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1.1. Motivation: sup-norms of GL(n) Hecke-Maaß cusp forms. Let f be a GL(n) Maaß cusp form and K be a fixed compact subset of SL n (R)/SO n (R) (see [START_REF] Goldfeld | Automorphic forms and L-functions for the group GL(n, R)[END_REF]). The generic or local bound for the sup-norm of f restricted to K is given by

|| f | K || ∞ λ n(n-1)/8
f where λ f is the Laplace eigenvalue of f (see [Sar]). Note that F. Brumley and N. Templier noticed in [BT] that the previous bound does not hold when n 6 if f is not restricted to a compact.

If f is an eigenform of the Hecke algebra, however, then the generic bound is not expected to be the correct order of magnitude for the sup-norm of the restriction of f to a fixed compact. This is essentially due to the fact that the Hecke operators are additional symmetries on the ambient space. In other words, we expect there to exist an absolute positive constant δ n > 0 such that

|| f | K || ∞ λ n(n-1)/8-δ n f
.

(1.1)

H. Iwaniec and P. Sarnak proved the bound given in (1.1) in [START_REF] Iwaniec | L ∞ norms of eigenfunctions of arithmetic surfaces[END_REF] when n = 2 for δ 2 = 1/24. Note that improving this constant δ 2 seems to be a very delicate open problem. The case n = 3 was completed by the authors in [HRR] with δ 3 = 1/124. The general case was done, without an explicit value for δ n , in a series of recent impressive works by V. Blomer and P. Maga in [BMb] and in [BMa].

All of the above achievements (and much more) were made possible thanks to generalizations of the amplification method developed by W. Duke, J. Friedlander and H. Iwaniec for GL(1) and GL(2) (see [START_REF] Friedlander | A mean-value theorem for character sums[END_REF], [START_REF] Iwaniec | The spectral growth of automorphic L-functions[END_REF] and [START_REF] Duke | Bounds for automorphic L-functions[END_REF] for example). In particular, the proof of (1.1) for n = 3 with δ 3 = 1/124 relies on Theorem B of this article which was stated without proof in [HRR] as Proposition 4.1 1 . For the sake of completeness and future use, we provide the full details of the proof of Theorem B, including computations, here in this article.

1.2. The GL(2) and GL(3) amplifier. The general principle behind the construction of an amplifier, is the existence of an identity which allows one to write a non-zero constant as a finite sum of Hecke eigenvalues. In the most basic context of GL(2) automorphic forms, this identity is

λ f (p) 2 -λ f (p 2 ) = 1 (1.2)
where p is any prime and λ f (n) is the n-th Hecke eigenvalue of a Hecke-Maaß cusp form f of full level, i.e. T n f = λ f (n) f where

(T n f )(z) = 1 n ad =n d b=1 f az + b d .
One may interpret the above identity as the fact that the Rankin-Selberg convolution factors as the product of the adjoint square and the Riemann zeta function and therefore has a pole at s = 1. From the identity (1.2), one constructs an amplifier

A f := α λ f ( ) 2 with α :=      λ f 0 ( ) if L is a prime number,
-1 if L is the square of a prime number, 0 otherwise 1 Theorem B and Proposition 4.1 in [HRR] are not entirely identical. Since releasing our first article [HRR], we have noticed a simplification in the construction of the amplifier. Therefore, Theorem B only contains the identities in Proposition 4.1 of [HRR] which are necessary for the amplification method. The implied power saving in the Laplace eigenvalue for the sup-norm bound remains the same.

for some fixed form f 0 . The advantage to constructing such an amplifier is that it is expected to be small2 for general forms f while satisfying the lower bound

A f ε L 1-ε when f = f 0 .
Reinterpreting (1.2) in terms of Hecke operators, we may write

T p • T p -T p 2 = I d .
In application to the sup-norm problem for GL(2) via a pre-trace formula argument, this translates into a need to geometrically understand the behavior of the following collection of operators on an automorphic kernel:

T p , T p • T * q , T p • T * q 2 and T p 2 • T * q 2
both in the cases of primes p = q and p = q. Since the Hecke operators T n in GL(2) are self-adjoint and computationally pleasant to work with due to their relatively simple composition law, one quickly computes that the above collection of Hecke operators may be reduced to the study of T p , T pq , T pq 2 and T p 2 q 2 . In truth, one has an opportunity to further reduce the collection of necessary Hecke operators through the simple inequality

A f 2 p α p λ f (p) 2 + 2 p α p 2 λ f (p 2 ) 2 .
(1.3) Indeed, an appropriate application of (1.3) (see for example [BHM]) allows one to further restrict the set of necessary Hecke operators to T pq and T p 2 q 2 both in the cases of primes p = q and p = q.

The case of GL(3) is much more computationally involved due to the lack of self-adjointness of the Hecke operators and their multiplication law. Instead of looking at identities involving Hecke eigenvalues, we start immediately with the Hecke operators themselves (see §2 for definitions). Our fundamental identity now will be

T diag(1,p,p) • T diag(1,1,p) -T diag(1,p,p 2 ) = (p 2 + p + 1)I d . We set c f (p) = a f (p, 1), c f (p) * = a f (p, 1) and c f (p 2 ) to be the eigenvalues of p -1 T diag(1,1,p) = T p , p -1 T diag(1,p,p) = T *
p and p -2 T diag(1,p,p 2 ) respectively when acting on a form f . See (2.2) and (2.3) for the precise definitions. We construct the amplifier

A f := α c f ( ) 2 with 3 α :=      c f 0 ( ) * if L is a prime number, -1 if L is the square of a prime number, 0 otherwise.
As in the case of GL(2), this amplifier will satisfy A f 0 ε L 1-ε and A f is otherwise expected to be small for f = f 0 . Applying the inequality

A f 2 p α p c f (p) 2 + 2 p α p 2 c f (p 2 ) 2 ,
one is reduced to understanding the actions of

T diag(1,1,p) • T diag(1,q,q) and T diag(1,p,p 2 ) • T diag(1,q,q 2 )
both in the cases of primes p = q and p = q on the relevant automorphic kernel.

In the following sections, we compute the above compositions as linear combinations of other Hecke operators and state our main result as Theorem B. In the end, we shall see that the following operators are the relevant ones for our application T diag(1,p,pq) , T diag(1,pq,p 2 q 2 ) , T diag(1,p 3 ,p 3 ) and T diag(1,1,p 3 ) for primes p = q and p = q.

Statement of the results.

Theorem A-Let p be a prime number and Λ = GL 3 (Z).

• The set R 1,1,p (respectively R 1,p,p , R 1,p,p 2 ) defined in Proposition A.1 (respectively Proposition A.2, Proposition A.3) is a complete system of representatives for the distinct Λ-right cosets in the Λ-double coset of diag(1, 1, p) (respectively diag(1, 1, p), diag(1, p, p 2 )) modulo Λ. • The following formulas for the degrees of Λ-double cosets hold.

deg diag(1, 1, p) = p 2 + p + 1, deg diag(1, p, p) = p 2 + p + 1, deg diag(1, p, p 2 ) = p(p + 1)(p 2 + p + 1), deg diag(p, p, p) = 1, deg diag(1, p 2 , p 4 ) = p 5 (p + 1)(p 2 + p + 1), deg diag(1, p 3 , p 3 ) = p 4 (p 2 + p + 1), deg diag(p, p, p 4 ) = p 4 (p 2 + p + 1), deg diag(p, p 2 , p 3 ) = p(p + 1)(p 2 + p + 1), deg diag(p 2 , p 2 , p 2 ) = 1. • Finally, Λdiag(1, 1, p)Λ * Λdiag(1, p, p)Λ = Λdiag(1, p, p 2 )Λ + (p 2 + p + 1)Λdiag(p, p, p)Λ.
(1.4) and

Λdiag(1, p, p 2 )Λ * Λdiag(1, p, p 2 )Λ = Λdiag(1, p 2 , p 4 )Λ+(p+1)Λdiag(1, p 3 , p 3 )Λ + (p + 1)Λdiag(p, p, p 4 )Λ + (p + 1)(2p -1)Λdiag(p, p 2 , p 3 )Λ + p(p + 1)(p 2 + p + 1)Λdiag(p 2 , p 2 , p 2 )Λ. (1.5) Remark 1.1-In [Kod67],
T. Kodama explicitely computed the product of other double cosets in the slightly harder case of the Hecke ring for the symplectic group. The results stated in the previous theorem are similar in spirit.

Remark 1.2-It is well-known that a Λ-double coset can be identified with its characteristic function χ. Under this identification, the multiplication law between Λ-double cosets is the classical convolution between functions. If µ = (µ 1 , µ 2 , µ 3 ) with µ 1 µ 2 µ 3 0 and ν = (ν 1 , ν 2 , ν 3 ) with ν 1 ν 2 ν 3 0 are two partitions of length less than n, then 

χ Λdiag(p µ 1 ,p µ 2 ,p µ 3 )Λ * χ Λdiag(p ν 1 ,p ν 2 ,p ν 3 )Λ = λ g λ µ,
g (4,2,0) (2,1,0),(2,1,0) (p) = 1, g (3,3,0) (2,1,0),(2,1,0) (p) = p + 1, g (4,1,1) (2,1,0),(2,1,0) (p) = p + 1, g (3,2,1) (2,1,0),(2,1,0) (p) = (p + 1)(2p -1), g (2,2,2)
(2,1,0),(2,1,0) (p) = p(p + 1)(p 2 + p + 1) and one can recover the coefficients occurring in (1.5). We prefer to give a different proof, which has the advantage of producing explicit systems of representatives for the Λ-right cosets and formulas for the degrees.

Corollary B-If p and q are two prime numbers then

T diag(1,p,p) • T diag(1,1,q) = T diag(1,p,pq) + δ p=q (p 2 + p + 1)Id (1.6)
and T diag(1,p,p 2 ) •T diag(1,q,q 2 ) = T diag(1,pq,p 2 q 2 ) +δ p=q (p+1) T diag(1,p 3 ,p 3 ) + T diag(1,1,p 3 )

+ δ p=q (p + 1)(2p -1)T diag(1,p,p 2 ) + δ p=q p(p + 1)(p 2 + p + 1)I d . (1.7)
When p = q, the previous corollary immediately follows from (2.6) and (2.7). When p = q, it is a consequence of the previous theorem and of (2.6).

Remark 1.3-As observed by L. Silberman and A. Venkatesh in [SA] and used by V. Blomer and P. Maga in [BMb] and in [BMa], the precise formulas for the Hall polynomials occurring in (1.6) and in (1.7) are not really needed for the purpose of the amplification method, since the Hall polynomials are easily well approximated for p and q large by the much easier Schur polynomials. Nevertheless, the precise list of the Hecke operators relevant for the amplification method, namely occurring in (1.6) and in (1.7), seems to be crucial in order to obtain the best possible explicit result. For instance, G. Harcos and N. Templier used such a list in order to prove the best known subconvexity exponent for the sup-norm of GL(2) automorphic forms in the level aspect in [START_REF] Harcos | On the sup-norm of Maass cusp forms of large level[END_REF].

1.4. Organization of the paper. The general background on GL(3) Maaß cusp forms and on the GL(3) Hecke algebra is given in Section 2. The linearizations involved in Theorem A are detailed in Section 3. The proof requires decompositions of Λ-double cosets into Λ-left and right cosets and computations of degrees as done in Appendix A.

Notations-Λ stands for the group GL 3 (Z) of 3 × 3 invertible matrices with integer coefficients. If g is a 3 × 3 matrix with real coefficients then t g stands for its transpose. For g ∈ GL 3 (Q) we let T g denote the Hecke operator associated to g (see §2). If a, b and c are three rational numbers then

• diag(a, b, c) denotes the diagonal 3 × 3 matrix with a, b and c as diagonal coefficients; • L a,b,c (respectively R a,b,c ) stands for a system of representatives for the decomposition of the Λ-double coset Λdiag(a, b, c)Λ into Λ-left (respectively right) cosets.
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BACKGROUND ON THE GL(3) HECKE ALGEBRA

Convenient references for this section include [START_REF] Andrianov | Modular forms and Hecke operators[END_REF], [START_REF] Goldfeld | Automorphic forms and L-functions for the group GL(n, R)[END_REF], [START_REF] Newman | Integral matrices[END_REF] and [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF].

Let f be a GL(3) Maaß cusp form of full level. Such f admits a Fourier expansion

f (g ) = γ∈U 2 (Z)\SL 2 (Z) m 1 1 m 2 ∈Z\{0} a f (m 1 , m 2 ) m 1 |m 2 | W Ja     m 1 |m 2 | m 1 1   γ 1 g , ν f , ψ 1, m 2 |m 2 |   for g ∈ GL 3 (R) (see [Gol06, Equation (6.2.1)]).
Here U 2 (Z) stands for the Z-points of the group of upper-triangular unipotent 2 × 2 matrices. ν f ∈ C 2 is the type of f , whose components are complex numbers characterized by the property that, for every invariant differential operator D in the center of the universal enveloping algebra of GL 3 (R), the cusp form f is an eigenfunction of D with the same eigenvalue as the power function I ν f , which is defined in [Gol06, Equation (5.1.1)]. ψ 1,±1 is the character of the group of upper-triangular unipotent real 3 × 3 matrices defined by

ψ 1,±1     1 u 1,2 u 1,3 1 u 2,3 1     = e 2i π(u 2,3 ±u 1,2) .
W Ja ( * , ν f , ψ 1,±1 ) stands for the GL(3) Jacquet Whittaker function of type ν f and character ψ 1,±1 defined in [Gol06, Equation 6.1.2]. The complex number a f (m 1 , m 2 ) is the (m 1 , m 2 )-th Fourier coefficient of f for m 1 a positive integer and m 2 a non-vanishing integer.

For g ∈ GL 3 (Q), the Hecke operator T g is defined by

T g ( f )(h) = δ∈Λ\Λg Λ f (δh) for h ∈ GL 3 (R) (see [AZ95,
Chapter 3, Sections 1.1 and 1.5]). The degree of g or T g defined by

deg(g ) = deg(T g ) = card Λ \ Λg Λ is scaling invariant, in the sense that deg(r g ) = deg(g ) (2.1)
for r ∈ Q × . The adjoint of T g for the Petersson inner product is T g -1 . The algebra of Hecke operators T is the ring of endomorphisms generated by all the T g 's with g ∈ GL 3 (Q), a commutative algebra of normal endomorphisms (see [Gol06, Theorem 6.4.6]), which contains the m-th normalized Hecke operator

T m = 1 m g =diag(y 1 ,y 2 ,y 3 ) y 1 |y 2 |y 3 y 1 y 2 y 3 =m T g (2.2)
for all positive integers m. A Hecke-Maaß cusp form f of full level is a Maaß cusp form of full level, which is an eigenfunction of T. In particular, it satisfies

T m ( f ) = a f (m, 1) f and T * m ( f ) = a f (1, m) f = a f (m, 1) f (2.3) according to [Gol06, Theorem 6.4.11].
The algebra T is isomorphic to the absolute Hecke algebra, the free Z-module generated by the double cosets Λg Λ where g ranges over Λ \ GL 3 (Q)/Λ and endowed with the following multiplication law. If g 1 and g 2 belong to GL 3 (Q) and

Λg 1 Λ = deg(g 1 ) i =1 Λα i and Λg 2 Λ = deg(g 2 ) j =1 Λβ j then Λg 1 Λ * Λg 2 Λ = ΛhΛ⊂Λg 1 Λg 2 Λ m(g 1 , g 2 ; h)ΛhΛ (2.4)
where h ∈ GL 3 (Q) ranges over a system of representatives of the Λ-double cosets contained in the set Λg 1 Λg 2 Λ and

m(g 1 , g 2 ; h) = card (i , j ) ∈ {1, . . . , deg(g 1 )} × {1, . . . , deg(g 2 )}, α i β j ∈ Λh , (2.5) = 1 deg(h) card (i , j ) ∈ {1, . . . , deg(g 1 )} × {1, . . . , deg(g 2 )}, α i β j ∈ ΛhΛ , = deg(g 2 ) deg(h) card i ∈ {1, . . . , deg(g 1 )}, α i g 2 ∈ ΛhΛ .
Confer [AZ95, Lemma 1.5 Page 96]. In particular,

Λdiag(r, r, r )Λ * Λg Λ = Λr g Λ (2.6) for g ∈ GL 3 (Q) and r ∈ Q × ( [AZ95, Lemma 2.4 Page 107]
). In addition, for p and q two distinct prime numbers,

Λdiag(1, p α 1 , p α 2 )Λ * Λdiag(1, q β 1 , q β 2 )Λ = Λdiag(1, p α 1 q β 1 , p α 2 q β 2 )Λ (2.7)
where α 1 , α 2 , β 1 , β 2 are non-negative integers by [AZ95, Proposition 2.5 Page 107].

Every double coset Λg Λ with g in GL 3 (Q) contains a unique representative of the form

r diag(1, s 1 (g ), s 2 (g )) (2.8)
where r ∈ Q * and s 1 (g ), s 2 (g ) are some positive integers satisfying

s 1 (g ) | s 2 (g ) (see [AZ95, Lemma 2.2]).
Finally, let g = [g i , j ] 1 i , j 3 be a 3 × 3 matrix with integer coefficients. Its determinantal divisors are the non-negative integers given by

d 1 (g ) = gcd({g i , j , 1 i , j 3}), d 2 (g ) = gcd({determinants of 2 × 2 submatrices of g }), d 3 (g ) = |det(g )|.
and its determinantal vector is d (g ) = d 1 (g ), d 2 (g ), d 3 (g ) . The determinantal divisors turn out to be useful since if h is another 3 × 3 matrix with integer coefficients then h belongs to Λg Λ if and only if d k (h) = d k (g ) for 1 k 3 (see [START_REF] Newman | Integral matrices[END_REF]).

PROOF OF THE LINEARIZATIONS GIVEN IN THEOREM A

3.1. Linearization of Λdiag(1, 1, p)Λ * Λdiag(1, p, p)Λ. This section contains the proof of (1.4).

By (2.4), the product of these double cosets equals

ΛhΛ⊂Λdiag(1,1,p)Λdiag(1,p,p)Λ m     1 1 p   ,   1 p p   ; h   ΛhΛ
where h ∈ GL 3 (Q) ranges over a system of representatives of the Λ-double cosets contained in the set

Λ   1 1 p   Λ   1 p p   Λ.
Let us determine the matrices h occuring in this sum. Let h in GL 3 (Q) be such that ΛhΛ is included in the previous set. By (2.8), one has uniquely

ΛhΛ = Λε λ 1 λ 2 diag(1, s 1 , s 2 )Λ with ε = ±1, λ 1 , λ 2 > 0, (λ 1 , λ 2 ) = 1, s 1 , s 2 > 0, s 1 | s 2 .
The inclusion is equivalent to

Λελ 1 diag(1, s 1 , s 2 )Λ = Λλ 2 δ 1 δ 2 Λ
for some matrices δ 1 ∈ R 1,1,p and δ 2 ∈ L 1,p,p by (A.3) and (A.4). So, both matrices have the same determinantal divisors ie

ελ 1 = λ 2 d 1 (δ 1 δ 2 ), λ 2 1 s 1 = λ 2 2 d 2 (δ 1 δ 2 ), ελ 3 1 s 1 s 2 = λ 3 2 d 3 (δ 1 δ 2 ) = λ 3 2 p 3 . One can check that the set δ 1 δ 2 , (δ 1 , δ 2 ) ∈ R 1,1,p × L 1,p,p is made exactly of the matrices   p p p   d (δ 1 δ 2 ) = (p, p 2 , p 3 ),   p d 1 + D 1 p p   d (δ 1 δ 2 ) = ((p, d 1 + D 1 ), p(p, d 1 + D 1 ), p 3 ),   p e 1 + E 1 p f 1 + F 1 p   d (δ 1 δ 2 ) = ((p, e 1 + E 1 , f 1 + F 1 ), p(p, e 1 + E 1 , f 1 + F 1 ), p 3 ) and   p 2 pE 1 p F 1 1   d (δ 1 δ 2 ) = (1, p, p 3 ),   p 2 pD 1 1 p   d (δ 1 δ 2 ) = (1, p, p 3 ),   1 pd 1 p 2 p   d (δ 1 δ 2 ) = (1, p, p 3 ),   p pd 1 d 1 F 1 + E 1 p 2 pF 1 1   d (δ 1 δ 2 ) = (1, p, p 3 ),   1 pe 1 p p f 1 p 2   d (δ 1 δ 2 ) = (1, p, p 3 ),   p d 2 pe1 1 p f 1 p 2   d (δ 1 δ 2 ) = (1, p, p 3 ) with 0 d 1 , e 1 , f 1 , D 1 , E 1 , F 1 < p.
As a consequence, only two cases can occur since

d (δ 1 δ 2 ) ∈ {(1, p, p 3 ), (p, p 2 , p 3 )}.
First case: d (δ 1 δ 2 ) = (1, p, p 3 ).

ελ 1 = λ 2 , λ 2 1 s 1 = λ 2 2 p, ελ 3 1 s 1 s 2 = λ 3 2 p 3 .
The first equation gives ε = λ 1 = λ 2 = 1 by the coprimality of λ 1 and λ 2 . The second equation gives s 1 = p. The third equation gives s 2 = p 2 . Thus,

ΛhΛ = Λdiag(1, p, p 2 )Λ.
Second case: d (δ 1 δ 2 ) = (p, p 2 , p 3 ).

ελ 1 = λ 2 p, λ 2 1 s 1 = λ 2 2 p 2 , ελ 3 1 s 1 s 2 = λ 3 2 p 3 .
The first equation gives ε = λ 2 = 1 and λ 1 = p by the coprimality of λ 1 and λ 2 .

The second equation gives s 1 = 1. The third equation gives s 2 = 1. Thus,

ΛhΛ = Λdiag(p, p, p)Λ.
As a consequence,

Λdiag(1, 1, p)Λ * Λdiag(1, p, p)Λ = m 1 Λ   1 p p 2   Λ + m 2 Λ   p p p   Λ
where

m 1 := m     1 1 p   ,   1 p p   ;   1 p p 2     , m 2 := m     1 1 p   ,   1 p p   ;   p p p     .
Let us compute the value of m 2 first. By (2.5), (A.5) and (2.1),

m 2 = (p 2 + p + 1)    δ 1 ∈ R 1,1,p , δ 1   1 p p   ∈ Λ   p p p   Λ    .
Let us compute the remaining cardinality. One can check that the set

   δ 1   1 p p   , δ 1 ∈ R 1,1,p    is exactly made of the matrices   p p p   (d 1 , d 2 , d 3 ) = (p, p 2 , p 3 ),   1 pd 1 p 2 p   (d 1 , d 2 , d 3 ) = (1, p, p 3 ),   1 0 pe 1 p p f 1 p 2   (d 1 , d 2 , d 3 ) = (1, p, p 3 ) with 0 d 1 , e 1 , f 1 < p.
The fact that the determinantal vector of diag(p, p, p) is diag(p, p 2 , p 3 ) implies that

   δ 1 ∈ R 1,1,p , δ 1   1 p p   ∈ Λ   p p p   Λ    =      p p p     
and is of cardinality 1 such that m 2 = p 2 + p + 1. Now, let us compute the value of m 1 . By (2.5), (A.5) and (A.7),

m 1 = 1 p(p + 1)    δ 1 ∈ R 1,1,p , δ 1   1 p p   ∈ Λ   1 p p 2   Λ    .
Let us compute the remaining cardinality. Both the analysis done for m 2 and the fact that the determinantal vector of diag(1, p, p 2 ) is (1, p, p 2 ) imply that

   δ 1 ∈ R 1,1,p , δ 1   1 p p   ∈ Λ   1 p p 2   Λ    = 0 d 1 <p      1 d 1 p 1      0 e 1 , f 1 <p      1 e 1 1 f 1 p      which is of cardinality p(p + 1) such that m 1 = 1.
3.2. Linearization of Λdiag(1, p, p 2 )Λ * Λdiag(1, p, p 2 )Λ. This section contains the proof of (1.5). By (2.4), the product of these double cosets equals

ΛhΛ⊂Λdiag(1,p,p 2 )Λdiag(1,p,p 2 )Λ m     1 p p 2   ,   1 p p 2   ; h   ΛhΛ
where h ∈ GL 3 (Q) ranges over a system of representatives of the Λ-double cosets contained in the set

Λ   1 p p 2   Λ   1 p p 2   Λ.
Let us determine the relevant matrices h occuring in this sum. Let h in GL 3 (Q) be such that ΛhΛ is included in the previous set. By (2.8), one has uniquely

ΛhΛ = Λε λ 1 λ 2 diag(1, s 1 , s 2 )Λ with ε = ±1, λ 1 , λ 2 > 0, (λ 1 , λ 2 ) = 1, s 1 , s 2 > 0, s 1 | s 2 .
The inclusion is equivalent to

Λελ 1 diag(1, s 1 , s 2 )Λ = Λλ 2 δ 1 δ 2 Λ
for some matrices δ 1 ∈ R 1,p,p 2 and δ 2 ∈ L 1,p,p 2 by (A.6). So, both matrices have the same determinantal divisors ie

ελ 1 = λ 2 d 1 (δ 1 δ 2 ), λ 2 1 s 1 = λ 2 2 d 2 (δ 1 δ 2 ), ελ 3 1 s 1 s 2 = λ 3 2 d 3 (δ 1 δ 2 ) = λ 3 2 p 6
. By (A.6), a straightforward but tedious computation ensures that the set

d (δ 1 δ 2 ), (δ 1 , δ 2 ) ∈ R 1,p,p 2 × L 1,p,p 2 is a subset of {(1, p 2 , p 6 ), (1, p 3 , p 6 ), (p, p 2 , p 6 ), (p, p 3 , p 6 ), (p 2 , p 4 , p )}. Case 1: (d 1 , d 2 , d 3 ) = (1, p 2 , p 6 ). ελ 1 = λ 2 , λ 2 1 s 1 = λ 2 2 p 2 , ελ 3
1 s 1 s 2 = λ 3 2 p 6 . The first equation gives ε = λ 1 = λ 2 = 1 by the coprimality of λ and λ 2 . The second equation gives s 1 = p 2 . The third equation gives s 2 = p 4 . Thus,

ΛhΛ = Λdiag(1, p 2 , p 4 )Λ. Case 2: (d 1 , d 2 , d 3 ) = (1, p 3 , p 6 ). ελ 1 = λ 2 , λ 2 1 s 1 = λ 2 2 p 3 , ελ 3 1 s 1 s 2 = λ 3 2 p 6 .
The first equation gives ε = λ 1 = λ 2 = 1 by the coprimality of λ and λ 2 . The second equation gives s 1 = p 3 . The third equation gives s 2 = p 3 . Thus,

ΛhΛ = Λdiag(1, p 3 , p 3 )Λ. Case 3: (d 1 , d 2 , d 3 ) = (p, p 2 , p 6 ). ελ 1 = λ 2 p, λ 2 1 s 1 = λ 2 2 p 2 , ελ 3 1 s 1 s 2 = λ 3 2 p 6 .
The first equation gives ε = λ 2 = 1 and λ 1 = p by the coprimality of λ 1 and λ 2 . The second equation gives s 1 = 1. The third equation gives s 2 = p . Thus, ΛhΛ = Λdiag(p, p, p 4 )Λ.

Case 4: (d 1 , d 2 , d 3 ) = (p, p 3 , p 6 ).

ελ 1 = λ 2 p, λ 2 1 s 1 = λ 2 2 p 3 , ελ 3 1 s 1 s 2 = λ 3 2 p 6 .
The first equation gives ε = λ 2 = 1 and λ 1 = p by the coprimality of λ 1 and λ 2 . The second equation gives s 1 = p. The third equation gives s 2 = p 2 . Thus,

ΛhΛ = Λdiag(p, p 2 , p 3 )Λ. Case 5: (d 1 , d 2 , d 3 ) = (p 2 , p 4 , p 6 ). ελ 1 = λ 2 p 2 , λ 2 1 s 1 = λ 2 2 p 4 , ελ 3
1 s 1 s 2 = λ 3 2 p 6 . The first equation gives ε = λ 2 = 1 and λ 1 = p 2 by the coprimality of λ 1 and λ 2 . The second equation gives s 1 = 1. The third equation gives s 2 = 1. Thus,

ΛhΛ = Λdiag(p 2 , p 2 , p 2 )Λ.
As a consequence,

Λdiag(1, p, p 2 )Λ * Λdiag(1, p, p 2 )Λ = m 1 Λ   1 p 2 p 4   Λ+m 2 Λ   1 p 3 p 3   Λ + m 3 Λ   p p p 4   Λ + m 4 Λ   p p 2 p 3   Λ + m 5 Λ   p 2 p 2 p 2   Λ
where

m 1 := m     1 p p 2   ,   1 p p 2   ;   1 p 2 p 4     , m 2 := m     1 p p 2   ,   1 p p 2   ;   1 p 3 p 3     , m 3 := m     1 p p 2   ,   1 p p 2   ;   p p p 4     , m 4 := m     1 p p 2   ,   1 p p 2   ;   p p 2 p 3     , m 5 := m     1 p p 2   ,   1 p p 2   ;   p 2 p 2 p 2     .
Let us compute the value of m 1 . By (2.5), (A.7) and (A.8),

m 1 = 1 p 4    δ 1 ∈ R 1,p,p 2 , δ 1   1 p p 2   ∈ Λ   1 p 2 p 4   Λ    .
Let us compute the remaining cardinality. One can check that the set where 0 d 1 , e 1 , f 1 < p and 0 d 2 , e 2 , f 2 < p 2 . The fact that the determinantal vector of diag(1, p 2 , p 4 ) is (1, p 2 , p 6 ) implies that m 1 = 1. Let us compute the value of m 2 . By (2.5), (A.7) and (A.9),

   δ 1   1 p p 2   , δ 1 ∈ R 1,p,p 2    is exactly made of the matrices   p 2 p p 2 f 1 p 3   (d 1 , d 2 , d 3 ) = (p, p 3 , p 6 ),   p pd 2 p 3 p 2   (p | d 2 ) (d 1 , d 2 , d 3 ) = (p, p 3 , p 6 ),   p pd 1 p 2 e 1 p 2 p 2 f 1 p 3   (d 1 f 1 = 0, (d 1 , e 1 , f 1 ) = (0, 0, 0)) (d 1 , d 2 , d 3 ) = (p, p 3 , p 6 ) and   1 pd 1 p 2 e 2 p 2 p 2 f 2 p 4   (p | f 2 ) (d 1 , d 2 , d 3 ) = (1,
m 2 = p + 1 p 3    δ 1 ∈ R 1,p,p 2 , δ 1   1 p p 2   ∈ Λ   1 p 3 p 3   Λ    .
Both the analysis done for m 1 and the fact that the determinantal vector of diag(1, p 3 , p 3 ) is (1, p 3 , p 6 ) imply that m 2 = p + 1. Let us compute the value of m 3 . By (2.5), (A.7), (2.1) and (A.10),

m 3 = p + 1 p 3    δ 1 ∈ R 1,p,p 2 , δ 1   1 p p 2   ∈ Λ   p p p 4   Λ    .
Both the analysis done for m 1 and the fact that the determinantal vector of diag(p, p, p 4 ) is (p, p 2 , p 6 ) imply that m 3 = p + 1. Let us compute the value of m 4 . By (2.5), (A.7), (2.1) and (A.7),

m 4 = p + 1 p 3    δ 1 ∈ R 1,p,p 2 , δ 1   1 p p 2   ∈ Λ   p p 2 p 3   Λ    .
Both the analysis done for m 1 and the fact that the determinantal vector of diag(p, p 2 , p 3 ) is (p, p 3 , p 6 ) imply that m 4 = (p + 1)(2p -1).

Let us compute the value of m 5 . By (2.5), (A.7) and (2.1),

m 5 = p(p + 1)(p 2 + p + 1)    δ 1 ∈ R 1,p,p 2 , δ 1   1 p p 2   ∈ Λ   p 2 p 2 p 2   Λ    .
Both the analysis done for m 1 and the fact that the determinantal vector of diag(p 2 , p 2 , p 2 ) is (p 2 , p 4 , p 6 ) imply that m 5 = p(p + 1)(p 2 + p + 1). the anti-diagonal matrix with 1's on the anti-diagonal then g W t UW = W t HW is the upper-triangular row reduced representative of the Λ-left coset g Λ.

The previous fact also entails that

Λg Λ = δ∈R g Λδ ⇒ Λg Λ = δ∈W t R g W δΛ (A.1) since Λg Λ = W Λg Λ = W t Λg Λ = W δ∈R g t δΛ = δ∈R g W t δW Λ.
Let us finish with a useful elementary practical remark for the computations done in the following sections of the appendix. If H is an upper-triangular column reduced matrix in a Λ-double coset Λdiag(p α 1 , p α 2 , p α 3 )Λ where p is a prime number and α 1 , α 2 and α 3 are non-negative integers then

H =   p δ 1 * * p δ 2 * p δ 3   , 3 j =1 (α j -δ j ) = 0, ∀ j ∈ {1, 2, 3}, 0 δ j max 1 k 3 α k . (A.2)
The fact that the diagonal cofficients of H are powers of p comes from the determinant equation. The condition on the exponents of these diagonal coefficients follows from the fact that p max {α k ,1 k 3} H -1 has integer coefficients.

A.1. Decomposition and degree of Λdiag(1, 1, p)Λ.

Proposition A.1-One has Λdiag(1, 1, p)Λ = δ∈R 1,1,p Λδ = δ∈L 1,1,p δΛ (A.3) where R 1,1,p = diag(p, 1, 1) 0 d 1 <p      1 d 1 p 1      0 e 1 , f 1 <p      1 0 e 1 1 f 1 p      and L 1,1,p = diag(1, 1, p) 0 f 1 <p      1 p f 1 1      0 d 1 ,e 1 <p      p d 1 e 1 1 1      .
In particular,

deg diag(1, 1, p) = p 2 + p + 1.
Proof of Proposition A.1. The decomposition into Λ-right cosets implies the decomposition into Λ-left cosets by (A.1). The possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

  1 0 e 1 1 f 1 p   d (δ) = (1, 1, p),   1 d 1 0 p 0 1   d (δ) = (1, 1, p),   p 0 0 1 0 1   d (δ) = (1, 1, p)
where 0 d 1 , e 1 , f 1 < p. The fact that the determinantal vector of diag(1, 1, p) is (1, 1, p) implies the decomposition into Λ-left cosets given in (A.3) and the computation of the degree too.

A.2. Decomposition and degree of Λdiag(1, p, p)Λ.

Proposition A.2-One has

Λdiag(1, p, p)Λ = ∪ δ∈L 1,p,p δΛ (A.4)
where L 1,p,p = diag(1, p, p)

0 e 1 , f 1 <p      p e 1 p f 1 1      0 d 1 <p      p d 1 1 p      In particular, deg diag(1, p, p) = p 2 + p + 1. (A.5)
Proof of Proposition A.2. By (A.2), the possible upper-triangular row reduced matrices δ that can occur in the decomposition into Λ-left cosets are

  p d 1 e 1 p f 1 1   d (δ) = (1, (p, d 1 , d 1 f 1 ), p 2 ),   p d 1 e 1 1 p   d (δ) = (1, (p, e 1 ), p 2 ),   1 p f 1 p   d (δ) = (1, (p, f 1 ), p 2 )
where 0 d 1 , e 1 , f 1 < p. The fact that the determinantal vector of diag(1, p, p) is (1, p, p 2 ) implies the decomposition into Λ-left cosets given in (A.4) and the computation of the degree too.

A.3. Decomposition and degree of Λdiag(1, p, p 2 )Λ.

Proposition A.3-One has Λdiag(1, p, p 2 )Λ = ∪ δ∈R 1,p,p 2 Λδ = ∪ δ∈L 1,p,p 2 δΛ (A.6) where R 1,p,p 2 = 0 d 1 <p 0 e 2 , f 2 <p 2 p| f 2      1 d 1 e 2 p f 2 p 2      0 e 1 <p 0 d 2 <p 2      1 d 2 e 1 p 2 p      0 e 2 , f 2 <p 2 p|e 2      p e 2 1 f 2 p 2      0 f 1 <p      p 2 1 f 1 p      0 d 2 <p 2 p|d 2      p d 2 p 2 1      0 d 1 ,e 1 , f 1 <p d 1 f 1 =0 (d 1 ,e 1 , f 1 ) =(0,0,0)      p d 1 e 1 p f 1 p           p 2 p 1      and L 1,p,p 2 = 0 f 1 <p 0 d 2 ,e 2 <p 2 p|d 2      p 2 d 2 e 2 p f 1 1      0 e 1 <p 0 f 2 <p 2      p e 1 p 2 f 2 1      0 d 2 ,e 2 <p 2 p|e 2      p 2 d 2 e 2 1 p      0 d 1 <p      p d 1 1 p 2      0 f 2 <p 2 p| f 2      1 p 2 f 2 p      0 d 1 ,e 1 , f 1 <p d 1 f 1 =0 (d 1 ,e 1 , f 1 ) =(0,0,0)      p d 1 e 1 p f 1 p           p 2 p 1      . In particular, deg diag(1, p, p 2 ) = p(p + 1)(1 + p + p 2 ). (A.7)
Proof of Proposition A.3. The decomposition into Λ-right cosets implies the decomposition into Λ-left cosets by (A.1). By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are Type 1:

  p d 1 e 1 p f 1 p   d (δ) = ((p, d 1 , e 1 , f 1 ), (p 2 , pd 1 , p f 1 , d 1 f 1 -pe 1 ), p 3 )
and Type 2:

  1 d 1 e 2 p f 2 p 2   d (δ) = (1, (p, f 2 ), p 3 ),
Type 3:

  1 d 2 e 1 p 2 f 1 p   d (δ) = (1, (p, f 1 ), p 3 ),
Type 4:

  p e 2 1 f 2 p 2   d (δ) = (1, (p, e 2 ), p 3 ),
Type 5:

  p 2 e 1 1 f 1 p   d (δ) = (1, (p, e 1 ), p 3 ),
Type 6:

  p d 2 p 2 1   d (δ) = (1, (p, d 2 ), p 3 ), Type 7:   p 2 d 1 p 1   d (δ) = (1, (p, d 1 ), p 3 )
where 0 d 1 , e 1 , f 1 < p and 0 d 2 , e 2 , f 2 < p 2 . Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of diag(1, p, p 2 ), namely (1, p, p 3 ).

Let us consider the matrices of type 1. The condition on d 2 (δ) implies d 1 = 0. The condition on d 1 (δ) implies that (d 1 , e 1 , f 1 ) = (0, 0, 0). The condition on d 2 (δ) implies p | d 1 f 1 such that p | d 1 or p | f 1 , namely d 1 = 0 or f 1 = 0. There are (p -1)(2p + 1) such matrices of type 1.

Let us consider the matrices of type 2. The condition on d 2 (δ) implies p | f 2 . There are p 4 such matrices of type 2.

Let us consider the matrices of type 3. The condition on d 2 (δ) implies f 1 = 0. There are p 3 such matrices of type 3.

Let us consider the matrices of type 4. The condition on d 2 (δ) implies p | e 2 . There are p 3 such matrices of type 4.

Let us consider the matrices of type 5. The condition on d 2 (δ) implies e 1 = 0. There are p such matrices of type 5.

Let us consider the matrices of type 6. The condition on d 2 (δ) implies p | d 2 . There are p such matrices of type 6.

Let us consider the matrices of type 7. The condition on d 2 (δ) implies d 1 = 0. There is 1 such matrix of type 7.

One can recover the decomposition in Λ-right cosets given in (A.6) and the value of the degree given in (A.7) by summing all the contributions in the previous paragraphs.

A.4. Degree of Λdiag(1, p 2 , p 4 )Λ. 

  p 4 d 2 p 2 1   d (δ) = (1, (p 2 , d 2 ), p 6 ),
Type 2:

  p 4 e 2 1 f 2 p 2   d (δ) = (1, (p 2 , e 2 ), p 6 ),
Type 3: 

  p 2 d 4 p 4 1   d (δ) = (1, (p 2 , d 4 ), p 6 ),
  p 2 d 2 e 2 p 2 f 2 p 2   d (δ) = ((p 2 , d 2 , e 2 , f 2 ), (p 4 , p 2 d 2 , p 2 f 2 , d 2 f 2 -p 2 e 2 ), p 6 )
where 0 d j , e j , f j < p j for j = 1, 2, 3, 4. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of diag(1, p 2 , p 4 ), namely (1, p 2 , p 6 ).

Let us consider the matrices of type 1. The condition on d 2 (δ) implies d 2 = 0. There is 1 relevant matrix of type 1.

Let us consider the matrices of type 2. The condition on d 2 (δ) implies e 2 = 0. There are p 2 relevant matrices of type 2.

Let us consider the matrices of type 3. The condition on d 2 (δ) implies p 2 | d 4 . There are p 2 relevant matrices of type 3.

Let us consider the matrices of type 4. The condition on d 2 (δ) implies p 2 | e 4 . There are p 6 relevant matrices of type 4.

Let us consider the matrices of type 5. The condition on d 2 (δ) implies e 2 = 0 . There are p 6 relevant matrices of type 5.

Let us consider the matrices of type 6. The condition on d 2 (δ) implies p 2 | f 4 . There are p 8 relevant matrices of type 6.

Let us consider the matrices of type 7. The condition on d 2 (δ) implies d 1 = e 1 = 0 and the condition on d 1 (δ) implies f 1 = 0. There are p -1 relevant matrices of type 7.

Let Let us consider the matrices of type 12. The condition on d 2 (δ) implies p 2 || f 3 . There are (p -1)p 6 relevant matrices of type 12.

Let us consider the matrices of type 13. Note that (e 1 , f 1 ) = (0, 0) since otherwise d

1 (δ) = 1 = (p, d 2 ), which implies that d 2 (δ) = (pd 2 , p 3 ) = p = p 2 . As a consequence, d 1 (δ) = 1 = (p, d 2 , e 1 , f 1 ). The fact that d 2 (δ) = p 2 implies that p | d 2 and p | f 1 d 2 /p, namely f 1 = 0 or d 2 = 0. If d 2 = 0 then d 2 (δ) = p 2 = (p 3 , p 2 e 1 )
such that e 1 = 0. There are p(p -1) such matrices. If d 2 = 0 then f 1 = 0, d 2 (δ) = p 2 (p, d 2 /p, e 1 ) = p 2 since d 2 /p is coprime with p and d 1 (δ) = 1 = (p, e 1 ) such that e 1 = 0. There are (p -1) 2 such matrices. Finally, there are (p -1)(2p -1) relevant matrices of type 13.

Let us consider the matrices of type 14. The fact that d 

2 (δ) = p 2 implies that p 2 | d 1 f 2 -pe 2 . If d 1 = 0 then p | e 2 and d 2 (δ) = p 2 = (p 3 , p 2 e 2 /p) if e 2 = 0. d 1 (δ) = 1 = (p, f 2 ) implies that p f
  1 d 3 e 3 p 3 f 3 p 3   d (δ) = (1, (p 3 , f 3 , d 3 f 3 ), p 6 )
and Type 4:

  p 3 d 2 e 1 p 2 f 1 p   d (δ) = ((p, d 2 , e 1 , f 1 ), (p 3 , pd 2 , d 2 f 1 -p 2 e 1 ), p 6 ),
Type 5:

  p 3 d 1 e 2 p f 2 p 2   d (δ) = ((p, d 1 , e 2 , f 2 ), (p 3 , p 2 d 1 , d 1 f 2 -pe 2 ), p 6 ), Type 6:   p 2 d 3 e 1 p 3 f 1 p   d (δ) = ((p, d 3 , e 1 , f 1 ), (p 3 , pd 3 , p 2 f 1 , d 3 f 1 ), p 6 ), Type 7:   p 2 d 1 e 3 p f 3 p 3   d (δ) = ((p, d 1 , e 3 , f 3 ), (p 3 , p 2 f 1 , d 1 f 3 -pe 3 ), p 6 ),
Type 8:

  p d 3 e 2 p 3 f 2 p 2   d (δ) = ((p, d 3 , e 2 , f 2 ), (p 3 , p 2 d 3 , p f 2 , d 3 f 2 ), p 6 ), Type 9:   p d 1 e 3 p 2 f 3 p 3   d (δ) = ((p, d 1 , e 4 , f 4 ), (p 3 , p f 3 , d 2 f 3 -p 2 e 3 ), p 6 )
and Type 10:

  p 2 d 2 e 2 p 2 f 2 p 2   d (δ) = ((p 2 , d 2 , e 2 , f 2 ), (p 4 , p 2 d 2 , p 2 f 2 , d 2 f 2 -p 2 e 2 ), p 6 )
where 0 d j , e j , f j < p j for j = 1, 2, 3. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of diag(1, p 3 , p 3 ), namely (1, p 3 , p 6 ).

Let us consider the matrices of type 1. The condition on d 2 (δ) implies d 3 = 0. There is 1 relevant matrix of type 1.

Let us consider the matrices of type 2. The condition on d 2 (δ) implies e 3 = 0. There are p 3 relevant matrices of type 2.

Let us consider the matrices of type 3. The condition on d 2 (δ) implies f 3 = 0. There are p 6 relevant matrices of type 3.

Let us consider the matrices of type 4. The condition on d 2 (δ) implies d 2 = 0 and e 1 = 0. Then, d 1 (δ) = 1 = (p, f 1 ) such that f 1 = 0. There are p -1 relevant matrices of type 4.

Let us consider the matrices of type 5. The condition on d 2 (δ) implies d 1 = 0 and e 2 = 0. Then, d 1 (δ) = 1 = (p, f 2 ) such that p f 2 . There are p 2p relevant matrices of type 5.

Let us consider the matrices of type 6. The condition on d 2 (δ) implies f 1 = 0 and p 2 | d 3 . Then, d 1 (δ) = 1 = (p, e 1 ) such that e 1 = 0. There are p(p -1) relevant matrices of type 6.

Let One can recover the value of the degree given in (A.9) by summing all the contributions in the previous paragraphs.

A.6. Degree of Λdiag(1, 1, p 3 )Λ. where 0 d j , e j , f j < p j for j = 1, 2, 3. Let us count the matrices among the previous ones, whose determinantal vector is the same as the one of diag(1, 1, p 3 ), namely (1, 1, p 3 ). Let us consider the matrices of type 1. There is 1 relevant matrix of type 1. Let us consider the matrices of type 2. There are p 3 relevant matrices of type 2. Let us consider the matrices of type 3. There are p 6 relevant matrices of type 3. Let us consider the matrices of type 4. The condition on d 2 (δ) implies p f 2 . There are p 3 (p 2p) relevant matrices of type 4.

Let us consider the matrices of type 5. The condition on d 2 (δ) implies f 1 = 0. There are p 3 (p -1) relevant matrices of type 5.

Let us consider the matrices of type 6. The condition on d 2 (δ) implies p e 2 . There are p 2 (p 2p) relevant matrices of type 6.

Let us consider the matrices of type 7. The condition on d 2 (δ) implies e 1 = 0. There are p(p -1) relevant matrices of type 6.

Let us consider the matrices of type 8. The condition on d 2 (δ) implies p d 2 . There are p 2p relevant matrices of type 7.

Let us consider the matrices of type 9. The condition on d 2 (δ) implies d 1 = 0. There are p -1 relevant matrices of type 9.

Let us consider the matrices of type 10. One has d 1 = 0 since otherwise p | d 2 (δ). Thus, d 1 (δ) = 1. In addition, f 1 = 0 since otherwise p | d 2 (δ). There are p(p -1) 2 relevant matrices of type 10.

One can recover the value of the degree given in (A.10) by summing all the contributions in the previous paragraphs.

  APPENDIX A. DECOMPOSITION OF Λ-DOUBLE COSETS INTO Λ-COSETS By [AZ95, Lemma 1.2 Page 94 and Lemma 2.1 Page 105], we know that every Λ-double coset Λg Λ with g in GL 3 (Q) with integer coefficients is both a finite union of Λ-left cosets and Λ-right cosets. In addition, every Λ-right coset Λg contains a unique upper-triangular column reduced representative, namely < b and 0 e, f < c by [AZ95, Lemma 2.7 Page 109].As a consequence, every Λ-left coset g Λ contains a unique upper-triangular row reduced representative, namely , e < a and 0 f < b. More explicitely, if UW t g W = H is the uppertriangular column reduced representative of the Λ-right coset ΛW t g W with W

Proposition A. 4 -

 4 One has deg diag(1, p 2 , p 4 ) = p 5 (p + 1)(p 2 + p + 1). (A.8) Proof of Proposition A.4. By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are Type 1:

  ) = (1, (p 2 , f 2 , d 4 f 2 ), p 6 ), Type 6:  1 d 2 e 4 p 2 f 4 p 4   d (δ) = (1, (p 2 , f 4 , d 2 f 4 ), p 6 ) ) = ((p, d 1 , e 1 , f 1 ), (p 2 , pd 1 , d 1 f 1pe 1 ), p 6 ), ) = ((p, d 4 , e 1 , f 1 ), (p 2 , p f 1 , pd 4 , d 4 f 1 ), p 6 ), ) = ((p, d 1 , e 4 , f 4 ), (p 2 , p f 4 , d 1 f 4pe 4 ), ) = (1, (p 3 , d 3 ), p 6 ), ) = (1, (p 3 , e 3 ), p 6 ), ) = (1, (p 3 , f 3 , d 3 f 3 ), ) = ((p, d 2 , e 1 , f 1 ), (p 3 , pd 2 , d 2 f 1p 2 e 1 ), p 6 ) ) = ((p, d 1 , e 2 , f 2 ), (p 3 , p 2 d 1 , d 1 f 2pe 2 ), p 6 ) ) = ((p, d 3 , e 1 , f 1 ), (p 3 , pd 3 , p 2 f 1 , d 3 f 1 ), p 6 ) ) = ((p, d 1 , e 3 , f 3 ), (p 3 , d 1 f 3pe 3 , p 2 f 3 ), ) = ((p, d 3 , e 2 , f 2 ), (p 3 , p f 2 , p 2 d 3 , d 3 f 2 ), p 6 ) ) = ((p,d 2 , e 3 , f 3 ), (p 3 , p f 3 , d 2 f 3p 2 e 3 ), p 6 ) and Type 19:

  us consider the matrices of type 8. The condition on d 2 (δ) implies f 1 = 0 and p | d 4 . The condition on d 1 (δ) implies e 1 = 0. There are p 3 (p -1) relevant matrices of type 8. Let us consider the matrices of type 9. The condition on d 2 (δ) implies p | f 4 and p | d 1 f 4 /pe 4 . One has d 1 = 0 since otherwise d 1 (δ) = 1 = (p, e 4 ) and d 2 (δ) = p(p, e 4 ) = p = p 2 . Thus, d 1 is invertible modulo p and f 4 /p ≡ e 4 d 1 (mod p) such that f 4 /p can take p 2 values. There are (p -1)p 6 relevant matrices of type 9. Let us consider the matrices of type 10. The condition on d 2 (δ) implies p 2 || d 3 . There are p -1 relevant matrices of type 10. Let us consider the matrices of type 11. The condition on d 2 (δ) implies p 2 || e 3 . There are (p -1)p 3 relevant matrices of type 11.

  2 . There are (p -1)(p 2p) such matrices. If d 1 = 0 then the value of f 2 is fixed by f 2 ≡ pe 2 d 1 (mod p 2 ) and d 1 (δ) = (p, d 1 ) = 1. There are p 2 (p -1) such matrices. Finally, there are (p -1)(2p 2p) relevant matrices of type 14. Let us consider the matrices of type 15. The condition d 2 (δ) = p 2 implies that p | d 3 and p | f 1 d 3 /p. If f 1 = 0 then d 2 (δ) = p 2 = p 2 (p, d 3 /p) such that p || d 3 . The condition d 1 (δ) = 1 = (p, e 1 ) implies that e 1 = 0. There are (p 2p)(p -1) such Proof of Proposition A.5. By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition into Λ-right cosets are

  us consider the matrices of type 7. The condition on d 2 (δ) implies p | f 3 and p | d 1 f 3 /pe 3 . One has d 1 = 0 since otherwise p 2 | e 2 by the condition on d 2 (δ) such that d 1 (δ) = p = 1. Thus, d 1 is invertible modulo p and f 3 /p ≡ e 3 d 1 (mod p 2 ) is fixed. There are (p -1)p 3 relevant matrices of type 7. Let us consider the matrices of type 8. The condition on d 2 (δ) implies p | d 3 and f 2 = 0. Then, d 1 (δ) = 1 = (p, e 2 ) such that p e 2 . There are p 2 (p 2p) relevant matrices of type 8. Let us consider the matrices of type 9. The condition on d 2 (δ) implies p 2 | f 3 and p | d 2 f 3 /pe 3 . If f 3 = 0 then p | e 3 and d 1 (δ) = 1 = (p, d 2 ) such that p d 2 . There are (p 2p)p 2 such matrices. If f 3 = 0 then d 2 ≡ e 3 f 3 /p 2 (mod p) can take p values. Then, d 1 (δ) = 1 = (p, e 3 ) such that p e 3 . There are p(p 3p 2 )(p -1) such matrices. Finally, there are p 4 (p -1) relevant matrices of type 9. Let us consider the matrices of type 10. The condition on d 2 (δ) implies p | d 2 , p | f 2 and p | d 2 f 2 /p 2e 2 . One has d 2 = 0 since otherwise d 2 (δ) = p 2 (p 2 , e 2 ) = p 2 d 1 (δ) = p 2 = p 3 . Thus, d 2 /p is invertible modulo p and f 2 is fixed by f 2 /p ≡ e 2 d 2 /p (mod p). Then, d 1 (δ) = 1 = (p, e 2 ) such that p e 2 , p f 2 /p and d 2 (δ) = p 3 . There are (p -1)(p 2p) relevant matrices of type 10.

  Proposition A.6-One has deg diag(1, 1, p 3 ) = p 4 (p 2 + p + 1). (A.10) Proof of Proposition A.6. By (A.2), the possible upper-triangular column reduced matrices δ that can occur in the decomposition of the Λ-double coset Λdiag(1, 1, p 3 )Λ into Λ-right cosets are ) = (1, (p, d 2 ), p 3 ), ) = ((p, d 1 , e 1 , f 1 ), (p 2 , pd 1 , p f 1 , d 1 f 1pe 1 ), p 3 )

This follows, at least conditionally, from a suitable version of the Generalized Riemann Hypothesis. However, we do not need to use this fact

.3 One may also choose a variant, in the spirit of[START_REF] Venkatesh | Sparse equidistribution problems, period bounds and subconvexity[END_REF], which involves the signs of c f 0 ( ).

Given d 1 and e 3 , there are p choices for f 3 /p given by f 3 /p ≡ d 1 e 3 (mod p) but one has to remove the value satisfying f 3 /p ≡ d 1 e 3 (mod p 2 ). There are (p -1)(p 3 -p 2 )(p -1) such matrices. Finally, there are p 3 (p -1)(2p -1) relevant matrices of type 16.

Let us consider the matrices of type 17. The condition

There are p 2 (p 2p)(p -1) such matrices. Finally, there are p 3 (p -1)(2p -1) relevant matrices of type 17.

Let us consider the matrices of type 18. The condition 

and d 1 (δ) = 1 = (p 2 , e 2 ). Thus, p e 2 and p d 2 f 2 /p 2 -e 2 . Among the p 2 -p values of e 2 satisfying p e 2 , one has to remove these satisfying e 2 ≡ d 2 f 2 /p 2 (mod p) of cardinal p. There are (p -1)(p 2 -2p)(p -1) such matrices. Finally, there are p(p -1)(3p 2p + 1) relevant matrices of type 19.

One can recover the value of the degree given in (A.8) by summing all the contributions in the previous paragraphs.

A.5. Degree of Λdiag(1, p 3 , p 3 )Λ.

Proposition A.5-One has deg diag(1, p 3 , p 3 ) = p 4 (p 2 + p + 1).

(A.9)