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Abstract: A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton 

pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. 

In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database 

including retention time and accurate masses of parent and fragment ions. Using this 

database, seven pigments or derivatives previously reported in Pp were unequivocally 

identified: β,β-carotene, chlorophyll a, zeaxanthin, chlorophyllide a, pheophorbide a, 

pheophytin a, and cryptoxanthin. Minor amounts of Divinyl chlorophyll a, a chemotaxonomic 

pigment marker for prochlorophytes, were also unequivocally identified using the database. 

Additional analysis of ionization and fragmentation patterns indicated the presence of ions 

that could correspond to hydroxylated derivatives of chlorophyll a and pheophytin a, 

produced during the ethanolic extraction, as well as previously described 

galactosyldiacylglycerols, the thylakoid coenzyme plastoquinone, and gracilamide B, a 

molecule previously reported in the red seaweed Gracillaria asiatica. These data point to 
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UPLC-MSE as an efficient technique to identify phytoplankton pigments for which standards 

are available, and demonstrate its major interest as a complementary method for the 

structural elucidation of ionizable marine molecules. 

Keywords: carotenoid; chlorophyll; dereplication; divinyl chlorophyll a; 

galactosyldiacylglycerol; gracilamide; mass spectrometry; MSE; phytoplankton; pigment; 

Porphyridium purpureum; UPLC 

 

1. Introduction 

Phytoplankton species present a high genetic and metabolic diversity, and evolved a wide range of 

photoprotective and photosynthetic pigments capable of collectively harvesting most of the wavelengths 

of visible light available in underwater marine habitats [1–4]. In spite of their lability, complex 

taxonomic distribution, and variable expression, phytoplankton pigments have a great interest as 

chemotaxonomic markers to identify species or taxa, and assess their abundance, productivity, and 

biodiversity in seawater samples [1,5,6]. The identification and dosage of phytoplankton pigments and 

derivatives in sediments also have potential for assessing ocean productivity, modeling the spatial and 

seasonal sedimentation and hydrodynamic processes, and demonstrating local or global marine 

ecosystem changes [7,8]. In addition, many phytoplankton pigments exhibit physico-chemical, 

biological, and pharmacological activities that allow us to consider their possible use for 

biotechnological or health applications [9–16]. 

In the last decades, HPLC has emerged as the gold standard analytical tool for qualitative and 

quantitative analysis of phytoplankton pigments in seawater and culture samples because of its easiness, 

rapidity, sensitivity, and resolution [2,11,17–21]. Optimization of HPLC performance demonstrated that 

in addition to the major pigments easily identified by their absorption spectrum, band ratio, and polarity, 

several minor unidentified chlorophyll and carotenoid derivatives are usually present in extracts from 

environmental samples or cultivated species (e.g., unknown carotenoids detected in [22]). The UV 

absorption characteristics of these pigments allow us to classify them as chlorophyll or carotenoid 

derivatives, but the determination of their structure requires high-resolution MS analysis and additional 

purification for NMR analysis. As a consequence, because of their very low abundance, these minor 

pigments usually remain unidentified, in spite of their possible interest as chemotaxonomic markers or 

for biotechnological or biomedical applications. They can correspond to molecules effectively present 

in living algal cells, to biosynthetic precursors and intermediates, or to artifact or natural derivatives 

produced by the alteration of chlorophylls or carotenoids in environmental conditions or during 

extraction and/or purification [12,19,23]. Analysis of such minor pigments has benefited from the recent 

developments of UPLC, which offer significant advantages compared to HPLC, in term of resolution, 

sensitivity, and rapidity. As HPLC, UPLC can be coupled to UV-vis detectors and MS analyzers [24–29] 

and the development of new MS methods and devices, such as MSE, also offers new possibilities for the 

analysis of complex samples. In MSE, the metabolites reaching the mass source after HPLC or UPLC 

are subjected to ionization in low- and high-energy collision modes alternating at medium frequency 

(about 30 Hz). All molecules ionizing at low collision energy are detected and identified as parent ions. 
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A few milliseconds afterward, switching to the high-energy collision mode induces the fragmentation of 

parent ions, and the quasi-simultaneous detection of fragment ions. As a consequence, a complex mix 

of metabolites can be analyzed in a single run, no precursor ion is selected for individual fragmentation, 

and fragment ions can be related to their precursors using a mass fragmentation software and high-resolution 

mass databanks. This technique, coupled with UV analysis, was already applied with success to the 

identification and quantification of major carotenoids and chlorophylls in Dunaliella salina [30]. 

In the present study, we intended to develop a simple and fast UPLC-MSE method for the 

identification of major phytoplankton pigments and the rapid discrimination of peaks corresponding to 

minor unidentified metabolites that could correspond to pigments or derivatives. We first established a 

UPLC-MSE database with 22 standard pigments, representative of major phytoplankton taxa, to record 

their retention time and the accurate masses of parent and most intense fragment ions. This database was 

used to confirm the presence or absence of these pigments in a Pp ethanol extract. Ions whose accurate 

masses and fragmentation patterns did not match with the database were compared to mass data in the 

literature, to determine if they could correspond to previously reported metabolites, including pigments 

and pigment derivatives.  

2. Results and Discussion 

2.1. UPLC-MSE of Standard Pigments 

Table 1 presents the retention times (Rt) and the theoretical and experimental high-resolution masses 

of parent and most intense fragment ions for the 22 pigment standards. The MS spectra of parent and 

fragment ions are presented as Supplementary Figure S1 to this paper. The mass errors between 

experimental and theoretical values were lower than 5 ppm for all pigments, demonstrating the reliability 

of the identification. The selected UPLC conditions allowed for a separation of all pigments except for 

chlorophyll b and DV-chlorophyll b, which exhibited the same Rt (4.71 min, Table 1) but could be easily 

discriminated by their accurate masses and fragmentation patterns (Table 1 and Supplementary Figure S1). 

Injection of the chl a, pheo a, and zea standards gave two peaks at 5.28 and 5.48, 7.43 and 7.88, and 4.04 

and 4.47 min, respectively; these were interpreted as the presence of a mix of isomers/allomers in the 

standards. The absence of lutein in the zeaxanthin standard was confirmed by the absence of detection 

of the major fragment of lutein at m/z = 551.4253 [27–29]. UV-vis spectral analysis of the zea standard 

in acetone indicated maximal absorption wavelengths at 454.8 and 481.6 nm, with a % III:II band ratio 

of 32%. No peaks were detected at 450 and 474 nm, the maximal absorption wavelengths of (9-cis)-zea, 

or 446 and 472 nm, the maximal absorption wavelengths of (13-cis)-zea (as measured in an HPLC 

elution solvent containing hexane, dichloromethane, methanol, and N,N-diisopropylethylamine [31]). 

We thus concluded that the two peaks corresponded to the all-trans isomers of zea [31], namely  

(all-trans,3R,3′R)-zea and (all-trans,3R,3′S,meso)-zea [31]. 
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Table 1. UPLC-MSE of commercially available standard pigments. The theoretical and experimental masses of parent and major fragment ions, 

obtained in low and high collision modes, respectively, are presented. The values in brackets indicate the mass error (ppm) between experimental 

and theoretical values. * Na adduct, ** H adduct. 

Standard pigment Formula Rt (min) 

Function 1 (Low Energy) Function 2 (High Energy) 

Theoretical m/z Experimental m/z Theoretical m/z Experimental m/z 

M●+ [M + H]+ [M + Na]+ M●+ [M + H]+ [M + Na]+ fragments fragments 

19-Butanoyl-fucoxanthin C46H64O8 3.41 - - 767.4499 - - 
767.4491 

(1.04 ppm) 
679.3999 - - 

679.3990 * 

(1.32 ppm) 
- - 

19-Hexanoyl-fucoxanthin C48H68O8 3.61 - 773.4992 795.4812 - 
773.4973 

(2.46 ppm) 

795.4819 

(0.88 ppm) 
685.4468 679.3999 - 

685.4451 * 

(2.48 ppm) 

679.3978 * 

(3.09 ppm) 
- 

Alloxanthin C40H52O2 3.95 564.3967 - - 
564.3965 

(0.35 ppm) 
- - 549.3733 - - 

549.3713 

(3.64 ppm) 
- - 

Astaxanthin C40H52O4 3.75 596.3866 - 619.3763 
596.3862 

(0.67 ppm) 
- 

619.3762 

(0.16 ppm) 
- - - - - - 

β-Carotene C40H56 7.23 536.4382 - - 
536.4389 

(1.30 ppm) 
- - 444.3756 - - 

444.3755 

(0.23 ppm) 
- - 

Cryptoxanthin C40H56O 5.16 552.4331 - - 
552.4329 

(0.36 ppm) 
- - 460.3705 - - 

460.3702 

(0.65 ppm) 
- - 

Chlorophyll a C55H72O5N4Mg 5.28 892.5353 - 915.5251 
892.5354 

(0.11 ppm) 
- 

915.5250 

(0.11 ppm) 
614.2380 481.1879 - 

614.2387 

(1.14 ppm) 

481.1883 

(0.83 ppm) 
- 

Chlorophyll a C55H72O5N4Mg 5.48 892.5353 - - 
892.5349 

(0.45 ppm) 
- - 614.2380 481.1879 - 

614.2380  

(0 ppm) 

481.1901 

(4.57 ppm) 
- 

Chlorophyll b C55H70O6N4Mg 4.71 906.5146 - 929.5043 
906.5149 

(0.33 ppm) 
- 

929.5046 

(0.32 ppm) 
628.2172 495.1671 - 

628.2184 

(1.91 ppm) 

495.1682 

(2.22 ppm) 
- 

Chlorophyll c2 C35H28O5N4Mg 3.62 - 609.1988 631.1808 - 
609.1984 

(0.66 ppm) 

631.1812 

(0.63 ppm) 
549.1777 - - 

549.1765** 

(2.19 ppm) 
- - 

Chlorophyllide a C35H34O5N4Mg 3.19 614.2380 - - 
614.2378 

(0.33 ppm) 
- - 582.2117 481.1879 - 

582.2095 

(3.78 ppm) 

481.1878 

(0.21 ppm) 
- 

Diadinoxanthin C40H54O3 3.80 582.4073 - 605.3971 
582.4077 

(0.69 ppm) 
- 

605.3985 

(2.31 ppm) 
- - - - - - 
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Table 1. Cont. 

Standard pigment Formula Rt (min) 

Function 1 (Low energy)  Function 2 (High energy) 

Theoretical m/z Experimental m/z Theoretical m/z Experimental m/z 

M●+ [M + H]+ [M + Na]+ M●+ [M + H]+ [M + Na]+ fragments fragments 

Diatoxanthin C40H54O2 4,00 566.4124 - - 
566.4132 

(1.41 ppm) 
- - 119.0861 - - 

119.0862 

(0.84 ppm) 
- - 

DV chlorophyll a C55H70O5N4Mg 5.25 890.5197 - - 
890.5191 

(0.67 ppm) 
- - 612.2223 - - 

612.2227 

(0.65 ppm) 
- - 

DV chlorophyll b C55H68O6N4Mg 4.71 904.4989 - - 
904.4988 

(0.11 ppm) 
- - 626.2025 - - 

626.2015 

(1.60 ppm) 
- - 

Fucoxanthin C42H58O6 3.48 - - 681.4131 - - 
681.4130 

(0.15 ppm) 
527.3161 - - 

527.3148 

(2.47 ppm) 
- - 

Peridinin C39H50O7 3.15 630.3557 - 653.3454 
630.3540 

(2.7 ppm) 
- 

653.3458 

(0.61 ppm) 
635.3349 593.3243 575.3137 

635.3348 *  

(0.16 ppm) 

593.3247 * 

(0.67 ppm) 

575.3130 * 

(1.22 ppm) 

Pheophorbide a C35H36O5N4 3.98 - 593.2764 - - 
593.2769 

(0.84 ppm) 
- 533.2553 - - 

533.2557 **  

(0.75 ppm) 
- - 

Pheophytin a C55H74O5N4 7.43 - 871.5737 893.5557 - 
871.5734 

(0.34 ppm) 

893.5560 

(0.34 ppm) 
593.2764 533.2553 - 

593.2768 ** 

(0.67 ppm) 

533.2554 **  

(0.19 ppm) 
- 

Pheophytin a C55H74O5N4 7.88 - 871.5737 893.5557 - 
871.5739 

(0.23 ppm) 

893.5555 

(0.22 ppm) 
593.2764 - - 

593.2768 **  

(0.67 ppm) 
- - 

Prasinoxanthin C40H56O4 3.65 600.4179 - 623.4076 
600.4178 

(0.17 ppm) 
- 

623.4077 

(0.16 ppm) 
469.3107 - - 

469.3098 

(1.92 ppm) 
- - 

Pyropheophorbide a C33H34O3N4 4.34 - 535.2709 - - 
535.2714 

(0.93 ppm) 
- 461.2341 447.2185 - 

461.2341 **  

(0 ppm) 

447.2191 **  

(1.34 ppm) 
- 

Violaxanthin C40H56O4 3.64 600.4179 - 623.4076 
600.4173 

(1.00 ppm) 
- 

623.4077 

(0.16 ppm) 
469.3083 221.1542 - 

469.3082 * 

(0.21 ppm) 

221.1544 

(0.90 ppm) 
- 

Zeaxanthin C40H56O2 4.04 568.4280 - 591.4178 
568.4273 

(1.23 ppm) 
- 

591.4186 

(1.35 ppm) 
476.3654 - - 

476.3651 

(0.63 ppm) 
- - 

Zeaxanthin C40H56O3 4.47 568.4280 - - 
568.4293 

(2.29 ppm) 
- - 476.3654 - - 

476.3664 

(2.10 ppm) 
- - 
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2.2. Identification of Pp Pigments Using the Standard Pigments Database 

The UPLC-MSE analysis of Pp ethanol extract was achieved in a single 13-min run, and an  

UPLC-MSE chromatogram in which 35 peaks were discriminated was obtained (Figure 1 and Table 2).  

 

Figure 1. UPLC-MSE chromatogram of Pp ethanol extract. Thirty-five peaks were 

discriminated and annotated according to their retention times. Each peak corresponded to 

one or several ions formed in the MS source and detected by the MS detector in function 1 

(parent ions).  

Comparison of the Rt and mass data with the standard pigments databank allowed the unequivocal 

identification of eight pigments or derivatives (Table 2 and Figure 2): β-car, chl a, chlide a, crypto, zea, 

pheide a, phein a, and DV chl a. With the exception of DV chl a, all the detected pigments had previously 

been reported in Pp [32,33]. The MSE analysis also excluded the presence of 14 pigments in the Pp 

ethanol extract (19′ But-fuco, 19′ hexan-fuco, allo, asta, chl b, chl c2, diadino, diato, DV-chl b, fuco, 

perid, prasino, pyropheide a, and viola). Chl a and β-car are ubiquitous pigments present in all 

phytoplankton species. Crypto is the immediate precursor of zea, which is a major carotenoid in 

rhodophytes. Chlide a is the immediate biosynthetic precursor of chl a, and may also correspond to a 

degradation intermediate of chl a. Pheide a and phein a are chlorophyll a transformation products, absent 

from Pp living cells and reflecting chl a degradation during the pigment extraction process [12]. 

 

 

1: TOF MS ES+BPI 

1.37e7 
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Table 2. Pigments identified in the Pp ethanol extract after UPLC-MSE and comparison with the standard pigments database using the 

Chromalynx software. ** H adduct. 

Peak 
Pigment 

identification 
Formula 

Rt 

(min) 

Function 1 (Low energy) Function 2 (High energy) 

Theoretical m/z Experimental m/z Theoretical m/z Experimental m/z 

M●+ [M + H]+ [M + Na]+ M●+ [M + H]+ [M + Na]+ fragments fragments 

4 Chlorophyllide a C35H34O5N4Mg 3.40 614.2380 - - 
614.2380  

(0 ppm) 
- - 481.1879 - 

481.1880  

(0.21 ppm) 
- 

9 Pheophorbide a C35H36N4O5  4.00 - 593.2764 615.2583 - 
593.2783 

(3.2 ppm) 

615.2594 

(1.79 ppm) 
533.2553 - 

533.2561**  

(1.50 ppm) 
- 

9 Zeaxanthin C40H56O2 4.06 568.4280 - - 
568.4275 

(0.88 ppm) 
- - 476.3654 - 

476.3635  

(3.99 ppm) 
- 

13 Zeaxanthin C40H56O2 4.47 568.4280 - - 
568.4282 

(0.35 ppm) 
- - 476.3654 - 

476.3652  

(1.89 ppm) 
- 

18 DV-Chlorphyll a C55H70O5N4Mg 5.09 890.5197 - - 
890.5206 

(1.01 ppm) 
- - 612.2223 - 

612.2216  

(1.01 ppm) 
- 

18 Cryptoxanthin C40H56O 5.17 552.4331 - - 
552.4346 

(2.72 ppm) 
- - 460.3705 - 

460.3695  

(2.17 ppm) 
- 

19 Chlorophyll a C55H72O5N4Mg 5.26 892.5353 - - 
892.5368 

(1.68 ppm) 
- - 614.2380 481.1879 

614.2390  

(1.63 ppm) 

481.1879 

(0 ppm) 

20 Chlorophyll a C55H72O5N4Mg 5.46 892.5353 - - 
892.5389 

(4.03 ppm) 
- - 614.2380 481.1879 

614.2406  

(4.23 ppm) 

481.1891 

(2.49 ppm) 

28 β-Carotene C40H56 7.18 536.4382 - - 
536.4384 

(0.37 ppm) 
- - 444.3756 - 

444.3752  

(0.9 ppm) 
- 

29 Pheophytin a C55H74O5N4 7.40 - 871.5737 893.5557 - 
871.5723 

(1.61 ppm) 

893.5549 

(0.9 ppm) 
593.2768 533.2554 

593.2755 **  

(2.19 ppm) 

533.2550** 

(0.75 ppm) 

30 Pheophytin a C55H74O5N4 7.83 - 871.5737 893.5557 - 
871.5741 

(0.46 ppm) 

893.5568 

(1.23 ppm) 
593.2768 533.2554 

593.2770 **  

(0.34 ppm) 

533.2556** 

(0.38 ppm) 
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Figure 2. Chemical structures of pigments identified in the Pp ethanol extract. 

In the case of Zea, Chl a, and Phein a, the detection of two ions was explained by the mix of 

isomers/allomers with different UPLC retention times in the standard. Some ions were detected at several 

retention times because they simultaneously corresponded to parent ions (ionized unfragmented 

molecules) and fragment ions released from other parent ions (e.g., Chlide a is detected at 3.48 min 

(parent ion of Chlide a) and 5.27 and 5.46 min (fragment ion of Chl a isomers) (Figure 3). 

Surprisingly, the MSE analysis unequivocally identified DV chl a in Pp (peak 18). The DV chl a 

parent ion peak surface was minority compared to chl a (2.50% ± 0.19%, Figure 3), but this ion was 

systematically detected in iterative extractions. Until now, DV chl a had only been described in 

prochlorophytes (e.g., Prochlorococcus), for which it is used as a chemotaxonomic tracer [34–36]. We 

considered the possibility that its presence in Pp may be explained by the transformation of chl a in the 

mass spectrometer source, but excluded this possibility as no ion corresponding to DV chl a was detected 

when standard chl a was subjected to UPLC-MSE (Table 1). We also considered the possibility that DV 

chl a could be formed by the thermal or chemical transformation of chl a in ethanol. To test this 

hypothesis, standard chl a was subjected to the ethanolic extraction process and the resulting extract was 

analyzed by UPLC-MSE. No ion corresponding to DV chl a was detected, demonstrating that DV chl a 

was not produced by the contact of chl a with ethanol during the extraction process. We thus concluded 

that DV chl a was produced by the contact of a Pp pigment with enzymes or metabolites released during 

the extraction process, or much less probably that it was effectively present in living Pp cells. A culture 

contamination by prochlorophytes was excluded because no ions corresponding to DV-chl b were 

detected. According to the tiny amounts detected in Pp, DV chl a can still be considered as a relevant 

β-Carotene Cryptoxanthin 

Pheophytin a DV-Chlorophyll a Pheophorbide a 

Chlorophyll a 

Zeaxanthin 

Chlorophyllide a 
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chemotaxonomic marker for prochlorophytes, as its high concentration in pigment extracts cannot 

signify the presence of Pp. Our MSE analysis, however, demonstrates that its minor presence in extracts 

from other phytoplankton taxa should not be excluded. 

 

Figure 3. Extracted masses of the eight pigments isolated from the UPLC-MSE 

chromatogram of Pp ethanol extract in function 1 (low collision energy mode, parent ions). 

2.3. Identification of Pp Pigments Derivatives Using the Metabolynx Software 

The Metabolynx software was used to determine if unidentified peaks in the UPLC-MSE 

chromatogram exhibited accurate masses corresponding to parent ions of pigments metabolites. The 

masses of the major parent ions detected as peaks 17, 25, 26, and 27 exactly matched with that of 

hydroxylated chl a and phein a (Table 3). Analysis of fragment ions detected at the same Rt confirmed 

this identification (Table 3). The presence of hydroxylated derivatives of chl a and phein a in the Pp 

ethanol extract suggested a possible hydroxylation of both pigments during the ethanolic extraction, or 

less probably the presence of both hydroxylated pigments in living Pp cells. Chl a and phein a standards 

were subjected to the ethanolic extraction and their respective hydroxylated derivatives were detected 

using the UPLC-MSE analysis (data not shown), confirming that the hydroxylation of both pigments 

occurred during the extraction. 
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%

0
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Table 3. UPLC-MSE identification of Pp pigments metabolites using the Metabolynx software. ** H adduct. 

Peak Pigment identification Formula 
Rt 

(min) 

Function 1 (Low energy) Function 2 (High energy) 

Theoretical m/z Experimental m/z Theoretical m/z Experimental m/z 

M●+ [M + H]+ [M + Na]+ M●+ [M + H]+ [M + Na]+ fragments fragments 

17 Hydroxylated chlorophyll a C55H72O6N4Mg 4.97 908.5302 - - 
908.5333 

(3.41 ppm) 
- - 630.2329 - 

614.2340 

(1.75 ppm) 
- 

25 Hydroxylated pheophytin a C55H74O6N4 6.55 - 887.5687 909.5506 - 
887.5695 

(0.9 ppm) 

909.5506  

(0 ppm) 
609.2713 549.2502 

609.2710 ** 

(0.49 ppm) 

549.2491 ** 

(2.0 ppm) 

26 Hydroxylated pheophytin a C55H74O6N4 6.70 - 887.5687 909.5506 - 
887.5676 

(1.24 ppm) 

909.5495 

(1.21 ppm) 
609.2713 549.2502 

609.2705 ** 

(1.31 ppm) 

549.248 ** 

(4.01 ppm) 

27 Dihydroxylated pheophytin a C55H74O7N4 6.80 - 903.5636 - - 
903.5627 

(1.00 ppm) 
- 625.2662 565.2451 

625.2655 ** 

(1.12 ppm) 

565.2436 ** 

(2.65 ppm) 
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2.4. Tentative Identification of Other Metabolites in the Pp Ethanol Extract 

Because of the high number of ionizable metabolites extracted by ethanol, numerous ions that did not 

correspond to pigments or derivatives were detected in the UPLC-MSE chromatogram, some of them 

co-eluting with parent ions corresponding to pigments. For each unidentified parent ion, the most 

probable molecular formula was determined using the Masslynx software. A bibliographic analysis was 

then performed to determine if these structures, their masses and fragmentation pattern had previously 

been reported. The result of this study indicated that the detected metabolites most probably 

corresponded to lipids, glycolipids, plastoquinone, gracilamide B, erucamide, and phthalates  

(Table 4, Supplementary Figure S2, [37–41]). The detection of ions that may correspond to 

plastoquinone and various galactolipids was in agreement with the hypothesis that in addition to 

pigments, ethanol solubilized various molecules present in the thylakoid membrane of Pp. The 

digalactosyldiacylglycerols detected using our UPLC-MSE analysis corresponded to glycolipids 

previously reported in microalgae [37–40], corroborating their possible presence in Pp extract. 

Gracillamide B was previously reported in the red seaweed Gracillaria asiatica [41], but to our 

knowledge this is the first report of this molecule in a red phytoplankton species. Its presence in Pp, if it 

is confirmed by additional structural analysis, could demonstrate the common share of its biosynthetic 

pathways between red macro and microalgae. Erucamide and phtalates are described as plastic vial and 

UPLC contaminants and their traces were easily detected by the MSE analysis.  

3. Experimental Section  

3.1. Chemicals 

Standard pigment solutions were purchased as ethanol or acetone solutions. Diadino, diato and viola 

standard solutions (0.6 to 1.5 mg·L−1, unknown purity) were obtained from DHI Lab Denmark. 19′  

but-fuco, 19′ hexan-fuco, allo, asta, chlide a, chl c2, DV chl a, DV chl b, fuco, perid, phein a, and prasino 

were obtained as a mix solution from DHI Lab Denmark (DHI mix, containing the pigments obtained 

from three phytoplankton species representative of rhodophytes, chlorophytes, and haptophytes). The 

species used to prepare the DHI mix are confidential, and the concentration and purity of individual 

pigments in the DHI mix are unknown. Standard chl a (purity 95%), chl b (purity 95%), zea (purity 

95%), β-car (purity 97%), and crypto (purity 97%) were purchased from Sigma-Aldrich, France. 

Pyropheide a (purity 95%) and pheide a (purity 95%) were purchased from Frontier Scientific, Frankfurt 

am Main, Germany. Ultra-pure water was obtained using a Milli-Q system (Millipore, Molsheim, 

France). Reagents were of HPLC grade for extraction and ULC-MS grade (Biosolve, Valkenswaard, 

Netherlands) for the MSE analysis.  
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Table 4. Putative nature of non-pigment metabolites present in the Pp ethanol extract according to the comparison of MSE data, mass data from 

the literature [37–41], and most probable formula proposed by the Mass Fragment software. 

Peak Rt (min) 
Major ions (m/z) Empirical formula Tentative identification Mass error (ppm) 

1 2 1 2 1 2 1 2 

1 0.32 277.0908 - C9H18O8Na - C9H18O8Na [M + Na]+ - 3.25 - 

2 0.64 376.2599 398.2419 C21H34N3O3 C21H33N3O3Na C21H34N3O3 [M + H]+ C21H34N3O3Na [M + Na]+ 0.27 0.25 

3 3.17 377.2693 399.2515 C23H37O4 C23H36O4Na Butylundecylphthalate [M + H]+ Butylundecylphthalate [M + Na]+ 0.27 1.00 

4 3.42 379.2845 401.2672 C23H39O4 C23H38O4Na 2-Arachidonoylglycerol [M + H]+a 2-Arachidonoylglycerol [M + Na]+a 0.79 1.00 

5 3.46 303.2329 325.2136 C20H31O2 C20H30O2Na Eicosapentenoic acid [M + H]+a Eicosapentenoic acid [M + Na]+a 1.65 2.15 

6 3.61 353.2668 - C17H33N6O2 - C17H32N6O2 [M + H]+ - 0.85 - 

7 3.68 305.2482 327.2288 C20H33O2 C20H32O2Na Arachidonoic acid [M + H]+ a Arachidonoic acid [M + Na]+a 0.33 3.67 

8 3.80 413.2671 - C24H38O4Na - Diisooctyl phthalate [M + H]+ b - 2.18 - 

10 4.20 338.3425 360.3244 C22H44NO C22H43NONa Erucamide [M + H]+ b Erucamide [M+Na]+b 0.59 0.56 

11 4.31 1007.5737 - C55H84O15Na - Digalactosyldiacylglycerol [M + Na]+ (40:5) [37–40] - 2.88 - 

12 4.42 1009.5861 - C55H86O15Na - Digalactosyldiacylglycerol [M + Na]+ (40:9) [37–40] - 0.30 - 

13 4.47 947.5701 - C50H84O15Na - Digalactosyldiacylglycerol [M + Na]+ (35:5) [37–40] - 0.74 - 

14 4.61 961.5868 - C51H86O15Na - Digalactosyldiacylglycerol [M + Na]+ (36:5) [37–40] - 0.42 - 

15 4.74 963.6005 - C51H88O15Na - Digalactosyldiacylglycerol [M + Na]+ (36:4) [37–40] - 1.66 - 

16 4.80 685.4784 939.5999 C39H62N6O3Na C49H88O15Na C39H62N6O3Na [M + Na]+ Digalactosyldiacylglycerol [M + Na]+ (34:3) [37–40] 0.44 2.34 

17 4.97 687.4990 - C43H68O5Na - Diacylglycerol [M + Na]+ (40:8)a [38,39] - 3.78 - 

18 5.03 637.4825 - C39H66O5Na - Diacylglycerol [M + Na]+ (40:8)a [38,39] - 2.67 - 

21 5.64 591.4996 - C37H67O5 - Diacylglycerol [M + H]+ (34:3)a [38,39] - 1.18 - 

22 5.82 726.6608 748.6443 C44H88NO6 C44H87NO6Na Gracilamide B (+ OH -H + CH2) [M + H]+ [41] Gracilamide B (+ OH -H + CH2) [M+Na]+[41] 0.69 1.60 

23 5.98 696.6515 718.6335 C43H86NO5 C43H85NO5Na Gracilamide B [M + H]+ [41] Gracilamide B [M+Na]+ [41] 1.29 1.39 

24 6.24 710.6680 732.6506 C44H88NO5 C44H87NO5Na Gracilamide B (+ CH2) [M + H]+ [41] Gracilamide B (+ CH2) [M + Na]+ [41] 2.53 3.28 

28 6.87 967.6772 - C63H92O6Na - Triacylglycerol [M + Na]+ (60:15)a [39] - 2.07 - 

31 8.04 971.7145 - C63H96O6Na - Triacylglycerol [M + Na]+ (60:13)a [39] - 4.12 - 

32 8.44 921.6916 - C59H94O6Na - Triacylglycerol [M + Na]+ (56:10) a [39] - 3.47 - 

33 8.81 973.7232 - C63H98O6Na - Triacylglycerol [M + Na]+ (60:12) a [39] - 2.98 - 

34 9.29 923.7145 - C59H96O6Na - Triacylglycerol [M + Na]+ (56:9) a [39] - 4.33 - 

35 9.52 771.6071 - C53H80O2Na - Plastoquinone [M + Na]+ - 1.94 - 

a Lipid Data Bank; b Background ion list Waters. 
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3.2. Microalgae 

Porphyridium purpureum (Pp) CCAP 1380.3 (Rhodophyte, Bangiophyceae), was grown at  

120 μmol·m−2·s−1 irradiance in four units of 50-L column photobioreactors (designed by the PBA 

Ifremer Laboratory, Nantes, France) with 35% salinity seawater enriched by Walne medium [42]. Batch 

cultures were maintained at 20 °C under continuous light provided by fluorescent lamps (Philips TLD 

58W 865) and bubbled with 0.22 μm filtered air containing 3% (v/v) CO2. Microalgae were harvested 

after 12–16 days of growth and separated from the culture medium by a two-step process. The first step 

used a clarifier separator (Clara 20, Alfa Laval Corporate AB, Lund, Sweden) at 100 L·h−1, 9000× g, 

room temperature. Step two used a soft centrifugation at 4000× g, 20 min, 4 °C to separate the slurry. 

Algal paste was freeze-dried at −55 °C and P < 1 hPa, on a freeze-dryer equipped with a HetoLyoPro 

3000 condenser and a Heto cooling trap (Thermo, Villebon sur Yvette, France). 

3.3. Pigment Extraction 

Phycobiliproteins were removed by maceration of freeze-dried microalgae in water (1:100 w/v, 4 h, 

magnetic stirring). The extract was centrifuged (11,000× g, 10 min) and the supernatant was discarded. 

Chlorophylls and carotenoids present in the pellet were extracted by a 4-h maceration at room 

temperature in ethanol (1:100 w/v, magnetic stirring). The extract was centrifuged (11,000× g, 10 min) 

and the supernatant was dried using a Büchi rotavapor (Büchi, France). The remaining extract was 

solubilized in 2 mL ethanol. Triplicate independent extracts were prepared and each one was analyzed 

three times by UPLC-MSE. 

3.4. UPLC-MSE 

3.4.1. Equipment and Analytical Conditions 

UPLC-MSE analyses were performed using an Acquity UPLC H-Class (Waters, Milford, MA, USA) 

coupled to a Xevo G2 S Q-TOF (Waters, Manchester, United Kingdom) mass spectrometer equipped 

with an electrospray ionization (ESI) source (Waters, Manchester, United Kingdom). The 

chromatographic system consisted of a quaternary pump (Quaternary Solvent Manager, Waters) and an 

autosampler (Sample Manager-FTN, Waters) equipped with a 10 µL sample loop. The pigment standard 

solutions and ethanol extracts were diluted in methanol before injection for UPLC-MSE (hundredth for 

standard pigment solutions containing a single pigment and Pp ethanol extracts, tenth for the DHI mix). 

Five microliters of methanolic solutions were injected into a Waters Acquity UPLC BEH C18 column 

(2.1 × 50 mm, 1.7 µm). The system was operated under the following gradient elution program: solution 

A (0.01% formic acid in H2O) in solution B (0.01% formic acid in MeOH) at a flow rate of 400 µL·min−1 

as follows: 0–0.5 min, 70% B; 0.5–3.00 min, 70%–100% B; 3.00–11.00 min, 100% B; the eluent was 

adjusted to its initial composition in 2 min. The column and autosampler were maintained at 25 °C and 

4 °C, respectively, and the column back pressure was 13,000 psi. Final ESI conditions were: source 

temperature 120 °C, desolvation temperature 500 °C, cone gas flow 50 L·h−1, desolvation gas flow 

1000 L·h−1, capillary voltage 2.5 kV, sampling cone voltage 35 V, and source offset 80 V. The 

instrument was set to acquire over the m/z range 50–1200 with a scan time equal to 0.5 s. Data were 
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collected in the positive (ESI+) electrospray ionization modes using the MSE function in centroid mode, 

with a 6 V collision energy in function 1 (parent ions experiment) and a collision energy ramp of  

20–40 V in function 2 (fragment ions experiment) (frequency of low to high collision switch = 30 Hz). 

Leucine Enkephalin (MW = 555.62 Da) (1 ng·µL−1) was used as the lock mass for mass shift correction. 

The mass spectrometer was calibrated before analyses using 0.5 mM sodium formate solution. The mass 

error between experimental and theoretical parent and fragment ions was calculated as  

(|experimental m/z − theoretical m/z|/ theoretical m/z) × 106 (ppm). 

3.4.2. Software 

MSE data were recorded in a centroid mode and analyzed using the MassLynx software. In a first 

step, standard pigments were subjected to MSE analysis and a personal database including the empirical 

formula of observed ions, Rt, and most diagnostic fragments in function 2 was created using the Notepad 

text editor. The MassFragment software was used to identify and propose a structure for each pigment 

ion fragment. The Pp ethanol extract was then subjected to MSE and data obtained (Rt, accurate masses 

of parent and fragment ions) were compared to the values recorded in the standard pigments database 

by the Chromalynx software, to confirm the presence or absence of pigments and metabolic derivatives. 

An additional manual check was performed for each compound identified by Chromalynx, using the 

Masslynx software. The Metabolynx XS software was used to define if some ions could sign the presence 

of pigment metabolites according to the possible phase 1 (oxidation, reduction, hydrolysis) and/or phase 

2 (conjugation) biotransformations.  

4. Conclusions  

The UPLC-MSE method allowed the rapid and unambiguous identification of phytoplankton 

pigments in an ethanolic extract, by comparison of the Rt and accurate masses of major and diagnostic 

parent and fragment ions recorded in a standard pigment database. The quasi-simultaneous detection of 

parent and fragment ions allowed us to retrace the fragmentation pattern of each pigment. MSE data were, 

however, insufficient to identify the structure of pigment allomers or isomers, for which additional 

spectrophotometric data were necessary. Analysis of the unidentified ions using the Metabolynx XS 

software revealed that some of them corresponded to hydroxylated pigments metabolites produced 

during the ethanolic extraction. Additionally, UPLC-MSE analysis revealed the presence in the Pp 

ethanolic extract of ions that could correspond to previously reported metabolites, including fatty acids, 

glycerides, galactosylglycerides, ceramides, and peptides. Beyond its high interest for pigment 

identification, UPLC-MSE can theoretically be used to detect and identify any ionizable and 

fragmentable molecules, such as marine heterocycles, oligosaccharides, lipids, or proteins. It should thus 

be considered as a method of choice for the study of marine drugs and toxins. 
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