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We consider the problem of determining the initial heat distribution in the heat equation from a point measurement. We show that this inverse problem is naturally related to the one of recovering the coefficients of Dirichlet series from its sum. Taking the advantage of existing literature on Dirichlet series, in connection with Müntz's theorem, we establish various stability estimates of Hölder and logarithmic type. These stability estimates are then used to derive the corresponding ones for the original inverse problem, mainly in the case of one space dimension. In higher space dimensions, we are interested to an internal or a boundary measurement. This issue is closely related to the problem of observability arising in Control Theory. We complete and improve the existing results.

1.1. State of art. Approximation: In an earlier paper Gilliam and Martin [GM] considered the problem of recovering the initial data of the heat equation when the output is measured at points discrete in time and space. They observed that this problem is linked to the theory of Dirichlet series and a solution is found in the one dimensional case.

In [START_REF] Gilliam | A Discrete sampling inversion scheme for the heat equation[END_REF], Gilliam, Lund and Martin provide a simple and extremely accurate procedure for approximating the initial temperature for the heat equation on the line using a discrete time and spatial sampling. This procedure in based on "sinc expansion". Later, in [START_REF] Gilliam | Inverse parabolic problems and discrete orthogonality[END_REF], the same authors give a discrete sampling scheme for the approximate recovery of initial data for one dimensional parabolic initial-boundary value problems on bounded interval.

The problem of recovering the initial states of distributed parameter systems, governed by linear partial differential equations, from finite approximate data, was studied by Gilliam, Mair and Martin in [GMM].

Li, Osher and Tsai considered in [LOT] the inverse problem of finding sparse initial data from the sparsely sampled solutions of the heat equation. They prove that pointwise values of the heat solution at only a few locations are enough in an ℓ 1 constrained optimization to find the initial data.

In a recent work, De Vore and Zuazua [DZ] studied the problem of approximating accurately the initial data if the one-dimensional Dirichlet problem from finite measurements made at (x 0 , t 1 ), . . . , (x 0 , t n ). They proved that, for suitable choices of the point location of the sensor, x 0 , there is a sequence t 1 < . . . < t n of time instants that guarantees the approximation with an optimal rate, of the order of O(n -r ) in the L 2 -sense, depending on the Sobolev regularity of the datum being recovered.

It is worth mentioning that the orthogonality method in [START_REF] Gilliam | Inverse parabolic problems and discrete orthogonality[END_REF] leads to a best approximation in space, while in [DZ] the authors show a best approximation in time.

Uniqueness: The determination of the initial distribution in the heat equation on a flat torus of arbitrary dimension was considered by Danger, Foote and Martin [DFM]. They established that the observation of the solution along a geodesic determines uniquely the initial heat distribution if and only if the geodesic is dense in the torus. Their result was obtained by using a Fourier decomposition together with results from the theory of almost periodic functions. Similar ideas were independently employed in [CZ] in the context of the approximate controllability and unique continuation for the heat equation along oscillating sensor and actuator locations.

Let u be the solution of the heat equation in the whole space R d . Nakamura, Saitoh and Syarif [NSS] showed that the initial distribution is determined and simply represented by the observations u(t, x 0 , x ′ ) and ∂ x1 u(t, x 0 , x ′ ), t ≥ 0, x ′ ∈ R d-1 , for some fixed x 0 ∈ R.

Stability: To our knowledge there are only few works dealing with the stability issue. In a series of papers by Saitoh and al. [SY, AS, TSS], based on Reznitskaya transform and some properties of Bergman-Selberg spaces, they obtained Lipschitz stability estimate from a point or a boundary observation.

1.2. The relationship with the Dirichlet series. We consider the initial-boundary value problem, abbreviated to IBVP in the sequel, for the one dimensional heat equation

(1.1)    (∂ t -∂ 2 x )u = 0 in (0, π) × (0, +∞), u(0, •) = u(π, •) = 0, u(•, 0) = f. It has a unique solution u f ∈ C([0, +∞), L 2 ((0, π))) whenever f ∈ L 2 ((0, π))
. This solution can be written in term of Fourier series as follows

(1.2) u f (x, t) = 2 π k≥1 f k e -k 2 t sin(kx),
where f k is the k-th Fourier coefficient of f :

f k = 2 π π 0 f (x) sin(kx)dx.
Given a point x 0 ∈ (0, π) for the placement of the sensor, we address the question of reconstructing the initial distribution f from u f (x 0 , t), t ∈ (0, T ). In light of (1.2), setting a k = f k sin(kx 0 ), we see that the actual problem is reduced to one of recovering the sequence a = (a k ) from the sum of the corresponding Dirichlet series k≥1 a k e -k 2 t .

For this to be the case x 0 has to be chosen in a strategic way so that sin(kx 0 ) = 0 for all k ≥ 1. 1.3. Outline. Section 2 is devoted to establish stability estimates for the problem of recovering the coefficients a k of a general Dirichlet series k≥1 a k e -λ k t from its sum. Here (λ k ) is a strictly increasing sequence of non negative real numbers, converging to infinity. The behavior of this problem depends on whether the series 1/λ k converges. • When 1/λ k converges, (e -λ k t ) admits a biorthogonal family and this simplifies the analysis. • The case 1 λ k = ∞ is much harder and the stability estimates we obtain are weaker. In both cases, we prove stability estimate of logarithmic or Hölder type and to carry out our analysis we need to compare λ k with k β , β > 0 is given. In the case 1 λ k = ∞, a gap condition on the sequence (λ k ) is also necessary in our analysis (see (2.21) in subsection 2.2).

In Section 3, we apply the results obtained in the Section 2 to the problem of determining the initial heat distribution in a one dimensional heat equation from an overspecified data. We get a various stability estimates of Hölder or logarithmic type. Our results include fractional heat equations of any order. We also establish a boundary observability inequality with an output located at one of the end points. This later enables us to obtain a logarithmic stability estimate for the inverse problem of recovering the initial condition from a boundary measurement.

In Section 4, we first consider the particular case of the (fractional) heat equation in a d-dimensional rectangle Ω. We show that if the Dirichlet eigenvalues of the laplacian in Ω are simple1 , then, in some cases, the determination of the initial heat distribution can be reduced to the one dimensional case. This is achieved when the measurements consist in the values of the solution of the heat equation on d affine (d -1)-dimensional subspaces. Next, we revisit the case when overdetermined data is an internal or a boundary observation. We comment the existing results and show that these laters can be improved using recent observability inequalities.

1.4. Notations. The unit ball of a Banach space X is denoted by B X .

ℓ p = ℓ p (C), 1 ≤ p < ∞, is the usual Banach space of complex-valued sequences a = (a n ) such that the series |a n | p is convergent. We equip ℓ p with its natural norm

a ℓ p =   k≥1 |a k | p   1/p , a = (a k ) ∈ ℓ p .
ℓ ∞ = ℓ ∞ (C) denotes the usual Banach space of bounded complex-valued sequences a = (a n ), normed by

a ∞ = sup k |a k |, a = (a k ) ∈ ℓ ∞ .
For θ > 0, the space h θ = h θ (C) is defined as follows

h θ =    b = (b k ) ∈ ℓ 2 ; k≥1 k 2θ |b k | 2 < ∞    , where k = (1 + k 2 ) 1/2 .
h θ is a Hilbert space when it is equipped with the norm

b h θ =   k≥1 k 2θ |b k | 2   1/2 . 2.
Determining the coefficients of a Dirichlet series from its sum

We limit our study to Dirichlet series whose coefficients consist in sequences from ℓ p , 1 ≤ p ≤ ∞.

We pick a real-valued sequence (λ k ) satisfying 0 < λ 1 < λ 2 < • • • λ k < . . . and λ k → +∞ as k goes to +∞.

To a = (a n ) ∈ ℓ p , 1 ≤ p ≤ ∞, we associate the Dirichlet series

F a (t) = n≥1
a n e -λnt .

Let 1 < p < ∞ and p ′ be the conjugate exponent of p. Observing that a n e -λnt = a n e -λnt/p e -λnt/p ′ , we get by applying Hölder's inequality

|F a (t)| ≤   n≥1 e -λnt   1/p ′ n≥1 |a n | p e -λnt ≤   n≥1 e -λnt   1/p ′ n≥1 |a n | p , t > 0.
Also,

|F a (t)| ≤ n≥1 |a n |, t ≥ 0 (p = 1), |F a (t)| ≤   n≥1 e -λnt   sup n |a n |, t > 0 (p = ∞).
Therefore, the series F a (t) converges for t > 0, for any a ∈ ℓ p , 1 ≤ p ≤ ∞.

From the classical theory of Dirichlet series (see for instance [Wi]), we know that F a has an analytic extension to the half plane ℜz > 0. Since a Dirichlet series is zero if and only if its coefficients are identically equal to zero, we conclude that the knowledge of F a in a subset of ℜz > 0 having an accumulation point determines uniquely a. In other words, if D ⊂ {ℜz > 0} has an accumulation point and F a vanishes on D, then a = 0.

The most interesting case is when p = 1. We can define in that case the operator U by

U : ℓ 1 -→ C b ([0, +∞)) a -→ U(a) := F a , F a (s) = k≥1 a k e -λ k s .
Here, C b ([0, +∞)) is the Banach space of bounded continuous function on [0, +∞), equipped with the supremum norm F ∞ = sup{|F (s)|; s ∈ [0, +∞)}. Then U is an injective linear contractive operator.

Similarly to entire series, we address the question to know whether it is possible to reconstruct the coefficients of a Dirichlet series from its sum. This is always possible if the values of the sum is known in the half plane ℜz > 0. More specifically, we have the following formula (see a proof in [Wi]): for λ n < λ < λ n+1 and γ > 0,

n k=1 a k = 1 2iπ pv γ+i∞ γ-i∞ F a (z) z e λz dz.
In the present section we aim to establish the modulus of continuity, at the origin, of the inverse of the mapping a ∈ ℓ p → F a|D , where D is a subset of (0, +∞). Rouhly speaking, we seek an estimate of the form

a ℓ p ≤ Ψ F a L ∞ (D) ,
for a in some appropriate subset of ℓ p , p = 1 or 2, where Ψ is a continuous, non decreasing and non negative real-valued function satisfying Ψ(0) = 0.

We discuss separately the cases Λ := k≥1

1 λ k < ∞ and Λ := k≥1 1 λ k = ∞.
It is worthwhile recalling that the nature of the series k≥1 1

λ k is related to Müntz's theorem saying that the closure of the vector space spanned by {e

-λ k t ; k ≥ 1} is dense in C 0 ([0, +∞)) = {ϕ ∈ C 0 ([0, +∞)); ϕ(+∞) = 0} if and only if Λ = ∞. Usually this theorem is stated in the following equivalent form: {x λ k ; k ≥ 1} is dense in C 0 ([0, 1]) = {ϕ ∈ C 0 ([0, 1]); ϕ(0) = 0} if and only if Λ = ∞.
Let (λ k ) be the sequence of the Dirichlet eingenvalues of the Laplacian on a bounded domain of R d , that we assumed simple. From [START_REF] Kavian | Introduction à la théorie des points critiques et applications aux problèmes elliptiques[END_REF]Lemma 3.1,page 229],

λ k = O(k 2/d ). Therefore, in that case Λ < ∞ holds if and only if d = 1. 2.1. The case Λ < ∞.
The following lemma will be useful in the sequel. Henceforth,

F N a (t) = N k=1 a k e -λ k t , t ≥ 0, N ≥ 1. Lemma 2.1. Let a ∈ ℓ 2 . Then F a ∈ L 2 ((0, T )) and F N a converges to F a in L 2 ((0, T )) as N → ∞. Proof. From Cauchy-Schwarz's inequality F N a (t) 2 , |F a (t)| 2 ≤ ∞ k=1 |a k | 2 ∞ k=1 e -2λ k t dt = G(t), N ≥ 1. But ∞ k=1 T 0 e -2λ k t dt = ∞ k=1 1 -e -2λ k T λ k ≤ Λ 2 .
Hence F a ∈ L 2 ((0, T )) and

F a L 2 ((0,T )) ≤ Λ 2 a ℓ 2 . Similarly F a (t) -F N a (t) 2 ≤   k≥1 e -2λ k t   k≥N +1 |a k | 2 , N ≥ 1, t > 0. Thus F N a (t) → F a (t) as N → ∞, for any t ∈ (0, T ]. As F N a 2 ≤ G, N ≥ 1, we apply Lebesgue's dominated convergence theorem in order to get that F N a converges to F a in L 2 ((0, T )). Let E be the closure in L 2 ((0, T )) of the vector space spanned by {e -λ k t ; k ≥ 1}. By [Sc, theorem in page 24], E is a proper subspace of L 2 ((0, T )). Additionally, {e -λ k t } possesses a biorthogonal set {ψ k } in L 2 ((0, T )): (2.1) T 0 ψ k (t)e -λnt dt = δ nk .
We assume that there are constants β > 1, K > 0 and α > 0 such that (2.2)

λ n = K(n + α) β + o(n β-1 ), n → ∞.
From in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]formula (3.25)],

(2.3)

ψ n L 2 ((0,T )) ≤ Ce Cλ 1/β n , n ≥ 1,
for some constant C > 0 that can depend only on (λ n ).

In light of (2.1), we get

a n = T 0 F N a (t)ψ n (t)dt n ≤ N.
Therefore, by Cauchy-Schwarz's inequality,

(2.4)

|a n | ≤ F N a L 2 ((0,T )) ψ n L 2 ((0,T ))
, n ≤ N. By Lemma 2.1, we can pass to the limit, as N → ∞, in (2.4). We get

|a n | ≤ F a L 2 ((0,T )) ψ n L 2 ((0,T )) , n ≥ 1. Then, (2.3) implies (2.5) |a n | ≤ Ce Cλ 1/β n F a L 2 ((0,T )) .
Hence, for any N ≥ 1,

N n=1 |a n | 2 ≤ CN e Cλ 1/β N F a 2 L 2 ((0,T )) .
But λ

1/β N = O(N ) by (2.2). Consequently, (2.6) N n=1 |a n | 2 ≤ e CN F a 2 L 2 ((0,T )) .
Let θ > 0 and m > 0 be two given constants. By inequality (2.6) we have, for any a ∈ mB h θ ,

a 2 ℓ 2 = N k=1 |a k | 2 + k>N |a k | 2 ≤ N k=1 |a k | 2 + 1 N + 1 2θ k>N k 2θ |a k | 2 ≤ e CN F a 2 L 2 ((0,T )) + m 2 N 2θ . That is, (2.7) a 2 ℓ 2 ≤ e CN F a 2 L 2 ((0,T )) + m 2 N 2θ .
We need the following result to pursue our analysis. It is stated as Theorem 5.1 in [BE].

Theorem 2.1. Let 0 < τ < 1. There is a constant c depending only on (λ k ) (and not on ρ, A and the length of p) so that

p L ∞ (0,ρ) ≤ c p L ∞ (A) ,
for every p ∈ span{x λ k ; k ≥ 1} and every Lebesgue-measurable set A ⊂ [ρ, 1] of Lebesgue measure at least τ .

Corollary 2.1. Let B be a Lebesgue-measurable set of [0, T ] of positive Lebesgue measure. There is a constant d, that can depend on (λ k ), B and T , so that, for any a ∈ ℓ 1 ,

(2.8) F a L ∞ ((0,T )) ≤ d F a L ∞ (B) .
Proof. We proceed similarly as in the beginning of the proof of [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF]Corollary 5.2]. Let ρ = e -T and

A = {x = e -t ; t ∈ B} ⊂ [ρ, 1]. Then |A| = B e -t dt ≥ e -T |B|.
We recall that

F N a (t) = N k=1 a k e -λ k t , t ≥ 0, N ≥ 1.
We get by applying Theorem 2.1

(2.9)

F N a L ∞ ((0,T )) ≤ d F N a L ∞ (B)
, for any N ≥ 1. On the other hand, F N a converges uniformly to F a in [0, +∞). This is an immediate consequence of the following estimate

F a (t) -F N a (t) ≤ k≥N +1 |a k | , N ≥ 1, t ≥ 0.
Therefore, (2.8) is obtained by passing to the limit, as N → ∞, in (2.9). Now, estimate (2.8) in (2.7) yields, where B is a given Lebesgue-measurable set of [0, T ] of positive Lebesgue measure,

a 2 ℓ 2 ≤ e CN F a 2 L ∞ (B) + m 2 N 2θ , a ∈ mB h θ ∩ ℓ 1 (2.10) ≤ max(1, m 2 ) e CN F a 2 L ∞ (B) + 1 N 2θ .
Let N be the greatest integer satisfying

e C N F a 2 L ∞ (B) ≤ 1 N 2θ
.

Such an N exists provided that F a L ∞ (B) is sufficiently small. A straightforward computation shows that

N > C ln F a L ∞ (B) ,
By taking N = N in (2.10), we get that there exist δ > 0 so that

(2.11) a ℓ 2 ≤ C ln F a L ∞ (B) -θ , if F a L ∞ (B) ≤ δ. When F a L ∞ (B) > δ, (2.12) a ℓ 2 ≤ m δ F a L ∞ (B) .
A combination of (2.11) and (2.12) implies

a ℓ 2 ≤ C ln F a L ∞ (B) -θ + F a L ∞ (B) .
We sum up our analysis in the following theorem.

Theorem 2.2. We assume that assumption (2.2) is satisfied. Let B a Lebesgue-measurable set of [0, T ] of positive Lebesgue measure, m > 0 and θ > 0. There exists a constant C > 0, that can depend on B, (λ n ), m and θ, so that, for any a ∈ mB

h θ ∩ ℓ 1 , (2.13) a ℓ 2 ≤ C ln F a L ∞ (B) -θ + F a L ∞ (B) .
We observe that h θ ⊂ ℓ 1 when θ > 1/2. Therefore,

mB h θ ∩ ℓ 1 = mB h θ if θ > 1/2.
Remark 2.1. 1) In light of (2.2) and (2.5), we have the following Lipschitz stability estimate, where c is a constant depending only on (λ n ),

n≥1 e -cn |a n | 2 ≤ C F a L 2 ((0,T )) , a ∈ ℓ 2 .
Here the left hand side of this inequality is seen as a an ℓ 2 -weighted norm of a.

2) Starting from (2.7), we can prove the following estimate

(2.14) a ℓ 2 ≤ C ln F a L 2 ((0,T )) -θ + F a L 2 ((0,T )) , a ∈ mB h θ ,
for any θ > 0.

3) It is possible to establish a Hölder stability estimate. This is can be done by substituting in Theorem 2.2 h θ by the following subspace

h c,γ =    b = (b n ); n≥1 e cn γ |b n | 2 < ∞    ,
with c > 0 and γ > 1. A proof of a similar result will be detailed in the next subsection. 4) A Lipschitz or a Hölder stability estimate is not true in general. Indeed, let us assume that we have an estimate of the form, where 0

< µ ≤ 1, (2.15) a ℓ 2 ≤ C F a µ L 2 ((0,T )) + F a L 2 ((0,T )) , a ∈ B h θ .
Let (e k ) be the usual orthonormal basis of ℓ 2 . That is e k = (δ kn ), where δ kn is the Kronecker symbol. Letting f k = k -θ e k , we get by a straightforward computation (2.16)

F f k L 2 ((0,T )) ≤ 1 k θ 1 √ 2λ k , k ≥ 1. Since f k ∈ B h θ , if (2.15
) is true then we would have from (2.16)

(2.17)

1 k θ ≤ C 1 k θµ λ µ/2 k + 1 k θ λ 1/2 k , k ≥ k 0 ,
The particular choice of

λ k = k β , k ≥ 1 in (2.15) yields 1 ≤ C 1 k µβ/2-θ(1-µ) + 1 k β/2 , k ≥ 1, But this inequality cannot be true if µβ/2 -θ(1 -µ) > 0.
2.2. The case Λ = ∞. We pick a = (a k ) ∈ B ℓ 1 and we set

̺ = F a ∞ (≤ a ℓ 1 ≤ 1). Since ̺ ≥ |F a (s)| ≥ |a 1 |e -λ1s -e -λ2s , we have |a 1 | ≤ ̺e λ1s + e -(λ2-λ1)s , for any s ≥ 0. The choice of s = 1 λ2 ln(1/̺) gives |a 1 | ≤ 2̺ 1-λ 1 λ 2 . More generally, we have |a k | ≤ (̺ + |a 1 | + . . . + |a k-1 |)e -λ k s + e -λ k+1 s and then |a k | ≤ (̺ + |a 1 | + . . . + |a k-1 |) 1- λ k λ k+1
. So an induction argument leads to the following estimate (2.18)

|a 1 | + . . . + |a k | ≤ C k ̺ (1- λ 1 λ 2 )...(1- λ k λ k+1 ) , with C 1 = 2 and C k+1 = 3C k + 2. Therefore C k = 2 k-1 i=1 3 i ≤ 3 k , k ≥ 2. If p k = k i=1 1 - λ i λ i+1 , then (2.18) implies (2.19) k i=1 |a i | ≤ 3 k ̺ p k .
We introduce the weighted ℓ 1 space, where θ > 0,

ℓ 1,θ =    a = (a i ); i≥1 i θ |a i | < ∞    .
We equip ℓ 1,θ with its natural norm

a ℓ 1,θ = i≥1 i θ |a i |.
Let a ∈ B ℓ 1,θ . In light of (2.19), we have

a ℓ 1 = k i=1 |a i | + i≥k+1 |a i | ≤ 3 k ̺ p k + 1 k θ i≥k+1 i θ |a i |.

Hence

(2.20)

a ℓ 1 ≤ 3 k ̺ p k + 1 k θ , k ≥ 1.
Let us assume that the sequence (λ k ) obeys to the following assumptions: there are four constants β 0 ≥ 0, β 1 > 0, c > 0 and d > 0 so that (2.21)

λ i+1 -λ i ≥ d (i + 1) β0 and λ i ≤ ci β1 i ≥ 1.
Under these assumptions,

p k ≥ q k = c k * (k + 1) βk , with β = β 0 + β 1 and c * = min(d/c, 1).
Therefore, (2.20) yields

(2.22) a ℓ 1 ≤ 3 k ̺ q k + 1 k θ , k ≥ 1.
If ̺ is sufficiently small, we denote by k the greatest positive integer such that

3 k ̺ q k ≤ 1 k θ . Let c ⋆ = (ln 3 + θ + β) 1/2 . Since 3 k+1 ̺ q k+1 > 1 ( k + 1) θ , we have k > 1 2c ⋆ (ln | ln ̺|) 1/2
by a straightforward computation.

We end up getting

(2.23)

a ℓ 1 ≤ 1 2c ⋆ θ (ln | ln F a ∞ |) -θ/2 , F a ∞ = ̺ ≤ ̺ 0 , for some ̺ 0 > 0. When F a ∞ ≥ ̺ 0 , we have (2.24) a ℓ 1 ≤ a ℓ 1,θ ≤ 1 ≤ F a ∞ ̺ 0
Hereafter we used that F λa = λF a , λ ∈ C, which a consequence of the linearity of U. In light of (2.23) and (2.24), we can state the following result.

Theorem 2.3. We assume that assumption (2.21) fulfills. Let m > 0. There exists a constant C > 0, that can depend only on (λ n ) and m, so that, for any a ∈ mB ℓ 1,θ ,

a ℓ 1 ≤ C ln | ln(m -1 F a ∞ )| -θ/2 + F a ∞ .
We are now going to show that, even in the present case (Λ = ∞), it is possible to establish a Hölder stability estimate.

We pick a ∈ ℓ 1 , N an non negative integer and we recall that F N a is given by

F N a (s) = N n=1
e -λns a n , s ≥ 0.

Let x n = e -λn , n = 1, . . . N . We introduce the following Vandermonde matrix

V N =      1 . . . 1 x 1 . . . x N . . . . . . . . . x N -1 1 . . . x N -1 N      .
By setting A N = (a 1 , . . . , a N ) t and B N = (F N a (0), . . . , F N a (N -1)) t , we get in a straightforward manner that

V N A N = B N or equivalently A N = V -1 N B N . If V -1 N = (w ij ) and V -1 N = 1≤i,j≤N |w ij |, then (2.25) A N 1 ≤ V -1 N B N ∞ .
From the proof of [Ga, Theorem 1], we obtain

V -1 N ≤ 1≤j≤N i =j 1 + |x j | |x i -x j | .
Therefore, under assumption (2.21), we get after some technical calculations

V -1 N ≤ Ce CN β 1 ,
where β 1 is the same as in (2.21). Hence, (2.25) entails

(2.26)

N n=1 |a i | ≤ Ce CN β 1 F N ∞ ≤ Ce CN β 1 F a ∞ + n>N |a n | .
For α > 0 and β > 0, we introduce the following weighted ℓ 1 -space:

ℓ 1 α,β =    a = (a i ); n≥1 e αn β |a i | < ∞    .
We equip this space with its natural norm

u ℓ 1 α,β = n≥1 e αn β |a i |.
Let m be a non negative constant and β > β 1 (β 1 is the same as in (2.21)). Assuming that a ∈ mB ℓ 1 α,β , we obtain in light of (2.26)

a ℓ 1 ≤ Ce CN β 1 F a ∞ + me -cN β + me -cN β
Therefore, we find an integer N 0 so that for any N ≥ N 0 ,

a ℓ 1 ≤ C e CN β 1 F a ∞ + e -CN β .
We derive by minimizing with respect to N the following Hölder stability estimate.

Theorem 2.4. We assume that (2.21) fulfills. Let m > 0, α > 0 and β > β 1 . There exist two constants C > 0 and γ > 0, that can depend only on (λ n ), m, α and β, so that, for any a ∈ mB ℓ 1 α,β ,

a ℓ 1 ≤ C ( F a γ ∞ + F a ∞ ) .
3. Determining the initial heat distribution in one the dimensional heat equation 3.1. Point measurement. We come back to the one dimensional heat equation. We consider again the IBVP (3.1)

   (∂ t -∂ 2 x )u = 0 in (0, π) × (0, +∞), u(0, •) = u(π, •) = 0, u(•, 0) = f.
The solution of the IBVP (3.1) is given by

(3.2) u f (x, t) = 2 π k≥1 f k e -k 2 t sin(kx),
where f k is the Fourier coefficient of f ∈ L 2 ((0, π)):

f k = 2 π π 0 f (x) sin(kx)dx.
From [AN, Lemma 1.1.4, page 30], there exists x 0 ∈ (0, π) satisfying

(3.3) | sin(kx 0 )| ≥ d 0 k -1 , k ≥ 1,
where d 0 a constant depending on x 0 . Let θ ≥ 0. It is known that the Sobolev space H θ ((0, π)) can be constructed by using Fourier series. Precisely, we have

H θ ((0, π)) = {h ∈ L 2 ((0, π)); k≥1 k 2θ | h k | 2 < ∞}. H θ ((0, π)) is equipped with its natural norm h H θ ((0,π)) =   k≥1 k 2θ | h k | 2   1/2 .
We take f ∈ H 2 ((0, π)) and we set

a k = 2 π sin kx 0 f k , k ≥ 1.
In light of (3.3), we get

(3.4) π 2 |a k | ≤ | f k | ≤ c 0 k|a k |.
Here c 0 is a constant depending on x 0 . Therefore

k≥1 | f k | 2 ≤ c 2 0 k≥1 k 2 |a k | 2 . Hence (3.5) k≥1 | f k | 2 ≤ c 2 0   k≥1 k 4 |a k | 2   1/2   k≥1 |a k | 2   1/2
by Cauchy-Schwarz's inequality. But

k≥1 k 4 |a k | 2 ≤ 4 π 2 k≥1 k 4 | f k | 2 = 4 π 2 f 2 H 2 ((0,π)) .
This estimate in (3.5) gives

f L 2 ((0,π)) ≤ c 0 f 1/2 H 2 ((0,π)) a 1/2 ℓ 2 . Here c 0 = √ 2c 0 / √ π.
Then a consequence of Theorem 2.2 is Theorem 3.1. Let B a measurable set of [0, T ] of positive Lebesgue measure and m > 0. There exists a constant C > 0, that can depend only on B, x 0 and m, so that, for any f ∈ mB H 2 ((0,π)) ,

f L 2 ((0,π)) ≤ C ln u f (x 0 , •) L ∞ (B) -1 + u f (x 0 , •) L ∞ (B) .
We extend the previous result to a fractional one dimensional heat equation. To this end, for α > 0, we define A α , the fractional power of the operator A = -∂ 2

x under Dirichlet boundary condition, as follows

A α f = 2 π k≥1 k 2α f k sin(kx), D(A α ) = {f ∈ L 2 ((0, π)); k≥1 k 4α | f k | 2 < ∞}.
The IBVP for the heat equation for the fractional one dimensional Laplacian is represented by the Cauchy problem

(3.6) (∂ t + A α )u = 0 in (0, +∞), u(•, 0) = f.
The solution of this Cauchy problem is given by, where f ∈ L 2 ((0, π)),

u α f (x, t) = 2 π k≥1 e -k 2α t f k sin(kx).
If 1/2 < α < 1, we can apply again Theorem 2.2. We get Theorem 3.2. We assume 1/2 < α < 1. Let B a Lebesgue-measurable set of [0, T ] of positive Lebesgue measure and m > 0. There exists a constant C > 0, that can depend only on B, x 0 , α and m, so that, for any f ∈ mB H 2 ((0,π)) ,

f L 2 ((0,π)) ≤ C ln u α f (x 0 , •) L ∞ (B) -1 + u α f (x 0 , •) L ∞ (B) .
Next we consider the case 0 < α ≤ 1/2. Since k≥1 k -2α = ∞ , Theorem 3.2 is no longer valid in the present case. We are going to apply Theorem 2.3 instead of Theorem 2.2.

We pick f ∈ H θ+1 ((0, π)) for some θ > 1/2. Let

a k = 2 π sin(kx 0 ) f k , k ≥ 1.
In light of (3.4), we get by using Cauchy-Schwarz's inequality

(3.7) k≥1 | f k | ≤ c 0   k≥1 k 2 |a k |   1/2   k≥1 |a k |   1/2 . But (3.8) k≥1 k 2 |a k | ≤   k≥1 k -2θ   1/2   4 π 2 k≥1 k 2(θ+1) | f | 2   1/2 .
This and the first inequality in (3.4) imply (3.9)

k≥1 k 2 |a k | ≤ c θ f H θ+1 ((0,π)) .
Here and henceforth c θ is a constant that can depend only on θ. Now a combination of (3.7) and (3.9) entails

(3.10) k≥1 | f k | ≤ c θ f 1/2 H θ+1 ((0,π)) a 1/2 ℓ 1 . As H θ+1 ((0, π)) is continuously embedded in C([0, π]), (3.11) k≥1 | f k | 2 ≤ sup k | f k | k≥1 | f k | ≤ 2 f ∞ k≥1 | f k | ≤ c θ f H θ+1 ((0,π)) k≥1 | f k |.
Hence, it follows from (3.10) and (3.11) that (3.12)

f L 2 ((0,π)) ≤ c θ f 3/4 H θ+1 ((0,π)) a 1/4 ℓ 1 . Similarly to (3.8), we prove ( f k ) ℓ 1 ≤ c θ f H θ ((0,π)) . Thus (3.13) a ℓ 1 ≤ c θ f H θ ((0,π))
by (3.4).

On the other hand, we have from (3.9)

(3.14) a ℓ 1,2 ≤ c θ f H θ+1 ((0,π)) .
In light of (3.12), (3.13) and (3.14), we obtain by applying Theorem 2.3

Theorem 3.3. Let m > 0 and θ > 1/2. There exists a constants C > 0, that can depend only on θ, α, x 0 and m, so that, for any f ∈ mB H θ+1 ((0,π)) ,

f L 2 ((0,π)) ≤ C ln ln m -1 c -1 θ u α f (x 0 , •) ∞ -1/4 + u α f (x 0 , •) ∞ .
Here c θ is the constant in (3.9).

We observe that (2.21) is satisfied for the sequence (n 2α ) when 0 < α ≤ 1/2. The case α = 1/2 is obvious and for the case 0 < α < 1/2 it is a consequence of the following elementary inequality

(n + 1) 2α -n 2α = 1 2α n+1 n ρ 2α-1 dρ ≥ 1 2α 1 (n + 1) 1-2α .
We mention that is possible to get a Hölder stability estimate even when 0 < α ≤ 1/2. To do that, we apply Theorem 2.4 instead of Theorem 2.3. We leave to the interested reader to write down the details.

3.2. Boundary measurement. Let α > 0. We recall that the solution of the fractional heat equation (3.6) is given by, where f ∈ L 2 ((0, π)),

u α f (x, t) = 2 π k≥1 e -k 2α t f k sin(kx).
Since

u α f (x, T ) = 2 π k≥1 e -k 2α T f k sin(kx),
we get by applying Parseval's inequality

(3.15) u α f (•, T ) 2 L 2 ((0,π)) = k≥1 e -2k 2α T | f k | 2 .
On the other hand,

(3.16) ∂ x u α f (0, t) = 2 π k≥1 k f k e -k 2α t .
When α > 1/2, (ψ k ), the biorthognal set in L 2 (0, T ) to (e -k 2α t ), satisfies, for some constant C > 0 depending on α,

ψ n L 2 ((0,1)) ≤ Ce Ck .
This inequality is obtained from [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]estimate (3.25)].

Therefore we have, similarly to (2.5),

k 2 | f k | 2 ≤ Ce Ck ∂ x u α f (0, •) 2 L 2 ((0,T ))
and then

k 2 e -2k 2α T | f k | 2 ≤ Ce Ck-2k 2α T ∂ x u α f (0, •) 2 L 2 ((0,T ))
(3.17)

≤ C ∂ x u α f (0, •) 2 L 2 ((0,T ))
. Estimate (3.17) implies the following observability inequality

u α f (•, T ) L 2 ((0,π)) =   k≥1 e -2k 2α T | f k | 2   1/2 (3.18) ≤ C ∂ x u α f (0, •) L 2 ((0,T ))
. Let B a Lebesgue-measurable set of (0, T ) of positive Lebesgue measure. As ∂ x u α f (0, •) is given by a Dirichlet series, we get from Corollary 2.1

u α f (•, T ) L 2 ((0,π)) =   k≥1 e -2k 2α T | f k | 2   1/2 (3.19) ≤ C ∂ x u α f (0, •) L ∞ (B) , under the condition that ( f k ) ∈ ℓ 1 . Let g k be the k-th Fourier coefficient of u α f (•, T ). Then f k = e k 2α T g k , k ≥ 1.
Hence, for any

N ≥ 1, k≤N | f k | 2 ≤ N e N 2α T k≤N | g k | 2 ≤ N e N 2α T k≤N u α f (•, T ) 2 L 2 ((0,π)) .
In light of (3.19), this estimate yields

k≤N | f k | 2 ≤ Ce CN 2α ∂ x u α f (0, •) L ∞ (B) .
Assuming in addition that f ∈ mB H β ((0,π)) , for some β > 1/2, we get

f 2 L 2 ((0,π)) ≤ Ce CN 2α ∂ x u α f (0, •) L ∞ (B) + m 2 N 2β .
Here we used the fact that if f ∈ H β ((0, π)), with β > 1/2, then (

f k ) ∈ ℓ 1 .
As before, this estimate allows us to prove the following theorem.

Theorem 3.4. Let B a Lebesgue-measurable set of [0, T ] of positive Lebesgue measure, β > 1/2 and m > 0.

There exists a constant C > 0, that can depend only on B, α, β and m, so that, for any f ∈ mB H β ((0,π)) ,

(3.20) f L 2 ((0,π)) ≤ C ln ∂ x u α f (0, •) L ∞ (B) - β max(α,β) + ∂ x u α f (0, •) L ∞ (B) .
We observe that if instead of (3.19) we use (3.18), then we get a variant of Theorem 3.4 in which (3.20) is substituted by

f L 2 ((0,π)) ≤ C ln ∂ x u α f (0, •) L 2 ((0,T )) - β max(α,β) + ∂ x u α f (0, •) L 2 ((0,T )) ,
without the restriction that β > 1/2. We have only to assume that β > 0.

multidimensional case

4.1. An application of the one dimensional case. We firstly recall that a finite or infinite sequence of real numbers is said to be non-resonant if every nontrivial rational linear combination of finitely many of its elements is different from zero.

Let Ω = d i=1 (0, µ i π), where the sequence (µ 1 , . . . µ d ) is non-resonant. From [START_REF] Privat | The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent[END_REF]Proposition 5] the Dirichlet-Laplacian on Ω has simple eigenvalues

λ K = d i=1 k 2 i µ 2 i , K = (k 1 , . . . , k d ) ∈ N k , k i ≥ 1.
To each λ K corresponds the eigenfunction

ϕ K = 2 π d 1 d i=1 µ i d i=1 sin(k i x i /µ i )
so that (ϕ K ) forms an orthonormal basis of L 2 (Ω). Let A : L 2 (Ω) → L 2 (Ω) be the unbounded operator given by A = -∆ and D(A) = H 2 (Ω) ∩ H 1 0 (Ω). The fractional power A α , α > 0, is defined as follows

A α f = K=(k1,...k d )∈N d , ki≥1 λ α K (f, ϕ K )ϕ K . D(A α ) =    f ∈ L 2 (Ω); K=(k1,...k d )∈N d , ki≥1 λ 2α K |(f, ϕ K )| 2 < ∞    .
We consider the Cauchy problem for the fractional heat equation associated to A α :

(4.1) (∂ t + A α )u = 0 in (0, +∞), u(•, 0) = f.
The solution of this Cauchy problem is given by

u α f (x, t) = K=(k1,...k d )∈N d , ki≥1 e -tλ α K (f, ϕ K )ϕ K .
To reduce the multidimensional case to the one dimensional case, we need to restrict the initial sources to those of the form

f = f 1 ⊗ . . . ⊗ f d ∈ d ⊗ i=1
C ∞ 0 (0, µ i π). In that case,

u α f (x, t) = d i=1 ki≥1 e -tk 2α i /µ 2α i (f i , ϕ ki )ϕ ki ,
where

ϕ ki = 2 µ i π sin k i x i µ i .
In other words, (4.2)

u α f (x, t) = d i=1 u α fi (x i , t).
Here u α fi is the solution of the one dimensional fractional heat equation (3.6) when (0, π) is substituted by (0, µ i π).

According to the parabolic maximum principle (see for instance [RR]), we have

(4.3) u α fi L ∞ ((0,µiπ)×(0,T )) = f j L ∞ ((0,µiπ)) . Let us assume that (4.4) inf j f j L ∞ ((0,µiπ)) := η > 0.
Henceforth, x 0 and c 0 are the same as in (3.3). In light of (4.2), (4.3) and (4.4), we get

u α f (•, . . . , •, µ j x 0 , •, . . . , •) L ∞ ( i =j (0,µiπ)×(0,T )) ≥ η d-1 u α fj (µ j x 0 , •) L ∞ ((0,T ))
and then Λ(f ) := max 1≤j≤d u α f (•, . . . , •, µ j x 0 , •, . . . , •) L ∞ ( i =j (0,µiπ)×(0,T )) (4.5)

≥ η d-1 u α fj (µ j x 0 , •) L ∞ ((0,T ))
. We fix m > 0 and α ≥ 1. We prove similarly to Theorem 3.1 that there exists a constant C > 0, that can depend only on m and α, so that, for any

f i ∈ B H 2 ((0,µiπ)) , 1 ≤ i ≤ d, f i L 2 ((0,µiπ)) ≤ C ln u α fi (µ i x 0 , •) L ∞ ((0,T )) -1
if Γ(f ) is sufficiently small. Hence, in light of (4.5), there is Λ 0 > 0 such that (4.6)

f i L 2 ((0,µiπ)) ≤ C ln η d-1 Λ(f ) -1 , Λ(f ) ≤ Λ 0 .
From estimate (4.6) we get in a straighforward manner that

(4.7) f L 2 (Ω) = d i=1 f i L 2 ((0,µiπ)) ≤ dC ln η d-1 Λ(f ) -1 + Λ(f ) .
A continuity argument enables us to extend estimate (4.7) the closure of

d ⊗ i=1 C ∞ 0 (0, µ i π) in H 2+(d-1
)/2 (Ω). The case α < 1 can be treated similarly by using Theorems 2.3 and 2.4 instead of Theorem 2.2. 4.2. Boundary or internal measurement. As we said in the introduction, there are only few results in the literature dealing with the problem of determining the initial heat distribution in a multidimensional heat equation from an overdermined data. The usual overspecified data consists in an internal or a boundary measurement. We describe and comment briefly the main existing results and show the possible improvements.

Let Ω be a bounded domain of R d with C 2 -smooth boundary Γ. Let 0 < λ 1 ≤ λ 2 ≤ . . . λ k ≤ . . . be the sequence of eigenvalues, counted according to their multiplicity, of the unbounded operator defined on L 2 (Ω) by A = -∆ and D(A) = H 1 0 (Ω) ∩ H 2 (Ω). Let (φ k ) the corresponding sequence of eigenfunctions, chosen so that it forms an orthonormal basis of L 2 (Ω).

By [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 1.43,page 27], for any f ∈ H 1 0 (Ω), the IBVP for the heat equation

(4.8)    (∂ t -∆)u = 0 in Q = Ω × (0, T ), u = 0 on Σ = Γ × (0, T ), u(•, 0) = f. has a unique solution u f ∈ H 2,1 (Q) = L 2 (0, T, H 2 (Ω)) ∩ H 1 (0, T, L 2 (Ω)). Moreover, it follows from [Ch, Theorem 1.42, page 26] that ∂ ν u f ∈ L 2 (Σ).
Let γ be a non empty open subset of Γ and ω be a non empty open subset of Ω. We set Σ γ = γ × (0, T ) and Q ω = ω × (0, T ).

When f ∈ H 1 0 (Ω), we have the following two final observability inequalities (4.9)

u f (•, T ) H 1 0 (Ω) ≤ C ∂ ν u f L 2 (Σγ ) and (4.10) u f (•, T ) H 1 0 (Ω) ≤ C u f L 2 (Qω ) .
Here u f is the solution of the IBVP (4.8) and C is a constant independent on f . Inequality (4.9) follows from [Ch, Proposition 3.5, page 170] and (4.10) is proved similarly (a variant of estimate (4.10) with less regularity assumption was given in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]Corollary 6.3]).

Let, for s > 1/2, H s 0 (Ω) = {w ∈ H s (Ω); u = 0 on Γ (in the trace sense)}. Following [Fu] 

H 2θ 0 (Ω) =    w ∈ L 2 (Ω); k≥1 λ 2θ k |(w, φ k )| 2 < ∞    , if 1/4 < θ < 3/4.
From the proof of [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 3.6,page 173], we deduce in a straightforward manner the following result Theorem 4.1. Let 1/2 ≤ θ < 3/4 and m > 0. Then there exists a constant C > 0, depending on Ω, γ (resp. ω), θ and m, so that, for any f ∈ mB

H 2θ 0 (Ω) , (4.11) f L 2 (Ω) ≤ C ln ∂ ν u f L 2 (Σγ ) -θ + ∂ ν u f L 2 (Σγ ) and (4.12) f L 2 (Ω) ≤ C ln u f L 2 (Qω) -θ + u f L 2 (Qω) .
Remark 4.1. 1) According to [AEWZ, Theorem 1], we can replace in (4.12), u f L 2 (Qω ) by u f L 2 (D) , where D is any Lebsegue-measurable set contained in Ω × (0, T ), having a non zero Lebesgue measure. We can also improve the estimate (4.11) when ∂Ω contains a real-analytic open sub-manifold, that we denote by Γ a .

In light of [START_REF] Apraiz | Observability inequalities and measurable sets[END_REF]Theorem 2], estimate (4.11) holds true if Σ γ is substituted by any Lebesgue-measurable subset of Γ a × (0, T ) with non zero Lebesgue measure.

We note that the observability inequalities appearing in [AEWZ, Theorems 1 and 2] hold for bounded domains Ω which are Lipschitz and locally star-shaped.

2) From [START_REF] Fernàndez-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF]Remark 6.1], there exist two constants C 1 > 0 and C 2 > 0, depending only on Ω, ω and T , so that (4.13)

n≥1 e -C1 √ λn | f n | 2 ≤ C 2 Qω |u f | 2 dxdt, f ∈ L 2 (Ω).
Here f n = Ω f φ n dx.

On the other hand, since there is a constant c > 1 such that c -1 n 2/d ≤ λ n ≤ cn 2/d , n ≥ 1, the inequality (4.13) is equivalent to the following one (4.14)

n≥1 e -C1n 1/d | f n | 2 ≤ C 2 Qω |u f | 2 dxdt, f ∈ L 2 (Ω).
Clearly, the mapping

f → f L 2 w (Ω) =   n≥1 e -C1n 1/d | f n | 2   1/2
defines a norm on L 2 (Ω), weaker than the usual norm on L 2 (Ω). Therefore, (4.14) can be reinterpreted as a Lipschitz stability estimate of determining f from u f |Qω :

f L 2 w (Ω) ≤ C 2 u f L 2 (Qω) , f ∈ L 2 (Ω). A consequence of (4.14) is | f n | 2 ≤ C 2 e C1n 1/d Qω |u f | 2 dxdt, f ∈ L 2 (Ω), n ≥ 1.
This estimate allows us to retrieve the estimate (4.12).

3) Let us show that, in the case of an internal measurement, we can directly get a stability estimate without using the observability inequality (4.10). The key of this direct proof relies on Lebeau-Robbiano type inequality for the eigenfunctions φ n . For f ∈ L 2 (Ω), we set Let ω be a Lebesgue-measurable subset of Ω of positive Lebesgue measure. From [AEWZ, Theorem 5], we have

N n=1 e -2λnt | f n | 2 ≤ Ce CλN ω |u N (•, t)| 2 dx. But ω |u N (•, t)| 2 dx ≤ ω |u f (•, t)| 2 dx + n≥N +1 | f n | 2 . Hence N n=1 e -2λnt | f n | 2 ≤ Ce CλN   ω |u f (•, t)| 2 dx + n≥N +1 | f n | 2   .
We integrate, with respect to t, between 0 and T . We get in a straightforward manner that

N n=1 | f n | 2 ≤ Ce CλN   Qω |u f | 2 dx + n≥N +1 | f n | 2   , implying that n≥1 | f n | 2 ≤ Ce CλN   Qω |u f | 2 dx + n≥N +1 | f n | 2   ≤ Ce CN 2/d   Qω |u f | 2 dx + n≥N +1 | f n | 2   .
Therefore, under the assumption

n≥1 e cn γ | f n | 2 ≤ m,
for some c > 0, m > 0 and γ > d/2, we obtain similarly to Theorem 2.4 the following Hölder stability estimate f L 2 (Ω) ≤ C u f θ Qω + u f Qω . We end this subsection by mentioning that a Lipschitz stability estimate was established in [SY] when the space of the initial heat distribution is given by a Banach space, that we denote by B µ in the sequel, built on the Bergman-Selberg space H µ , where µ > 1/2 is a parameter. Theorem 4.2. We fix x 0 ∈ R d \ Ω, µ ∈ (1, 5/4) and we set γ 0 = {x ∈ Γ; (x -x 0 ) • ν(x) > 0} and Σ 0 = γ 0 × (0, T ).

There is a constant C, that can depend only on Ω, x 0 and µ, so that

C -1 f L 2 (Ω) ≤ ∂ ν u f Bµ(Σ0) ≤ C f H 2 (Ω) , f ∈ H 2 (Ω) ∩ H 1 0 (Ω).
A detailed proof of this theorem is given in [Ch].

  f n φ n .

This is a generic property among open bounded subsets of R d .
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