs. 6 or 8) and for a refinement ratio r ¼ 2.
In the sequel, hi will denote a mesh step of 218 lm. From each of
the five initial coarse meshes (lI ¼ 0), one to four local sub-grids
have been generated.

The first conclusion to be drawn is that the method converges at
the first-order with respect to the coarse mesh distance dh0 to the
discontinuity. The loss of one order of convergence compared to
the standard Q 1 FE resolution was expected since the location of
the pressure jump is approximated by the mesh, as mentioned
by Ramière [24].
Fig. 9. Example of crack observed on a cladding after irradiation.
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The second conclusion is that the LDC method conserves the
order of convergence with respect to the local finest distance to
the discontinuity. Indeed the same error level is obtained with a
local refinement as with a global one with a discretisation step
equal to the local finest one, as observed in [27]. Thus, the LDC
method converges as Oðdhfine

Þ, where dhfine
corresponds to the dis-

tance to the discontinuity on the local finest mesh. This conclusion
remains true even for an important number of sub-grids or an
important decrease of the error.

The observed stagnation is due to the fact that the error is con-
trolled by the local distance to the discontinuity. Then, even if the
local mesh step is divided, if the distance to the discontinuity
remains unchanged, the error will not decrease.

Finally, even for small relative error (<1 � 10�3), the error due to
the coarse approximation of the geometry remains negligible
compared to the error due to jump position approximation. That
confirms the choice of using hierarchical meshes.

4.1.3. Interest of sub-grids
To optimise the ratio precision obtained over CPU time, the

Fig. 11 represents the composite L1 error with respect to CPU time
and to the number of sub-grids.



Table 1
Total and additional (+) number of nodes – 2D(r,h) test case.

Number of nodes according to the meshes
h0 l�

0 1 2 3 4

hi 66 297 418 539 660
(+231) (+121) (+121) (+121)

hi=2 231 352 473 594 715
(+121) (+121) (+121) (+121)

hi=4 861 982 1103 1224 1345
(+121) (+121) (+121) (+121)

hi=8 3321 3442 3563 3684 3871
(+121) (+121) (+121) (+187)

hi=16 13,041 13,162 13,283 13,470 13,679
(+121) (+121) (+187) (+209)

hi=32 51,681 51,802 51,989 52,198 52,385
(+121) (+187) (+209) (+187)
From this figure, we can conclude that the more the expected
precision is restrictive, the more the use of an initial coarse mesh
with many sub-grids is advantageous.

As the memory space is also an important constraint in the sim-
ulation process, we then study the number of nodes required by
each LDC simulation. The Table 1 represents the total number of
nodes (sum of all the grids) and the additional nodes for each
new sub-grid.

This table confirms that the same behaviour is obtained for the
memory space than for the time consuming. For example, to get
the same precision than with a quasi uniform mesh of size hi=16,
we need 22 times less nodes using an initial mesh of size hi=2
and 3 sub-grids, or 12 times less with an initial mesh of size hi=4
and l� ¼ 2 or 4 times less with an initial mesh of size hi=8 and
l� ¼ 1. We also gain 80% of the maximal number of nodes per grid
using an initial mesh of size hi=2 and 3 sub-grids instead of a quasi
uniform mesh of size hi=16. We can notice that the first row of the
table has a slightly different behaviour. The coarsest initial mesh
(h0 ¼ hi) is so rough that it needs first to be totally refined, which
induces more nodes than with an initial mesh of size hi=2, what-
ever the number of sub-grids.

Moreover, we can verify that the sub-grids are very localised
(100 to 200 nodes for most of these sub-grids). It confirms that
to accurately simulate in a cheapest way problems with local dis-
continuities, a progressive mesh refinement is really efficient.
4.1.4. Comparison with a global h-adaptive refinement technique
According to the previous conclusions made on Fig. 11 and

Table 1, it seems more attractive to use a coarse initial mesh and
a lot of sub-grids. Moreover, the use of refinement ratio greater
than 2 could be attractive in the sense that it could allow us to
obtain the same error level with less sub-grids [13]. In [12,13], it
had been shown that for a refinement ratio of 4, the mesh conver-
gence remains in Oðdhfine

Þ. That is why we decide to compare our
LDC method applied on an initial mesh of size hi=2, with 1 to 7
sub-grids of refinement ratio 2 to 1 to 4 sub-grids of refinement
ratio 4. These two approaches are put to the test of a comparison
with a global h-refinement method. This method [28] consists in
building a unique locally refined conforming mesh on which the
simulations are performed. For all approaches, the refined meshes
are obtained thanks to the ZZ a posteriori error estimator, see
Fig. 12 for example. The relative errors versus CPU time are
reported on Fig. 13. All methods are based on a standard Q 1 finite
element solver.
1e-02 1e-01 1 1e+02

CPU time (s)

1e-04

1e-03

1e-02

1e-01

|| e
h || L

∞ , c
om

p

l* = 0
l* = 1
l* = 2
l* = 3
l* = 4

LDC method applied to 2D plane strain model
ZZ with criterion  α = 0.25

Fig. 11. L1 error on the composite grid according to CPU time – 2D plane strain
model.
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For rough relative errors (about 1 � 10�2) and then small CPU
times (about 5 � 10�2 s) LDC performances for ratios 2 and 4 are
comparable to h-refinement strategy ones, even if it seems already
attractive in terms of number of nodes. The stagnation observed
around a relative error of 3 � 10�3 is due again to the fact that divid-
ing the local mesh size does not decrease the local distance to the
discontinuity. For this special situation, we can then obtain the
same error with different number of nodes and different CPU
times.

For relative errors less than 3 � 10�3, the LDC solver becomes
attractive, especially with a refinement ratio of 2. For an error
about 3 � 10�4, the CPU time is for example respectively 20 and
13 times smaller for the LDC method with refinement ratios of 2
and 4 than for the global h-adaptive method.

From a memory space saving point of view, the LDC method is
also very attractive. Indeed, even if extra informations are stored
(boundary conditions on the levels, factorization of rigidity matri-
ces, right-hand members,. . .), each local grid is much smaller than
an equivalent global refined grid. In particular the total number of
nodes of all the sub-grids is far smaller than the number of nodes
of the locally adapted grid (we save between 50% and 92% of total
number of nodes by using LDC with a refinement ratio of 2, and up
to 90% with a refinement of ratio 4).

For small errors, the use of a refinement ratio of 4 instead of 2 is
not so attractive. Nevertheless, this conclusion is strongly related
to the size of the zone of interest. Indeed, the use of a larger ratio
allows to limit the number of sub-grids, but may imply more
extended grids and thus more nodes than necessary in some zones
for very localised discontinuities (see Fig. 12). For example in our
case, there are between 20% and 35% less elements for the same
error if a refinement ratio of 2 is used instead of 4. For a linear
behaviour, the gain in the number of sub-grids is not advantageous
in terms of time consuming since only the first prolongation step is
costly (linear behaviour exactly solved). These results remain true
as long as no local resolution of the behaviour law is required (see
Section 5).

To conclude, the LDC solver seems very attractive. Indeed, for a
given error we obtain smaller CPU time and much less elements
than using a locally refined mesh.

4.2. Three-dimensional phenomena

4.2.1. Problem definition
This model gathers both two-dimensional phenomena on a

three-dimensional geometry. For symmetry reasons, only 1/32 of
the cladding in front of a pellet is represented (Rint 6 r 6 Rext;0
6 h 6 p=8, 0 6 z 6 L=2), see Fig. 14. Boundary conditions are those
of the 2Dðr; hÞ problem (see Section 4.1.1 and the associated



Fig. 12. Examples of meshes used in the comparison study: global h-adaptive mesh (left), nested LDC meshes with h0 ¼ hi=2; l� ¼ 3 and r ¼ 2 (middle) and nested LDC mesh
with h0 ¼ hi=2; l� ¼ 2 and r ¼ 4 (right).
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h-refinement - hmax = hi/2 - hmin = hi/4 to hi/128

LDC mesh - h0 = hi/2 - l* = 1 to 7 - r = 2

LDC mesh - h0 = hi/2 - l* = 1 to 4 - r = 4

LDC method applied to 2D plane strain model
Comparison with h-refinement - ZZ criterion with α = 0.25

672 nodes
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2304 nodes
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Fig. 13. L1comp error according to CPU time and mesh size – 2D plane strain model –
Comparison between LDC solver and global h-adaptive method.

Symmetry conditionse =

Constant
external pressure

Discontinuous
internal pressure

Uniform normal displacement

y

z

L/2 = 6.75mm
notations) completed by those in the axial direction with
L ¼ 13:5 mm and Lh ¼ 0:6 mm:

� Symmetry conditions due to the partial representation of
the cladding:
0.6mm
x

r
θ
u � n ¼ 0 on the surfaces h ¼ 0; h ¼ p=8 and z ¼ 0

� Uniform normal displacement on the upper surface:

Fig. 14. 3D geometry and problem definition.
u � n ¼ constant on z ¼ L=2; 8h and 8r

� Internal discontinuous pressure representing the contact
with the cracked pellet:
On r ¼ Rint :
r n ¼ 0 Pa on 0 6 h 6 hf ; 8z

r n ¼ �150 � 106 Pa on hf < h 6 p=8 and z 6 Lh

r n ¼ �80 � 106 Pa on hf < h 6 p=8 and z > Lh

� External pressure imposed by the coolant:
r n ¼ �15:5 � 106 Pa on r ¼ Rext; 8h; 8z
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The goals are multiple: verify the LDC method performances
and verify automatic detection and treatment of several disconti-
nuities of different characteristic length-scale.

We have to notice that, due to the size of the problem under
study, we cannot obtain an accurate reference solution with a
quasi uniform mesh any more. The reference solution is hence
obtained with a mesh of space-step varying from 2 to 50 lm (’2
millions of DoF).



d
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d
hi/2

d
hi/4

Distance dh0on the coarse mesh

1e-03

1e-02

1e-01

|| e
h || L

∞
, c

om
p

l* = 0
l* = 1
l* = 2
l* = 3
l* = 4

LDC method applied to 3D model
Regular mesh - ZZ with criterion  α = 0.25

Fig. 16. Composite maximal error norm according to the distance to the triple point
– a ¼ 0:25 – Regular structured meshes – 3D model.
4.2.2. Mesh convergence study
We use the same methodology as in section 4.1 and [13] to

obtain nested meshes. The refinement parameter a is still set to
0.25. The coarsest mesh step hi is equal here to 629 lm. In this case
dh represents the distance between the approximated location on
the mesh of step h and the real location of the so-called ‘‘triple
point’’, which is defined by the intersection of the two pressure dis-
continuities curves. In view of the conclusions of the linear elastic
two-dimensional study, we choose to only use a refinement ratio of
2 for all the linear elastic three-dimensional study.

The meshes obtained thanks to the a posteriori automatic
detection are very localised around the two discontinuities, as it
can be seen on Fig. 15.

The maximal composite error norm is plotted on Fig. 16 accord-
ing the distance dh0 of the coarse mesh to be refined.

The expected first-order convergence is reached. Moreover, the
error improvement due to the refinement strategy remains true in
a three-dimensional context, as the method still converges as
Oðdhfine

Þ. This result verifies the use of the LDC method coupled with
ZZ a posteriori error estimator to treat three-dimensional problems
with crossed discontinuities.

4.2.3. Interest of regular meshes
In an engineering context and according to the stretch of the

structure, it seems attractive to use stretched meshes in the axial
direction. For example the initial mesh on Fig. 17 is two times
longer in the height than the previous one. If we set a ¼ 0:25, the
ZZ a posteriori error estimator does not detect entirely the two dis-
continuities (see meshes on Fig. 17).

The mesh convergence results obtained with these meshes are
far from the expected ones, as it can be seen on Fig. 18 which
represents the maximal composite error norm according to the
distance dh0 to the intersection point on the coarse mesh.

The Oðdhfine
Þ convergence is no more reached especially for very

coarse initial meshes. Moreover, the use of additional sub-grids
(l� > 1) does not decrease the obtained error. In this case, the
Fig. 15. Example of nested meshes obtained with regular meshes and a ¼ 0:25 – 3D
model.

Fig. 17. Example of nested meshes obtained with stretched meshes and a ¼ 0:25 –
3D model.
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non-regularity of the mesh around the main discontinuity hides
the lower order discontinuity (in the plane (r,h)) from the ZZ a pos-
teriori error estimator point of view.

A sensibility study shown that the refinement criterion a has to
be set to 0.15 to select accurately the two discontinuities. The
stretch of the mesh induces a wide detected refinement zone
around the hourglass pressure jump (see Fig. 19 compared to
Fig. 15). The ZZ a posteriori error estimator seems less efficient
to detect several discontinuities of different characteristic length-
scale if the considered meshes are stretched and coarse.



dhi
d hi/2

dhi/4

Distance dh0 on the coarse mesh

1e-02

1e-01

|| e
h || L∞

, c
om

p

l* = 0
l* = 1
l* = 2
l* = 3
l* = 4

LDC method applied to 3D model
Stretched mesh - ZZ with criterion  α = 0.25

Fig. 18. Composite maximal error norm according to the initial distance to the
intersection point – a ¼ 0:25 with stretched mesh – 3D model.

dhi
dhi/2

dhi/4

Distance dh0 on the coarse mesh

1e-02

1e-01

|| e
h || L

∞ , c
om

p

l* = 0
l* = 1
l* = 2
l* = 3

LDC method applied to 3D model
Stretched mesh - ZZ with criterion  α = 0.15

Fig. 20. Composite maximal error norm according to the mesh – a ¼ 0:15 – 3D
model.
The L1 relative error between the reference solution and the
composite LDC solution for a ¼ 0:15 and stretched meshes is plot-
ted on Fig. 20.

Yet, the expected Oðdhfine
Þ convergence is reached. However,

smaller errors than 10�2 as obtained on Fig. 16 are not reachable
here. Indeed, the number of DoF implied avoid the inversion of
the linear system.

Additionally to the well-known performances of linear solvers
on structured grids, this study enables us to conclude that the qual-
ity of the ZZ a posteriori error estimator also strongly depends on
the regularity of the mesh.

4.2.4. Comparison with a global h-adaptive refinement technique
In this part, we use the regular meshes obtained on Fig. 15 with

a ¼ 0:25. A comparison between the LDC method and a global
Fig. 19. Example of nested meshes obtained with stretched meshes and a ¼ 0:15 –
3D model.
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h-adaptive resolution is made for the three-dimensional case. Here
again, the optimal h-refined mesh is obtained through the ZZ esti-
mation. The results are presented on Fig. 21.

These results are really satisfying. Indeed, for relative errors
about 2 � 10�2, the LDC method and the global h-adaptive method
lead to quite equivalent results in terms of CPU time as well as
in terms of number of nodes.

For errors smaller than 1 � 10�2, the LDC solver becomes more
and more attractive in terms of memory space and CPU time.

Moreover, the increasing difference in number of nodes
between the two methods induces that the global h-refinement
method cannot be performed any more for expected errors as pre-
cise as those obtained with the LDC solver.
5. Nonlinear study: Norton creep behaviour

5.1. Problem definition

As the LDC process for solid mechanics has been verified for lin-
ear elastic behaviour in previous section, we will now complex the
cladding behaviour. A Norton creep behaviour is now studied. It
adds to the linear strain ee a nonlinear strain evp defined as:
1e+02 1e+03

CPU time (s)

1e-03

1e-02

1e-01

|| e
h || L∞

, c
om

p

LDC mesh - h0 = hi/2 - l* = 1 to 3 - r = 2
h-refinement - hmax = hi/2 - hmin = hi/4 to hi/10

LDC method applied to 3D model
Comparison with h-refinement - ZZ with criterion  α = 0.25

44820 nodes

 208494 nodes

44578 nodes

188544 nodes

133183 nodes

289800 nodes

Fig. 21. Comparison between LDC and global h-adaptive resolution – 3D model.



Fig. 22. Example of nested structured meshes generated automatically thanks to the ZZ a posteriori error estimator – a ¼ 0:25 – 2D plane strain model – Norton creep
behaviour.

dhi
dhi/2

dhi/4
dhi/8

dhi/16
dhi/32
dhi/64 Distance dh0 on the coarse mesh

1e-04

1e-03

1e-02

1e-01

|| e
h || L

∞
, c

om
p

l* = 0
l* = 1
l* = 2
l* = 3
l* = 4

LDC method applied to 2D plane strain model
ZZ with criterion  α = 0.25 - Norton creep behaviour

Fig. 23. L1comp error according to the mesh – 2D plane strain model – Norton creep
behaviour.
_evp ¼ J
K

� 	n�1

rd ð9Þ
where n ¼ 5 and K ¼ 2:6 � 1011 Pa5=4 s1=4 are two given material
coefficients, rd represents the deviatoric stress tensor and J is the
second invariant of rd.

Young’s modulus and Poisson’s ratio are those given in Section
3.2: E ¼ 100 GPa and m ¼ 0:3.

The time-dependent nonlinear problem is solved up through an
incremental process applied between the times t and t þ Dt. Since
the behaviour law is integrated on each Gauss point, the increment
of the solution Du is calculated thanks to a fixed point method
based on residual increments [29]. As a first simplified problem,
we only consider one time increment of 1 s. The results used in
the next figures are the ones obtained after this first increment.

From the LDC algorithm point of view, the main difficulty in this
case is linked to the evaluation of the defect. Indeed, this defect
implies a restricted stress, which cannot be easily obtained from
the restricted displacements as for linear behaviours. In the other
hand, reliable projection methods of the stresses (or any other field
defined on the Gauss points) do not exist. That is why we chose to
still restrict the displacements and then solve the coarse nonlinear
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problem with this restricted displacement imposed as Dirichlet
boundary conditions. The resulting internal forces associated to
the calculated stresses then correspond to the coarse operator
applied on the restricted solution. Moreover in this nonlinear con-
text, a quasi-exact resolution is really costly. The fine defect is then
no longer negligible, and the second term of Eq. (4) has to be taken
into account. An interpolation operator which respects the conser-
vation of total forces is then used.

5.2. Mesh convergence study

The test case under study is the same two-dimensional problem
as the one presented in Section 4.1.1. This study is a first step in
applying our automatic process to nonlinear behaviours. As a
consequence, we first neglect the time dependence of the mesh
generation. In this section, the problem under study is then exam-
ined during one time step.

The same methodology as for the linear study is applied to
obtain the refinement zones. The coarsest mesh step is
hi ¼ 218 lm. A refinement ratio of 2 is used for the convergence
study. On the example of nested meshes on Fig. 22, it must be
noticed that the refinement areas (in green) are almost the same
than in linear context (see on Fig. 8). It can be explained by the fact
that the pressure discontinuity effect is much more influential in
terms of mesh refinement than the nonlinear behaviour of the
whole structure.

Fig. 23 represents the L1 relative error kehkL1 ;comp between the
reference displacement solution (obtained with a regular struc-
tured mesh of size 4 lm that is to say approximatively 0.5 millions
DoF) and the nonlinear composite LDC displacement solution.

To the best of our knowledge, there is no theoretical result on
the convergence of the LDC method for a nonlinear problem. How-
ever, the nonlinear material behaviour does not deteriorate the
convergence in Oðdhfine

Þ of the LDC method obtained for linear
behaviour. For some simulations, the error improvement begins
to be limited by the pollution error of the non-refined zone [9]
(for example h0 ¼ hi and l� ¼ 4). As for the linear case, the ratio pre-
cision over CPU time or memory space is improved using an initial
coarse mesh and a lot of localised sub-grids.

5.3. Comparison with a global h-adaptive refinement technique

A comparison between the LDC solver (with refinement ratios
of 2 and 4) and the standard Q1 FE solver applied to global h-adap-
tive mesh has been also performed for the nonlinear behaviour.



Fig. 24. Equivalent inelastic strain for the global h-adaptive refinement technique (left) and for the composite LDC one with a refinement ratio of 2 (right) at the end of the
time increment – 2D plane strain model – Norton creep behaviour.
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∞
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h-refinement - hmax = hi/2 - hmin = hi/4 to hi/256

LDC mesh - h0 = hi/2 - l* = 1 to 7 - r = 2

LDC mesh - h0 = hi/2 - l* = 1 to 4 - r = 4

LDC method applied to 2D plane strain model
Comparison with h-refinement - Norton creep behaviour - ZZ with criterion 

 α = 0.25

448 nodes

2346 nodes

495 nodes

737 nodes

756 nodes

1197 nodes

33755 nodes1288 nodes
2415 nodes

Fig. 25. Comparison between LDC and h-adaptive resolution – 2D(r,h) nonlinear
model.
The first comparison was made on the equivalent inelastic strain,
see Fig. 24. In our test case, the inelastic part of the strain field rep-
resents about 60% of the total strain.

The strain distributions obtained using the h-adaptive resolu-
tion and the LDC method are equivalent. Moreover, the maximal
relative error is under 0.5%, which is really promising according
to the current precision of the physical models.

On Fig. 25, we compare the two refinement strategies, for
equivalent local fine and coarse mesh sizes.

First, if we compare the LDC method with refinement ratios of 2
and 4, we can notice that the use of a refinement ratio of 2 always
leads to less nodes than a refinement ratio of 4. This is due to t he
strong localisation of the zone of interest. However, a greater
refinement ratio induces faster computational times. It can be
explained by the fact that, contrary to the linear case, each ^-cycle
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is quite as costly as the first one. Indeed, the CPU time required for
the integration of the behaviour law stays the same. The use of a
refinement ratio of 4 allows to limit the number of sub-grids and
most importantly the number of ^-cycles, that induces a faster
resolution.

For relative errors about 2 � 10�2, the global h-refinement
method is attractive. Indeed, with as many nodes as the LDC
method with a refinement ratio of 2, it needs 5 (respectively 3)
times less CPU time than the LDC with a refinement of 2 (respec-
tively 4). This result can be explained by less integrations of the
behaviour law.

The LDC solver becomes attractive for errors smaller than
5 � 10�3, particularly in terms of number of nodes. Indeed, the glo-
bal h-refinement produces 3 to 26 times more nodes than the LDC
method with a refinement ratio of 2 and 2 to 14 times more nodes
than the LDC method with a refinement ratio of 4. Even if the
iterative LDC process implies multiple resolution of each grid,
the important saving in number of elements compared to the
h-refinement method lies to attractive CPU times for small errors.
For example, for errors about 1 � 10�3, the LDC method with a
refinement ratio of 2 allows to save 55% of CPU time compared
with the global h-adaptive strategy, and up to 65% if a refinement
of ratio 4 is used.

This test case gives confidence in the use of the LDC method
combined with the Zienkiewicz and Zhu a posteriori error estima-
tor to efficiently simulate time-dependent nonlinear mechanical
behaviours.

6. Conclusion

The local defect correction (LDC) method, which is an adaptive
mesh refinement (AMR) method based on multilevel resolutions,
has been applied to a simplified problem stemming from the pel-
let–cladding interaction in pressurised water reactors. We focused
only on the cladding response subject to discontinuous pressures
from the fuel pellet.

Firstly, the performances of the LDC method have been verified
on a linear behaviour. The local sub-grids are automatically



generated using the Zienkiewicz and Zhu (ZZ) a posteriori error
estimator. The results obtained are very satisfying. The expected
theoretical mesh convergence as Oðdhfine

Þ is obtained, where dhfine

is the distance between the real discontinuity and its approxima-
tion on the finest grid which mesh size hfine. Saving of computa-
tional time and memory space is thus very large in comparison
with a standard resolution based on global h-adaptive meshes.
Refinement ratios of 2 and 4 have been tested and compared. For
linear studies including localised discontinuities, the use of a
refinement ratio of 2 has been shown to be optimal, in terms of
CPU time and memory space saving.

The LDC method has also been successfully performed on three-
dimensional studies implying crossed discontinuities of different
characteristic length-scale. In this case, the efficiency of the auto-
matic detection of the areas of interest by the ZZ a posteriori error
estimator has been shown to be strongly related to the regularity
of the mesh.

Then, a nonlinear material behaviour has been studied, on one
time step. Contrary to the linear elastic case, an additional local
equation has to be solved on each Gauss point. The performances
obtained for the mesh convergence and the number of nodes
remains true. The performances in terms of computational time
are also satisfying. Moreover, it has been shown that a refinement
ratio greater than 2 can be interesting in terms of CPU time.

The prospects of this study is first to add a temporal depen-
dence of the nonlinear behaviour, with the goal of treating the
moving of grids position and size. Different kinds of nonlinear
behaviours will then be studied.

Lastly, the contact with the pellet will be modelled. The main
difficulty will then lie in the treatment of two grids facing each
other in a LDC context.
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