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Abstract

We consider the shallow-water equations with Manning friction or topography,
as well as a combination of both these source terms. The main purpose of this
work concerns the derivation of a non-negativity preserving and well-balanced
scheme that approximates solutions of the system and preserves the associated
steady states, including the moving ones. In addition, the scheme has to deal
with vanishing water heights and transitions between wet and dry areas. To
address such issues, a particular attention is paid to the study of the steady
states related to the friction source term. Then, a Godunov-type scheme is
obtained by using a relevant average of the source terms in order to enforce
the required well-balance property. An implicit treatment of both topography
and friction source terms is also exhibited to improve the scheme while dealing
with vanishing water heights. A second-order well-balanced MUSCL extension
is designed, as well as an extension for the two-dimensional case. Numerical
experiments are performed in order to highlight the properties of the scheme.

Keywords: shallow-water equations, Manning friction, Godunov-type
schemes, well-balanced schemes, moving steady states
2000 MSC: 656M08, 65M12

1. Introduction

The goal of this paper is to derive a numerical scheme to approximate the
solutions of the shallow-water equations with topography and Manning friction.
The Manning friction was introduced in [39] (see also [19] for an overview of
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other friction models, and [9, 10, 13| for related works). The equations of interest
consist in the following system:

Gth—i—@zq = O7

2
¢ sy _ kdlg|
0rq + Oz ( N + 2gh ) ghd,Z o

(1.1)

This system is used to model the flow of water in a one-dimensional channel,
with a non-flat bottom that applies a friction force on the water. The variables
involved in this model are the non-negative water height h(z,t) and the depth-
averaged discharge of the water g(x,t). The known quantities are the shape of
the channel bottom Z(x), the gravity constant g, the Manning friction coefficient
k and a parameter 7, equal to 7/3. We also define the velocity u of the water,
such that ¢ = hu.
We define the admissible states space by

Q={W="(h,q) eR*; h>0,q€R}.

Let us note that the water height may vanish, which accounts for dry areas. By
convention, we impose u = 0 as soon as h = 0.

In order to shorten the notations, the system (1.1) is rewritten under a
simpler form, as follows:

W +a, f(W) =s(W), W eQ, (1.2)

where
W = h W) = 2 ! W) = ! k 1.3
—<q)7 10 = {2 | 00 = (L, sl ) 0

Omitting the source terms, the homogeneous system deriving from (1.1) is
a hyperbolic system. Its characteristic velocities are given by u — ¢ and u + ¢
(see [10, 25, 34] for instance), where ¢ is the sound speed, defined as follows:

¢=/gh. (1.4)

The main focus of this paper lies in the study of the solutions of (1.2) that
satisfy ;W = 0. Such solutions are called steady state solutions. With vanishing
partial derivatives in time in (1.1), we get:

a:r:q = 0,

2
g 1.\ _ ~ kdlq| (1.5)
D, (h + 5h ) = —gh0,Z - = =

We immediately obtain that, as per the first equation, the discharge ¢ must be
uniform. From now on, we denote this uniform discharge as follows:

q = qo- (1.6)



Using go within the second equation of (1.5) yields:

2
3, (‘;‘; + ;ghz) — —ghd,Z — ququ_ (1.7)
The solution of the nonlinear ordinary differential equation (1.7) is the water
height h for a steady state with uniform discharge qo. For a general topography
and a nonzero friction contribution, if gy # 0, we cannot solve this equation
to obtain an analytical expression for h. Thus, we will focus on specific cases;
namely, the steady states at rest, and the steady states with topography or
friction only.

The most important and most extensively studied steady state of the shallow-
water equations is the lake at rest steady state (see for instance the non-
exhaustive list [2, 8, 10, 14, 23, 29]). The lake at rest is obtained by assuming
that the water is at rest, i.e. gg = 0. Thus, this steady state is defined as follows:

q
h+ 272

The importance of this steady state has led to the derivation of many schemes
ensuring that the lake at rest is preserved. For instance, in [3, 29], the authors
introduced the notion of a well-balanced scheme, that is to say a scheme that
preserves some or all the steady states. Next, the well-balance approach was
extended to nonlinear systems in [26]. The techniques from [26] were then
simplified in [1], to obtain the hydrostatic reconstruction (see also [8, 21, 22, 32,
36, 37, 41]).

Now, let us consider a vanishing friction source term (i.e. k = 0) without
being at rest (i.e. go # 0). From (1.7), we get the moving steady states, governed
by

0,

cst . (1.8)

% 1
0y (0 + gh2> = —ghd,Z. (1.9)
h 2
The equation (1.9) that defines the moving steady states is known to be harder
to satisfy at the discrete level than the lake at rest. Indeed, the lake at rest ex-
plicitly yields h with respect the the known quantity Z, while the water height
is given by the nonlinear ODE (1.9) in the case of the moving steady states.
Such steady states have been studied in the past, for instance in [15, 40|, where
the authors exhibit several properties of the topography steady state solutions.
Such steady states have also been studied to provide several properties of numer-
ical schemes, for instance in [28], where the authors define some specific moving
steady states and use them to test the accuracy of non-well-balanced schemes.
Then, in [26], the author introduced the notion of fully well-balanced schemes,
able to preserve every steady state, and designed such a scheme. This ap-
proach was extended in [4], where the authors derive a fully well-balanced and
entropy-stable Godunov-type scheme, based on the resolution of a Bernoulli-
type equation. Since this equation is difficult to solve, the authors of [40] have
proposed a fully well-balanced Godunov-type scheme that uses a linearization of



the Bernoulli-type equation. We mention two additional fully well-balanced nu-
merical schemes based on different techniques: in [11], the authors generalize the
hydrostatic reconstruction mentioned above, while the authors of [12] propose
a high-order approach using a relevant reconstruction. High-order techniques
were also developed to ensure a very accurate approximation of the moving
steady states (see for instance [43, 44, 49, 50]).

Let us now assume a flat topography and a nonzero discharge. The steady
states governed by the friction source term are given as follows:

2
@ 1 o) kgolgol
az<h+29h) pe. (1.10)

Some research has been devoted to Manning friction terms (for instance, see
[19, 9]), but these works do not focus on steady states and the resulting schemes
are not well-balanced.

In the present paper, we exhibit smooth steady solutions of (1.10) and pro-
pose a well-balanced scheme, to exactly preserve the lake at rest (1.8), the
moving steady states (1.9), and the dominant friction steady states (1.10). This
scheme will be derived in order to satisfy some essential properties, namely the
exact preservation of all the steady states for the system (1.1) with topography
or friction and the preservation of the non-negativity of the water height. In
addition, the scheme will be designed to model transitions between wet areas,
where h # 0 and dry areas, where h = 0.

The paper is organized as follows. First, in Section 2, we study smooth
steady states for the shallow-water equations with friction over a flat bottom.
Then, in Section 3, we develop a Godunov-type scheme that is well-balanced for
the system (1.1). In this section, we first recall some generalities on Godunov-
type schemes, then we derive the well-balanced scheme, according to the friction
steady states. Afterwards, in Section 4, we extend this scheme to be well-
balanced for both the topography and the friction source terms. In addition, in
this section, we prove the non-negativity preservation. Then, in Section 5, we
propose an implicit treatment of the source terms, designed to deal with transi-
tions between wet and dry areas. The scheme is then extended in Section 6 to be
second-order accurate. This extension breaks the well-balance property, but we
show a convex combination technique that allows the recovery of this essential
property. Finally, in Section 7, we propose three kinds numerical experiments,
namely well-balance assessments, dam-break simulations, and two dimensional
simulations. The paper is concluded in Section 8.

2. Steady states with friction and a flat bottom

This section is devoted to studying the steady states coming from the friction
source term, given by (1.5) with a flat topography (Z = cst), or equivalently
by (1.10). Recall that, for steady states and after (1.6), the discharge g = qo is
uniform throughout the domain. Here, we assume gy # 0. Indeed, we assume



that the friction contribution vanishes as soon as the discharge is equal to zero.
We rewrite (1.10) under the form:

1

~ kqolqo
- =

o (2.1)

qg ar + g awh2 =
We are looking for smooth solutions h(z) > 0 of the equation (2.1). As a first
step, we integrate this equation. Multiplying by h" provides:

2
~ B a9 = 2.2

Let us consider zy € R as an arbitrary reference point, and introduce the
initial condition h(xg) = hg. For all € R, we integrate (2.2) over (xq,x), to
get

2
- nq_o 1 (hnfl - hgﬂ) 3 i 2 (hnﬁ N hg”) + kdolgol (v — @0) = 0. (2:3)

To shorten the notations, we rewrite (2.3) under the following form:

E(h’;xahOaQOaxO) = Oa (24)

where we have set

2

. _ dp ( -1 7771) g ( +2 n+2>
h;x, h =———— (A" =h + —— (A" —h
§(h; x, ho, qo, To) 1 0 nt 2 0

(2.5)
+ kq0|qo| ({E — :L'()) .

We consider x a parameter so that (2.4) is an equation to characterize h :=
h(z). In order to exhibit such solutions, we first study £ with a fixed x € R.
The derivative of £ with respect to h is given by

43 -2 q% 3
—(h;x, ho, g0, xg) = gh" (—+h .
8h( 0,405 Z0) g

oh
2\ V3
h, = (qo) . (2.6)

g

We easily obtain that the function h +— &(h; x, ho, qo, zo) is strictly increasing on
(he, +00), while it is strictly decreasing on (0, h.). As a consequence, it admits
a unique minimum in (0, +00), and this minimum is reached for h = h,.

Now, we evaluate the sign of £. After straightforward computations, the
following limits are proven to be satisfied by &:

Let us define a critical water height h., such that (he; z, ho, qo, o) = 0, as

follows:

o lim £&(h;a,ho,qo,20) = +00,

h—+o0



li h;x, h =
° hi)rél+€( y Ly 07q07x0) 5@(27),

where we have set
he hg
n—1 n+2

Cola) = ght? ( ) + kaolaol(z — ao).

Note that &, is finite. Moreover, let us introduce

gc(x) = g(hc’ z, h’07 q0, IEO).
We note that
3ghit2
(n=1)(n+2)
Equipped with these new notations and these properties of £, we state the
following result.

Ee(x) = &o(x) — < &o(x).

Lemma 1. Assume h > 0 and qo # 0. Thus, h. > 0 according to (2.6).

(i) If &(x) < 0, then the equation (2.4) admits a unique solution h*“(x).
Moreover, this solution belongs to (he, +00).

(i) If &(x) > 0 and &.(x) > 0, then there is no solution to the equation (2.4).

(i1i) If &(x) > 0 and &(x) < 0, then the equation (2.4) admits two solutions,
h*vP(z) and h*“*(x). One solution, h*“P(x), stays within (0,h.), while
the second one, h*"*(z), is in (he,+00). If &.(x) = 0, the equation (2.4)
admits h. as a unique double solution.

Proof. To establish (i), we use that h — &(h;x, ho, qo, o) is strictly increasing
on (he,+00) and that &.(z) < &(z) < 0, to deduce that the equation (2.4)
admits a unique solution, which belongs to (h.., +00).

Next, we turn to proving (ii). If {.(x) > 0, since & reaches its unique
minimum .(x) for A = h,, it is immediate that there is no solution to the
equation (2.4).

Finally, concerning (iii), we assume that & (z) > 0 and &.(x) < 0. The
monotonicity properties of ¢ allow the immediate conclusion that the equation
(2.4) admits two solutions. One solution stays within (0, h.) and corresponds
to a supercritical state, while the second one is in (h.,+0c0) and provides a
subcritical state. Moreover, if £.(z) = 0, the equation (2.4) admits a double
root, h = h,.

The proof is thus achieved. U

Remark 1. Arguing the definition of the Froude number Fr = u/c (where ¢ is
the sound speed, defined by (1.4)), we obtain for steady states Fr = qo/ \/gﬁ .
Therefore, it is clear that h > h,. (resp. h < h.) corresponds to Fr < 1 (resp.
Fr > 1), i.e. to a subcritical (resp. supercritical) flow. Thus, the solution h of
(2.4) that lies in (0, h.) will henceforth be called the supercritical branch, while
the solution of of (2.4) that lies in (h., +00) will be called the subcritical branch.



Remark 2. Note that the case & (z) = 0 implies that h = 0 is a solution of the
equation (2.4). However, this equation has been obtained using the positivity
of h: therefore, h = 0 is not a valid solution of (2.4).

Now, we study the solutions h of (2.4) as functions of z. As a first step, we
evaluate the monotonicity of h. To this end, we exhibit the derivative of h with
respect to z by considering (2.2), which writes

(—agh™* + gh™) I’ (2) = —kdolaol-
Since g2 = gh? from (2.6), we immediately obtain

n+1 h:z /
gh 1_ﬁ ' (x) = —kqolqo|-

As a consequence, the sign of h/(z) coincides with the sign of qo(h. — h(z)).
Note that both &(z) and &.(z) are linear in z, and &.(x) < &(z). Both of
these quantities are thus linear functions of x, of slope kqo|qo|, and are strictly
monotonic in z. Therefore, there exists a unique x,, such that £(x) =0, and a
unique x. # x,, such that .(x) = 0. Thus, by Lemma 1, if there exists a solution
h(x) of the equation (2.4), then it is either within (0, k.| or within [h., 4+00), for
all = where such a solution exists. Therefore, the sign of h/(z) is constant, and
h is strictly monotonic. As a consequence, h%*? and h*"“P are bijective on their
respective domains, since they are continuous and strictly monotonic.

These solutions are displayed on Figure 1. For the sake of simplicity, this
figure has been obtained assuming that hy = h. (and thus o = z.) and that
qo < 0.

08th ZLo Iu//
0.6
he
0.4
0.2
. x
%5 -025 0 025 05 075 i 1.2 5 1.75 2
Figure 1: Solutions of (2.4) with ¢o = —1 and zg = z. = 0, obtained by using Newton’s

method. The solid line is the subcritical branch (the increasing solution) and the dotted line
is the supercritical branch (the decreasing solution).



As a consequence, we have obtained the general form of steady state solu-
tions for the shallow-water equations (1.1) with friction and flat topography,
respectively given by the subcritical and supercritical branches. However, the
subcritical and supercritical branches that are solution to (2.4) are parametrized
by the choice of the initial conditions xy and hyg.

We quickly discuss, in the context of Figure 1 (i.e. g9 < 0 and z¢ = z. = 0)
without loss of generality, the possibility of extending the smooth steady solution
for x < x.. Assume that the critical point has been reached, i.e. z = z. = 0,
q(z,t) = qo and h(z,t) = he. Since go < 0, we have two distinct steady
solutions, the subcritical solution and the supercritical solution (where it exists),
for > x.. However, if we were to compute a smooth steady solution for x < z.,
we would still need to have g(x,t) = qq, as prescribed by the first steady relation.
Lemma 1 states that such a solution to the second steady relation does not exist
for z < x.. Therefore, there is no way to extend the smooth steady solution for
T < Ze.

3. A well-balanced scheme for a the shallow-water equations with
friction

Equipped with the steady states, we now derive a numerical scheme able to
exactly capture such essential solutions. We begin by recalling the construction
of a Godunov-type scheme that uses a two-state approximate Riemann solver
[30] (see also [10, 46]). The Godunov-type scheme is then adapted to the shallow-
water equations with the friction source term. The purpose of this extension is
to preserve the steady states presented in the previous section.

3.1. Generalities on Godunov-type schemes

First, we introduce the discretization of the space and time domain R x R*.
Let Az be the space step, assumed to be constant, and At the time step. The
space discretization consists in cells (zi_%,mi+%), for all ¢ € Z. The solution
W (x,t) of (1.2) is approximated by W/ at some time " and in cell (@1, @5,1).
We suppose that this piecewise constant approximation of W (x,t), here denoted
WA (z,t"), is known at time " for all cells in the space domain. We now evolve
WA (z,t") in time, which consists in nothing but the solution of the following
Riemann problem juxtaposition, defined for all ¢ € Z and all « between two
consecutive cells:

W + 0, f(W) = s(W),
Wrhife <z, 1, 3.1
W) :{ +1 (3.1)

Wi if e > a0

7

From now on, let us emphasize that the consecutive Riemann solutions do
not interact as long as ¢ is small enough. Since an exact solution to (3.1) is
difficult to determine, we suggest to consider an approzimate Riemann solver to



obtain an estimate of the unknown solution. We adopt a two-state approximate
Riemann solver, illustrated by Figure 2 and defined as follows:

W, ifx/t <A,
Wr it AL <z/t <O,
Wr if0<x/t < Ag,
Wg ifz/t > Ag,

W (% WL,WR) - (3.2)

where A; and Ag denote some characteristic wave velocities, and W} and W
are the intermediate states, to be detailed later. To ensure that A\ < 0 and
Ar > 0, we choose the following expressions of Az, and Ar (see for instance [45]
and references therein):

Ar =min (—|ug| — cr, —[ur| — cr,—€x), (3.3)
)\R:maX(|UL|+CL7|uR|+CRa 5>\)7 '

with ¢ the sound speed, defined by (1.4), and €, a positive real value to be fixed
in the numerical applications.

AL AR
Wi | Wg

WL WR

0 T

Figure 2: Structure of the chosen approximate Riemann solver.

The approximate solution of the Riemann problem W2 (x,t" + t), depicted
on Figure 3, is given for ¢ > 0 and z € (xi_%,xﬂr%) by:

Wi ifrelx

i_%,xi_%Jr/\i%t],
Vie Z,WA(z, t" +1) = W ifxe[:ci,%—i-)\i%t,xH%—&-)\ﬁr%t], (3.4)

L,* . L
WH% 1fx€[:ci+%+)\i+%t,:ri+%].

Now, we consider a time step At satisfying the following Courant-Friedrichs-

Lewy stability condition :

Az I R
< e = —ANA., 1 01 .
At < 2A,WhereA r?eazx( )\l+§,)\l+§>, (3.5)

so as to ensure there are no interactions between the waves from two consecutive
Riemann problems (see [25, 45]). Given such a At, we set t"T1 = " + At and



WA (z, t" 1)

tntl T . T

I o !

i Wi+% \

| |
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t" T

Ti1 T Tiyl

Figure 3: The full Godunov-type scheme using an approximate Riemann solver.

focus on the value of W2 at time t"*1. At last, we define I/Vi”'|r1 by taking the
average of W2 (z,t"+1) over the cell (i1, 1), as follows:

n+l _ 1 Yt A n+1
W, W2 (2, t" " )dx.
T Az L

™

Since WA (z,t"*1) is given by (3.4), we have:

x. AR At x.
et = L /“% 4 WR*der—l /”% Wh da
;a1
Ax Ax 1+Af+1At i+3
) AL At
1 Tip3tALL
S Wida.

Az z, 1+AR At
2 15
This relation immediately yields:

wet = wp - 20

- 2P () oty (v )] oo

i+3 iti
Note that, in order for I/V’hLl to be fully deﬁned, we only need to give explicit
values to the intermediate states W +ﬁ and W . The remainder of this section

is devoted to finding suitable mtermedlate states Wthh ensure that the scheme
is consistent and preserves the steady states.

8.2. A well-balanced approximate Riemann solver for the friction source term

We focus on the derivation of a well-balanced approximate Riemann solver
for the shallow-water equations with only the friction source term. First, we
recall the system under consideration:

ath+8rq = 0,

Ovq + Oy ( +29h2> —kq|q|h™".

(3.7)

10



We also recall that the steady states for this model are given by:

q = qo,
2 1 3.8
D (Zf + 29h2> = —kqlg|h™". (38)

Note that the friction source term S¥ = —kq|q|h~" in the system (3.7) falls
under the more generic framework S/ = h%p(q)0,Y, where 3 = —n, p(q) = qlq|
and Y = —kx. The computations could be performed in this framework, but
they would lead to having to solve a nonlinear equation. However, thanks to the
specific form of the friction source term, the scheme can be obtained without
having to solve this nonlinear equation. As a consequence, we elect to derive the
scheme for the specific case of the friction source term instead of a more generic
form. These remarks also apply to the topography source term St = —gh0,Z,
which is treated in a later section.

Relevant definitions of the intermediate states W} = *(h},¢}) and W}, =
t(h%, q5) need to be obtained in order to fully determine the approximate Rie-
mann solver. Therefore, four equations characterizing the four unknowns hj,
h%, q; and g are required. These four equations will be obtained by considering
two essential properties that need to be satisfied by the approximate Riemann
solver: consistency with the system (3.7) and well-balance, i.e. preservation of
the steady states (3.8).

First, we tackle the issue of the consistency with (3.7), by introducing a
necessary consistency condition. From [30], the average over a cell of the ap-
proximate Riemann solver W, defined by (3.2), has to be equal to the average
over the same cell of the exact solution of the Riemann problem Wx. Therefore,
the following equality is imposed:

! Aw/2W(xWW)dx 1/AI/QW(‘TWW)d (3.9)
Az N At? L, R Az Ae)2 R At; Ly R

We introduce the following notations for the sake of simplicity:
(Ar = Az)hmrr = Arhr — ALhr — [q],

2
(AR = AL)qHLL = ARGR — ALqL — [qh + ;ghﬂ :
Let us underline that *(hgrr,qmrr) is actually the well-known intermediate
state of the HLL approximate Riemann solver introduced in [30]. Also, note
that hgpr > 0 for A, and Ag given by (3.3). We also introduce the notation
(—kqlglh~™)% that denotes the second component of s(Wx), with s defined by
(1.3), to represent the value of the source term of friction for the exact solution
of the Riemann problem. Thanks to these notations, (3.9) can be rewritten as

11



follows, after straightforward computations detailed in [40]:

ArhR — ALh, = (Ar — Ap)hure, (3.10a)

ArQE — ALqr, = (AR — AL)qHLL

Ax/2  pAt T (3.10b)
—kqlglh™") (s Wr, Wg) dt da.
At/mﬂ/z/ dalh ) (G We: W) dedo

Now, we introduce two parameters, § and ﬁ, to define a consistent ap-
proximation of the mean value of the friction source term, as follows:

Ax/2 At o
—kqlq|h™") ., dtdx ~ —kg|g|h™". 11
Rrai | (Rl dede ki (3.11)

The parameters g and h=" are respectively assumed to be consistent with ¢ and
h~", in a sense given later. Then, the equation (3.11) is substituted into (3.10b).
As a consequence, the four unknowns are imposed to satisfy the following two

relations:
Arhp — Arhl = (Ar — AL)huLL,

\ _ (3.12)
ARQR — ALqr, = (Ar — AL)qurr — kqlglh™"Az.

Concerning the well-balance of the approximate Riemann solver, we exhibit
a sufficient condition for the preservation of a solution. The scheme (3.6) pro-
vides us with such a condition. Indeed, the solution is obviously stationary, i.e.
Wt = W for all i € Z, if we have

Viez, W1i=w ad W =wp
it3 =3
Thus, in the context of the approximate Riemann solver, the solution will be
stationary if W; = Wi and W} = Wg. As a consequence, the following well-
balance principle will have to be satisfied by the intermediate states:

Principle (WB). The intermediate states W} and W}, are such that W} = Wy,
and W = Wg as soon as Wy, and Wg define a steady state.

Here, the pair (W, Wg) is said to define a steady state if they satisfy the
identity (3.8). We will then look for intermediate states W} and W}, that satisfy
the (WB) principle.

We begin by determining ¢} and g¢F,. After [4, 40], we choose ¢} = ¢}, and
we set ¢* := q} = q§. This choice helps guarantee that W} and W} satisfy the
property (WB). The formulas (3.12) are then rewritten using ¢* as follows:

Arhp = ALhp, = (Ar — AL)hur, (3.13a)
kglg|h =" A

¢ =qurL — M (3.13b)
AR — AL

12



We only need relevant definitions of ¢ and A~" in order to fully determine
q*. To that end, we specify the discrete steady states satisfied by the system
(3.7). Such discrete steady states are nothing but a discretization of the steady
relation at the continuous level (3.8). In order to give an expression of these
discrete steady states, we assume that hy # 0 and hg # 0. Now, W and Wg

define a steady state if the following relations hold:
qr. = qr = qo, (3.14a)

1 -
@ [h] +g [h?] = —kg|glh ™" Az. (3.14b)
Moreover, since we are considering smooth steady states for just the friction
source term, we can rewrite the relation (2.3) between states W and Wg.
Thus, Wi, and Wg satisfy the following algebraic relation:

2
_ % pn—1 9 n+2] _
— [ + T2 (2] = —kqo|qo| Aw. (3.15)

We introduce the notation 1o = sgn(qo). Therefore, 1o represents the direc-
tion of the water flow. From (3.15), we obtain the evaluation of ¢3 as follows:

[h7+2]
Tt
a% = [hn_l}" : (3.16)
— = kpo Az
7

Now, to recover the behavior of the friction source term when steady states are
involved, we assume that the parameter g is equal to qo as soon as Wy, and Wg
define a steady state. Thus, injecting (3.16) into (3.14b) yields the expression
of h™". We immediately obtain:

= [h?] n+2 o <[1} [h?] [h"1]77+2)

2 [h+?]  kAx

n o

2 n—1 [hnt2]

(3.17)

Lemma 2. The expression offF’ given by (3.17) is consistent with h=".

Proof. With smooth water heights, we fix, in (3.17), hy = h(z) and hgr =
h(z+O(Axz)). Taylor’s formula applied to hg yields hg = h+Azd,h+O(Az?).
In order to evaluate the Taylor expansions of [h?], [A7~1], [A7+2] and [h™}], we
now compute a Taylor expansion, for some 3 € R, of the jump [h”]:

[h%] = Wy — b = (h+ 0ph Az + O(Aa?)” —
= 1P (1+ B~ 0,hAz + O(Ax?)) — hP
= BhP10,hA + O(Az?).

Using the above evaluation, we have for the first part of the expression of h:

[h?] n+2 hd,hAz + O(Az?) _
_ — h™" 4+ O(Az). 1
2 W2 ~ htig,hAr + O(Ax?) +0(A) (3.18)

13



Moreover, we have, for the second part of RN ,

[H = —h720,hAx + O(Az?), (3.19)
[P [P n+2  (hdehAz + O(Az?))(h"—20,hAz + O(Ax?))
2 n—1[h+2] R0, hAx + O(Ax?) (3.20)

= h720,hAz + O(Az?).

Combining both equations (3.19) and (3.20) immediately yields

a k/ﬁx (H] + % [::n_l] [Z;:%) - _k/goxo(Afz) =0(Az). (3.21)

Using both relations (3.18) and (3.21) gives h~" = h™" + O(Az), which con-
cludes the proof. O

Concerning g, we choose the following average:

2|qzllqr| .
= —————sgn(qr, +qr) if qp # 0 and gr # 0;
lac| + lar| ( ) (3.22)

0 if g, =0,qr =0o0r k=0.

Esy

q
This average indeed ensures that, if g, = gg, then ¢ = qr = gqr.
Note that the expression (3.17) of A~" contains pp. This quantity depends
on the steady state and has to be determined for non-steady states. To address
such an issue, we propose the expression

o Pn+2 (H [hQ][h”lhﬂ-Q)’

2 [h+?]  kAz

n T2

2 n—1 [

(3.23)

where [i is the sign of the quantity g given by (3.22) ). Since ¢ = go as soon as
W and Wg define a steady state, it is clear that h~", as defined by (3.23),
still provides a well-balanced approximate Riemann solver and still satisfies

Lemma 2.

Remark 3. With h=" given by (3.23), the average source term —kq|q\iF7, which
satisfies (3.11), rewrites as follows:

(2l n+2 (@2 ([1] , [P} [R" ] n+2
7 [ qu }Jr?n—l[h"“’])' (3.24)

As a consequence, when the Manning coefficient & is almost zero, the second
term of this average source term is dominant. From the proof of Lemma 2, we
know that this second term is consistent with 0 for a smooth solution. However,
this term could become inconsistent within shock waves. To address such an
issue, we introduce a cutoff of this inconsistent term. Such a procedure had

h

— kglglh™" = —kalq|
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already been adopted in [4, 5, 40] in the context of the sole topography source
term. Therefore, we modify the expression (3.23) of A", as follows:

— — 2 I — n—1
h_”::h_"(hL,hR):Mn+2 a [h]c< 1 +hL+hR[h ]774‘2>7

2 [hn+2} kAx hrhgr 2 n—1 [h77+2]
(3.25)
where [h]. is a cutoff of [h] = hg — hp, defined as follows:
hg—h if |hp — hy| < CAg,
], = iflhr — el < CAx (3.26)
sgn(hgr — hp)CAz  otherwise,

with C' a positive constant that does not depend on Axz. Equipped with this
cutoff (3.26) within the expression (3.25) of h™", it is clear from the proof of
Lemma 2 that the approximate friction source term given by (3.24) becomes
consistent, i.e. of order O(Ax), when k tends to 0. Finally, the approximate
friction source term reads:

WIn+2 (@, ( —1 | hothg [ n+2>
2 [h+2] Az "\ hphgr 2 n—1[h*2 )"
(3.27)
According to Lemma 2, the expression (3.27) is consistent with the friction
source term —kq|g|h~" for all & > 0.

— kglglh™" = —kqq|

Equipped with the expressions of h=" and g, we have fully determined ¢*.
Now, we need to complete the system (3.13) to determine the intermediate water
heights A} and h%. The following relation is chosen so as to ensure that Wj
and W7}, satisfy the property (WB):
fq2

af(h*R —hy)= —kmlﬂﬁ Az, where of = Ahe

+ g(hL +he). (3.28)

Therefore, h} and hj, are easily determined by considering the following linear
system, defined by (3.13a) and (3.28):

Arh — Aphy, = (Ar — AL)huLL,
P (3.29)
of (hg — hi) = —kqlg/h™" Ax.
The system (3.29) then provides the following formulas:
Arkqlglh~" Az
hy =h _ 3.30
L =hgrr + T n—>p) (3.30a)
Apkqlglh™ Az
hy =h —_ . 3.30b
R =it =R T (3.30b)

Remark 4. Note that, in (3.30), a division by a/ occurs. In rare transcritical
cases, the term of could become close to zero, which could lead to a significant
error in the numerical solution. However, many simulations have been performed
and this problem has not appeared.
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3.3. Properties satisfied by the approximate Riemann solver

In the previous subsection, we have constructed intermediate states (3.13b) -
(3.30) that yield a consistent and well-balanced approximate Riemann solver.
However, one can plainly see from (3.30) that the intermediate water heights
hi and h}, can become negative. If that is the case, (3.6) can yield a negative
updated water height, which means the updated state would not belong to the
admissible space 2. To recover a physically admissible solution, we apply the
procedure from [2, 6, 40], which consists in introducing a parameter ¢ > 0, that
controls the positivity of h} and h¥.

We now state the expressions of the intermediate states obtained with this
procedure, for given Wy, and Wg. The parameter ¢ is such that

szmin(hL, hR, hHLL)- (331)
For the sake of simplicity, we introduce the following notation:
S5 = —kglglh 7, (3.32)

where g and h~" are respectively defined by (3.22) and (3.25). Then, the inter-
mediate states W; = *(h}, ¢} ) and W}, = “(h%, ¢}) of the approximate Riemann
solver (3.2) are given by:

=2

f_—49 g h h
o hihn + 2( L+ hr), (3.33a)
. . . Sf Az
9L =4r =9 =qHLL T oL (3.33b)
, ArST Az A A
*L = min | max <hHLL — m, E) s <1 — /\Iz) hHLL + )\}z€> s
(3.33¢)
_ ST Az A A
E = min (max (hHLL — m, 5) s (1 — )\;) hHLL + )\II;&—) .
(3.33d)

The quantities ¢* and of have respectively been defined by (3.13b) and (3.28).
Moreover, in (3.33), the positivity correction has been applied, and new expres-
sions (3.33c) and (3.33d) of h} and h}, have been substituted to (3.30a) and
(3.30b). Note that the intermediate states (3.33) are written under the same
form as the intermediate states presented in [40].

The following two results sum up the properties we have obtained thus far,
for the approximate Riemann solver and the full scheme. For the sake of con-
ciseness, we do not include their proofs here, since they use classical ingredients
that have been presented in [40].

Lemma 3. Assume ¢ > 0 such that (3.31) is satisfied. Then, intermediate
states Wi =t(h},q;) and W} = (k% qF) given by (3.33) satisfy the following
properties:
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1) consistency: the quantities by, h, q7 and q} satisfy the equations (3.13);
L> Ry 4L R

(%) positivity preservation: if hy, > 0, hg > 0 and hgrr > 0, then h} > ¢
and hy > g;

(1i1) well-balance: W; = Wy, and W}, = Wg satisfy the property (WB).
Theorem 4. Consider W* € Q* for all i € Z, where Q* is a restricted admis-
sible states space defined as follows:

Q*:{W:t(h,q)eRQ; h>0,q€]R}.

Assume that the intermediate states Wliz and Wﬁi are given, for all i € Z,
2 2

by
. (W W) R _ (hpr(W W)
whe = (Ml z“) and W.a:(f L))
i+3 (q (W Wihy) it3 (Wi, Wiy)
where g*, h} and h}, are given by (3.33b), (3.33c) and (3.33d), respectively.
Also, assume ¢ > 0 given by (3.31). Then the Godunov-type scheme, given by
(3.6) under the CFL restriction (3.5), satisfies the following properties:

1. consistency with the shallow-water system (3.7);
2. positivity preservation: Vi € Z, WZ-”Jr1 € Q*;
3. well-balance: if (W)iez defines a steady state, then Vi € Z, Wit = Wp.

From the above result, we see that the updated water height never vanishes.
This behavior is due to the introduction in (3.33) of the parameter £. Such a
behavior is necessary because the average h~" has been obtained by considering
positive water heights. In a later section, devoted to dry/wet transitions, this
average will be extended to be able to deal with dry areas. This extension will
allow us to consider ¢ = 0 in the definition (3.33), as well as vanishing water
heights.

4. The case of both topography and friction source terms

In this section, our goal is the derivation of new intermediate states hj, hj
and ¢* to approximate the contributions of both topography and friction source
terms. For the sake of simplicity in the notations, we write S = S* + S7, where

St = —gho, 7,

Sf = _kQ|Q|hina
which corresponds to the case where both topography and friction source terms
are involved. The steady states associated to the full source term S do not admit
an algebraic expression. Therefore S is split between S* and S/, since the steady

states for the individual source terms of topography and friction can both be
rewritten using an algebraic expression. In order to complete the scheme, we
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need to determine suitable intermediate states in both cases of the topography
and the friction. The case of the friction has been treated in the previous
section, and the intermediate states are given by (3.33). For the topography,
we adopt the approach introduced in [40], which is now recalled for the sake of
completeness.

4.1. Approximation of the topography source term

Considering a non-vanishing topography source term but with a vanishing
friction, the intermediate states are given by

2
_ 9 b 4.1
o hrhr +2( L+ hg), 1)
StAz
4.1b
=q¢ =qu +)\R_)\L (410)
ARS' A A A
L_mln( (hHLL };R_)\IL) ) (1_)\15) hHLL—i_)‘}L%g)
(4.1c)
_ A St Az A A
h?% — min <max (hHLL — M7 5) ) (1 - )\}Z) hHLL+ A;&‘)
(4.1d)

In (4.1), the approximate topography source term S* is defined by:

hihe g M (4.2)
hr, +hr  2hp+ hpg

where [h]. is the cutoff of [h] = hp — hy defined by (3.26). This expression of
S is consistent with the topography source term S*, and it ensures that the
scheme is well-balanced (see [4, 5, 40] for more details regarding this expression
and how to obtain it). Computations leading to this expression and to the
expressions (4.1) have been explained in [40], to which the reader is referred for
more details.

S'Ax := S'(hy, hr, Z1, Zr)Ax = —2g[Z]

4.2. Approximation of the topography and friction source terms

Now, we focus on deriving intermediate states for the shallow-water equa-
tions with both topography and friction source terms. We introduce the follow-
ing discretization of (1.7):

1 _ _
a M + % [h?] = 5'Ax + ST A, (4.3)

where the approximate source term S'ihas ‘been split into the topography and
friction contributions, by writing S = S* + 57. As a consequence, after (3.33b),
we define the following intermediate discharge:

StAz SfAz

4.4
)\R—AL+)\R—)\L’ (44)

¢ =qurLr +
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where the expressions of S and 57 are given by (4.2) and (3.32), respectively.
Concerning the intermediate heights, we first decide to use the following expres-
sions:

;L\; —h . )\RgtAac . )\RS’fAl'

L HLL Oét()\R—)\L) Oéf(/\R—/\L)’ (4 5)
"y ALStAx /\Lngm
hp =hgor —

Oét(ARf)\L) Ozf(/\RfAL)’

where the quantities o’ and o/ are respectively defined by (4.1a) and (3.33a).
We immediately see that the intermediate states (4.4) — (4.5) still yield a con-
sistent scheme. Moreover, it is possible to recover the positivity of the water
heights. Let € > 0 that satisfies (3.31), and consider the same procedure as used
for the friction source term, which yields the following intermediate states:

StAz n ST Az
AR — AL Ar =)\’

. ~ AR AR
h7, = min <max (hL, s) ) (1 /\L> horor + )\L5> , (4.6)

hp = min <max (@, 5) , (1 — >\L> hurr + >\L€> .
AR AR
From Lemma 3, as soon as € > 0, the intermediate heights h} and h}, defined
by (4.6) are positive.

We note that using the definitions (4.6) and making the friction source term
vanish allows the recovery of the intermediate states for topography only. Simi-
larly, if the topography source term vanishes, we recover the intermediate states
for friction only. As a consequence, (4.6) yields intermediate states that are
well-balanced for the individual source terms of topography or friction.

Let us recall that the steady states relation for the shallow-water system with
both topography and friction source terms (1.5) cannot be written under the
form of an algebraic relation for all Z. Therefore, we only manage to preserve the
steady states up to the chosen discretization (4.3) of (1.7) (see [20, 33, 38, 51, 52]
where a similar approach is used).

We finally study how the approximate source term averages S° and S 7. as
well as the terms S‘Az/a’ and S/ Az /o’ behave when dealing with vanishing
water heights. First, we make the following assumption.

¢ =quLL +

Assumption. When the height vanishes, so does the velocity.
From [40], under this assumption, the quantity S*Axz satisfies:
S'Ax = S'(hy,hg, Z1, Zr) Az

0 ith:Oanth:O,
h h 4.7
- —gm% if hy =0 or hg =0, (4.7)
2hihr g (W]} .
—glZ = < th
9] ]hL S otherwise,
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and the quantity S*Axz/at satisfies:

0 if hy =0 and hp =0,
§t%x _ )z if hy =0 or hg =0,
« —
St Az therwi
—(q*)2 N P (h + h ) otherwise.
hohp 1 2 'L R

We then turn to the approximate friction source term. We have to make the
following assumption in order to define it for vanishing water heights.

Assumption. Usingﬁgf and o respectively defined by (3.32) and (3.33a), we
impose that S/ and Sf/af are zero as soon as hy, and/or hg vanishes.

It makes sense to consider such a behavior. Indeed, as previously mentioned, the
friction contribution is assumed to vanish as soon as the water height vanishes.
In order for both quantities 57 and 57 /ot to satisfy this requirement, we have
to impose that they vanish when hj, and/or hp vanishes.

To handle the case where both hy, and hg vanish (and thus ¢;, = gr = 0), we
have to make sure that, in this case, ¢* = 0 and hj = h% = 0. This requirement
is met by taking S* = 0 and S*/at = 0, as well as S/ = 0 and S/ /af =0, as
soon as both hy, and hp are zero.

As a consequence, after (3.32) and the above assumption, S f Az is given by:

S'fo = S'f(hL) h’Ra qr, QR)AQT
{0 if h =0 and/or hg =0, (4.8)

—k;q|(j|hT” otherwise,

where g is given by (3.22) and h=" is defined by (3.25). In addition, the quantity
S/ Ax/a is given by:

of 0 ith:Oand/or hRZO,
S Ax _
a —kglg/h™"

_(¢)? + 2(hy + hg)
hrohr © 2\'L R

otherwise.

We can now state the following result, concerning the approximate Riemann
solver for both source terms of topography and friction. Since its proof uses
classical ingredients, it is not presented here; instead, the reader is referred to
[40].

Lemma 5. The intermediate states (4.6) satisfy the following properties:
(i) consistency with the shallow-water equations with topography and friction

(1.1);
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(ii) well-balance: if Wi, and Wg define a steady state, i.e. satisfy (4.3), then
Wi =Wy and W}, = Wg.

Moreover, we have:

(141) with € > 0, the positivity is preserved: if hy >0, hg > 0 and hypr > 0,
then hj > € and h > €;

(iv) with e = 0, the non-negativity is preserved: if hy, > 0, hg > 0 and
harr = 0, then b >0 and h; > 0.

This lemma allows us to state the following result, which concerns the full
scheme (3.6). Similarly to Lemma 5, we do not prove this result here, and we
refer the reader to [40].

Theorem 6. Consider W € Q for all i € Z. Assume that the intermediate
states Wﬁrz and Wﬁi are given, for all i € 7, by
2 2

Lo+ _ hE(Wi"»WZil) Ry« _ h*R(Win7Wi7}H>
Wi = (wawary ) o Wi = (Fwidy) . o
where ¢*, h} and h%; are given by (4.6) with e =0, i.e. by

S'Ax n St Az
Ar— AL Ar—Ap’

b = min [ (hygpy - RSAx  ArSTAx TPELA
L HLL = i0a—an) o On = A2) +7 N, ) e )

* _ min h . )\LS'tAx . )\LS’fA.T 1— )\7L h

R= HLL = i —An) ol O — AL) +7 g ) e )
Then the Godunov-type scheme, given by (3.6) under the CFL restriction (3.5),
satisfies the following properties:

¢ =qurr +

1. consistency with the shallow-water system (1.1);
2. non-negativity preservation: Vi € 7, WZLH e Q;

3. well-balance: if (W]")icz defines a steady state according to (4.3), then
Vi € Z, VVi”Jr1 = W/. The same result holds for both topography-only and
friction-only steady states, respectively given by (1.9) and (1.10).

5. Implicitation of the source terms contribution: wet/dry transitions

The scheme (3.6) - (4.9) allows the simulation of wet/dry transitions. How-
ever, several spurious oscillations appear when such experiments are performed.
The stiffness of the source terms in the vicinity of wet/dry transitions, especially
the friction, induces these spurious oscillations. To correct such a failure, we
first rewrite this scheme in order to exhibit the numerical flux function and the
source terms contribution. Then, we adopt an explicit scheme for the transport
part, and an implicit scheme for the source part.
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5.1. Reformulation of the scheme

In this subsection, we exhibit the numerical flux function and the numerical
source terms. To that end, the scheme (3.6), with intermediate states given by
(4.6), is rewritten after straightforward computations as follows (see for instance
01 At At

wrtt=wr - (M - ) g () 6D

The quantity [ 1= JWP, W) is the numerical flux function evaluated at
the interface z;, 1 and the quantity s?+ 1 is the numerical source term at the
interface x; 1. These quantities are approximations of the flux and the source
term, respectively, and are defined by:

n (fh)zn 1 n 0
ity = ((fq)?:> and s = ((St)?+é + (sf)?+;> - (52

The quantities (St):.:_ , and (S7 )i". 1 are approximations of the topography and
2 2

the friction source terms, respectively. Adopting extended notations, they are

given by:

(St)’:l—‘r% = St (h?:? h?—&-l? Ziv ZZ+1) ) (53&)
(Sf)zl+% = S‘f (hzla h?—&-la Q?a qz‘n—q—l) ) (53b)

where 5% and 57 are the approximate source terms already defined by (4.7) and
(4.8). The scheme (5.1) then reads:

h; = hi — Ax ((fh)H% - (fh)i,%) ) (5.4a)
At
n+l _ n__ =" q\n _ q\n

At n n n n -

+ 5 (892 + (897 + (8N, + (8,

where the approximate fluxes are defined by (5.2) and
1
in+% = 5 (F(Wzn> + F( iil))
AL \R (5.5)
i+1 L n i+1 R,* n
+ = (Wi - we) + =5 (W - W)

For the sake of simplicity, we set the notations:

(590 = 5 (897, +(59%,,) and (N7 =2 (5N, +(8D,,).

(5.6)
such that (5.4b) rewrites:
At
ntl _ n __ =Y q\n _ q\n t\n f\n
qt == (0 — D5y ) + DS+ AKSD (5)
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5.2. Implicitation of the source terms contribution

We now introduce a semi-implicit version of the Godunov-type scheme (5.1).
The main idea of this section is to use a splitting method (see for instance
[10, 45]) to reduce the impact of the aforementioned instabilities. The splitting
strategy we use here is to first consider an explicit treatment of the flux, then
an implicit treatment of both source terms. As a consequence, the first step,
devoted to the transport part ;W + 9, f (W) = 0, reads as follows:

ntd o At no_ Ry
S 5 (M2 = (My) .
a =g = o (2 — )

During the second step, devoted to the topography source term, we approx-
imately solve the initial value problem

dh
a = h(0) = h;*,
g with initial data 41

= =S, 90)=q; "7,

where S*(W) = —ghd;Z. We suggest the following implicit scheme to approxi-
n42 n+42
mate h, °* and g, °*:

2 1
{ b =, (5.92)

2 ntl 2
g =T AL(SY)ITE, (5.9b)

t n+3 t n-"—:£ n n—i—,g .
where, as per (5.6), (), ® = ((S )ipr T (5 )1_f> /2, with, after (5.3a),
2 2

nt2 =, [ nt2 pa2
(St)z_;jg = St (hi+37hi:13azivzi+1) .

Let us underline that, during the second step, the evaluation of the implicit
unknowns is immediate since the topography source term involves known quan-
tities.

The third and last step concerns the friction and consists in solving

dh

ar = N h(o) = b5,
d with initial data 2 (5.10)
= = —kalal(h; )", 9(0) =q; **

This system can be solved to find an analytic expression of the solution. For
t € [0, At], the exact solution of the above system reads as follows:

h(t) = h(0),
h(0)7g(0) (5.11)
1) = 5oy + ke (O]
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Note that the analytic expression (5.11) guarantees that, for all ¢ € (0, At],
the sign of ¢(t) stays the same as the sign of ¢(0), and that |q(¢)| < |q(0)].
This behavior is consistent with the fact that friction should only slow down
the movement of the fluid, rather than changing its direction. Then, evaluating
(5.11) at t = At and plugging the initial data yields

n4+2
Wyt = nyT, (5.12a)

(hp 1) g

()" kA g

K3

n+1 __
i =

. (5.12b)

Let us note that the updated state t(h?“, qi"'*'l) retains its non-negativity
preservation property, since the computations for h?ﬂ have not been modified
and Theorem 6 applies. Furthermore, the expression (5.12b) is well-posed for

h;”'l = 0 and, when that is the case, forces the discharge q?“ to vanish.
However, the well-balance property is lost. Indeed, if W |, W* and W3 | define
n+1l __

a steady state, we do not necessarily recover ¢;'"~ = ¢'. As a consequence, we
decide to consider an approximation of (h?“)n, denoted by (A7), in (5.12b).
This approximation is determined in order to ensure the required well-balance
of the scheme.

In order to obtain such an expression of (h7)""! we momentarily suppose
that W* , W/* and W}, | define a steady state. In this case, we need to ensure
that W;"*' = W. Since the scheme (5.1) is well-balanced, the equation (5.7)
yields q?“ = ¢}, and can be rewritten as:

(51 = = (P2, — o) — (897 (513)

Moreover, we have h?Jr% = h?". Therefore, by the definition (5.3a) of (S*)?, we
2 2
have (S*)173 = (§%). The evaluation of ¢/ * is then obtained from (5.9b) as

follows:

n+1
i

n+3 n At n n n
a7 =g = o (2 = Py ) + AH(s? (5.14)
Since W |, W{* and W} | define a steady state, the relations (5.13) and (5.14)
yield:
2
g =q - AT

Thus, using (h7)7"! (5.12b) reads

(R7)2 T (g — AH(ST)2)
(R + kAt |qf — AH(ST)P|

n

g = (5.15)

We are now able to determine the expression of (A" );H'l that ensures the well-

2 2
balance of the scheme. We set uf' = sgngq® and p?+3 = sgn q?+3. With these

notations, we get from relation (5.15) the following expression of (A7)
k(q")2un+% +2
piyrtt = S EL 4 E A3 gl 5.16
(h"); &r ;g (5.16)
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Now, recall that the numerical source term (S’f)j is defined by (5.6). As a
consequence, we get the following expression for (Sf )

1
(897 = 5 (—kay -

: Ay = ksl | (7))

where the averages g, , and (b= )i.1 are given with clear notations by (3.22)
2 2

and (3.25), respectively. However, recall that the only requirement that has to
be fulfilled by the average g is to recover the steady discharge gy as soon as a
steady state was reached. In the current context, Wi, W/ and W/, define
a steady state; hence, we have ¢i* | = ¢i' = ¢j’,; = qo. A relevant choice is
therefore to take g, 1= q?, which yields the following formula:

2

1 —_\n+l —_\n+l
(s =5 (=attart (7)) vt (7)) an
2

In (5.17), we have substituted (h_”)?i% with (h_”);f%l. This substitution has
no effect on the well-balance property, and considering the updated water height
makes the scheme contain more implicit terms.

With this simplification in the source term approximation, we get the fol-
lowing expression for (R7)"*!, from (5.16) and (5.17):

2
n

n+3
(R Ht = 21 *

) —\n+1 —\n+1
(7) Ly + ()
i—1 i+3

2

2
n+3 n

+EAtp; g

Arguing the formula (3.25), the above expression can then be rewritten as

— 2kuﬁ+%Ax
() = :

2
B 1 1 1 1 +RALp g, (5.18)
kpi Az (@nj; _|_an++1) - ('Y?j; +'Y;l:;)

2 2 2 2

?

where we have set

n 2 n 2
n+1 _ 77+2 (hz—:—ll) — (hl +1)

BH% 2 (hn+1)n+2 _ (h?+1)n+2 , and

i+1
+1y7—1 +1y7—1
n+1 __ 1 _ 1 + ,8”+1 (h?+l ) B (hzl )
R TR n-1

Computations within the expression of (7)?*! show that it tends to 0 as soon
as h?fll, h:‘“ or h?j’ll tends to 0, which is the correct behavior when dealing
with wet /dry transitions. We have therefore devised a way to consider the source
terms contribution in an implicit way, while still retaining the well-balance prop-

erty of the scheme. We can thus state the following result.
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Theorem 7. The scheme (5.8) - (5.9) - (5.12) - (5.18) is positivity-preserving
and well-balanced. Indeed, if (W");cz defines a steady state according to (4.3),
then Vi € Z, WZ‘H = W/. The same result holds for both topography-only and
friction-only steady states, respectively given by (1.9) and (1.10).

Proof. We begin this proof by recalling that, from (5.8), (5.9) and (5.12), we

have h?“ = h?Jr%. Therefore, since h?+§ is given by the full scheme (3.6),
which is positivity-preserving, the scheme under consideration is positivity-
preserving. We now have to show that it is well-balanced. To that end, assume
that W, W and W, define a steady state, according to (4.3), (1.9) or
(1.10). Using a similar chain of arguments as above, we immediately recover

that h?“ = h}. To complete the proof, we now have to show that qi"'*'1 =q}.
2

The updated discharge gt is given by (5.12), with qin—s_3 defined by (5.9) and

(5.8). Since (h")"T! is given by (5.18) and has been chosen to ensure ¢7 "' = ¢2,

the proof is concluded. O

6. Second-order MUSCL extension

We devote this section to a second-order extension based on a MUSCL tech-
nique (for instance, see [47, 48, 34, 35, 45]), to improve the space accuracy of
the scheme. The MUSCL procedure involves a piecewise linear reconstruction,
instead of piecewise constant, in the Godunov-type scheme. In addition, we use
Heun’s method to increase the time accuracy of the scheme.

6.1. The MUSCL reconstruction

The variables to be reconstructed are h, ¢ and h + Z. Thus, note that the
approximation of Z turns out to be time-dependent. For the sake of simplicity
and conciseness in the notations, consider w € {h, ¢, h+ Z}. The reconstruction
procedure consists in replacing the constant state wj' with a linear approxima-
tion, given in each cell (z;_1,2;, 1) by
wi'(z) = wi' + (x — z;) o,
where o' is the limited slope of the linear reconstruction. A limiter is applied
in order to improve the stability of the scheme. Here, we have chosen the
classical minmod limiter (the reader is referred for instance to [35] for more
details regarding the use of slope limiters and a wider range of limiters). The
limited slope o} is thus given by

n n n n
n . Wiy — Wy Wy — Wiy
o;" = minmod ,

Az Az
where the minmod function is defined by

a if |a| < |b] and ab > 0,
minmod(a,b) =< b if |a] > |b] and ab > 0,
0 ifab<O.
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Thus, at the inner interfaces of the cell (z
are given by

i1 TigL ), the reconstructed variables
2

(6.1)

Since w € {h, q, h+Z}, the reconstructed value of Z at the interfaces is computed
from the reconstructed values of h + Z and h at the interfaces.
Therefore, the updated states are given by the following three step scheme.

e Transport step:

W= ne - S (M - ).

n+% n At

(6.2)
@ =ar - o (U - ),

where (f1)7, = fUWFWiiy) and (J)7,, = f9W;W;,) accord-
1

ing to (5.5). The water height h?+3 is then reconstructed within the cell
(zi_1,%;,1), following (6.1), to get h; and hi.

e Topography step:

% i ’

hn-i—% hn—&-%
n+2 n+1 nt+2
@ =TT 4 AT, (6.3)

I e _ N, T . -
(St)i+3 = 5 (St(hjfl’hi 7Z+ Z; )+St(h;r7hi+17zi+’zi+1>)7

1—17 4
where S is defined by (4.7).
e Friction step:

2
n+l _ gnt3
B = B

J— n 2
nt+l _ ((hn)?ﬂ)nqi i
A w2’
(A7) + ke At]g | (6.4)
n+42
Ln\n 2”’1 ’ ZL n+d n
(hn)i—H = ntl .\ n+tl +kAtp; g,
(F77) , + (7)
i—1 i+3
where (h=")"*! .= h=(h} h7,,), according to (3.25).
1 7 i+1

Finally, the scheme’s time accuracy is improved by the use of the classical
Heun’s method (see [27]).
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6.2. MOOD technique to recover the well-balance property

At this level, the designed MUSCL scheme is not well-balanced. Indeed, if
W and W}, define a steady state, the reconstruction step (6.1) will provide
reconstructed values Wf and W, that no longer define a steady state. Thus,
the scheme will not be able to exactly preserve the initial steady state, but will
provide a second-order approximation. To restore this essential property, we
use a MOOD-like technique (see [17] for an overview of such techniques, and [7]
for more recent applications). We suggest to introduce a convex combination
between the reconstructed state and the non-reconstructed one (see [31] for

related work). As a consequence, we adopt the following reconstruction:

A A
wp == opyur 4 op (up - Srar) =t - Florer,
A A (6.5)
wh == oyup 07 (w4 Ghor ) =l + oty
where 0 < 07 <1 is the parameter of the convex combination. If 8} = 1, the
full MUSCL scheme is recovered. If 07 = 0, the states are not reconstructed
and the first-order well-balanced scheme is used.

Now, we propose a suitable process to define the parameter 6. To that end,
we first define

n (Q?+1)2 (qn)Q g n 2 n\2 qt of
Ay = T T g g () = ()7 — AaSlyy — AeSi

where 57,y = S'(h}', Wy, Zi, Zigr) and 5],y = ST (WP, By ai, i), with S
and S7 respectively defined by (4.7) and (4.8). Note that, from (4.3), AP?
vanishes when W and W/, | define a steady state. Thus, from this quantity,

1
we define a function to evaluate the deviation with respect to the equilibrium,
+ . (6.6)

as follows:
4 —qi a1 — 4G
Aw?,l Aw;:,l
2 2 2 2

Since A¢7' , vanishes when Wi* and Wi, define a steady state, this newly
2

;=

?
introduced quantity ¢} vanishes when Wi ,, W and W/, define a steady
state. Let M > m > 0. We define the parameter of the convex combination '

as follows:

0 if o <mAx
" mA
U Mha oy A SE S M A o
1 if i > M Ax.

This definition of 8] enforces the use of the MUSCL scheme if the states are
far from defining a steady state, i.e. ¢ is large enough; the first-order well-
balanced scheme is used if the equilibrium error ¢} is small enough. In addition,
the closer the states are to the equilibrium, the more the convex combination

will favor the first-order well-balanced scheme.
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7. Numerical experiments

This last section is devoted to numerical tests, in one and two dimensions.
We start by recalling the different schemes we shall test:

e the explicit scheme is (3.6) — (4.9);
o the implicit scheme is (5.8) — (5.9) — (5.12) — (5.18);
e the MUSCL scheme is (6.2) — (6.3) — (6.4) — (6.5).

In order to assess the properties of these schemes, we present four sets of nu-
merical experiments. The first set assesses the well-balance of the scheme, by
considering steady states at rest and moving steady states with friction, over
flat and non-flat topographies. Then, the goal of the second set is to study the
influence of the parameters C, m and M on the numerical solution. Afterwards,
the focus of the third set is the simulation of wet and dry dam-breaks, over a
possibly complicated topography, and with a nonzero Manning coeflicient k.
Finally, the fourth set of experiments concerns simulations in two dimensions.

In order to provide reference solutions when no exact solution is available, we
elect to use the second-order hydrostatic reconstruction scheme (HR) presented
in [1], equipped with the HLL flux and an implicit treatment of the friction
source term. Note that this scheme preserves the steady states at rest, even
with a nonzero friction contribution.

For the numerical experiments involving friction, a suitable value of the
Manning coefficient k& has to be chosen. For instance, the reader is referred to
[16] (page 109), where multiple values of k are given for different types of channel
beds. Nevertheless, we deliberately impose stronger Manning coefficients than
in reality (up to 10 times). This choice is made to ensure that the friction
source term is preponderant compared to the topography source term, in order
to enhance the effects of the friction.

An important step in these numerical experiments in the choice of the con-
stant C, introduced in (3.26) to ensure the consistency of the approximate to-
pography source term, and the choice of the constants m and M, introduced
in (6.7) to define a steady state detector for the MUSCL scheme. In this arti-
cle, these constants are chosen heuristically; a deeper study of the stability and
of the order of accuracy of the scheme could provide several bounds for these
constants. For each set of experiments, we will provide an insight regarding the
choice of C, m and M.

The other constants are chosen according to Table 1.

Constant Equation Value

g (1.1) g =9.81 m.s2
EX (3.3) Ex = 10710 m.s!
5 (3.33) e=0m

Table 1: Values of the constants within the numerical experiments.
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Moreover, we will compute errors to make sure the schemes satisfy the re-
quired properties. The L', L? and L errors for a bounded function w are
computed as follows:

1 & . e .
L' N;M}z —wf|; L?: N;(wl —w;?””)2 i L lrgnzfgvmz —w®,
(7.1)
where w; and w§® are respectively the approximate and the exact solution at the
point x; and at the final physical time t.,4, and N is the number of discretization
cells. Finally, we recall that the CFL condition (3.5) gives the time step At at
each iteration, as follows:

Ax I R
At < A where A—rlneazx <_>‘i+%7>‘i+%)'

7.1. Verification of the well-balance

In this first set of experiments, we assess the well-balance of the scheme,
i.e. its ability to exactly preserve and capture steady states. Recall that steady
states are given by the equation (1.5), which prescribes a uniform discharge
over the space domain, denoted qy. First, steady states for the friction source
term only are studied, that is to say we impose qp # 0 and 0,2 = 0. Then,
we consider steady states for both friction and topography, which are either
analytic solutions in specific cases or steady states obtained by approximately
solving (1.5).

7.1.1. Steady states for the friction source term

We first focus on the preservation of the friction-only steady states. Thus, we
assume ¢qg # 0 and a flat topography, i.e. 9,7 = 0. The smooth steady states
are then given according to (1.10), or equivalently (2.2). The space domain
for these experiments is [0,1], and its discretization is made of 200 cells (i.e.
Az =5.1073).

In Section 2, the water height for a smooth steady state was obtained by
considering a zero of the nonlinear function £ defined by (2.5). We consider the
subcritical branch of the steady state obtained by assuming gy = —1, zg = —Azx
and hg = h,, with h. defined by (2.6). The Manning coefficient k is chosen equal
to 1.

The first experiment concerns the preservation of this steady state. We take
q(x) = qo and the exact height as initial conditions, and we impose the exact
solution at the points —Az and 1 4+ Ax as inhomogeneous Dirichlet boundary
conditions. We compute the approximate solution until the final time t¢,q = 1s.

Moreover, the parameters are taken as follows: C = 1073, m = 10~'2 and
M = 10!, Such a value for C was chosen to ensur that the term [h]. present in
the approximate source terms was small enough. The justification of the choice
of the parameters m and M is the same as in the case of the steady states are
rest.
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The results are presented on Figure 4, and the errors to the steady state are
displayed in Table 2.

091 9e-167 !‘
;
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Figure 4: Left panel: initial height for the friction steady state. Right panel: height (solid
line) and discharge (dashed line) errors to the steady state after 1s, with the explicit scheme.

| h | q
| L2 L= | I L2 L
explicit 6.00e-17 1.09e-16 7.77e-16 | 1.81e-16 2.56e-16 8.88e-16

implicit | 6.49e-17 1.15e-16 7.77e-16 | 2.91e-16 3.82e-16  9.99e-16
MUSCL | 8.49e-17 1.33e-16 6.66e-16 | 2.42e-16 3.30e-16  8.88e-16

Table 2: Height and discharge errors with the three schemes for the friction steady state.

From Figure 4 and Table 2, we observe that the friction-only steady state
is indeed preserved up to the machine precision by the three schemes, which is
not the case when considering non-well-balanced schemes (see for instance [40]
in the context of the shallow-water equations with topography only).

The second experiment is based on the previous steady state, but with a
perturbation, as shown on Figure 5. With h., the exact height, this perturbation
is defined by choosing the initial water height as follows:

7

hex () otherwise.

o) — § e (@) 02 ifxg[?’ 4};

The initial discharge is unperturbed, and taken equal to ¢y = —1 throughout the
domain. The boundary conditions consist in the unperturbed exact solution. We
use the three schemes and 100 discretization cells for the numerical simulation
on the domain [0, 1].

Moreover, we take C = 1073, m = 1072 and M = 10~'. For this perturbed
initial data, we have raised the value of the parameter M so that the scheme
exactly converges towards the unperturbed steady solution. Indeed, the well-
balanced scheme starts being used as soon as the steady state deviation, defined

31



by (6.6), is lower than M Ax. Therefore, the value M = 107! ensures that the
well-balanced scheme is used soon enough to allow the exact recovery of the
unperturbed steady state.

The computations are carried out until the final time t.,q = 9s. Indeed,
such a final time allows the perturbation to be dissipated and a steady state
to be reached. In fact, this steady state is the original, unperturbed steady
state. The results of the explicit scheme are presented on Figure 5 and an error
comparison with the unperturbed steady state is provided in Table 3.

T T 1
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 Q.7

06 06 0.6

05 0.5 0.5
0.2 04 0.6 0.8 1 02 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1

Figure 5: From left to right: water height for ¢ = Os, ¢ = 0.06s and ¢ = 9s, with the explicit
scheme.

| h | q
| L2 L= | L L? L>
explicit 7.42e-15 7.48e-15 8.55e-15 | 7.06e-15 8.32e-15 1.48e-14

implicit | 7.06e-15 7.09e-15 8.10e-15 | 7.61le-15 8.81le-15 1.5le-14
MUSCL | 8.40e-15 8.47e-15 1.04e-14 | 6.56e-15 7.52e-15 1.73e-14

Table 3: Height and discharge errors with the three schemes for the perturbed friction steady
state.

Figure 5 shows that the perturbation is eventually dissipated and we recover
the unperturbed steady state. This assertion is confirmed by the error analysis
presented in Table 3, which shows that all three schemes recover the unperturbed
steady state up to the machine precision.

Remark 5. We have carried out similar experiments with a supercritical branch
instead of the subcritical branch, and we obtained the same results, i.e. the
steady state solution was exactly recovered. For the sake of conciseness, we do
not present them here.

7.1.2. Steady states with both friction and topography

We end the sanity check of the well-balance property with numerical experi-
ments consisting in the preservation of steady states involving both topography
and friction (for experiments with the sole topography source term, including
the preservation of steady states at rest, the reader is referred to [40]). Hence,
we take k £ 0, 0, Z # 0, and qg # 0. Steady states are therefore given by the full
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equation (1.5). Recall that this equation cannot be rewritten under an algebraic
form. Thus, to find a general steady state solution, we have to numerically solve
the equation (1.5).

We begin by considering two very specific cases, where the height or the free
surface are constant, in order to obtain an analytical solution of (1.5).

First, assume h(z) = hg, i.e. the water height is uniform and equal to hg in
the whole space domain. Thus, (1.7) rewrites

gho0xZ + kqo|qo|h{ =0,

and we immediately obtain a relation characterizing the slope of the topography:

k
0,7 = — qO'iﬂ'. (7.2)
ghg

This specific case is tested numerically by taking hg = g0 = 1, k = 10, Z(0) =0
and the slope of Z given by (7.2). The space domain is [0, 1] and is discretized
using 100 cells. The initial and boundary conditions are the exact solution. The
computations are carried out with all three schemes, and we choose t.,q = 1s.
We take C = +oo, m = 107!2 and M = 107!, for reasons similar to the
ones invoked for the first experiment with friction only. Table 4 shows that
the topography and friction steady state with constant height is indeed exactly
preserved by the three schemes.

| h | a
‘ Ll L2 L>® ‘ Ll L2 L
explicit 9.99e-18  3.68e-17 2.22e-16 | 9.99e-17 1.84e-16 6.66e-16

implicit | 2.22e-17 5.21e-17 2.22e-16 | 9.99e-17 1.84e-16 6.66e-16
MUSCL 0 0 0 2.55e-17  6.75e-17  2.22e-16

Table 4: Height and discharge errors for the topography and friction steady state with constant
height.

To build another exact solution of (1.5), we assume h + Z = Hj instead
of h = hg. We therefore have a constant free surface Hy over the whole space
domain [0, 1]. Note that (1.7) rewrites for smooth solutions with positive water
height as follows:

kqolqol
W

Since the free surface h + Z is constant, the above relation rewrites

=0.

2
q
—Fgazh + gho(h+ Z) +

R"20,h = kuo, (7.3)

where po = sgn(go). For z € [0,1], integrating (7.3) over [0,z] provides an
expression of h that depends on the initial condition hg := h(0), namely:

Y (z) =yt + (7 — 1) ko (7.4)
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Note that (7.4) defines an expression of the height that may become non-positive
for some x. Thus, we choose the constants k, go and hg such that h is positive
over the whole domain [0,1]. In the simulation, we set k = g9 = hg = 1 and
Hy = 1. Equipped with the water height, we define the topography by setting
Z(x) = Ho — h(x). We discretize the space domain with 100 cells and use the
three schemes to carry out the simulation until the time t.,q = 1s. We again
take C' = 400, m = 10712 and M = 10~!!. An error comparison of the three
schemes is displayed in Table 5, which shows that the steady state is preserved
up to the machine precision by the explicit, implicit and MUSCL schemes.

| h | q
N L2 L | I L2 L
explicit | 4.23e-15 4.48¢-15  6.66-15 | 3.06e-14 3.07e-14  3.60c-14

implicit | 1.31e-16  2.00e-16 6.66e-16 | 1.45e-15 1.83e-15 4.88e-15
MUSCL | 8.88e-17 1.57e-16 4.44e-16 | 4.46e-16 6.81e-16 2.22e-15

Table 5: Height and discharge errors for the topography and friction steady state with constant
free surface.

Finally, we derive a steady state for the shallow-water equations with topog-
raphy and friction, without considering a constant height or free surface. Thus,
we approximately solve the discretization (4.3) of the full equilibrium relation
(1.7). First, we set k = 0.01 and choose [0, 1] to be the space domain. Moreover,
the topography is given by

1 ecos(47ra:) —e 1

Z(xz) = SR — (7.5)
We set g(z) = qo throughout the domain. The equation (4.3) is then approx-
imately solved using Newton’s method, imposing h(0) = 0.3. This procedure
allows us to define the water height over the whole domain. This steady state
Y(h(z),q(x)) is then chosen as the initial and boundary conditions for this ex-
periment. We take 100 discretization cells, and we once again set C' = +o0,
m = 10712 and M = 10~''. The numerical simulation of this experiment is
done using all three schemes, and runs until a final physical time t.,q = 1s. The
results of the explicit scheme are presented on Figure 6 and the errors to the
steady state are displayed in Table 6.

Figure 6 shows that the explicit scheme exactly preserves this topography
and friction steady state. Moreover, Table 6 shows that both other schemes also
exactly preserve such a steady state.

The very last experiment in the assessment of the well-balance property
focuses on a perturbation of the aforementioned steady state. We denote by
hez(z) the water height of the previous topography and friction steady state.
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Figure 6: Left panel: initial height for the topography and friction steady state. Right panel:
height (solid line) and discharge (dashed line) errors to the steady state with the explicit
scheme.

h q
| L L2 L~ | L L? Lo°
explicit | 3.54e-16 4.49e-16 1.11e-15 | 1.66e-15 2.16e-15  3.55e-15

implicit | 5.73e-16  8.99e-16  3.00e-15 | 5.07e-16 6.29e-16  1.55e-15
MUSCL | 3.52e-17 5.40e-17 1.67e-16 | 3.75e-16 4.85e-16 1.33e-15

Table 6: Height and discharge errors with the three schemes for the topography and friction
steady state.

The initial water height of this last experiment is then given by

2 3 45
Reg 0.05 ifze |-, = ==,
iy = e +008 iz [23] U2 7)
hex () otherwise,
and the discharge is defined by

1 2 3 45
Zif 2 =2
q0+2 1 x€|:777:|U|:7a7:|3

qo otherwise.

q(z) =

The unperturbed steady state is prescribed as the boundary conditions. For this
numerical experiment, the domain [0,1] is discretized with 100 cells, and the
simulation runs until the perturbation has been dissipated and the unperturbed
steady state has been recovered. The final physical time we choose for these
conditions to be met is t.,q = 2s. Moreover, since we seek the capture of
this perturbed steady state, we set the parameters as C = +oo, m = 10713
and M = 0.05. The evolution of the perturbation with the explicit scheme is
presented on Figure 7. Then, in Table 7, we present the errors to the original
unperturbed steady state when the physical time is elapsed.
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Figure 7: From left to right: water height for t = 0s, t = 0.015s and t = 2s, with the explicit
scheme.

| h | q
‘ Lt L2 L ‘ Lt L? L
explicit 5.10e-16  7.09e-16 2.44e-15 | 2.20e-15 2.92e-15 5.33e-15

implicit | 4.85e-16 7.97e-16 2.72e-15 | 9.73e-16 1.15e-15 2.78e-15
MUSCL | 6.46e-16 9.40e-16  3.50e-15 | 1.71e-15 2.23e-15 4.22e-15

Table 7: Height and discharge errors with the three schemes for the perturbed topography
and friction steady state.

Figure 7 and Table 7 show that the scheme indeed allows to recover the
original unperturbed steady state. This experiment emphasizes the ability of
the three schemes to exactly capture a steady state, even after a perturbation.

7.2. Influence of the parameters C, m and M

This second set of experiments is devoted to the study of the influence of
the parameters present in the scheme: C, m and M. Our goal is to emphasize
the need for a relevant value of these parameters in numerical simulations.

We first perform three dam-break experiments whose goals are to show the
dependence in C' of the numerical solution, when considering the topography
or the friction source term. Then, the dependence in m and M, related to the
order of the numerical scheme, is studied.

7.2.1. Influence of the parameter C for the topography

Recall that the approximate topography source term S°, defined by (4.7),
depends on the parameter C'. Namely, this parameter is used to ensure the
consistency of the approximate source term S with the actual source term S*,
by ensuring that the absolute value of the water height jump [k] is no larger than
CAz. The purpose of the first set of experiments is to highlight the influence
of this parameter C'.

Shock waves over a flat topography

The first experiment we consider concerns the propagation of shock waves
over a flat topography. To that end, we consider the domain [0,1] with a flat
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topography (i.e. Z = 0), homogeneous Neumann boundary conditions, and we
take the following dam-break initial data:

75 if x < 0.5,

h(0,z) =1 and ¢(0,2)= {_7 it 2> 05

Recall that the cutoff involving C' had been introduced to ensure the consis-
tency of S§°, especially for flat topographies. As a consequence, for this experi-
ment, the value of C' should be instrumental in getting the correct shocks waves
and an accurate approximation of the intermediate state.

To carry out this experiment, we set a vanishing friction contribution (i.e.
k = 0), we use 250 discretization cells, and we take the final time ¢.,q = 0.1s.
This experiment is performed for C' = 10 and C' = 1000. The results of the
implicit scheme are presented on Figure 8, where we display the exact solution
(see for instance [35, 45] for more details) as well as the numerical approximation.

4 3.98

—Exact h —Exact h
xh,C=10 |} % Xh, C'=10
+h, C =1000 +h, C = 1000
3 ] M 4 s
+ i 4 T
305 Sty E; W 5
* AVANy: B
2 +
+
1 +
b 3.92
1 5 ke x r
0.25 05 0.75 1 0.25 0.5 0.75

Figure 8: Dam-break creating two shock waves over a flat bottom. Left panel: whole domain
depicted at t = 0.1s. Right panel: zoom on the intermediate state of the dam-break problem.

The left panel of Figure 8 shows that, for both values of C, the approximate
shock waves are located at a consistent position and seem to have the correct
amplitude. However, on the right panel of Figure 8, we note, on the one hand,
that the intermediate state obtained with C' = 1000 presents spurious oscilla-
tions, whose amplitude does not decrease when Az decreases. On the other
hand, with C' = 10, the implicit scheme provides a good approximation of the
intermediate state.

Dam-break on an emerging bottom

The second dam-break experiment we perform in order to study the influence
of the parameter C' presents an emerging bottom. To that end, we modify
the flow at rest with emerging bottom experiment from [24], to add a wave
perturbing the water at rest. On the space domain [0,15], we consider the
topography function Z(z) = (0.2 — 0.05(z — 10)2)Jr and the following dam-
break initial conditions:

h(0,z) + Z(x) = and ¢(0,2) =0.

0.2 ifz <5,
0.15 ifz > 5,
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We prescribe homogeneous Neumann boundary conditions, and we consider
4000 discretization cells. We once again take a vanishing friction contribution,
i.e. k = 0. The initial condition, as well as the reference solution, computed
with the HR scheme at t.,q = 5s, are displayed on Figure 9.

0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
O0 5 10 15 00 5 10 15

Figure 9: Dam-break on an emerging bottom. Left panel: Initial free surface. Right panel:
Reference free surface obtained with the HR scheme. On both panels, the gray area is the
topography.

In order to study the influence of the parameter C, we consider the implicit
scheme, and we carry out the simulation with C' = 1 and C' = 10. The results
are displayed on Figure 10. Indeed, with C = 10, large spurious oscillations
appear, a wave is reflected to the left of the domain, and an inconsistent dry
area appears on the bump. However, with C' = 1, we only get small oscillations
near x = 9.75; the amplitude of these oscillations decreases as Az decreases.

0.21

0.17

h+Z,C=1
--h+Z, C =10
0.15 —Referen;:e h+Z

10 il

Figure 10: Dam-break on an emerging bottom: zoomed comparison between the HR scheme,
the implicit scheme with C = 1, and the implicit scheme with C' = 10. The gray area is still
the topography.

On Figure 10, we once again observe that the consistency is ensured by the
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cutoff procedure. Indeed, with C' = 10, large spurious oscillations appear, a
wave is reflected to the left of the domain, and an inconsistent dry area appears
on the bump. However, with C' = 1, we only get small oscillations near x = 9.75;
the amplitude of these oscillations correctly decreases as Ax decreases.

7.2.2. Influence of the parameter C for the friction

Next, we turn to the study of the influence of the parameter C' on the
approximate friction source term S/ = —kg|g|/h~", defined by (3.27). Recall
that the purpose of this parameter is to ensure the consistency of S with the
friction source term S/, especially when dealing with discontinuities and a small
Manning coefficient k.

In order to highlight the relevance of this parameter, we consider the follow-
ing numerical experiment. We consider a dam-break problem on a flat topog-
raphy (i.e. Z = 0) with a very small Manning coefficient (we take k = 1077).
As a consequence, the first term of the expression (3.27) of S Fis negligible, and
the presence of the cutoff (3.26) makes its second term consistent. The initial
conditions of the dam-break problem are taken as follows:

oy — [ ifz<05 00— {2 if 2 <05,
= 1 =
TN 30 itx>o05 NG BT 900 if x> 0.5.

and the space domain is [0,1], with homogeneous Neumann boundary condi-
tions. Equipped with such initial conditions, we expect two large shock waves
to propagate in the domain.

This experiment is carried out with the explicit scheme, until the final phys-
ical time t.,q = 0.0175s. Note that we know the exact solution ?(h®act geract)
to this dam-break problem for k = 0 (see for instance [35]). As a consequence,
in order to quantify the error introduced by the inconsistent term and hopefully
corrected by the use of C', we consider the following error:

1
Aq = Z (q?e”dAm)—/ " (teng, T) dz |,
0

i€[1,N]

where IV is the number of cells and where t"end = t,,4.
To that end, we compute the errors Ag, and the associated orders of accu-
racy, for the following three configurations:

(a) C=0;
(b) C=1;
(¢) C = +o0.

The errors and orders of accuracy are collected in Table 8.

(a) For C' = 0, we get a consistent scheme. The values of the error presented in
Table 8 are of the same order of magnitude as k, which was to be expected
since the approximate solution is compared to the exact solution obtained
with & = 0. This is verified by taking, for instance, & = 10~'!: in this
case, Aq ~ 1.2 x 10~'3 for all N. However, if a steady state solution were
considered, the value C' = 0 would not allow its exact preservation.
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N ‘ Agq,C =0 Agq, C =1 Agq, C = +0

200 | 2.44e-10 — | 1.64e-04 — | 2.21e-01 —
400 | 2.41e-10 — | 8.03e-05 1.03 | 2.12e-01 0.06
800 | 2.40e-10 — | 3.98e-05 1.01 | 2.08e-01 0.03
1600 | 2.39e-10 — | 1.98e-05 1.01 | 2.06e-01 0.01

Table 8: Dam-break experiment with large shocks: influence of the parameter C.

(b) For C' =1, since the error is of the order of magnitude of Az, we also get
a consistent scheme. Indeed, in this case, the formerly inconsistent term
of (3.27) becomes a perturbation of size O(Ax).

(¢) For C' = +o00, the scheme is inconsistent: indeed, the error Ag does de-
crease with Az, but the approximate solution does not converge towards
the correct solution. However, this value of C' allows steady state solutions
to be exactly preserved.

This experiment therefore highlights the necessity of the cutoff introduced
in (3.27) in order to recover the consistency of the scheme when considering
discontinuous solutions and a negligible friction contribution, while ensuring
that the scheme is still well-balanced.

7.2.8. Influence of the parameters m and M

The goal of this next experiment is to emphasize the dependence of the
numerical solution in m and M. Recall that these parameters were introduced
during the MOOD procedure to ensure the well-balance of the scheme. Namely,
they were used to define, in (6.7), the parameter 07 of the convex combination
between the non-reconstructed states and the reconstructed ones.

In order to study the influence of these parameters, we consider an experi-
ment devoted to computing the order of accuracy of the scheme. To set up this
experiment, we compute a steady solution with both topography and friction
contributions. We set k = 0.01 and a topography given by (7.5) over the space
domain [0.4,0.6]. We take the steady discharge ¢(x) = go = 1 and we approxi-
mately solve (4.3) with h(0) = 1 to finally obtain the steady water height h(x)
on the whole space domain. This steady state (h(z),q(x)) is then chosen as
the initial and boundary conditions for this experiment.

However, this steady state is exactly preserved by the well-balanced scheme.
In order to study the order of accuracy of the scheme, we introduce the following
smooth perturbation, of amplitude 1076, of the steady solution on [0.45,0.55]:

ashy(z) = h(z) +107% x w ((m - 0.5)) ,
where we have set

2—[2[\*

0 otherwise.

w(z) =
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The initial data of the experiment is the perturbed steady state ‘(h,(z), ¢(x)).
Note that such initial data is smooth (of class C*) on [0.4,0.6], and it is a
steady solution on [0.4,0.45] U [0.55,0.6]. As a consequence, on the one hand, a
well-balanced scheme will exactly preserve its steady part, and provide a first-
order approximation of the unsteady part. On the other hand, a second-order
scheme will provide a second-order approximation of the solution everywhere.
Therefore, the advantage of using the aforementioned MOOD procedure lies in
ensuring both the exact preservation of the steady part and the second-order
approximation of the unsteady part.

This experiment is carried out until the final physical time t.,,4 = 1073. Such
a final time has been chosen to ensure that the perturbation does not reach the
boundaries of the domain. We use the MUSCL scheme for several values of
m and M, in order to study the order of accuracy for each pair (m, M) under
consideration. To that end, we first compute a reference solution using 20480
cells. Then, to obtain the order of accuracy, we begin by using (7.1) to compute
the L', L? and L™ errors. With ey representing either of these errors for N
cells, the order of accuracy p is computed as follows:

_ In(en) — In(ean)
= 3 . (7.6)

Equipped with this definition, we compute the L', L? and L> discharge errors
and the associated orders of accuracy for the following pairs (m, M):

(a) m=10"12 and M = 10~1;

(b) m =102 and M = 10~5;

(¢) m=10"%and M =102
The results are collected in Table 9, Table 10 and Table 11, as well as Figure 11.

N Lt L? Lee

80 3.34e-07  — | 3.57e-07 — | 4.60e-07 —
160 | 8.39e-08 1.99 | 8.97e-08 1.99 | 1.16e-07 1.99
320 | 2.11e-08 1.99 | 2.25e-08 1.99 | 2.90e-08 1.99
640 | 5.27e-09 2.00 | 5.63e-09 2.00 | 7.26e-09 2.00
1280 | 1.31e-09 2.01 | 1.39e-09 2.01 | 1.79e-09 2.02

Table 9: Discharge errors and order of accuracy for the pair (a).

From Table 9, Table 10, Table 11 and Figure 11, we note that the scheme is
second-order accurate when using the pairs (a) and (b), and first-order accurate
for the pair (c). These observations can be explained as follows: for the first
pair, the second-order reconstruction is used almost everywhere, which leads
to the scheme being second-order accurate. For the third pair, the second-
order reconstruction is never used, and the scheme is first-order accurate. It is
interesting to remark that, for the coarsest grid, the first-order well-balanced
scheme is more accurate than the second-order scheme. The second pair leads
to a balance between the second-order piecewise linear reconstruction and the
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N Lt L? L™

80 2.73e-07 — | 3.39e-07 — | 5.68e-07 —
160 | 3.62e-08 2.91 | 4.55e-08 2.90 | 8.00e-08 2.83
320 | 5.13e-09 2.82 | 6.38e-09 2.84 | 1.10e-08 2.86
640 | 9.39e-10 245 | 1.13e-09 2.50 | 1.84e-09 2.58
1280 | 2.08e-10 2.18 | 2.43e-10 2.21 | 4.22e-10 2.12

Table 10: Discharge errors and order of accuracy for the pair (b).

N Lt L? L™

80 2.00e-07  — | 3.33e-07 — | 7.74e-07 —
160 | 9.98e-08 1.01 | 1.67e-07 1.00 | 3.92e-07 0.98
320 | 4.96e-08 1.01 | 8.31e-08 1.01 | 1.96e-07 1.00
640 | 2.45e-08 1.02 | 4.10e-08 1.02 | 9.68e-08 1.02
1280 | 1.18e-08 1.05 | 1.99e-08 1.05 | 4.69e-08 1.05

Table 11: Discharge errors and order of accuracy for the pair (c).
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Figure 11: Error plots in L2-norm for the three (m, M) pairs.

first-order piecewise constant values.

This balance ensures that the second-

order scheme is used where the solution is unsteady and that the well-balanced
scheme is used where the solution is steady, thus leading to a scheme that is
more accurate than in the other two cases.

This experiment emphasizes that the choice of m and M is of crucial impor-
tance in order to ensure a good quality of the numerical approximation.
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7.3. Dam-break experiments

Now, we focus on several dam-break experiments, whose goal is to provide
a validation of the scheme on unsteady cases. We consider a dam located at
x = xp that instantly breaks at ¢ = 0s, thus releasing the water it was holding.
Such a dam-break experiment has initial data W, = *(hr(z),0) if x < zp and
Wgr = “(hg(z),0) if # > zp. The topography function Z and the Manning
coefficient k are different in each experiment.

In addition, the parameters m and M are chosen to ensure the preservation of
the situations of water at rest located away from the waves, while still retaining
a more accurate approximation within the waves. More details on such water
at rest situations are given in the next paragraph. Finally, the parameter C' has
been chosen heuristically, and it is reported in each experiment.

7.3.1. Wet dam-break

We first carry out a wet dam-break experiment. Here, the topography is
given by Z(z) = cos? (2rrz) /2 and the Manning coefficient is k = 1. The space
domain is [0, 1] and the dam is located at xp = 0.5. We prescribe homogeneous
Neumann boundary conditions at both boundaries. The initial data is hp(x) +
Z(z) =2 and hg(x)+ Z(x) = 1. The results, obtained using 100 discretization
cells and t.,q = 0.05s, are displayed on Figure 12. For this simulation, we choose
C =10, m = 1075 and M = 10~!. The goal of this experiment is to compare
the three schemes to a reference solution, obtained using the HR scheme with
10* discretization cells.

2 X Explcit
+ Implicit
= =MUSCL
—Reference
] .é‘ — Topography
1.24
0.8
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0 0.2
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0.8

Figure 12: Free surface observed at the final physical time with the three schemes, for the wet
dam-break experiment.

The three schemes yield a correct approximation of the reference solution.

The explicit and the implicit schemes yield very close solutions, while the
MUSCL scheme provides a better approximation of the reference solution.
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Note that we are dealing with a lake at rest configuration in the regions far
from the waves. Indeed, the free surface unaffected by the rarefaction wave or
the shock wave remains unperturbed. This means that h(z) + Z(z) = 2 and
q(z) = 0 for all x before the head of the rarefaction wave, and h(z) + Z(z) =1
and ¢(x) = 0 for all = after the shock wave.

Such a property is satisfied by the explicit and implicit schemes. The
MUSCL scheme, equipped with the well-balance correction (6.5), also exactly
preserves this configuration. In addition, the MUSCL scheme provides a better
approximation of the rarefaction wave and the shock wave.

Therefore, such an experiment highlights the interest of a using a well-
balanced scheme for such simulations, even if the whole domain does not involve
a steady state. Moreover, it showcases the relevance of the convex combination
procedure involved in the MUSCL scheme, to preserve steady states while still
ensuring a better approximation of the exact solution.

In order to emphasize even more the importance of using a well-balanced
scheme in such situations, we compare the implicit scheme with a non-well-
balanced one. The non-well-balanced scheme we use is the HLL one (see [30]),
coupled with a classical splitting treatment of the topography and friction source
terms (see [10] for instance). The discharge obtained by both these schemes is
compared on Figure 13 with the discharge of the reference solution.

—Reference
1.21 + Implicit
x HLL
1.
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Figure 13: Discharge for the wet dam-break experiment. Results of the implicit scheme and
the HLL scheme with 100 discretization cells, compared with a reference solution computed
with the MUSCL scheme using 10000 discretization cells.

On Figure 13, we observe that the implicit scheme exactly preserves the
lake at rest configurations ahead of the waves. Indeed, the discharge vanishes
in those areas. However, the HLL scheme does not preserve this steady state,
and the discharge shows perturbations near the boundaries of the domain. In
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addition, we note that the intermediate state between the waves is correctly
approximated by the implicit scheme, while the HLL scheme provides a poor
approximation, which proves the importance of using a well-balanced scheme
for such simulations.

7.3.2. Dry dam-break over a flat topography: explicit scheme disqualification

The goal of this experiment is to show the spurious oscillations induced by
the explicit scheme in the presence of the friction, and the improvement obtained
by using the semi-implication of the friction in the implicit scheme.

The topography function is Z(x) = 0, and we take k = 5. The initial data is
hr(x) = 1.5 and hg(z) = 0, and the space domain is [-1, 1], for a dam located
at xp = 0. Hence, the wet/dry front is located within the interval [0,1]. Fig-
ure 14 displays the discharge computed by the explicit and the implicit schemes
on this interval. To obtain these results, we used 200 cells, the final physical
time tenqg = 0.03s, and we took C' = 1. Finally, we prescribe homogeneous Neu-
mann boundary conditions on both boundaries, and we compute the reference
solutions using the HR scheme with 2 x 10 cells.

- Explicif
2 - -Implicit
2 —Reference
5e-51 - )
0/ i
-5e-5]
0 0.25 05 0.75 1

Figure 14: Dry dam-break: instabilities induced by the explicit scheme. The discharge is
represented for the explicit scheme (dotted line), the implicit scheme (dashed line) and the
reference solution (solid line). Oscillations in the discharge produced by the explicit scheme
are clearly visible.

From Figure 14, on the one hand, we note that the discharge obtained with
the explicit scheme presents several non-physical oscillations. According to the
reference solution, it should stay equal to zero. On the other hand, we remark
that no oscillations appear when using the implicit scheme. As a consequence,
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the explicit scheme is not suitable to perform the simulation of a dry area using
the same CFL condition (3.5) as the implicit scheme. In the remainder of this
section, the implicit scheme will be used for numerical experiments as soon they
involve dry areas.

7.8.3. Dry dam-break over a non-flat topography

Now, we consider a dry dam-break. The topography is still given by Z(z) =
cos? (2rx) /2 and the Manning coefficient is now k = 10. The initial data is
hr(x) + Z(x) = 2 and hg(x) = 0. The space domain is [0,1] and the dam is
located at xp = 0.5. Moreover, the boundaries at x = 0 and = = 1 are equipped
with homogeneous Neumann boundary conditions. We use 100 discretization
cells and display the results on Figure 15 at time t.,q = 0.05s. We choose
the constants C = 7.5, m = 107% and M = 10~'. We use the implicit and
MUSCL schemes. Indeed, the explicit scheme present instabilities when dealing
with dry/wet transitions. We also provide a reference solution for comparison
purposes, obtained with the HR scheme using 10* discretization cells.
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Figure 15: Free surface observed at the final physical time with the implicit and MUSCL
schemes, for the dry dam-break experiment.

The reference solution is once again correctly approximated by the two
schemes, and the MUSCL scheme provides a better approximation of the so-
lution than the implicit scheme. We reiterate the same remark concerning the
exact preservation of the lake at rest before the head of the rarefaction wave.

7.8.4. Dry dam-break with two bumps

This last dry dam-break experiment concerns a more complicated topogra-
phy, with two bumps. The space domain is [0,5] and we choose to use 10%
discretization cells with the MUSCL scheme to have a relevant simulation. The
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two boundaries at * = Om and z = 5m are solid walls. The topography is

defined by
Z(x) = % <1 _@=5/27 I/zg2)2)+ +2 (1 - (171;—2?2>+,

and it indeed consists in two quadratic bumps, a smaller one followed by a larger
one. The dam is located at zp = 0.7m, breaks at t = 0s, and contains an initial
water height Ay = 6m. The domain x > zp contains no water, i.e. hg = 0. We
take a Manning coefficient k equal to 1. Figure 16 shows that the initial water
height is significantly larger than the bumps, in order to impact them with a
high enough velocity. We choose C' = 0.1, m = 107® and M = 10~".

251 251
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Figure 16: Free surface for the double bump test case at different times: from left to right
and top to bottom, the solution is observed at times Os, 0.38s, 0.74s and 1.70s.

7.4. 2D simulations

This subsection is devoted to experiments in two space dimensions. In this
context of two-dimensional geometries, the shallow-water equations with topog-
raphy and Manning friction read as follows:

Och + O0xp + 0yq = 0,
2
p- 1 Pq _
oo (bt g0 +0, (M) = —gno.z-kDi, (o)
2
Pq e 1.\ _ _ —n
8tq—|—3x(h)—|—3y<h—|—29h) = —ghd,Z — kqDh™",
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where p is the discharge in the x direction, q is the discharge in the y direction,
and D is the Euclidean norm of the discharge vector, i.e. D = 1/p?+ ¢2. We
rewrite (7.7) under the following condensed form:

W + 0, f(W) + 8,9(W) = (W),

where the definitions of W, f, g and s can easily be inferred from (7.7).

The numerical approximation involves a uniform Cartesian grid, made of
square cells with sides Ax = Ay. For the 2D simulations, we will consider
2D variants of the implicit and MUSCL scheme, by applying the 1D strategy
detailed in Section 5 and Section 6 in both directions, horizontal and vertical, of
each square cell. This process involves exactly solving the initial value problem
(5.10), related to the contribution of the friction only. However, this initial value
problem is modified in two dimensions. Indeed, we have to solve

dh

_—= O n 2

a h(0) = hi'} e,

% — —k(h?jl)_"p p2 +¢2,  with initial data p(0) = prfjg’ (7.8)
+2

K T a0 =iy

We immediately see that h"Jrl = thrS

2
tations, we set 7 = —k:(h?jl) <0, p, = pZ;S and ¢, = q?j*. Thus, (7.8)
rewrites as the following initial value problem:

. For the sake of simplicity in the no-

p(0) = py,

P =TpVP* + ¢
q(0) = gn-

, with initial data {
q =71qvVp*+ ¢
The exact solution to this system is:

O and gft) = —— P
WP 4 kt/p2 + g3

Wi+ kt/pE + g2

Therefore, the friction step of the implicit procedure yields the following updated
discharges:

n+ +1
piit = w (i )
1,] +2 ’
(et + kAL ()2 4 (¢ )2
n+3( n+1)77
qn+1 _ 1,J ©,J
J n+1 n-‘rd n+3
(hi7j )n+kAt pz] + (Qz7_] )

The quantity (h"“)" is then replaced with the average given by (5.18), taken

n+1 n+1

in the z direction for p;7" and in the y direction for ¢;';".
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Such a 2D scheme will be able to exactly preserve the 1D steady states taken
in the z direction or the y direction. Moreover, the splitting procedure allows
simulating dry/wet interfaces. We use this 2D scheme for the simulations of
three relevant situations. First, we focus on assessing the order of accuracy
of the implicit and MUSCL schemes. Then, we turn to the simulation of a
dry dam-break with two bumps, which is a 2D version of the experiment pre-
sented Section 7.3.4. The next experiment is a partial dam-break, and the last
experiment represents an urban topography.

7.4.1. Order of accuracy assessment

The purpose of this first experiment is to assess the order of accuracy of
the proposed schemes. Namely, the orders of accuracy of the implicit and the
MUSCL schemes will be computed. The implicit scheme should be first-order
accurate, while the MUSCL scheme should be second-order accurate.

To address this issue, we need a smooth exact solution of the 2D shallow-
water equations with topography and friction (7.7). We elect to use a 2D steady
state solution, which will not be exactly preserved by the well-balanced scheme,
and that will allow computing the order of accuracy.

On the space domain [—0.3,0.3] x [0.4,1], we consider the following topog-

raphy function:
2k||r]| — 1
2 = ——
(.9) 2g|r|1> 7

where r = *(z,y). Then, to define a steady solution of (7.7), the water height
and discharge are given by:

x
h(z,y,t) =1, p(z,y,1) TR q(z,y,t) TE

For the experiment, we take £ = 10, and we prescribe the exact solution
as both the initial and the boundary conditions. The final physical time is
tend = 0.1s, and we set C' = 400, m = 0.05 and M = 1. The parameter C
can here be infinite since the exact solution is very smooth and the topography
is non-flat, thus making the cutoff procedure irrelevant. In addition, the other
two parameters are chosen to ensure that the MUSCL scheme is second-order
accurate everywhere.

Recall that the order of accuracy is defined, in the one-dimensional case, by
(7.6). In our 2D case, the order of accuracy p is computed as follows:

_ In(en) — In(eqn)
In2

Equipped with this definition, we compute the L' and L* errors and the associ-
ated orders of accuracy of both schemes. These results are collected in Table 12
and Table 13 for the implicit scheme, and in Table 14 and Table 15 for the
MUSCL scheme.

From Table 12, Table 13, Table 14 and Table 15, we conclude that both
schemes have the expected order of accuracy. Indeed, the implicit scheme is
first-order accurate, while the MUSCL scheme is second-order accurate.
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N h P q

900 1.33e-02 — | 2.54e-02 — | 3.50e-02 —
3600 6.82e-03 0.97 | 1.36e-02 0.90 | 1.83e-02 0.94
14400 | 3.44e-03 0.99 | 7.02e-03 0.95 | 9.36e-03 0.96
57600 | 1.73e-03 0.99 | 3.57e-03 0.97 | 4.75e-03 0.98

Table 12: L' errors for the friction and topography 2D steady state using the implicit scheme.

N ‘ h P q

900 4.01e-02 — | 7.04e-02 — | 7.02¢-02 —
3600 | 2.27e-02 0.82 | 3.89¢-02 0.86 | 3.65e-02 0.94
14400 | 1.28e-02 0.83 | 2.00e-02 0.96 | 1.85e-02 0.98
57600 | 7.03e-03 0.86 | 1.01e-02 0.99 | 9.22¢-03 1.00

Table 13: L° errors for the friction and topography 2D steady state using the implicit scheme.

N \ h D q

900 6.89e-04 — 1.43e-03 — 1.04e-03 —
3600 1.91e-04 1.85 | 3.90e-04 1.87 | 2.95¢-04 1.81
14400 | 5.11e-05 1.90 | 1.03e-04 1.92 | 8.05e-05 1.87
57600 | 1.33e-05 1.94 | 2.67e-05 1.95 | 2.12¢-05 1.92

Table 14: L! errors for the friction and topography 2D steady state using the MUSCL scheme.

N h P q

900 2.38¢-03 — | 4.13e-03 — | 2.23e-03 —
3600 8.05e-04 1.56 | 1.14e-03 1.86 | 7.58¢-04 1.56
14400 | 2.49e-04 1.69 | 3.04e-04 1.91 | 2.44e-04 1.63
57600 | 7.36e-05 1.76 | 7.89¢-05 1.94 | 7.25e-05 1.75

Table 15: L° errors for the friction and topography 2D steady state using the MUSCL scheme.

7.4.2. 2D dry dam-break with two bumps
The first 2D experiment is a dry dam-break with a topography presenting

two bumps. This experiment is the 2D analogue of the 1D experiment presented
in Section 7.3.4. Tt is heavily inspired from an experiment presented in [8], which
did not include the friction source term. The Manning coefficient is k = 0.1,
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and the topography function is given by

on=s(om((2) < -3)),
afrem (e (-3)).

The space domain is [0, 5] x [0, 1]. The initial discharge is zero in both directions,
ie. p(z,y,0) = ¢q(z,y,0) =0, and the initial water height is given by

6 ifx<0.7,
h(z,y,0) =

0 otherwise.

In addition, we prescribe wall boundary conditions, that is to say we impose
p(0,y,t) = p(5,y,t) = 0 and ¢(xz,0,t) = g(x,1,t) = 0 for all z, y and ¢, and
homogeneous Neumann boundary conditions for the other variables.

The simulation runs until a physical time t.,q = 1.35s with the MUSCL
scheme, using C = 1, m = 107 and M = 25. The choice of these constants
is motivated by the same reasons as invoked in Section 7.3.4. We take 288000
discretization cells (1200 in the x direction and 240 in the y direction). The
results are presented on Figure 17 and Figure 18.

This experiment has been carried out to make sure that the numerical scheme
still behaves correctly in two space dimensions and in the presence of dry/ wet
transition. We recover a numerical solution involving the friction source term,
which can be compared to the numerical solution without friction presented in
[8]. In addition, this 2D experiment is similar to the 1D double bump experiment
we presented on Figure 16. Indeed, the behavior of the water before it comes
into contact with the first bump should be the same in both experiments. As
expected, we obtain similar results in 1D and 2D.

7.4.8. Partial dam-break

Next, we focus on a partial dam-break (see for instance [42, 18]). This
experiment concerns a dam that has partially broken, leaving a corridor where
the water flows. We consider the space domain [—100,100] x [—100,100]. The
dam is located at the middle of the domain, in the x direction, and is 10m wide
and 100m high. It breaks in the middle, over a length of 80m. Thus, we take
the following topography function:

1 if x < -5,
0 if £ <5,
Z@Y) = 015-2) if —5<<5and —40 <y < 40,
100 if —5<ax<5andy e [~100,—40] U [40,100].
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Figure 17: Left panel: initial condition of the 2D dam-break over a double bump experiment.
Note that the same color scale for the water height is used in Figure 17 and Figure 18, and the
solid gray color represents the topography. Right panel: approximate solution at t = 0.15s,
just before the water hits the first bump. Note the shape of the front of the water, due to the
nonzero bottom friction.

As in the previous dam-break experiment, we take p(z,y,0) = 0 and ¢(z,y,0) =
0. Moreover, we define the initial water height by:

10 if x < =5,
h(z,y,0) = .
5  otherwise.

From such initial data, we present two simulations. The first one is the case
without friction, i.e. £ = 0, and for the second one we choose a nonzero Manning
coefficient £ = 2. In both cases, homogeneous Neumann boundary conditions
are prescribed on all the boundaries. We choose t.,,q = 7s, and we set C' = 0.5,
m = 10710 and M = 0.5.

The justification of the parameter choice is similar to the one for the previous
dam-break experiments, with one difference. Since the current experiment does
not involve any water at rest with a non-flat topography, it is relevant to use the
MUSCL scheme as much as possible, as evidenced by the relatively low value of
m.

The numerical simulation of this experiment is carried out with the implicit
and the MUSCL schemes on 202500 cells (450 in each direction). The results are
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Figure 18: From left to right and top to bottom: approximate solution of the 2D dam-break
over a double bump experiment, displayed at times t = 0.3s, t = 0.45s, t = 0.75s, t = 0.9s,
t = 1.05s and t = 1.35s.

displayed on Figure 19 without friction, and on Figure 20 with friction, where
the display of the free surface is clipped when Z > 10, in order to have a clearer
visualization of the numerical results.

Figure 19 shows that, when no friction is present, vortices appear at both
tips of the dam. However, as evidenced by Figure 20, these vortices no longer
exist when the friction is nonzero. Both behaviors are exhibited with the implicit
and MUSCL schemes. In addition, the tip of the left shock wave has traveled
further on Figure 19 than on Figure 20. This behavior is consistent with the
fact that the friction tends to slow down the movement of the water.

Now, to conclude the analysis of this experiment, we introduce (zr,yr) and
(zp,yp). They are, respectively, the points where the top and bottom vortices
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Figure 19: Approximate free surface for the partial dam-break experiment without friction.
Left panel: implicit scheme; right panel: MUSCL scheme.
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Figure 20: Approximate free surface for the partial dam-break experiment with nonzero fric-
tion. Left panel: implicit scheme; right panel: MUSCL scheme.

are the deepest when & = 0. In Table 16, we present the height at these two
points, obtained with the implicit and MUSCL schemes, and considering k = 0
or k = 2. In addition, we display in this table the approximate position xg of
the left shock wave in the four cases under consideration, where it crosses the
line y = 0.
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| hr hp Tg

implicit, k =0 2.81 2.81 59.3
implicit, k = 2 6.08 6.08 53.9
MUSCL, k=0 2.33 2.30 59.8
MUSCL, k =2 5.86 5.86 52.5

Table 16: Height at the positions of the two vortices and position of the left shock wave. We
have set hr = h(z1,yT,tena) and hg = h(zB,YB, tend)-

7.4.4. Urban topography

The last 2D experiment is a simulation of a city being hit by a wave. We
consider the space domain [0,1000] x [0,1000]. The topography consists in
an upwards slope leading to a flat surface, upon which buildings are placed.
Disregarding the buildings, the bottom has the following topography:

Z(y) = /50 if x < 500,
»Y = 10 otherwise.

The 100 meters high buildings occupy the flat part of the topography, i.e. build-
ings are only present for x > 500. Figure 21 displays the shapes and the posi-
tions of the buildings, for a uniform Cartesian mesh of 10° cells (1000 in each
direction).

The initial conditions are W(x,y,0) = 0 for all z and y in the space domain.
Indeed, the boundary conditions help create the flood and the wave that hits
the city. We prescribe homogeneous Neumann boundary conditions for each
boundary of the domain, except the left boundary, where a time-dependent
boundary condition the z-discharge p is applied, as follows:

7.9
0:p(0,y,t) =0 otherwise. (7.9)

{p(O,y,t) =15 ift < 350,
Such a boundary condition creates water that fills the sloping part of the topog-
raphy and creates a wave that hits the city. To illustrate the situation, Figure 21
shows the free surface at time ¢ = 300s, when the first buildings are about to
be hit by the wave.

We consider a nonzero Manning coefficient £ = 1 and a final time t.,q =
850s. The simulation is run using the MUSCL scheme, and we take C' = 1072,
m = 107° and M = 1 for the same reasons as invoked before.

The left panel of Figure 21 shows the wave created by the Dirichlet bound-
ary condition arriving in the city. Because of the friction, this wave presents
a rather steep front. On the left panel of Figure 22, the wave has hit the first
buildings located at the south of the city. Note that the space between the first
two columuns of buildings is still dry. Also note that, as per (7.9), the bound-
ary condition imposed on the z-discharge g, is now a homogeneous Neumann
boundary condition, and no more water is injected into the domain. The right
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Topography Free Surface
0 22 4.4 6.6 8.8 11 10 11 12 13 14 15 16 17
[ I [ ]

Figure 21: Wave on an urban topography simulation. Left panel: topography of the city.
The buildings are actually 100 meters high, and are represented in white in this figure. One
can see the upwards slope on the left, leading to the city itself. Right panel: free surface at
t = 300s. The wave is present to the left of the figure. Note that the same free surface color
scale will be used in the next figures.

Figure 22: Free surface for the urban topography simulation at ¢ = 355s (left panel) and
t = 410s (right panel).

panel of Figure 22 displays the wave about to hit the square building located at
the middle of the city. As expected, between the southern buildings, the wave
is slowed down.

On the left panel of Figure 23, the wave has reflected on the southwestern
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Figure 23: Free surface for the urban topography simulation at ¢ = 465s (left panel) and
t = 520s (right panel).

side of the square building, and it has thus moved faster towards the buildings to
the south. On the right panel of Figure 23, the waves reflected from the square
building are moving south and north. Moreover, the back of the “S”-shaped
building will soon be flooded.

3

Figure 24: Free surface for the urban topography simulation at ¢t = 575s (left panel) and
t = 630s (right panel).

The flooding of the back of the “S”-shaped building is happening on Figure 24,
with only a small area still dry on the right panel. In addition, on the right
panel of Figure 24, the wave has almost hit the small square building on the
bottom right of the city.

Figure 25 and Figure 26 display the final phases of the flooding of the city.
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Figure 25: Free surface for the urban topography simulation at ¢ = 685s (left panel) and
t = 740s (right panel).

EE

Figure 26: Free surface for the urban topography simulation at ¢ = 795s (left panel) and
t = 850s (right panel).

Note that the southern buildings are mostly uniformly flooded and that the
inner courtyard of the square building is still dry. Moreover, the water at the
back of the “S”-shaped building is less deep than at other points of the same
vertical line.

8. Conclusion

In this work, we first studied smooth steady state solutions for the shallow-
water equations with friction only. Then, we have proposed a Godunov-type
scheme for the same equations that is well-balanced. This scheme has then been
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extended to add the topography contribution as well as the positivity preserva-
tion. Afterwards, we have proposed a semi-implicit scheme to deal with dry/wet
interfaces, followed by a well-balanced second-order MUSCL extension. Finally,
we have proposed several one-dimensional and two-dimensional numerical ex-
periments to assess the efficiency and robustness of the explicit, semi-implicit
and MUSCL scheme.

One issue that remains is the division by o/ occurring when computing the
intermediate water heights (see Remark 4). Further work could be undertaken
in order to try and provide a satisfactory answer to this issue.
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