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Abstract

We consider the shallow-water equations with Manning friction and topography
source terms. The main purpose of this work concerns the derivation of a non-
negativity preserving and well-balanced scheme that approximates solutions of
the system and preserves the associated steady states, including the moving
ones. In addition, the scheme has to deal with vanishing water heights and
transitions between wet and dry areas. To address such issues, a particular
attention is paid to the study of the steady states related to the friction source
term. Then, a Godunov-type scheme is obtained by using a relevant average
of the source terms in order to enforce the required well-balance property. An
implicit treatment of both topography and friction source terms is also exhibited
to improve the scheme while dealing with vanishing water heights. A second-
order well-balanced MUSCL extension is designed, as well as an extension for
the two-dimensional case. Numerical experiments are performed in order to
highlight the properties of the scheme.

Keywords: shallow-water equations, Manning friction, Godunov-type
schemes, well-balanced schemes, moving steady states
2000 MSC: 65M08, 65M12

1. Introduction

The goal of this paper is to derive a numerical scheme to approximate the
solutions of the shallow-water equations with topography and Manning friction.
The Manning friction was introduced in [34] (see also [15] for an overview of
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other friction models, and [9, 10, 11] for related works). The equations of interest
consist in the following system:





∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

.
(1.1)

This system is used to model the flow of water in a one-dimensional channel,
with a non-flat bottom that applies a friction force on the water. The variables
involved in this model are the non-negative water height h(x, y) and the depth-
averaged discharge of the water q(x, t). The known quantities are the shape of
the channel bottom Z(x), the gravity constant g, the Manning friction coefficient
k and a parameter η, equal to 7�3. We also define the velocity u of the water,
such that q = hu.

We define the admissible states space by

Ω =
{
W = t(h, q) ∈ R2 ; h ≥ 0, q ∈ R

}
.

Let us note that the water height may vanish, which accounts for dry areas. By
convention, we impose u = 0 as soon as h = 0.

In order to shorten the notations, the system (1.1) is rewritten under a
simpler form, as follows:

∂tW + ∂xf(W ) = s(W ), W ∈ Ω, (1.2)

where

W =

(
h
q

)
, f(W ) =




q
q2

h
+

1

2
gh2


 , s(W ) =

(
0

−gh∂xZ −
kq|q|
hη

)
. (1.3)

Omitting the source terms, the homogeneous system deriving from (1.1) is
a hyperbolic system. Its characteristic velocities are given by u − c and u + c
(see [10, 20, 29] for instance), where c is the sound speed, defined as follows:

c =
√
gh. (1.4)

The main focus on this paper lies in the study of the solutions of (1.2)
that satisfy ∂tW = 0. Such solutions are called steady state solutions. With
vanishing partial derivatives in time in (1.1), we get:





∂xq = 0,

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

.
(1.5)

We immediately obtain that, as per the first equation, the discharge q must be
uniform. From now on, we denote this uniform discharge as follows:

q = q0. (1.6)
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Using q0 within the second equation of (1.5) yields:

∂x

(
q2
0

h
+

1

2
gh2

)
= −gh∂xZ −

kq0|q0|
hη

. (1.7)

The solution of the nonlinear ordinary differential equation (1.7) is the water
height h for a steady state with uniform discharge q0. For a general topography
and a nonzero friction contribution, if q0 6= 0, we cannot solve this equation
to obtain an analytical expression for h. Thus, we will focus on specific cases;
namely, the steady states at rest, and the steady states with topography or
friction only.

The most important and most extensively studied steady state of the shallow-
water equations is the lake at rest steady state (see for instance the non-
exhaustive list [2, 8, 10, 12, 19, 24]). The lake at rest is obtained by assuming
that the water is at rest, i.e. q0 = 0. Thus, this steady state is defined as follows:

{
q = 0,

h+ Z = cst .
(1.8)

The importance of this steady state has led to the derivation of many schemes
ensuring that the lake at rest is preserved. For instance, in [3, 24], the authors
introduced the notion of a well-balanced scheme, that is to say a scheme that
preserves some or all the steady states. Next, the well-balance approach was
extended to nonlinear systems in [21]. The techniques from [21] were then
simplified in [1], to obtain the hydrostatic reconstruction (see also [8, 17, 18, 27,
31, 32, 36]).

Now, let us consider a vanishing friction source term (i.e. k = 0) without
being at rest (i.e. q0 6= 0). From (1.7), we get the moving steady states, governed
by

∂x

(
q2
0

h
+

1

2
gh2

)
= −gh∂xZ. (1.9)

The equation (1.9) that defines the moving steady states is known to be harder
to satisfy at the discrete level than the lake at rest. Indeed, the lake at rest
explicitly yields h with respect the the known quantity Z, while the water height
is given by the nonlinear ODE (1.9) in the case of the moving steady states.
Such steady states have been studied in the past, for instance in [23], where
the authors define some specific moving steady states and use them to test the
accuracy of non-well-balanced schemes. Then, in [21], the author introduced the
notion of fully well-balanced schemes, able to preserve every steady state, and
designed such a scheme. This approach was extended in [4], where the authors
derive a fully well-balanced and entropy-stable Godunov-type scheme, based
on the resolution of a Bernoulli-type equation. Since this equation is difficult
to solve, the authors of [35] have proposed a fully well-balanced Godunov-type
scheme that uses a linearization of the Bernoulli-type equation. In addition,
high-order techniques were developed to ensure a very precise approximation of
the moving steady states (see for instance [38, 39, 44, 45]).
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Let us now assume a flat topography and a nonzero discharge. The steady
states governed by the friction source term are given as follows:

∂x

(
q2
0

h
+

1

2
gh2

)
= −kq0|q0|

hη
. (1.10)

Some research has been devoted to Manning friction terms (for instance, see
[15, 9]), but these works do not focus on steady states and the resulting schemes
are not well-balanced.

In the present paper, we exhibit smooth steady solutions of (1.10) and pro-
pose a well-balanced scheme, according to the lake at rest (1.8), to the moving
steady states (1.9), and to the dominant friction steady states (1.10). This
scheme will be derived in order to satisfy some essential properties, namely the
exact preservation of all the steady states for the system (1.1) with topography
or friction and the preservation of the non-negativity of the water height. In
addition, the scheme will be designed to model transitions between wet areas,
where h 6= 0 and dry areas, where h = 0.

The paper is organized as follows. First, in Section 2, we study smooth
steady states for the shallow-water equations with friction over a flat bottom.
Then, in Section 3, we develop a Godunov-type scheme that is well-balanced
for the system Section 1.1. In this section, we first recall some generalities on
Godunov-type schemes, then we derive the well-balanced scheme, according to
the friction steady states. Afterwards, in Section 4, we extend this scheme to be
well-balanced for both the topography and the friction source terms. In addition,
in this section, we prove the non-negativity preservation. Then, in Section 5,
we propose an implicitation of the source terms contribution, designed to deal
with transitions between wet and dry areas. The scheme is then extended in
Section 6 to be second-order accurate. This extension breaks the well-balance
property, but we show a convex combination technique that allows the recovery
of this essential property. Finally, in Section 7, we propose three kinds numerical
experiments, namely well-balance assessments, dam-break simulations, and two
dimensional simulations. The paper is concluded in Section 8.

2. Steady states characterization

This section is devoted to studying the steady states coming from the friction
source term, given by (1.5) with a flat topography (Z = cst), or equivalently
by (1.10). Recall that, for steady states and after (1.6), the discharge q = q0 is
uniform throughout the domain. Here, we assume q0 6= 0. Indeed, we assume
that the friction contribution vanishes as soon as the discharge is equal to zero.
We rewrite (1.10) under the form:

q2
0 ∂x

1

h
+
g

2
∂xh

2 = −kq0|q0|
hη

. (2.1)
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We are looking for smooth solutions h(x) > 0 of the equation (2.1). As a first
step, we integrate this equation. Multiplying by hη provides:

− q2
0

η − 1
∂xh

η−1 +
g

η + 2
∂xh

η+2 = −kq0|q0|. (2.2)

Let us consider x0 ∈ R as an arbitrary reference point, and introduce the
initial condition h(x0) = h0. For all x ∈ R, we integrate (2.2) over (x0, x), to
get

− q2
0

η − 1

(
hη−1 − hη−1

0

)
+

g

η + 2

(
hη+2 − hη+2

0

)
+ kq0|q0| (x− x0) = 0. (2.3)

To shorten the notations, we rewrite (2.3) under the following form:

ξ(h;x, h0, q0, x0) = 0, (2.4)

where we have set

ξ(h;x, h0, q0, x0) = − q2
0

η − 1

(
hη−1 − hη−1

0

)
+

g

η + 2

(
hη+2 − hη+2

0

)

+ kq0|q0| (x− x0) .

(2.5)

We consider x a parameter so that (2.4) is an equation to characterize h :=
h(x). In order to exhibit such solutions, we first study ξ with a fixed x ∈ R.
The derivative of ξ with respect to h is given by

∂ξ

∂h
(h;x, h0, q0, x0) = ghη−2

(
−q

2
0

g
+ h3

)
.

Let us define a critical water height hc, such that
∂ξ

∂h
(hc;x, h0, q0, x0) = 0, as

follows:

hc =

(
q2
0

g

)1�3

. (2.6)

We easily obtain that the function h 7→ ξ(h;x, h0, q0, x0) is strictly increasing on
(hc,+∞), while it is strictly decreasing on (0, hc). As a consequence, it admits
a unique minimum in (0,+∞), and this minimum is reached for h = hc.

Now, we evaluate the sign of ξ. After straightforward computations, the
following limits are proven to be satisfied by ξ:

• lim
h→+∞

ξ(h;x, h0, q0, x0) = +∞,

• lim
h→0+

ξ(h;x, h0, q0, x0) = ξ`(x),

where we have set

ξ`(x) = ghη−1
0

(
h3
c

η − 1
− h3

0

η + 2

)
+ kq0|q0|(x− x0).
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Note that ξ` is finite. Moreover, let us introduce

ξc(x) := ξ(hc;x, h0, q0, x0).

We note that

ξc(x) = ξ`(x)− 3ghη+2
c

(η − 1)(η + 2)
< ξ`(x).

Equipped with these new notations and these properties of ξ, we state the
following result.

Lemma 1. Assume h > 0 and q0 6= 0. Thus, hc > 0 according to (2.6).

(i) If ξ`(x) < 0, then the equation (2.4) admits a unique solution hsub(x).
Moreover, this solution belongs to (hc,+∞).

(ii) If ξ`(x) > 0 and ξc(x) > 0, then there is no solution to the equation (2.4).

(iii) If ξ`(x) > 0 and ξc(x) < 0, then the equation (2.4) admits two solutions,
hsup(x) and hsub(x). One solution, hsup(x), stays within (0, hc), while
the second one, hsub(x), is in (hc,+∞). If ξc(x) = 0, the equation (2.4)
admits hc as a unique double solution.

Proof. To establish (i), we use that h 7→ ξ(h;x, h0, q0, x0) is strictly increasing
on (hc,+∞) and that ξc(x) < ξ`(x) < 0, to deduce that the equation (2.4)
admits a unique solution, which belongs to (hc,+∞).

Next, we turn to proving (ii). If ξc(x) > 0, since ξ reaches its unique
minimum ξc(x) for h = hc, it is immediate that there is no solution to the
equation (2.4).

Finally, concerning (iii), we assume that ξ`(x) > 0 and ξc(x) < 0. The
monotonicity properties of ξ allow the immediate conclusion that the equation
(2.4) admits two solutions. One solution stays within (0, hc) and corresponds
to a supercritical state, while the second one is in (hc,+∞) and provides a
subcritical state. Moreover, if ξc(x) = 0, the equation (2.4) admits a double
root, h = hc.

The proof is thus achieved.

Remark 1. Arguing the definition of the Froude number Fr = u/c (where c is
the sound speed, defined by (1.4)), we obtain for steady states Fr = q0/

√
gh3.

Therefore, it is clear that h > hc (resp. h < hc) corresponds to Fr < 1 (resp.
Fr > 1), i.e. to a subcritical (resp. supercritical) flow. Thus, the solution h of
(2.4) that lies in (0, hc] will henceforth be called the supercritical branch, while
the solution of of (2.4) that lies in [hc,+∞) will be called the subcritical branch.

Remark 2. Note that the case ξ`(x) = 0 implies that h = 0 is a solution of the
equation (2.4). However, this equation has been obtained using the positivity
of h: therefore, h = 0 is not a valid solution of (2.4).
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Now, we study the solutions h of (2.4) as functions of x. As a first step, we
evaluate the monotonicity of h. To this end, we exhibit the derivative of h with
respect to x by considering (2.2), which writes

(
−q2

0h
η−2 + ghη+1

)
h′(x) = −kq0|q0|.

Since q2
0 = gh3

c from (2.6), we immediately obtain

ghη+1

(
1− h3

c

h3

)
h′(x) = −kq0|q0|.

As a consequence, the sign of h′(x) coincides with the sign of q0(hc − h(x)).
Note that both ξ`(x) and ξc(x) are linear in x, and ξc(x) < ξ`(x). Both of
these quantities are thus linear functions of x, of slope kq0|q0|, and are strictly
monotonic in x. Therefore, there exists a unique xu such that ξ`(x) = 0, and
a unique xc 6= xu such that ξc(x) = 0. Thus, by Lemma 1, if there exists a
solution h(x) of the equation (2.4), it is either within (0, hc] or within [hc,+∞),
for all x where such a solution exists. Therefore, the sign of h′(x) is constant,
and h is strictly monotonic. As a consequence, hsub and hsup are bijective on
their respective domains, since they are continuous and strictly monotonic.

These solutions are displayed in Figure 1. For the sake of simplicity, this
figure has been obtained assuming that h0 = hc (and thus x0 = xc) and that
q0 < 0.

Figure 1: Solutions of (2.4) with q0 = −1 and x0 = xc = 0, obtained by using Newton’s
method. The solid line is the subcritical branch (the increasing solution) and the dotted line
is the supercritical branch (the decreasing solution).

As a consequence, we have obtained the general form of steady state solu-
tions for the shallow-water equations (1.1) with friction and flat topography,
respectively given by the subcritical and supercritical branches. However, the
subcritical and supercritical branches that are solution to (2.4) are parametrized
by the choice of the initial conditions x0 and h0.
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3. A well-balanced scheme for a the shallow-water equations with
friction

Equipped with the steady states, we now derive a numerical scheme able to
exactly capture such essential solutions. We begin by recalling the construction
of a Godunov-type scheme that uses a two-state approximate Riemann solver
[25] (see also [10, 41]). The Godunov-type scheme is then adapted to the shallow-
water equations with the friction source term. The purpose of this extension is
to preserve the steady states presented in the previous section.

3.1. Generalities on Godunov-type schemes
First, we introduce the discretization of the space and time domain R×R+.

Let ∆x be the space step, assumed to be constant, and ∆t the time step. The
space discretization consists in cells (xi− 1

2
, xi+ 1

2
), for all i ∈ Z. The solution

W (x, t) of (1.2) is approximated byWn
i at some time tn and in cell (xi− 1

2
, xi+ 1

2
).

We suppose that this piecewise constant approximation ofW (x, t), here denoted
W∆(x, tn), is known at time tn for all cells in the space domain. We now evolve
W∆(x, tn) in time, which consists in nothing but the solution of the following
Riemann problem juxtaposition, defined for all i ∈ Z and all x in two consecutive
cells: 




∂tW + ∂xf(W ) = s(W ),

W (x, tn) =

{
Wn
i if x < xi+ 1

2
,

Wn
i+1 if x > xi+ 1

2
.

(3.1)

From now on, let us emphasize that the consecutive Riemann solutions do
not interact as long as t is small enough. Since an exact solution to (3.1) is
difficult to determine, we suggest to consider an approximate Riemann solver to
obtain an estimate of the unknown solution. We adopt a two-state approximate
Riemann solver, illustrated by Figure 2 and defined as follows:

W̃
(x
t

;WL,WR

)
=





WL if x/t < λL,

W ∗L if λL < x/t < 0,

W ∗R if 0 < x/t < λR,

WR if x/t > λR,

(3.2)

where λL and λR denote some characteristic wave velocities, and W ∗L and W ∗R
are the intermediate states, to be detailed later. To ensure that λL < 0 and
λR > 0, we choose the following expressions of λL and λR (see for instance [40]
and references therein):

λL = min (−|uL| − cL,−|uR| − cR,−ελ) , (3.3a)
λR = max (|uL|+ cL, |uR|+ cR, ελ) , (3.3b)

with c the sound speed, defined by (1.4), and ελ a positive real value to be fixed
in the numerical applications.
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WL WR

λL λR
W ∗

L W ∗
R

x0

t

Figure 2: Structure of the chosen approximate Riemann solver.

The approximate solution of the Riemann problem W∆(x, tn + t), depicted
Figure 3, is given for t > 0 and x ∈ (xi− 1

2
, xi+ 1

2
) by:

∀i ∈ Z,W∆(x, tn + t) =





WR,∗
i− 1

2

if x ∈ [xi− 1
2
, xi− 1

2
+ λRi− 1

2
t],

Wn
i if x ∈ [xi− 1

2
+ λRi− 1

2
t, xi+ 1

2
+ λLi+ 1

2
t],

WL,∗
i+ 1

2

if x ∈ [xi+ 1
2

+ λLi+ 1
2
t, xi+ 1

2
].

(3.4)

x

t

tn+1

tn
xixi− 1

2
xi+ 1

2

Wn
i

WR,∗
i− 1

2
WL,∗

i+ 1
2

λR
i− 1

2

λL
i+ 1

2

︷ ︸︸ ︷
W∆(x, tn+1)

Figure 3: The full Godunov-type scheme using an approximate Riemann solver.

Now, we consider a time step ∆t that satisfies the following Courant-Friedrichs-
Lewy stability condition :

∆t ≤ ∆x

2Λ
, where Λ = max

i∈Z

(
λLi+ 1

2
, λRi+ 1

2

)
, (3.5)

so as to ensure there are no interactions between the waves from two consecutive
Riemann problems (see [20, 40]). Given such a ∆t, we set tn+1 = tn + ∆t and
focus on the value of W∆ at time tn+1. We can finally define Wn+1

i by taking
the average of W∆(x, tn+1) over the cell (xi− 1

2
, xi+ 1

2
), as follows:

Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W∆(x, tn+1)dx.
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Since W∆(x, tn+1) is given by (3.4), we have:

Wn+1
i =

1

∆x

∫ x
i− 1

2
+λR

i− 1
2

∆t

x
i− 1

2

WR,∗
i− 1

2

dx+
1

∆x

∫ x
i+1

2

x
i+1

2
+λL

i+1
2

∆t

WL,∗
i+ 1

2

dx

+
1

∆x

∫ x
i+1

2
+λL

i+1
2

∆t

x
i− 1

2
+λR

i− 1
2

∆t

Wn
i dx.

This relation immediately yields:

Wn+1
i = Wn

i −
∆t

∆x

[
λLi+ 1

2

(
WL,∗
i+ 1

2

−Wn
i

)
− λRi− 1

2

(
WR,∗
i− 1

2

−Wn
i

)]
. (3.6)

Note that, in order forWn+1
i to be fully defined, we only need to give explicit

values to the intermediate states WL,∗
i+ 1

2

and WR,∗
i+ 1

2

. The end of this section is
devoted to finding suitable intermediate states, which ensure that the scheme is
consistent and preserves the steady states.

3.2. A well-balanced approximate Riemann solver for the friction source term
We focus on the derivation of a well-balanced approximate Riemann solver

for the shallow-water equations with only the friction source term. First, we
recall the system under consideration:





∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
= −kq|q|h−η. (3.7)

We also recall that the steady states for this model are given by:




q = q0,

∂x

(
q2
0

h
+

1

2
gh2

)
= −kq|q|h−η.

(3.8)

Relevant definitions of the intermediate states W ∗L = t(h∗L, q
∗
L) and W ∗R =

t(h∗R, q
∗
R) need to be obtained in order to fully determine the approximate Rie-

mann solver. Therefore, four equations characterizing the four unknowns h∗L,
h∗R, q

∗
L and q∗R are required. These four equations will be obtained by con-

sidering two essential properties that need to be satisfied by the approximate
Riemann solver: consistency with the system (3.7) and well-balancedness, i.e.
preservation of the steady states (3.8).

First, we tackle the issue of the consistency with (3.7), by introducing a
necessary consistency condition. From [25], the average over a cell of the ap-
proximate Riemann solver W̃ , defined by (3.2), has to be equal to the average
over the same cell of the exact solution of the Riemann problemWR. Therefore,
the following equality is imposed:

1

∆x

∫ ∆x/2

−∆x/2

W̃
( x

∆t
;WL,WR

)
dx =

1

∆x

∫ ∆x/2

−∆x/2

WR
( x

∆t
;WL,WR

)
dx. (3.9)
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We introduce the following notations for the sake of simplicity:

(λR − λL)hHLL = λRhR − λLhL − [q],

(λR − λL)qHLL = λRqR − λLqL −
[
q2

h
+

1

2
gh2

]
.

Let us underline that t(hHLL, qHLL) is actually the well-known intermediate
state of the HLL approximate Riemann solver introduced in [25]. Also, note
that hHLL > 0 for λL and λR given by (3.3). We also introduce the notation
(−kq|q|h−η)R that denotes the second component of s(WR), with s defined by
(1.3), to represent the value of the source term of friction for the exact solution
of the Riemann problem. Thanks to these notations, (3.9) can be rewritten as
follows, after straightforward computations detailed in [35]:

λRh
∗
R − λLh∗L = (λR − λL)hHLL, (3.10a)

λRq
∗
R − λLq∗L = (λR − λL)qHLL

+
1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

(
−kq|q|h−η

)
R

(x
t

;WL,WR

)
dt dx.

(3.10b)

Now, we introduce two parameters, q and h−η, to define a consistent ap-
proximation of the mean value of the friction source term, as follows:

1

∆x

1

∆t

∫ ∆x/2

−∆x/2

∫ ∆t

0

(
−kq|q|h−η

)
R dt dx ' −kq|q|h−η. (3.11)

The parameters q and h−η are respectively assumed to be consistent with q and
h−η, in a sense given later. Then, the equation (3.11) is substituted into (3.10b).
As a consequence, the four unknowns are imposed to satisfy the following two
relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL, (3.12a)

λRq
∗
R − λLq∗L = (λR − λL)qHLL − kq|q|h−η∆x. (3.12b)

Concerning the well-balancedness of the approximate Riemann solver, we
exhibit a sufficient condition for the preservation of a solution. The scheme (3.6)
provides us with such a condition. Indeed, the solution is obviously stationary,
i.e. Wn+1

i = Wn
i for all i ∈ Z, if we have

∀i ∈ Z, WL,∗
i+ 1

2

= Wn
i and WR,∗

i− 1
2

= Wn
i .

Thus, in the context of the approximate Riemann solver, the solution will be
stationary if W ∗L = WL and W ∗R = WR. As a consequence, the following well-
balance principle will have to be satisfied by the intermediate states:

Principle (WB). The intermediate states W ∗L and W ∗R are such that W ∗L =
WL and W ∗R = WR as soon as WL and WR define a steady state.
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Here, the pair (WL,WR) is said to define a steady state if they satisfy the identity
(3.8). We will then look for intermediate states W ∗L and W ∗R that satisfy the
(WB) principle.

We begin by determining q∗L and q∗R. After [4, 35], we choose q
∗
L = q∗R and set

q∗ := q∗L = q∗R. This choice helps ensure that W ∗L and W ∗R satisfy the property
(WB). The formulas (3.12) are then rewritten using q∗ as follows:

λRh
∗
R − λLh∗L = (λR − λL)hHLL, (3.13a)

q∗ = qHLL −
kq|q|h−η∆x

λR − λL
. (3.13b)

We only need relevant definitions of q and h−η in order to fully determine
q∗. To that end, we specify the discrete steady states verified by the system
(3.7). Such discrete steady states are nothing but a discretization of the steady
relation at the continuous level (3.8). In order to give an expression of these
discrete steady states, we need to assume that hL 6= 0 and hR 6= 0. Now, WL

and WR define a steady state if the following relations hold:




qL = qR = q0, (3.14a)

q2
0

[
1

h

]
+
g

2

[
h2
]

= −kq|q|h−η ∆x. (3.14b)

Moreover, since we are only considering the friction source term and smooth
steady states, we can rewrite the relation (2.3) between states WL and WR.
Thus, WL and WR also satisfy the following algebraic relation:

− q2
0

η − 1

[
hη−1

]
+

g

η + 2

[
hη+2

]
= −kq0|q0|∆x. (3.15)

We introduce the notation µ0 = sgn(q0). Therefore, µ0 represents the direc-
tion of the water flow. From (3.15), we obtain the evaluation of q2

0 as follows:

q2
0 =

g
[hη+2]

η + 2

[hη−1]

η − 1
− kµ0 ∆x

. (3.16)

Now, to recover the behavior of the friction source term when steady states are
involved, we assume that the parameter q is equal to q0 as soon as WL and WR

define a steady state. Thus, injecting (3.16) into (3.14b) yields the expression
of h−η. We immediately obtain:

h−η =
[h2]

2

η + 2

[hη+2]
− µ0

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
. (3.17)

Lemma 2. The expression of h−η given by (3.17) is consistent with h−η.
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Proof. With smooth water heights, we fix, in (3.17), hL = h(x) and hR =
h(x+O(∆x)). Taylor’s formula applied to hR yields hR = h+∆x∂xh+O(∆x2).
In order to evaluate the Taylor expansions of [h2], [hη−1], [hη+2] and [h−1], we
now compute a Taylor expansion, for some β ∈ R, of the jump [hβ ]:

[hβ ] = hβR − h
β
L =

(
h+ ∂xh∆x+O(∆x2)

)β − hβ

= hβ
(
1 + βh−1∂xh∆x+O(∆x2)

)
− hβ

= βhβ−1∂xh∆x+O(∆x2).

Using the above evaluation, we have for the first part of the expression of h−η:

[h2]

2

η + 2

[hη+2]
=

h∂xh∆x+O(∆x2)

hη+1∂xh∆x+O(∆x2)
= h−η +O(∆x). (3.18)

Moreover, we have, for the second part of h−η,
[

1

h

]
= −h−2∂xh∆x+O(∆x2), (3.19)

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]
=

(h∂xh∆x+O(∆x2))(hη−2∂xh∆x+O(∆x2))

hη+1∂xh∆x+O(∆x2)

= h−2∂xh∆x+O(∆x2).

(3.20)

Combining both equations (3.19) and (3.20) immediately yields

− µ0

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
= − µ0

k∆x
O(∆x2) = O(∆x). (3.21)

Using both relations (3.18) and (3.21) gives h−η = h−η + O(∆x), which con-
cludes the proof.

Concerning q, we choose the following average:



q =

2|qL||qR|
|qL|+ |qR|

sgn(qL + qR) if qL 6= 0 and qR 6= 0;

q = 0 if qL = 0, qR = 0 or k = 0.

(3.22)

This average indeed ensures that, if qL = qR, then q = qL = qR.
Note that the expression (3.17) of h−η contains µ0. This quantity depends

on the steady state and has to be determined for non-steady states. To address
such an issue, we propose the expression

h−η := h−η(hL, hR) =
[h2]

2

η + 2

[hη+2]
− µ

k∆x

([
1

h

]
+

[h2]

2

[hη−1]

η − 1

η + 2

[hη+2]

)
, (3.23)

where µ is the sign of the quantity q given by (3.22). Since q = q0 as soon as
WL and WR define a steady state, it is clear that h−η, as defined by (3.23),
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still provides a well-balanced approximate Riemann solver and still satisfies
Lemma 2.

Equipped with the expressions of h−η and q, we have fully determined q∗.
Now, we need to complete the system (3.13) to determine the intermediate water
heights h∗L and h∗R. The following relation is chosen to ensure that W ∗L and W ∗R
satisfy the property (WB):

αf (h∗R − h∗L) = −kq|q|h−η ∆x, where αf =
−q2

hLhR
+
g

2
(hL + hR). (3.24)

Therefore, h∗L and h∗R are easily determined by considering the following linear
system, defined by (3.13a) and (3.24):

{
λRh

∗
R − λLh∗L = (λR − λL)hHLL,

αf (h∗R − h∗L) = −kq|q|h−η ∆x.
(3.25)

The system (3.25) is immediately solved, to get

h∗L = hHLL +
λRkq|q|h−η ∆x

αf (λR − λL)
, (3.26a)

h∗R = hHLL +
λLkq|q|h−η ∆x

αf (λR − λL)
. (3.26b)

3.3. Properties satisfied by the approximate Riemann solver
In the previous subsection, we have constructed intermediate states (3.13b) -

(3.26) that yield a consistent and well-balanced approximate Riemann solver.
However, one can plainly see from (3.26) that the intermediate water heights
h∗L and h∗R can become negative. If that is the case, (3.6) can yield a negative
updated water height, which means the updated state would not belong to the
admissible space Ω. To recover this required robustness property, we apply the
procedure from [2, 6, 35], which consists in introducing a parameter ε > 0, that
controls the positivity of h∗L and h∗R.

We now state the expressions of the intermediate states obtained with this
procedure, for given WL and WR. The parameter ε is such that

ε = min (hL, hR, hHLL) . (3.27)

For the sake of simplicity in the notations, we introduce the following notation:

Sf := −kq|q|h−η, (3.28)

where q and h−η are respectively defined by (3.22) and (3.23). Then, the inter-
mediate statesW ∗L = t(h∗L, q

∗
L) andW ∗R = t(h∗R, q

∗
R) of the approximate Riemann
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solver (3.2) are given by:

αf =
−q2

hLhR
+
g

2
(hL + hR), (3.29a)

q∗L = q∗R = q∗ = qHLL +
Sf∆x

λR − λL
, (3.29b)

h∗L = min

(
max

(
hHLL −

λRS
f ∆x

αf (λR − λL)
, ε

)
,

(
1− λR

λL

)
hHLL +

λR
λL

ε

)
,

(3.29c)

h∗R = min

(
max

(
hHLL −

λLS
f ∆x

αf (λR − λL)
, ε

)
,

(
1− λL

λR

)
hHLL +

λL
λR

ε

)
.

(3.29d)

The quantities q∗ and αf have respectively been defined by (3.13b) and (3.24).
Moreover, in (3.29), the positivity correction has been applied, and new ex-
pressions (3.29c) and (3.29d) of h∗L and h∗R have replaced (3.26a) and (3.26b).
Note that the intermediate states (3.29) are written under the same form as the
intermediate states presented in [35].

The following two results sum up the properties we have obtained thus far,
for the approximate Riemann solver and the full scheme. For the sake of con-
ciseness, we do not mention their proofs here, since they use classical ingredients
that have been presented in [35].

Lemma 3. Assume ε > 0 such that (3.27) is satisfied. Then, intermediate
states W ∗L = t(h∗L, q

∗
L) and W ∗R = t(h∗R, q

∗
R) given by (3.29) satisfy the following

properties:

(i) consistency: the quantities h∗L, h
∗
R, q

∗
L and q∗R satisfy the equations (3.13);

(ii) positivity preservation: if hL > 0, hR > 0 and hHLL > 0, then h∗L ≥ ε
and h∗R ≥ ε;

(iii) well-balancedness: W ∗L = WL and W ∗R = WR satisfy the property (WB).

Theorem 4. Consider Wn
i ∈ Ω∗ for all i ∈ Z, where Ω∗ is a restricted admis-

sible states space defined as follows:

Ω∗ =
{
W = t(h, q) ∈ R2 ; h > 0, q ∈ R

}
.

Assume that the intermediate states WL,∗
i+ 1

2

and WR,∗
i+ 1

2

are given, for all i ∈ Z,
by

WL,∗
i+ 1

2

=

(
h∗L(Wn

i ,W
n
i+1)

q∗(Wn
i ,W

n
i+1)

)
and WR,∗

i+ 1
2

=

(
h∗R(Wn

i ,W
n
i+1)

q∗(Wn
i ,W

n
i+1)

)
,

where q∗, h∗L and h∗R are given by (3.29b), (3.29c) and (3.29d), respectively.
Also, assume ε > 0 given by (3.27). Then the Godunov-type scheme, given by
(3.6) under the CFL restriction (3.5), satisfies the following properties:
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1. consistency with the shallow-water system (3.7);

2. positivity preservation: ∀i ∈ Z, Wn+1
i ∈ Ω∗;

3. well-balancedness: if (Wn
i )i∈Z defines a steady state, then ∀i ∈ Z, Wn+1

i =
Wn
i .

From the above result, we see that the updated water height never vanishes.
This behavior is due to the introduction in (3.29) of the parameter ε. Such a
behavior is necessary because the average h−η has been obtained by considering
positive water heights. In a later section, devoted to dry/wet transitions, this
average will be extended to be able to deal with dry areas. This extension will
allow us to consider ε = 0 in the definition (3.29), as well as vanishing water
heights.

4. The case of both topography and friction source terms

In this section, our goal is the derivation of new intermediate states h∗L, h
∗
R

and q∗ to approximate the contributions of both topography and friction source
terms. For the sake of simplicity in the notations, we write S = St + Sf , where

St = −gh∂xZ,
Sf = −kq|q|h−η,

which corresponds to the case where both topography and friction source terms
are involved. The steady states associated to the full source term S do not admit
an algebraic expression. Therefore S is split between St and Sf , since the steady
states for the individual source terms of topography and friction can both be
rewritten using an algebraic expression. In order to complete the scheme, we
need to determine suitable intermediate states in both cases of the topography
and the friction. The case of the friction has been treated in the previous
section, and the intermediate states are given by (3.29). For the topography,
we adopt the approach introduced in [35], which is now recalled for the sake of
completeness.

16



4.1. Approximation of the topography source term
Considering a vanishing topography source term but with a vanishing fric-

tion, the intermediate states are given by

αt =
− (q∗)2

hLhR
+
g

2
(hL + hR), (4.1a)

q∗L = q∗R = q∗ = qHLL +
St∆x

λR − λL
, (4.1b)

h∗L = min

(
max

(
hHLL −

λRS
t ∆x

αt(λR − λL)
, ε

)
,

(
1− λR

λL

)
hHLL +

λR
λL

ε

)
,

(4.1c)

h∗R = min

(
max

(
hHLL −

λLS
t ∆x

αt(λR − λL)
, ε

)
,

(
1− λL

λR

)
hHLL +

λL
λR

ε

)
.

(4.1d)

In (4.1), the approximate topography source term St is defined by:

St∆x := St(hL, hR, ZL, ZR)∆x = −2g[Z]
hLhR
hL + hR

+
g

2

[h]3c
hL + hR

, (4.2)

where [h]c is a cutoff of [h] = hR − hL, defined as follows:

[h]c =

{
hR − hL if |hR − hL| ≤ C ∆x,

sgn(hR − hL)C ∆x otherwise,
(4.3)

with C a positive constant that does not depend on ∆x. This expression of St is
consistent with the topography source term St, and it ensures that the scheme
is well-balanced (see [4, 5, 35] for more details regarding this expression and how
to obtain it). Computations leading to this expression and to the expressions
(4.1) have been explained in [35], to which the reader is referred for more details.

4.2. Approximation of the topography and friction source terms
Now, we focus on deriving intermediate states for the shallow-water equa-

tions with both topography and friction source terms. We introduce the follow-
ing discretization of (1.7):

q2
0

[
1

h

]
+
g

2

[
h2
]

= St∆x+ Sf∆x, (4.4)

where the approximate source term S has been split into the topography and
friction contributions, by writing S = St +Sf . As a consequence, after (3.29b),
we define the following intermediate discharge:

q∗ = qHLL +
St∆x

λR − λL
+

Sf∆x

λR − λL
, (4.5)
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where the expressions of St and Sf are given by (4.2) and (3.28), respectively.
Concerning the intermediate heights, we first decide to use the following expres-
sions:

h̃∗L = hHLL −
λRS

t∆x

αt(λR − λL)
− λRS

f∆x

αf (λR − λL)
, (4.6a)

h̃∗R = hHLL −
λLS

t∆x

αt(λR − λL)
− λLS

f∆x

αf (λR − λL)
, (4.6b)

where the quantities αt and αf are respectively defined by (4.1a) and (3.29a).
We immediately see that the intermediate states (4.5) - (4.6) still yield a con-
sistent scheme. Moreover, it is possible to recover the positivity of the water
heights. Let ε ≥ 0 that satisfies (3.27), and consider the same procedure as used
for the friction source term, which yields the following intermediate states:

q∗ = qHLL +
St∆x

λR − λL
+

Sf∆x

λR − λL
, (4.7a)

h∗L = min

(
max

(
h̃∗L, ε

)
,

(
1− λR

λL

)
hHLL +

λR
λL

ε

)
, (4.7b)

h∗R = min

(
max

(
h̃∗R, ε

)
,

(
1− λL

λR

)
hHLL +

λL
λR

ε

)
. (4.7c)

From Lemma 3, as soon as ε > 0, the intermediate heights h∗L and h∗R defined
by (4.7) are positive.

We note that using the definitions (4.7) and making the friction source term
vanish allows the recovery of the intermediate states for topography only. Simi-
larly, if the topography source term vanishes, we recover the intermediate states
for friction only. As a consequence, (4.7) yields intermediate states that are
well-balanced for the individual source terms of topography or friction.

Let us recall that the steady states relation for the shallow-water system with
both topography and friction source terms (1.5) cannot be written under the
form of an algebraic relation for all Z. Therefore, we only manage to preserve the
steady states up to the chosen discretization (4.4) of (1.7) (see [16, 28, 33, 46, 47]
where a similar approach is used).

We finally study how the approximate source term averages St and Sf , as
well as the terms St∆x/αt and Sf∆x/αf , behave when dealing with vanishing
water heights. First, we make the following assumption.

Assumption. When the height vanishes, so does the velocity.

This assumption allows us to state the following result, concerning the ap-
proximate topography source term.

Lemma 5. When hL or hR vanishes, the quantities St and St∆x/αt satisfy:

St∆x = −g (ZR − ZL)
hR + hL

2
and

St∆x

αt
= − (ZR − ZL) .
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The reader is referred to [35] for the detailed proof of this result. We then
turn to the approximate friction source term. We have to make the following
assumption in order to define it for vanishing water heights.

Assumption. Using Sf and αf respectively defined by (3.28) and (3.29a), we
impose that Sf and Sf/αf are zero as soon as hL and/or hR vanishes.

It makes sense to consider such a behavior. Indeed, as previously mentioned,
the friction contribution is assumed to vanish as soon as the water height van-
ishes. In order for both quantities Sf and Sf/αf to satisfy this requirement,
we have to impose that they vanish when hL and/or hR vanishes.

To handle the case where both hL and hR vanish (and thus qL = qR = 0), we
have to make sure that, in this case, q∗ = 0 and h∗L = h∗R = 0. This requirement
is met by taking St = 0 and St/αt = 0, as well as Sf = 0 and Sf/αf = 0, as
soon as both hL and hR are zero.

We can now state the following result, concerning the approximate Riemann
solver for both source terms of topography and friction.

Lemma 6. The intermediate states (4.7) satisfy the following properties:

(i) consistency with the shallow-water equations with topography and friction
(1.1);

(ii) well-balancedness: if WL and WR define a steady state, i.e. satisfy (4.4),
then W ∗L = WL and W ∗R = WR.

Moreover, we have:

(iii) with ε > 0, the positivity is preserved: if hL > 0, hR > 0 and hHLL > 0,
then h∗L ≥ ε and h∗R ≥ ε;

(iv) with ε = 0, the non-negativity is preserved: if hL ≥ 0, hR ≥ 0 and
hHLL ≥ 0, then h∗L ≥ 0 and h∗R ≥ 0.

Proof. For ε > 0, the proofs of (i), (ii) and (iii) are immediate. They come from
Lemma 3 as well as the results obtained in the current section. Now, assume
ε = 0. The intermediate states then rewrite:

q∗ = qHLL +
St∆x

λR − λL
+

Sf∆x

λR − λL
, (4.8a)

h∗L = min

((
hHLL −

λRS
t∆x

αt(λR − λL)
− λRS

f∆x

αf (λR − λL)

)

+

,

(
1− λR

λL

)
hHLL

)
,

(4.8b)

h∗R = min

((
hHLL −

λLS
t∆x

αt(λR − λL)
− λLS

f∆x

αf (λR − λL)

)

+

,

(
1− λL

λR

)
hHLL

)
.

(4.8c)
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From the computations on the limits of the approximate source terms when
hL and hR tend to 0 and by definition of St and Sf , the above expressions
are well-defined for all hL ≥ 0 and hR ≥ 0. Moreover, these new intermediate
states can be easily shown (see the proof of Lemma 3) to satisfy properties (i),
(ii) and (iv). Indeed, the proof of the consistency stated Lemma 3 is preserved,
and thus (i) holds. Then, (iv) is a direct consequence of the fact that h∗L and
h∗R are defined as the minimum of non-negative quantities.

Finally, concerning (ii) with ε = 0, we assume that WL and WR define a
steady state according to (4.4). If hL > 0, hR > 0 and hHLL > 0, then we know
from Lemma 3 that W ∗L = WL and W ∗R = WR. To handle the case where hL
or hR is zero, we first note that we still have q∗ = q0. To conclude the proof of
(ii), we have to show h∗L = hL and h∗R = hR if hL = 0 or hR = 0. For the sake
of simplicity, we assume that hL = 0. Then, uL = 0, and q0 = 0. From (4.4),
we get:

g

2

[
h2
]

= St∆x+ Sf∆x, (4.9)

Now, recall that the friction source term vanishes when q0 = 0. From the
expression (3.28) of Sf , this approximate friction source term also vanishes
as soon as q0 = 0. Thus, using Lemma 5, the equation (4.9) rewrites after
straightforward computations

hR = −ZR + ZL.

We can now compute h∗L and h∗R. First, consider the expressions (4.6). In this
case, they rewrite

h̃∗L = hHLL −
λR (ZR − ZL)

λR − λL
=
λRhR − λRhR
λR − λL

= 0,

h̃∗R = hHLL −
λL (ZR − ZL)

λR − λL
=
λRhR − λLhR
λR − λL

= hR.

Thus, (4.8b) and (4.8c) immediately yield h∗L = hL = 0 and h∗R = hR. Similar
computations show that we have the same result if hR vanishes instead of hL.
Finally, if both hL and hR vanish, then hHLL also vanishes, and we obtain
h∗L = 0 and h∗R = 0. Thus, the proof is achieved.

This lemma allows us to state the following result, that concerns the full scheme
(3.6).

Theorem 7. Consider Wn
i ∈ Ω for all i ∈ Z. Assume that the intermediate

states WL,∗
i+ 1

2

and WR,∗
i+ 1

2

are given, for all i ∈ Z, by

WL,∗
i+ 1

2

=

(
h∗L(Wn

i ,W
n
i+1)

q∗(Wn
i ,W

n
i+1)

)
and WR,∗

i+ 1
2

=

(
h∗R(Wn

i ,W
n
i+1)

q∗(Wn
i ,W

n
i+1)

)
, (4.10)

where q∗, h∗L and h∗R are given by (4.8). Then the Godunov-type scheme, given
by (3.6) under the CFL restriction (3.5), satisfies the following properties:
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1. consistency with the shallow-water system (1.1);

2. non-negativity preservation: ∀i ∈ Z, Wn+1
i ∈ Ω;

3. well-balancedness: if (Wn
i )i∈Z defines a steady state according to (4.4),

then ∀i ∈ Z, Wn+1
i = Wn

i . The same result holds for both topography-only
and friction-only steady states, respectively given by (1.9) and (1.10).

Proof. The same arguments as used in the proof of Theorem 4, while using the
results of Lemma 6, yield the proof of the theorem.

5. Implicitation of the source terms contribution: wet/dry transitions

The scheme (3.6) - (4.10) allows the simulation of wet/dry transitions. How-
ever, several spurious oscillations appear when such experiments are performed.
The stiffness of the source terms in the vicinity of wet/dry transitions, especially
the friction, induces these spurious oscillations. To correct such a failure, we
first rewrite this scheme in order to exhibit the numerical flux function and the
source terms contribution. Then, we adopt an explicit scheme for the transport
part, and an implicit scheme for the source part.

5.1. Reformulation of the scheme
In this subsection, we exhibit the numerical flux function and the numerical

source terms. To that end, the scheme (3.6), with intermediate states given by
(4.7), is rewritten after straightforward computations as follows (see for instance
[25]):

Wn+1
i = Wn

i −
∆t

∆x

(
fni+ 1

2
− fni− 1

2

)
+

∆t

2

(
sni+ 1

2
+ sni− 1

2

)
. (5.1)

The quantity fn
i+ 1

2

= f(Wn
i ,W

n
i+1) is the numerical flux function evaluated at

the interface xi+ 1
2
, and the quantity sn

i+ 1
2

is the numerical source term at the
interface xi+ 1

2
. These quantities are approximations of the flux and the source

term, respectively, and are defined by:

fni+ 1
2

=

(
(fh)n

i+ 1
2

(fq)n
i+ 1

2

)
and sni+ 1

2
=

(
0

(St)n
i+ 1

2

+ (Sf )n
i+ 1

2

)
. (5.2)

The quantities (St)n
i+ 1

2

and (Sf )n
i+ 1

2

are approximations of the topography and
the friction source terms, respectively. Adopting extended notations, they are
given by:

(St)ni+ 1
2

= St
(
hni , h

n
i+1, Zi, Zi+1

)
, (5.3a)

(Sf )ni+ 1
2

= Sf
(
hni , h

n
i+1, q

n
i , q

n
i+1

)
, (5.3b)
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where St and Sf are the approximate source terms already defined by (4.2) and
(3.28). The scheme (5.1) then reads:

hn+1
i = hni −

∆t

∆x

(
(fh)ni+ 1

2
− (fh)ni− 1

2

)
, (5.4a)

qn+1
i = qni −

∆t

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)

+
∆t

2

(
(St)ni+ 1

2
+ (St)ni− 1

2
+ (Sf )ni+ 1

2
+ (Sf )ni− 1

2

)
,

(5.4b)

where the approximate fluxes are defined by (5.2) and

fni+ 1
2

=
1

2

(
F (Wn

i ) + F (Wn
i+1)

)

+
λL
i+ 1

2

2

(
WL,∗
i+ 1

2

−Wn
i

)
+
λR
i+ 1

2

2

(
WR,∗
i+ 1

2

−Wn
i+1

)
.

(5.5)

For the sake of simplicity, we set:

(St)ni =
1

2

(
(St)ni− 1

2
+ (St)ni+ 1

2

)
and (Sf )ni =

1

2

(
(Sf )ni− 1

2
+ (Sf )ni+ 1

2

)
,

(5.6)
such that (5.4b) rewrites:

qn+1
i = qni −

∆t

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)
+ ∆t(St)ni + ∆t(Sf )ni . (5.7)

5.2. Implicitation of the source terms contribution
We now introduce a semi-implicit version of the Godunov-type scheme (5.1).

The main idea of this section is to use a splitting method (see for instance
[10, 40]) to reduce the impact of the aforementioned instabilities. The splitting
strategy we use here is to first consider an explicit treatment of the flux, then
an implicit treatment of both source terms. As a consequence, the first step,
devoted to the transport part ∂tW + ∂xf(W ) = 0, reads as follows:

h
n+ 1

3
i = hni −

∆t

∆x

(
(fh)ni+ 1

2
− (fh)ni− 1

2

)
, (5.8a)

q
n+ 1

3
i = qni −

∆t

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)
. (5.8b)

During the second step, devoted to the topography source term, we approx-
imately solve the initial value problem





dh

dt
= 0,

dq

dt
= St(W ),

with initial data




h(0) = h

n+ 1
3

i ,

q(0) = q
n+ 1

3
i ,
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where St(W ) = −gh∂tZ. We suggest the following implicit scheme to approxi-
mate hn+ 2

3
i and qn+ 2

3
i :

{
h
n+ 2

3
i = h

n+ 1
3

i , (5.9a)

q
n+ 2

3
i = q

n+ 1
3

i + ∆t(St)
n+ 2

3
i , (5.9b)

where, as per (5.6), (St)
n+ 2

3
i =

(
(St)

n+ 2
3

i+ 1
2

+ (St)
n+ 2

3

i− 1
2

)
/2, with, after (5.3a),

(St)
n+ 2

3

i+ 1
2

= St
(
h
n+ 2

3
i , h

n+ 2
3

i+1 , Zi, Zi+1

)
.

Let us underline that, during the second step, the evaluation of the implicit
unknowns is immediate since the topography source term involves known quan-
tities.

The third and last step concerns the friction and consists in solving




dh

dt
= 0,

dq

dt
= −kq|q|(hn+1

i )−η,
with initial data




h(0) = h

n+ 2
3

i ,

q(0) = q
n+ 2

3
i .

(5.10)

This system can be solved to find an analytic expression of the solution. For
t ∈ [0,∆t], the exact solution of the above system reads as follows:





h(t) = h(0), (5.11a)

q(t) =
h(0)ηq(0)

h(0)η + k t |q(0)|
. (5.11b)

Note that the analytic expression (5.11) guarantees that, for all t ∈ (0,∆t], the
sign of q(t) stays the same as the sign of q(0), and that |q(t)| < |q(0)|. This
behavior is consistent with the fact that friction should only slow the movement
of the fluid down, rather than changing its direction. Then, evaluating (5.11)
at t = ∆t and plugging the initial data yields





hn+1
i = h

n+ 2
3

i , (5.12a)

qn+1
i =

(
hn+1
i

)η
q
n+ 2

3
i(

hn+1
i

)η
+ k∆t |qn+ 2

3
i |

. (5.12b)

Let us note that the updated state t(hn+1
i , qn+1

i ) retains its non-negativity
preservation property, since the computations for hn+1

i have not been modified
and Theorem 7 applies. Furthermore, the expression (5.12b) is well-posed for
hn+1
i = 0 and, when that is the case, forces the discharge qn+1

i to vanish.
However, the well-balance property is lost. Indeed, ifWn

i−1,Wn
i andWn

i+1 define
a steady state, we do not necessarily recover qn+1

i = qni . As a consequence,
we decide to consider an approximation of

(
hn+1
i

)η
, denoted by (hη)n+1

i , in

23



(5.12b). This approximation is determined in order to ensure the required well-
balancedness of the scheme.

In order to obtain such an expression of (hη)n+1
i , we momentarily suppose

that Wn
i−1, Wn

i and Wn
i+1 define a steady state. In this case, we need to ensure

that Wn+1
i = Wn

i . Since the scheme (5.1) is well-balanced, the equation (5.7)
yields qn+1

i = qni , and can be rewritten as:

(Sf )ni =
1

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)
− (St)ni . (5.13)

Moreover, we have hn+ 2
3

i = hni . Therefore, by the definition (5.3a) of (St)ni , we
have (St)

n+ 2
3

i = (St)ni . The evaluation of qn+ 2
3

i is then obtained from (5.9b) as
follows:

q
n+ 2

3
i = qni −

∆t

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)
+ ∆t(St)ni . (5.14)

From (5.13) and (5.14), we immediately obtain

q
n+ 2

3
i = qni −∆t(Sf )ni .

Thus, when steady states are assumed and using (hη)n+1
i , (5.12b) reads

qni =
(hη)n+1

i

(
qni −∆t(Sf )ni

)

(hη)n+1
i + k∆t |qni −∆t(Sf )ni |

. (5.15)

We are now able to determine the expression of (hη)n+1
i that ensures the well-

balancedness of the scheme. We set µni = sgn qni and µ
n+ 2

3
i = sgn q

n+ 2
3

i . In
order to simplify the expression of the scheme, we propose to introduce a new
definition of (Sf )ni to be substituted in (5.6). We suggest the following formula:

(Sf )ni =
1

2

(
−kqni |qni |

(
h−η

)n+1

i− 1
2

− kqni |qni |
(
h−η

)n+1

i+ 1
2

)
, (5.16)

where (h−η)n+1
i− 1

2

and (h−η)n+1
i+ 1

2

are given with clear notations by (3.23). In
addition, for the sake of consistency, we have chosen to substitute (µ)n

i− 1
2

and
(µ)n

i+ 1
2

with µni . With this simplification in the source term approximation, we

get the following expression for (hη)n+1
i , from (5.15) and (5.16):

(hη)n+1
i =

2µ
n+ 2

3
i µni(

h−η
)n+1

i− 1
2

+
(
h−η

)n+1

i+ 1
2

+ k∆t µ
n+ 2

3
i qni .

The above expression can then be rewritten as

(hη)n+1
i =

2kµ
n+ 2

3
i ∆x

kµni ∆x
(
βn+1
i− 1

2

+ βn+1
i+ 1

2

)
−
(
γn+1
i− 1

2

+ γn+1
i+ 1

2

) + k∆t µ
n+ 2

3
i qni , (5.17)
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where we have set

βn+1
i+ 1

2

=
η + 2

2

(
hn+1
i+1

)2 −
(
hn+1
i

)2
(
hn+1
i+1

)η+2 −
(
hn+1
i

)η+2 , and

γn+1
i+ 1

2

=
1

hn+1
i+1

− 1

hn+1
i

+ βn+1
i+ 1

2

(
hn+1
i+1

)η−1 −
(
hn+1
i

)η−1

η − 1
.

Computations within the expression of (hη)n+1
i show that it tends to 0 as soon

as hn+1
i−1 , h

n+1
i or hn+1

i+1 tends to 0, which is a good behavior when dealing with
wet/dry transitions. We have therefore devised a way to consider the source
terms contribution in an implicit way, while still retaining the well-balance prop-
erty of the scheme. We can thus state the following result.

Theorem 8. The scheme (5.8) - (5.9) - (5.12) - (5.17) is positivity-preserving
and well-balanced. Indeed, if (Wn

i )i∈Z defines a steady state according to (4.4),
then ∀i ∈ Z, Wn+1

i = Wn
i . The same result holds for both topography-only and

friction-only steady states, respectively given by (1.9) and (1.10).

Proof. We begin this proof by recalling that, from (5.8), (5.9) and (5.12), we
have hn+1

i = h
n+ 1

3
i . Therefore, since hn+ 1

3
i is given by the full scheme (3.6),

which is positivity-preserving, the scheme under consideration is positivity-
preserving. We now have to show that it is well-balanced. To that end, assume
that Wn

i−1, Wn
i and Wn

i+1 define a steady state, according to (4.4), (1.9) or
(1.10). Using a similar chain of arguments as above, we immediately recover
that hn+1

i = hni . To complete the proof, we now have to show that qn+1
i = qni .

The updated discharge qn+1
i is given by (5.12), with qn+ 2

3
i defined by (5.9) and

(5.8). Since (hη)n+1
i is given by (5.17) and has been chosen to ensure qn+1

i = qni ,
the proof is concluded.

6. Second-order MUSCL extension

We devote this section to a second-order extension based on a MUSCL tech-
nique (for instance, see [42, 43, 29, 30, 40]), to improve the space accuracy of
the scheme. The MUSCL procedure involves a piecewise linear reconstruction,
instead of piecewise constant, in the Godunov-type scheme. In addition, we use
Heun’s method to increase the time accuracy of the scheme.

6.1. The MUSCL reconstruction
The variables to be reconstructed are h, q and h + Z. Thus, note that the

approximation of Z turns out to be time-dependent. For the sake of simplicity
and conciseness in the notations, consider w ∈ {h, q, h+Z}. The reconstruction
procedure consists in replacing the constant state wni with a linear approxima-
tion, given in each cell (xi− 1

2
, xi+ 1

2
) by

wni (x) = wni + (x− xi)σni ,
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where σni is the limited slope of the linear reconstruction. A limiter is applied to
this slope, in order to improve the stability of the scheme. Here, we have chosen
the classical minmod limiter (the reader is referred for instance to [30] for more
details regarding the use of slope limiters and a wider range of limiters). The
limited slope σni is thus given by

σni = minmod

(
wni+1 − wni

∆x
,
wni − wni−1

∆x

)
,

where the minmod function is defined by

minmod(a, b) =





a if |a| < |b| and ab > 0,

b if |a| > |b| and ab > 0,

0 if ab ≤ 0.

Thus, at the inner interfaces of the cell (xi− 1
2
, xi+ 1

2
), the reconstructed variables

are given by

w−i := wni

(
xi −

∆x

2

)
= wni −

∆x

2
σni , (6.1a)

w+
i := wni

(
xi +

∆x

2

)
= wni +

∆x

2
σni . (6.1b)

Since w ∈ {h, q, h+Z}, the reconstructed value of Z at the interfaces is computed
from the reconstructed values of h+ Z and h at the interfaces.

Therefore, the updated states are given by the following three step scheme.

• Transport step:

h
n+ 1

3
i = hni −

∆t

∆x

(
(fh)ni+ 1

2
− (fh)ni− 1

2

)
, (6.2a)

q
n+ 1

3
i = qni −

∆t

∆x

(
(fq)ni+ 1

2
− (fq)ni− 1

2

)
, (6.2b)

where (fh)n
i+ 1

2

:= fh(W+
i ,W

−
i+1) and (fq)n

i+ 1
2

:= fq(W+
i ,W

−
i+1) according

to (5.5). The water height hn+ 1
3

i is then reconstructed within the cell
(xi− 1

2
, xi+ 1

2
), following (6.1), to get h−i and h+

i .

• Topography step:

h
n+ 2

3
i = h

n+ 1
3

i , (6.3a)

q
n+ 2

3
i = q

n+ 1
3

i + ∆t(St)
n+ 2

3
i , (6.3b)

(St)
n+ 2

3
i =

1

2

(
St(h+

i−1, h
−
i , Z

+
i−1, Z

−
i ) + St(h+

i , h
−
i+1, Z

+
i , Z

−
i+1)

)
, (6.3c)

where St is defined by (4.2).
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• Friction step:

hn+1
i = h

n+ 2
3

i , (6.4a)

qn+1
i =

(
(hη)n+1

i

)η
q
n+ 2

3
i(

(hη)n+1
i

)η
+ k∆t |qn+ 2

3
i |

, (6.4b)

(hη)n+1
i =

2µ
n+ 2

3
i µni(

h−η
)n+1

i− 1
2

+
(
h−η

)n+1

i+ 1
2

+ k∆t µ
n+ 2

3
i qni , (6.4c)

where (h−η)n+1
i− 1

2

:= h−η(h+
i , h

−
i+1), according to (3.23).

Finally, the scheme’s time accuracy is improved by the use of the classical
Heun’s method (see [22]).

6.2. MOOD technique to recover the well-balance property
At this level, the designed MUSCL scheme is not well-balanced. Indeed, if

Wn
i and Wn

i+1 define a steady state, the reconstruction step (6.1) will provide
reconstructed values W+

i and W−i+1 that no longer define a steady state. Thus,
the scheme will not be able to exactly preserve the initial steady state, but will
provide a second-order approximation. To restore this essential property, we
use a MOOD-like technique (see [13] for an overview of such techniques, and [7]
for more recent applications). We suggest to introduce a convex combination
between the reconstructed state and the non-reconstructed one (see [26] for
related work). As a consequence, we adopt the following reconstruction:

w−i = (1− θni )wni + θni

(
wni −

∆x

2
σni

)
= wni −

∆x

2
σni θ

n
i , (6.5a)

w+
i = (1− θni )wni + θni

(
wni +

∆x

2
σni

)
= wni +

∆x

2
σni θ

n
i , (6.5b)

where 0 ≤ θni ≤ 1 is the parameter of the convex combination. If θni = 1, the
full MUSCL scheme is recovered. If θni = 0, the states are not reconstructed
and the first-order well-balanced scheme is used.

Now, we propose a suitable process to define the parameter θni . To that end,
we first define

∆ψni+ 1
2

=
(qni+1)2

hni+1

− (qni )2

hni
+
g

2

(
(hni+1)2 − (hni )2

)
−∆xSti+ 1

2
−∆xSf

i+ 1
2

,

where Sti+ 1
2
= St(hni , h

n
i+1, Zi, Zi+1) and Sf

i+ 1
2

= Sf (hni , h
n
i+1, qi, qi+1), with St

and Sf respectively defined by (4.2) and (3.28). Note that, from (4.4), ∆ψn
i+ 1

2

vanishes when Wn
i and Wn

i+1 define a steady state. Thus, from this quantity,
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we define a function to evaluate the deviation with respect to the equilibrium,
as follows:

ϕni =

∥∥∥∥∥

(
qni − qni−1

∆ψn
i− 1

2

)∥∥∥∥∥
2

+

∥∥∥∥∥

(
qni+1 − qni
∆ψn

i+ 1
2

)∥∥∥∥∥
2

.

Since ∆ψn
i+ 1

2

vanishes when Wn
i and Wn

i+1 define a steady state, this newly
introduced quantity ϕni vanishes when Wn

i−1, Wn
i and Wn

i+1 define a steady
state. Let M > m > 0. We define the parameter of the convex combination θni
as follows:

θi =





0 if ϕni < m∆x

ϕni −m∆x

M∆x−m∆x
if m∆x ≤ ϕni ≤M ∆x

1 if ϕni > M ∆x.

(6.6)

This definition of θi enforces the use of the MUSCL scheme if the states are
far from defining a steady state, i.e. ϕni is large enough; the first-order well-
balanced scheme is used if the equilibrium error ϕni is small enough. In addition,
the closer the states are to the equilibrium, the more the convex combination
will favor the first-order well-balanced scheme.

7. Numerical experiments

This last section is devoted to numerical tests, in one and two dimensions.
We start by recalling the different schemes we shall test:

• the explicit scheme is (3.6) - (4.10);

• the implicit scheme is (5.8) - (5.9) - (5.12) - (5.17);

• the MUSCL scheme is (6.2) - (6.3) - (6.4) - (6.5).

In order to assess the properties of these schemes, we present three sets of nu-
merical experiments. The first set assesses the well-balancedness of the scheme,
by considering steady states at rest and moving steady states with topography
and/or friction. The focus of the second set is the simulation of wet and dry
dam-breaks, over a possibly complicated topography, and with a nonzero Man-
ning coefficient k. Finally, the third set of experiments concerns simulations in
two dimensions.

The constants will be chosen according to the following table.

Constant Equation Value

g (1.1) 9.81
ελ (3.3) 10−10

ε (3.29) 0

Table 1: Values of the constants within the numerical experiments.
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Moreover, we will compute errors to make sure the schemes are indeed well-
balanced. The L1, L2 and L∞ errors for a bounded function w are computed
as follows:

L1 :
1

N

N∑

i=1

|wi − wexi | ; L2 :

√√√√ 1

N

N∑

i=1

(wi − wexi )
2

; L∞ : max
1≤i≤N

|wi − wexi |,

where wi and wexi are respectively the approximate and the exact solution at the
point xi and at the final physical time tend, andN is the number of discretization
cells. Finally, we recall that the CFL condition (3.5) gives the time step ∆t at
each iteration, as follows:

∆t ≤ ∆x

2Λ
, where Λ = max

i∈Z

(
λLi+ 1

2
, λRi+ 1

2

)
.

7.1. Verification of the well-balancedness
In this first set of experiments, we assess the well-balancedness of the scheme,

i.e. its ability to exactly preserve and capture steady states. Recall that steady
states are given by the equation (1.5), which prescribes a uniform discharge
over the space domain, denoted q0. First, we consider steady states at rest,
i.e. q0 = 0. Then, we consider moving steady states with a vanishing friction
contribution, i.e. k = 0. Afterwards, steady states for the friction source term
only are studied, that is to say we impose q0 6= 0 and ∂xZ = 0. Finally,
we consider steady states for both friction and topography, which are either
analytic solutions in specific cases or steady states obtained by approximately
solving (1.5).

7.1.1. Lake at rest steady states
We begin by lake at rest steady states, to assess the well-balancedness of the

explicit, implicit and MUSCL schemes. In the three cases we consider, we have
q0 = 0 and k = 10. Since the friction contribution to the equations vanishes
as soon as q0 = 0, the smooth steady states are given by ∂x(h + Z) = 0, i.e.
the free surface stays uniform over the wet domain. We consider three different
steady states at rest. All three of these experiments are performed with 200
discretization cells, over the domain [0, 1] and until a final time tend = 1s. The
exact solution at rest is imposed at the boundaries. The initial conditions are
q(x) = 0 and h(x) + Zi(x) = 2, with topographies (Zi)i∈{1,2,3} given by

Z1(x) = (1− 2 |2x− 1|)+ ;

Z2(x) = 1[ 12 ,1](x);

Z3(x) = (4x− 1) 1[ 12 ,1](x).

These initial free surfaces are presented Figure 4. Note that Z2 and Z3 are
discontinuous, and that the experiment where Z3 is used involves a dry/wet
transition. The results of the simulations with the three schemes are presented
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Figure 4: From left to right: free surfaces for the lake at rest experiments, with topographies
given by Z1, Z2 and Z3.

h+ Z q

L1 L2 L∞ L1 L2 L∞

explicit 2.28e-16 2.92e-16 8.88e-16 1.31e-15 1.75e-15 4.81e-15
implicit 9.10e-16 9.19e-16 1.33e-15 1.45e-15 2.02e-15 5.30e-15
MUSCL 4.96e-16 6.78e-16 1.55e-15 5.18e-15 6.29e-15 1.39e-14

Table 2: Free surface and discharge errors for the steady state at rest experiment, with
topography given by Z1.

h+ Z q

L1 L2 L∞ L1 L2 L∞

explicit 0 0 0 2.12e-16 6.09e-16 2.78e-15
implicit 0 0 0 2.08e-16 6.05e-16 2.78e-15
MUSCL 0 0 0 2.11e-16 6.18e-16 2.78e-15

Table 3: Free surface and discharge errors for the steady state at rest experiment, with
topography given by Z2.

h+ Z q

L1 L2 L∞ L1 L2 L∞

explicit 7.99e-17 1.88e-16 6.66e-16 3.21e-16 5.32e-16 1.96e-15
implicit 9.55e-17 1.84e-16 6.66e-16 4.84e-16 7.38e-16 2.01e-15
MUSCL 0 0 0 0 0 0

Table 4: Free surface and discharge errors for the steady state at rest experiment, with
topography given by Z3.

in Tables 2 - 3 - 4. We used C = +∞ in (4.3), and we took m = 10−15 and
M = 10−14 in (6.6). Numerically, we set C as the upper bound of the double
precision floating point numbers.

Tables 2 - 3 - 4 present the results of the three schemes at time tend = 1s.
The three schemes exactly preserve the lake at rest steady state, even in the
cases of a discontinuous topography and a dry/wet transition.
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7.1.2. Moving steady states for the topography only
Now, after [23], we consider moving steady states without friction, i.e. k = 0.

Two experiments are carried out, the subcritical flow and the transcritical flow
without shock. From now on, they will respectively be referred to as GM1 and
GM2. Since we consider steady states without friction, they are governed by
q(x) = q0 and the equation (1.9). For smooth steady states, this equation can
be rewritten as follows:

∂x

(
q2
0

2h2
+ g (h+ Z)

)
= 0.

Note that the above equation states Bernoulli’s principle, and reads

q2
0

2h2
+ g (h+ Z) = H,

with H the total head, which is uniform throughout the domain. Since the
schemes under consideration are well-balanced, they should capture these two
moving steady states up to the machine precision, i.e. H and q should be
uniform. Thus, we will compute the errors to these constants.

According to [23], the space domain is [0, 25] and the topography is given
by Z(x) =

(
0.2− 0.05(x− 10)2

)
+
. With subscripts 1 and 2 respectively corre-

sponding to GM1 and GM2, the initial data are q(x) = 0 and h(x) +Z(x) = hi,
where h1 = 2 and h2 = 0.66. With q0 = 4.42 for GM1 and q0 = 1.53 for GM2,
the boundary conditions are as follows.

• On the left boundary x = 0, a homogeneous Neumann boundary condition
is prescribed for h, and we impose the Dirichlet boundary condition q = q0.

• On the right boundary x = 25, we have a homogeneous Neumann bound-
ary condition for q and h. Moreover, as soon as the flow becomes subcrit-
ical, the Dirichlet condition h = hi is imposed.

Note that these initial and boundary conditions ensure a transient state will be
followed by a moving steady state with uniform discharge q0.

Both these experiments are executed with 200 discretization cells, and are
simulated until tend = 650s for GM1 and tend = 175s for GM2. For GM1, we
take C = +∞, m = 10−10 and M = 0.5; for GM2, we take C = 2.5, m = 10−10

and M = 0.5. The results of the explicit scheme are displayed Figures 5 - 6,
and Tables 5 - 6 show the errors to the steady state for all three schemes.

Tables 5 and 6 indeed show that the steady state is captured up to the
machine precision by the proposed schemes. Note that the presence of the
transient state does not affect the ability of the scheme to preserve these two
moving steady states.

7.1.3. Steady states for the friction source term
We now focus on the preservation of the friction-only steady states. Thus,

we assume q0 6= 0 and a flat topography, i.e. ∂xZ = 0. The smooth steady
states are then given according to (1.10), or equivalently (2.2).
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Figure 5: Left panel: free surface and topography for the GM1 experiment. Right panel:
errors for the GM1 experiment using the explicit scheme; the solid line is the total head error
and the dashed line is the discharge error.

H q

L1 L2 L∞ L1 L2 L∞

explicit 1.18e-13 1.25e-13 1.53e-13 6.65e-14 6.99e-14 8.26e-14
implicit 4.51e-14 5.37e-14 7.82e-14 7.55e-15 8.29e-15 1.42e-14
MUSCL 1.32e-14 1.44e-14 2.84e-14 2.28e-14 2.59e-14 3.82e-14

Table 5: Total head and discharge errors for the GM1 experiment, using the explicit, implicit
and MUSCL schemes.

Figure 6: Left panel: free surface and topography for the GM2 experiment. Right panel:
errors for the GM2 experiment using the explicit scheme; the solid line is the total head error
and the dashed line is the discharge error.

H q

L1 L2 L∞ L1 L2 L∞

explicit 1.67e-14 2.13e-14 4.26e-14 1.47e-14 1.58e-14 2.04e-14
implicit 2.32e-14 2.67e-14 3.91e-14 1.31e-14 1.37e-14 1.67e-14
MUSCL 1.79e-14 2.23e-14 4.62e-14 1.06e-14 1.17e-14 2.18e-14

Table 6: Total head and discharge errors for the GM2 experiment, using the explicit, implicit
and MUSCL schemes.

In Section 2, the water height for a smooth steady state was obtained by
considering a zero of the nonlinear function ξ defined by (2.5). We consider the
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subcritical branch of the steady state obtained by assuming q0 = −1, x0 = 0
and h0 = hc, with hc defined by (2.6), over the domain [0, 1]. The Manning
coefficient k is chosen equal to 1.

The first experiment concerns the preservation of this steady state. We take
q(x) = q0 and the exact height as initial conditions, and we impose the exact
solutions as inhomogeneous Dirichlet boundary conditions. We use a mesh of
200 cells and compute the approximate solution until the final time tend = 1s.
Moreover, the parameters are taken as follows: C = 10−3, m = 10−14 and
M = 10−13. The results are presented Figure 7, and the errors to the steady
state are displayed Table 7.

Figure 7: Left panel: initial height for the friction steady state. Right panel: height (solid
line) and discharge (dashed line) errors to the steady state after 1s, with the explicit scheme.

h q

L1 L2 L∞ L1 L2 L∞

explicit 6.00e-17 1.09e-16 7.77e-16 1.81e-16 2.56e-16 8.88e-16
implicit 6.49e-17 1.15e-16 7.77e-16 2.91e-16 3.82e-16 9.99e-16
MUSCL 8.49e-17 1.33e-16 6.66e-16 2.42e-16 3.30e-16 8.88e-16

Table 7: Height and discharge errors with the three schemes for the friction steady state.

From Figure 7 and Table 7, we observe that this friction-only steady state
is indeed preserved up to the machine precision by the three schemes.

The second experiment uses the same steady state as the first one, but with a
perturbation, as shown in Figure 8. With hex the exact height, this perturbation
is defined by choosing the initial water height as follows:

h(x) =




hex(x) + 0.2 if x ∈

[
3

7
,

4

7

]
;

hex(x) otherwise.

The initial discharge is unperturbed, and taken equal to q0 = −1 throughout the
domain. The boundary conditions consist in the unperturbed exact solution. We
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use the three schemes and 100 discretization cells for the numerical simulation.
Moreover, we take C = 10−3, m = 10−14 and M = 10−1. The computations
are carried out until the final time tend = 9s. Indeed, such a final time allows
the perturbation to be dissipated and a steady state to be reached. In fact, this
steady state is the original, unperturbed steady state. The results of the explicit
scheme are presented Figure 8 and an error comparison with the unperturbed
steady state is provided Table 8.

Figure 8: From left to right: water height for t = 0s, t = 0.06s and t = 9s, with the explicit
scheme.

h q

L1 L2 L∞ L1 L2 L∞

explicit 7.42e-15 7.48e-15 8.55e-15 7.06e-15 8.32e-15 1.48e-14
implicit 7.06e-15 7.09e-15 8.10e-15 7.61e-15 8.81e-15 1.51e-14
MUSCL 8.40e-15 8.47e-15 1.04e-14 6.56e-15 7.52e-15 1.73e-14

Table 8: Height and discharge errors with the three schemes for the perturbed friction steady
state.

Figure 8 shows that the perturbation is eventually dissipated and we recover
the unperturbed steady state. This assertion is confirmed by the error analysis
present Table 8, which shows that all three schemes recover the unperturbed
steady state up to the machine precision.

Remark 3. We have carried out similar experiments with a supercritical branch
instead of the subcritical branch. These experiments yielded similar conclusions.
For the sake of conciseness, we do not present them here.

7.1.4. Steady states with both friction and topography
We conclude the verification of the well-balancedness with numerical experi-

ments consisting in the preservation of steady states involving both topography
and friction. Thus, k 6= 0, ∂xZ 6= 0, and q0 6= 0. Steady states are therefore
given by the full equation (1.5). Recall that this equation cannot be rewritten
under an algebraic form. Thus, to find a general steady state solution, we have
to numerically solve the equation (1.5).

We begin by considering two very specific cases, where the height or the free
surface are constant, in order to obtain an analytical solution of (1.5).
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First, assume h(x) = h0, i.e. the water height is uniform and equal to h0 in
the whole space domain. Thus, (1.7) rewrites

gh0∂xZ + kq0|q0|hη0 = 0,

and we immediately obtain a relation characterizing the slope of the topography:

∂xZ = −kq0|q0|
ghη+1

0

. (7.1)

This specific case is tested numerically by taking h0 = q0 = 1, k = 10, Z(0) = 0
and the slope of Z given by (7.1). The space domain is [0, 1] and is discretized
using 100 cells. The initial and boundary conditions are the exact solution. The
computations are carried out with all three schemes, and we choose tend = 1s.
We take C = +∞, m = 10−14 and M = 10−13. The results are presented
Table 9.

h q

L1 L2 L∞ L1 L2 L∞

explicit 9.99e-18 3.68e-17 2.22e-16 9.99e-17 1.84e-16 6.66e-16
implicit 2.22e-17 5.21e-17 2.22e-16 9.99e-17 1.84e-16 6.66e-16
MUSCL 0 0 0 2.55e-17 6.75e-17 2.22e-16

Table 9: Height and discharge errors for the topography and friction steady state with constant
height.

Table 9 shows that this topography and friction steady state with constant
height is indeed exactly preserved by the three schemes.

To build another exact solution of (1.5), we assume h + Z = H0 instead
of h = h0. We therefore have a constant free surface H0 over the whole space
domain [0, 1]. Note that (1.7) rewrites for smooth solutions with positive water
height as follows:

− q
2
0

h2
∂xh+ gh∂x(h+ Z) +

kq0|q0|
hη

= 0.

Since the free surface h+ Z is constant, the above relation rewrites

hη−2∂xh = kµ0, (7.2)

where µ0 = sgn(q0). For x ∈ [0, 1], integrating (7.2) over [0, x] provides an
expression of h that depends on the initial condition h0 := h(0), namely:

hη−1 = hη−1
0 + (η − 1) kµ0x. (7.3)

Note that (7.3) defines an expression of the height that may become non-positive
for some x. Thus, we choose the constants k, q0 and h0 such that h is positive
over the whole domain [0, 1]. In the simulation, we set k = q0 = h0 = 1.
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Equipped with the water height, we define the topography by setting Z = H0−h.
We discretize the space domain with 100 cells and use the three schemes to carry
out the simulation until the time tend = 1s. We take C = +∞, m = 10−13 and
M = 10−12. An error comparison of the three schemes is displayed Table 10.

h q

L1 L2 L∞ L1 L2 L∞

explicit 4.23e-15 4.48e-15 6.66e-15 3.06e-14 3.07e-14 3.60e-14
implicit 1.31e-16 2.00e-16 6.66e-16 1.45e-15 1.83e-15 4.88e-15
MUSCL 8.88e-17 1.57e-16 4.44e-16 4.46e-16 6.81e-16 2.22e-15

Table 10: Height and discharge errors for the topography and friction steady state with
constant free surface.

The results presented Table 10 show that the steady state is preserved up
to the machine precision by the explicit, implicit and MUSCL schemes.

Finally, we derive a steady state for the shallow-water equations with topog-
raphy and friction, without considering a constant height or free surface. Thus,
we approximately solve the discretization (4.4) of the full equilibrium relation
(1.7). First, we set k = 0.01 and choose [0, 1] to be the space domain. Moreover,
the topography is given by

Z(x) =
1

2

ecos(4πx) − e−1

e1 − e−1
.

We set q = q0 throughout the domain. The equation (4.4) is then approximately
solved using Newton’s method, imposing h(0) = 0.3. This procedure allows us
to define the water height over the whole domain. This steady state t(h, q) is
then chosen as the initial and boundary conditions for this experiment. We take
100 discretization cells, C = +∞, m = 10−13 and M = 10−12. The numerical
simulation of this experiment is done using all three schemes, and runs until a
final physical time tend = 1s. The results of the explicit scheme are presented
Figure 9 and the errors to the steady state are displayed Table 11.

h q

L1 L2 L∞ L1 L2 L∞

explicit 3.54e-16 4.49e-16 1.11e-15 1.66e-15 2.16e-15 3.55e-15
implicit 5.73e-16 8.99e-16 3.00e-15 5.07e-16 6.29e-16 1.55e-15
MUSCL 3.52e-17 5.40e-17 1.67e-16 3.75e-16 4.85e-16 1.33e-15

Table 11: Height and discharge errors with the three schemes for the topography and friction
steady state.

Figure 9 shows that the explicit scheme exactly preserves this topography
and friction steady state. Moreover, Table 11 shows that both other schemes
also exactly preserve such a steady state.
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Figure 9: Left panel: initial height for the topography and friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state with the explicit
scheme.

The very last experiment in the well-balancedness assessment focuses on a
perturbation of the aforementioned steady state. We denote by hex(x) the water
height of the previous topography and friction steady state. The initial water
height of this last experiment is then given by

h(x) =




hex(x) + 0.05 if x ∈

[
2

7
,

3

7

]⋃[
4

7
,

5

7

]
,

hex(x) otherwise,

and the discharge is defined by

q(x) =




q0 +

1

2
if x ∈

[
2

7
,

3

7

]⋃[
4

7
,

5

7

]
,

q0 otherwise.

The unperturbed steady state is prescribed as the boundary conditions. For this
numerical experiment, the domain [0, 1] is discretized with 100 cells, and the
simulation runs until the perturbation has been dissipated and the unperturbed
steady state has been recovered. The final physical time we choose for these
conditions to be met is tend = 2s. Moreover, we set the parameters as C = +∞,
m = 10−15 and M = 0.05. The evolution of the perturbation with the explicit
scheme is presented Figure 10. Then, in Table 12, we present the errors to the
original unperturbed steady state when the physical time is elapsed.

Figure 10 and Table 12 show that the scheme indeed allows to recover the
original unperturbed steady state. This experiment emphasizes the ability of
the three schemes to exactly capture a steady state, even after a perturbation.

7.2. Dam-break test cases
Now, we focus on dam-break numerical experiments. In these experiments,

we consider a dam located at x = xD that instantly breaks at t = 0s, thus
releasing the water it was holding. Such a dam-break experiment has initial data
WL = t(hL(x), 0) if x ≤ xD and WR = t(hR(x), 0) if x > xD. The topography
function Z and the Manning coefficient k are different in each experiment.
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Figure 10: From left to right: water height for t = 0s, t = 0.015s and t = 2s, with the explicit
scheme.

h q

L1 L2 L∞ L1 L2 L∞

explicit 5.10e-16 7.09e-16 2.44e-15 2.20e-15 2.92e-15 5.33e-15
implicit 4.85e-16 7.97e-16 2.72e-15 9.73e-16 1.15e-15 2.78e-15
MUSCL 6.46e-16 9.40e-16 3.50e-15 1.71e-15 2.23e-15 4.22e-15

Table 12: Height and discharge errors with the three schemes for the perturbed topography
and friction steady state.

7.2.1. Wet dam-break
The first dam-break experiment under consideration is a wet dam-break.

Here, the topography is given by Z(x) = cos2 (2πx) /2 and the Manning coeffi-
cient is k = 1. The space domain is [0, 1] and the dam is located at xD = 0.5.
We prescribe homogeneous Neumann boundary conditions at both boundaries.
The initial data is hL(x) + Z(x) = 2 and hR(x) + Z(x) = 1. The results, ob-
tained using 100 discretization cells and tend = 0.05s, are displayed Figure 11.
For this simulation, we choose C = 10, m = 10−6 and M = 10−1. The goal of
this experiment is to compare the three schemes at our disposal to a reference
solution, obtained using the MUSCL scheme with 104 discretization cells.

The three schemes yield a correct approximation of the reference solution.
The explicit and the implicit schemes yield very close solutions, while the
MUSCL scheme provides a better approximation of the reference solution.

An important remark we highlight is that the free surface yet untouched
by the rarefaction wave or the shock wave should be unperturbed. This means
that h(x) + Z(x) = 2 and q(x) = 0 for all x inferior to the position of the head
of the rarefaction wave, and h(x) + Z(x) = 1 and q(x) = 0 for all x superior
to the position of the shock wave. This behavior corresponds to a lake at rest
configuration in the regions untouched by the waves. This lake at rest behavior
is exactly preserved by the explicit and implicit schemes. The MUSCL scheme,
equipped with the correction (6.5), also exactly preserves this configuration.
This experiment showcases the relevance of the convex combination procedure
involved in the MUSCL scheme, to preserve steady states while still ensuring a
better approximation of the exact solution.
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Figure 11: Free surface observed at the final physical time with the three schemes, for the wet
dam-break experiment.

7.2.2. Dry dam-break
Now, we consider a dry dam-break. The topography is still given by Z(x) =

cos2 (2πx) /2 and the Manning coefficient is now k = 10. The initial data is
hL(x) + Z(x) = 2 and hR(x) = 0. The space domain is [0, 1] and the dam is
located at xD = 0.5. Moreover, the boundaries at x = 0 and x = 1 are equipped
with homogeneous Neumann boundary conditions. We use 100 discretization
cells and display the results Figure 12 at time tend = 0.05s. We choose the
constants C = 7.5, m = 10−6 and M = 10−1. We use the implicit and MUSCL
schemes. Indeed, the explicit scheme present instabilities when dealing with
dry/wet transitions. We also provide a reference solution for comparison pur-
poses, obtained with the MUSCL scheme using 104 discretization cells.

The reference solution is once again correctly approximated by the two
schemes, and the MUSCL scheme provides a better approximation of the solu-
tion than the implicit scheme. We make the same important remark concerning
the preservation of the lake at rest behavior before the head of the rarefaction
wave.

7.2.3. Dry dam-break with two bumps
This last dry dam-break experiment presents a more complicated topogra-

phy, with two bumps. The space domain is [0, 5] and we choose to use 104

discretization cells with the MUSCL scheme to have a relevant simulation. The
two boundaries at x = 0m and x = 5m are solid walls. The topography is
defined by

Z(x) =
1

2

(
1− (x− 5/2)2

1/25

)

+

+ 2

(
1− (x− 4)2

1/25

)

+

,
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Figure 12: Free surface observed at the final physical time with the implicit and MUSCL
schemes, for the dry dam-break experiment.

and indeed consists in two quadratic bumps, a smaller one followed by a larger
one. The dam is located at xD = 0.7m, breaks at t = 0s, and contains an initial
water height hL = 6m. The domain x > xD contains no water, i.e. hR = 0. We
choose a Manning coefficient k equal to 1. Figure 13 shows that the initial water
height is significantly larger than the bumps. Indeed, we elected to have a larger
mass of water whose energy is important enough not to be completely dissipated
by the bottom friction. We choose C = 0.1, m = 10−5 and M = 10−1.

Figure 13: Free surface for the double bump test case at different times: from left to right
and top to bottom, the solution is observed at times 0s, 0.38s, 0.74s and 1.70s.
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7.3. 2D simulations
The subsection is devoted to experiments in two space dimensions. We

begin by stating the shallow-water equations with topography and friction for
two-dimensional geometries:





∂th+ ∂xp+ ∂yq = 0,

∂tp+ ∂x

(
p2

h
+

1

2
gh2

)
+ ∂y

(pq
h

)
= −gh∂xZ − kpDh−η,

∂tq + ∂x

(pq
h

)
+ ∂y

(
q2

h
+

1

2
gh2

)
= −gh∂yZ − kqDh−η,

(7.4)

where p is the discharge in the x direction, q is the discharge in the y direction,
and D is the Euclidean norm of the discharge vector, i.e. D =

√
p2 + q2. We

rewrite (7.4) under the following condensed form:

∂tW + ∂xf(W ) + ∂yg(W ) = s(W ),

where the definitions of W , f , g and s can easily be inferred from (7.4).
The numerical approximation involves a uniform Cartesian grid, made of

square cells with sides ∆x = ∆y. For the 2D simulations, we will consider
2D variants of the implicit and MUSCL scheme, by applying the 1D strategy
detailed in Section 5 and Section 6 in both directions, horizontal and vertical, of
each square cell. This process involves exactly solving the initial value problem
(5.10), related to the contribution of the friction only. However, this initial value
problem is modified in two dimensions. Indeed, we have to solve




dh

dt
= 0,

dp

dt
= −k(hn+1

i,j )−ηp
√
p2 + q2,

dq

dt
= −k(hn+1

i,j )−ηq
√
p2 + q2,

with initial data





h(0) = h
n+ 2

3
i,j ,

p(0) = p
n+ 2

3
i,j ,

q(0) = q
n+ 2

3
i,j .

(7.5)

We immediately see that hn+1
i,j = h

n+ 2
3

i,j . For the sake of simplicity in the no-

tations, we set C = −k(hn+1
i,j )−η < 0, pn = p

n+ 2
3

i,j and qn = q
n+ 2

3
i,j . Thus, (7.5)

rewrites as the following initial value problem:
{
p′ = Cp

√
p2 + q2,

q′ = Cq
√
p2 + q2,

with initial data

{
p(0) = pn,

q(0) = qn.

The exact solution to this system is:

p(t) =
pnh

n+1
i,j

hn+1
i,j + kt

√
p2
n + q2

n

and q(t) =
qnh

n+1
i,j

hn+1
i,j + kt

√
p2
n + q2

n

.
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Therefore, the friction step of the implicit procedure yields the following updated
discharges:

pn+1
i,j =

p
n+ 2

3
i,j (hn+1

i,j )η

(hn+1
i,j )η + k∆t

√
(p
n+ 2

3
i,j )2 + (q

n+ 2
3

i,j )2

,

qn+1
i,j =

q
n+ 2

3
i,j (hn+1

i,j )η

(hn+1
i,j )η + k∆t

√
(p
n+ 2

3
i,j )2 + (q

n+ 2
3

i,j )2

.

The quantity (hn+1
i,j )η is then replaced with the average given by (5.17), taken

in the x direction for pn+1
i,j and in the y direction for qn+1

i,j .
Such a 2D scheme will be able to exactly preserve the 1D steady states taken

in the x direction or the y direction. Moreover, the splitting procedure allows
simulating dry/wet interfaces. We use this 2D scheme for the simulations of
three relevant situations. First, we focus on a dry dam-break with two bumps,
which is a 2D version of the experiment presented Section 7.2.3. The next
experiment is a partial dam-break, and the last experiment represents an urban
topography.

7.3.1. 2D dry dam-break with two bumps
The first 2D experiment is a dry dam-break with a topography presenting

two bumps. It is heavily inspired from an experiment presented in [8], which
did not include the friction source term. The Manning coefficient is k = 0.1,
and the topography function is given by

Z(x, y) =
1

2

(
1− 25

((
x− 5

2

)2

+

(
y − 1

2

)2
))

+

+2

(
1− 25

(
(x− 4)

2
+

(
y − 1

2

)2
))

+

.

The space domain is [0, 5]×[0, 1]. The initial discharge is zero in both directions,
i.e. p(x, y, 0) = q(x, y, 0) = 0, and the initial water height is given by

h(x, y, 0) =

{
6 if x < 0.7,

0 otherwise.

In addition, we prescribe wall boundary conditions, that is to say we impose
p(0, y, t) = p(5, y, t) = 0 and q(x, 0, t) = q(x, 1, t) = 0 for all x, y and t.

The simulation runs until a physical time tend = 1.35s with the MUSCL
scheme, using C = 1, m = 10−5 and M = 25. We take 288000 discretization
cells (1200 in the x direction and 240 in the y direction). The results are
presented Figures 14 - 15.

This experiment has been carried out to make sure that the numerical scheme
still behaves correctly in two space dimensions and in the presence of dry/ wet
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Figure 14: Left panel: initial condition of the 2D dam-break over a double bump experiment.
Note that the same color scale for the water height is used Figures 14 - 15, and the solid gray
color represents the topography. Right panel: approximate solution at t = 0.15s, just before
the water hits the first bump. Note the shape of the front of the water, due to the nonzero
bottom friction.

transition. We recover a numerical solution involving the friction source term,
which can be compared to the numerical solution without friction presented in
[8]. In addition, this 2D experiment is similar to the 1D double bump experiment
we presented on Figure 13. Indeed, the behavior of the water before it comes
into contact with the first bump should be the same in both experiments. As
expected, we obtain similar results in 1D and 2D.

7.3.2. Partial dam-break
Next, we focus on a partial dam-break (see for instance [37, 14]). This

experiment concerns a dam that has partially broken, leaving a corridor where
the water flows. We consider the space domain [−100, 100] × [−100, 100]. The
dam is located at the middle of the domain, in the x direction, and is 10m wide
and 100m high. It breaks in the middle, over a length of 80m. Thus, we take
the following topography function:

Z(x, y) =





1 if x ≤ −5,

0 if x ≤ 5,

0.1(5− x) if − 5 < x < 5 and − 40 < y < 40,

100 if − 5 < x < 5 and y ∈ [−100,−40] ∪ [40, 100].
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Figure 15: From left to right and top to bottom: approximate solution of the 2D dam-break
over a double bump experiment, displayed at times t = 0.3s, t = 0.45s, t = 0.75s, t = 0.9s,
t = 1.05s and t = 1.35s.

As in the previous dam-break experiment, we take p(x, y, 0) = 0 and q(x, y, 0) =
0. Moreover, we define the initial water height by:

h(x, y, 0) =

{
10 if x < −5,

5 otherwise.

From such initial data, we present two simulations. The first one is the
case without friction, i.e. k = 0, and for the second one we choose a nonzero
Manning coefficient k = 2. In both cases, homogeneous Neumann boundary
conditions are prescribed on all the boundaries. We choose tend = 7s. The
numerical simulation of this experiment is carried out with the implicit and
the MUSCL scheme on 202500 cells (450 in each direction). The results are
displayed Figure 16 without friction, and Figure 17 with friction. Note that, on
these figures, the display of the free surface is clipped when Z > 10, in order to
have a clearer display of the numerical results, that is not impacted by the tall
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remains of the dam.

Figure 16: Approximate free surface for the partial dam-break experiment without friction.
Left panel: implicit scheme; right panel: MUSCL scheme.

Figure 17: Approximate free surface for the partial dam-break experiment with nonzero fric-
tion. Left panel: implicit scheme; right panel: MUSCL scheme.

Figure 16 shows that, when no friction is present, vortices appear at both
tips of the dam. However, as evidenced by Figure 17, these vortices no longer
exist when the friction is nonzero. Both behaviors are exhibited with the implicit
and MUSCL schemes. In addition, the tip of the left shock wave has traveled
further on Figure 16 than on Figure 17. This behavior is consistent with the
fact that the friction tends to slow down the movement of the water.

Now, to conclude the analysis of this experiment, we introduce (xT , yT ) and
(xB , yB). They are, respectively, the points where the top and bottom vortices
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are the deepest when k = 0. In Table 13, we present the height at these two
points, obtained with the implicit and MUSCL schemes, and considering k = 0
or k = 2. In addition, we display in this table the approximate position xS of
the left shock wave in the four cases under consideration, where it crosses the
line y = 0.

hT hB xS

implicit, k = 0 2.81 2.81 59.3
implicit, k = 2 6.08 6.08 53.9
MUSCL, k = 0 2.33 2.30 59.8
MUSCL, k = 2 5.86 5.86 52.5

Table 13: Height at the positions of the two vortices and position of the left shock wave. We
have set hT = h(xT , yT , tend) and hB = h(xB , yB , tend).

7.3.3. Urban topography
The last 2D experiment is a simulation of a city being hit by a wave. We

consider the space domain [0, 1000] × [0, 1000]. The topography consists in
an upwards slope leading to a flat surface, upon which buildings are placed.
Disregarding the buildings, the bottom has the following topography:

Z(x, y) =

{
x/50 if x < 500,

10 otherwise.

The 100 meters high buildings occupy the flat part of the topography, i.e. build-
ings are only present for x > 500. Figure 18 displays the shapes of the buildings.

The initial conditions are W (x, y, 0) = 0 for all x and y in the space domain.
Indeed, the boundary conditions help create the flood and the wave that hits
the city. We prescribe homogeneous Neumann boundary conditions for each
boundary of the domain, except the left boundary, where a time-dependent
boundary condition the x-discharge p is applied, as follows:

{
p(0, y, t) = 15 if t < 350,

∂xp(0, y, t) = 0 otherwise.
(7.6)

Such a boundary condition creates water that fills the sloping part of the to-
pography and creates a wave that hits the city. We consider a nonzero Manning
coefficient k = 1 and a final time tend = 850s. The simulation is run using the
MUSCL scheme, and we take C = 10−2, m = 10−5 and M = 1. We use a
uniform Cartesian mesh of 202500 cells (450 in each direction). The results of
the numerical simulation are displayed Figures 19 - 20 - 21 - 22.

The left panel of Figure 19 shows the wave created by the Dirichlet bound-
ary condition arriving on the city. Because of the friction, this wave presents a
rather steep front. On the right panel of Figure 19, the wave has hit the first
buildings located at the south of the city. Note that the space between the first
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Figure 18: Topography for the city experiment. The buildings are actually 100 meters high,
and are represented in black in this figure. One can see the upwards slope on the left, leading
to the city itself.

Figure 19: Free surface for the city experiment at t = 314s (left panel) and t = 369s (right
panel). Note that the same color scale will be used in Figures 19 - 20 - 21 - 22, with the
buildings being 100 meters high and the dry areas being blue.

two columns of buildings is still dry. Also note that, as per (7.6), the bound-
ary condition imposed on the x-discharge p is now a homogeneous Neumann
boundary condition, and no more water is injected into the domain.

The left panel of Figure 20 displays the wave about to hit the square building
located at the middle of the city. As expected, between the southern buildings,
the wave is slowed down. On the right panel of Figure 20, the wave has reflected
on the southwestern side of the square building, and has thus moved faster
towards the buildings to the south.

On the left panel of Figure 21, the waves reflected from the square buildings
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Figure 20: Free surface for the city experiment at t = 451s (left panel) and t = 520s (right
panel).

Figure 21: Free surface for the city experiment at t = 603s (left panel) and t = 685s (right
panel).

are moving south and north. Moreover, the back of the “S”-shaped building
will soon be flooded. This flooding has started to happen on the right panel of
Figure 21, with only a small area still dry.

Figure 22 displays the final phases of the flooding of the city. Note that the
southern buildings are mostly uniformly flooded and that the inner courtyard of
the square building is still dry. Moreover, the water at the back of the “S”-shaped
building is less deep than at other points of the same vertical line.

8. Conclusion

In this work, we have first studied smooth steady states for the shallow-water
equations with friction only. Then, we have proposed a Godunov-type scheme
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Figure 22: Free surface for the city experiment at t = 767s (left panel) and t = 850s (right
panel).

for the same equations that is well-balanced. This scheme has then been ex-
tended to add the topography contribution as well as the positivity preservation.
Afterwards, we have proposed a semi-implicit scheme to deal with dry/wet in-
terfaces, followed by a well-balanced second-order extension. Finally, we have
proposed several one-dimensional and two-dimensional numerical experiments.
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