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THE AMPLIFICATION METHOD IN THE GL(3) HECKE ALGEBRA

ROMAN HOLOWINSKY, GUILLAUME RICOTTA, AND EMMANUEL ROYER

ABSTRACT. This article contains all of the technical ingredients required to
implement an effective, explicit and unconditional amplifier in the context of
GL(3) automorphic forms. In particular, several coset decomposition compu-
tations in the GL(3) Hecke algebra are explicitly done.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Motivation: sup-norms of GL(n) Hecke-Maaß cusp forms. Let f be a GL(n)
Maaß cusp form and K be a fixed compact subset of SLn(R)/SOn(R) (see [Gol06]).
The generic or local bound for the sup-norm of f restricted to K is given by

|| f |K ||∞ ¿λn(n−1)/8
f

where λ f is the Laplace eigenvalue of f (see [Sar]). Note that F. Brumley and
N. Templier noticed in [BT] that the previous bound does not hold when n Ê 6 if
f is not restricted to a compact.
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If f is an eigenform of the Hecke algebra, however, then the generic bound
is not expected to be the correct order of magnitude for the sup-norm of the
restriction of f to a fixed compact. This is essentially due to the fact that the
Hecke operators are additional symmetries on the ambient space. In other words,
we expect there to exist an absolute positive constant δn > 0 such that

|| f |K ||∞ ¿λ
n(n−1)/8−δn

f . (1.1)

H. Iwaniec and P. Sarnak proved the bound given in (1.1) in [IS95] when n = 2
for δ2 = 1/24. Note that improving this constant δ2 seems to be a very delicate
open problem. The case n = 3 was completed by the authors in [HRR] with
δ3 = 1/124. The general case was done, without an explicit value for δn , in a series
of recent impressive works by V. Blomer and P. Maga in [BMb] and in [BMa].

All of the above achievements (and much more) were made possible thanks to
generalizations of the amplification method developed by W. Duke, J. Friedlander
and H. Iwaniec for GL(1) and GL(2) (see [FI92], [Iwa92] and [DFI94] for example).
In particular, the proof of (1.1) for n = 3 with δ3 = 1/124 relies on Theorem B of
this article which was stated without proof in [HRR] as Proposition 4.11. For the
sake of completeness and future use, we provide the full details of the proof of
Theorem B, including computations, here in this article.

1.2. The GL(2) and GL(3) amplifier. The general principle behind the construc-
tion of an amplifier, is the existence of an identity which allows one to write a
non-zero constant as a finite sum of Hecke eigenvalues. In the most basic context
of GL(2) automorphic forms, this identity is

λ f (p)2 −λ f (p2) = 1 (1.2)

where p is any prime andλ f (n) is the n-th Hecke eigenvalue of a Hecke-Maaß cusp
form f of full level, i.e. Tn f =λ f (n) f where

(Tn f )(z) = 1p
n

∑
ad=n

d∑
b=1

f

(
az +b

d

)
.

One may interpret the above identity as the fact that the Rankin-Selberg convolu-
tion factors as the product of the adjoint square and the Riemann zeta function
and therefore has a pole at s = 1.

From the identity (1.2), one constructs an amplifier

A f :=
∣∣∣∣∣∑
`

α`λ f (`)

∣∣∣∣∣
2

with

α` :=


λ f0 (`) if `Ép

L is a prime number,

−1 if `É L is the square of a prime number,

0 otherwise

1Theorem B and Proposition 4.1 in [HRR] are not entirely identical. Since releasing our first
article [HRR], we have noticed a simplification in the construction of the amplifier. Therefore,
Theorem B only contains the identities in Proposition 4.1 of [HRR] which are necessary for the
amplification method. The implied power saving in the Laplace eigenvalue for the sup-norm
bound remains the same.
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for some fixed form f0. The advantage to constructing such an amplifier is that
it is expected to be small2 for general forms f while satisfying the lower bound
A f Àε L1−ε when f = f0.

Reinterpreting (1.2) in terms of Hecke operators, we may write

Tp ◦Tp −Tp2 = I d .

In application to the sup-norm problem for GL(2) via a pre-trace formula argu-
ment, this translates into a need to geometrically understand the behavior of the
following collection of operators on an automorphic kernel:

Tp ,Tp ◦T ∗
q ,Tp ◦T ∗

q2 and Tp2 ◦T ∗
q2

both in the cases of primes p = q and p 6= q . Since the Hecke operators Tn in
GL(2) are self-adjoint and computationally pleasant to work with due to their
relatively simple composition law, one quickly computes that the above collection
of Hecke operators may be reduced to the study of

Tp ,Tpq ,Tpq2 and Tp2q2 .

In truth, one has an opportunity to further reduce the collection of necessary
Hecke operators through the simple inequality

A f É 2

∣∣∣∣∣∑p
αpλ f (p)

∣∣∣∣∣
2

+2

∣∣∣∣∣∑p
αp2λ f (p2)

∣∣∣∣∣
2

. (1.3)

Indeed, an appropriate application of (1.3) (see for example [BHM]) allows one
to further restrict the set of necessary Hecke operators to

Tpq and Tp2q2

both in the cases of primes p = q and p 6= q .
The case of GL(3) is much more computationally involved due to the lack of

self-adjointness of the Hecke operators and their multiplication law. Instead of
looking at identities involving Hecke eigenvalues, we start immediately with the
Hecke operators themselves (see §2 for definitions). Our fundamental identity
now will be

Tdiag(1,p,p) ◦Tdiag(1,1,p) −Tdiag(1,p,p2) = (p2 +p +1)I d .

We set c f (p) = a f (p,1), c f (p)∗ = a f (p,1) and c f (p2) to be the eigenvalues of
p−1Tdiag(1,1,p) = Tp , p−1Tdiag(1,p,p) = T ∗

p and p−2Tdiag(1,p,p2) respectively when
acting on a form f . See (2.2) and (2.3) for the precise definitions. We construct
the amplifier

A f :=
∣∣∣∣∣∑
`

α`c f (`)

∣∣∣∣∣
2

with3

α` :=


c f0 (`)∗ if `Ép

L is a prime number,

−1 if `É L is the square of a prime number,

0 otherwise.

2This follows, at least conditionally, from a suitable version of the Generalized Riemann Hy-
pothesis. However, we do not need to use this fact.

3One may also choose a variant, in the spirit of [Ven10], which involves the signs of c f0
(`).
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As in the case of GL(2), this amplifier will satisfy A f0 Àε L1−ε and A f is otherwise
expected to be small for f 6= f0.

Applying the inequality

A f É 2

∣∣∣∣∣∑p
αp c f (p)

∣∣∣∣∣
2

+2

∣∣∣∣∣∑p
αp2 c f (p2)

∣∣∣∣∣
2

,

one is reduced to understanding the actions of

Tdiag(1,1,p) ◦Tdiag(1,q,q) and Tdiag(1,p,p2) ◦Tdiag(1,q,q2)

both in the cases of primes p = q and p 6= q on the relevant automorphic kernel.
In the following sections, we compute the above compositions as linear com-
binations of other Hecke operators and state our main result as Theorem B. In
the end, we shall see that the following operators are the relevant ones for our
application

Tdiag(1,p,pq),Tdiag(1,pq,p2q2),Tdiag(1,p3,p3) and Tdiag(1,1,p3)

for primes p = q and p 6= q .

1.3. Statement of the results.

Theorem A– Let p be a prime number andΛ=GL3(Z).

• The set R1,1,p (respectively R1,p,p , R1,p,p2 ) defined in Proposition A.1 (re-
spectively Proposition A.2, Proposition A.3) is a complete system of repre-
sentatives for the distinctΛ-right cosets in theΛ-double coset of diag(1,1, p)
(respectively diag(1,1, p), diag(1, p, p2)) moduloΛ.

• The following formulas for the degrees ofΛ-double cosets hold.

deg
(
diag(1,1, p)

) = p2 +p +1,

deg
(
diag(1, p, p)

) = p2 +p +1,

deg
(
diag(1, p, p2)

) = p(p +1)(p2 +p +1),

deg
(
diag(p, p, p)

) = 1,

deg
(
diag(1, p2, p4)

) = p5(p +1)(p2 +p +1),

deg
(
diag(1, p3, p3)

) = p4(p2 +p +1),

deg
(
diag(p, p, p4)

) = p4(p2 +p +1),

deg
(
diag(p, p2, p3)

) = p(p +1)(p2 +p +1),

deg
(
diag(p2, p2, p2)

) = 1.

• Finally,

Λdiag(1,1, p)Λ∗Λdiag(1, p, p)Λ=Λdiag(1, p, p2)Λ+ (p2 +p +1)Λdiag(p, p, p)Λ.
(1.4)

and

Λdiag(1, p, p2)Λ∗Λdiag(1, p, p2)Λ=Λdiag(1, p2, p4)Λ+(p+1)Λdiag(1, p3, p3)Λ

+ (p +1)Λdiag(p, p, p4)Λ+ (p +1)(2p −1)Λdiag(p, p2, p3)Λ

+p(p +1)(p2 +p +1)Λdiag(p2, p2, p2)Λ. (1.5)
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Remark 1.1– In [Kod67], T. Kodama explicitely computed the product of other
double cosets in the slightly harder case of the Hecke ring for the symplectic
group. The results stated in the previous theorem are similar in spirit.

Remark 1.2– It is well-known that aΛ-double coset can be identified with its char-
acteristic function χ. Under this identification, the multiplication law between
Λ-double cosets is the classical convolution between functions. If µ= (µ1,µ2,µ3)
with µ1 Êµ2 Êµ3 Ê 0 and ν= (ν1,ν2,ν3) with ν1 Ê ν2 Ê ν3 Ê 0 are two partitions
of length less than n, then

χΛdiag(pµ1 ,pµ2 ,pµ3 )Λ∗χΛdiag(pν1 ,pν2 ,pν3 )Λ =∑
λ

gλµ,ν(p)χΛdiag(pλ1 ,pλ2 ,pλ3 )Λ

for any prime number p where λ ranges over the partitions of length less than n
and the gλµ,ν(p) are the Hall polynomials (see [Mac95, Equation (2.6) Page 295]).
The sum on the right-hand side of the above equality is finite since only a finite
number of the Hall polynomials are non-zero. However, determining which Hall
polynomials vanish is not straightforward (see [Mac95, Equation (4.3) Page 188]).
Using Sage, one can check that

g (4,2,0)
(2,1,0),(2,1,0)(p) = 1,

g (3,3,0)
(2,1,0),(2,1,0)(p) = p +1,

g (4,1,1)
(2,1,0),(2,1,0)(p) = p +1,

g (3,2,1)
(2,1,0),(2,1,0)(p) = (p +1)(2p −1),

g (2,2,2)
(2,1,0),(2,1,0)(p) = p(p +1)(p2 +p +1)

and one can recover the coefficients occurring in (1.5). We prefer to give a differ-
ent proof, which has the advantage of producing explicit systems of representa-
tives for theΛ-right cosets and formulas for the degrees.

Corollary B– If p and q are two prime numbers then

Tdiag(1,p,p) ◦Tdiag(1,1,q) = Tdiag(1,p,pq) +δp=q (p2 +p +1)Id (1.6)

and

Tdiag(1,p,p2)◦Tdiag(1,q,q2) = Tdiag(1,pq,p2q2)+δp=q (p+1)
(
Tdiag(1,p3,p3) +Tdiag(1,1,p3)

)
+δp=q (p +1)(2p −1)Tdiag(1,p,p2) +δp=q p(p +1)(p2 +p +1)I d . (1.7)

When p 6= q , the previous corollary immediately follows from (2.6) and (2.7).
When p = q , it is a consequence of the previous theorem and of (2.6).

Remark 1.3– As observed by L. Silberman and A. Venkatesh in [SA] and used by
V. Blomer and P. Maga in [BMb] and in [BMa], the precise formulas for the Hall
polynomials occurring in (1.6) and in (1.7) are not really needed for the purpose
of the amplification method, since the Hall polynomials are easily well approxi-
mated for p and q large by the much easier Schur polynomials. Nevertheless, the
precise list of the Hecke operators relevant for the amplification method, namely
occurring in (1.6) and in (1.7), seems to be crucial in order to obtain the best
possible explicit result. For instance, G. Harcos and N. Templier used such a list
in order to prove the best known subconvexity exponent for the sup-norm of
GL(2) automorphic forms in the level aspect in [HT13].
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1.4. Organization of the paper. The general background on GL(3) Maaß cusp
forms and on the GL(3) Hecke algebra is given in Section 2. The linearizations
involved in Theorem A are detailed in Section 3. The proof requires decomposi-
tions ofΛ-double cosets intoΛ-left and right cosets and computations of degrees
as done in Appendix A.

Notations–Λ stands for the group GL3(Z) of 3×3 invertible matrices with integer
coefficients. If g is a 3× 3 matrix with real coefficients then t g stands for its
transpose. For g ∈GL3(Q) we let Tg denote the Hecke operator associated to g (see
§2). If a, b and c are three rational numbers then

• diag(a,b,c) denotes the diagonal 3×3 matrix with a, b and c as diagonal
coefficients;

• La,b,c (respectively Ra,b,c ) stands for a system of representatives for the de-
composition of theΛ-double cosetΛdiag(a,b,c)Λ intoΛ-left (respectively
right) cosets.
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2. BACKGROUND ON THE GL(3) HECKE ALGEBRA

Convenient references for this section include [AZ95], [Gol06], [New72] and
[Shi94].

Let f be a GL(3) Maaß cusp form of full level. Such f admits a Fourier expan-
sion

f (g ) = ∑
γ∈U2(Z)\SL2(Z)

∑
m1Ê1

m2∈Z\{0}

a f (m1,m2)

m1|m2|
WJa

m1|m2|
m1

1

(
γ

1

)
g ,ν f ,ψ1,

m2
|m2 |


for g ∈GL3(R) (see [Gol06, Equation (6.2.1)]). Here U2(Z) stands for the Z-points
of the group of upper-triangular unipotent 2×2 matrices. ν f ∈ C2 is the type
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of f , whose components are complex numbers characterized by the property
that, for every invariant differential operator D in the center of the universal
enveloping algebra of GL3(R), the cusp form f is an eigenfunction of D with the
same eigenvalue as the power function Iν f , which is defined in [Gol06, Equation
(5.1.1)]. ψ1,±1 is the character of the group of upper-triangular unipotent real
3×3 matrices defined by

ψ1,±1

1 u1,2 u1,3

1 u2,3

1

= e2iπ(u2,3±u1,2).

WJa(∗,ν f ,ψ1,±1) stands for the GL(3) Jacquet Whittaker function of type ν f

and character ψ1,±1 defined in [Gol06, Equation 6.1.2]. The complex number
a f (m1,m2) is the (m1,m2)-th Fourier coefficient of f for m1 a positive integer and
m2 a non-vanishing integer.

For g ∈GL3(Q), the Hecke operator Tg is defined by

Tg ( f )(h) = ∑
δ∈Λ\ΛgΛ

f (δh)

for h ∈GL3(R) (see [AZ95, Chapter 3, Sections 1.1 and 1.5]). The degree of g or Tg

defined by

deg(g ) = deg(Tg ) = card
(
Λ\ΛgΛ

)
is scaling invariant, in the sense that

deg(r g ) = deg(g ) (2.1)

for r ∈Q×. The adjoint of Tg for the Petersson inner product is Tg−1 . The algebra
of Hecke operators T is the ring of endomorphisms generated by all the Tg ’s
with g ∈GL3(Q), a commutative algebra of normal endomorphisms (see [Gol06,
Theorem 6.4.6]), which contains the m-th normalized Hecke operator

Tm = 1

m

∑
g=diag(y1,y2,y3)

y1|y2|y3
y1 y2 y3=m

Tg (2.2)

for all positive integers m. A Hecke-Maaß cusp form f of full level is a Maaß cusp
form of full level, which is an eigenfunction of T. In particular, it satisfies

Tm( f ) = a f (m,1) f and T ∗
m( f ) = a f (1,m) f = a f (m,1) f (2.3)

according to [Gol06, Theorem 6.4.11].
The algebra T is isomorphic to the absolute Hecke algebra, the free Z-module

generated by the double cosets ΛgΛ where g ranges over Λ \ GL3(Q)/Λ and
endowed with the following multiplication law. If g1 and g2 belong to GL3(Q) and

Λg1Λ=
deg(g1)⋃

i=1
Λαi andΛg2Λ=

deg(g2)⋃
j=1

Λβ j

then

Λg1Λ∗Λg2Λ= ∑
ΛhΛ⊂Λg1Λg2Λ

m(g1, g2;h)ΛhΛ (2.4)
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where h ∈GL3(Q) ranges over a system of representatives of theΛ-double cosets
contained in the setΛg1Λg2Λ and

m(g1, g2;h) = card
({

(i , j ) ∈ {1, . . . ,deg(g1)}× {1, . . . ,deg(g2)},αiβ j ∈Λh
})

, (2.5)

= 1

deg(h)
card

({
(i , j ) ∈ {1, . . . ,deg(g1)}× {1, . . . ,deg(g2)},αiβ j ∈ΛhΛ

})
,

= deg(g2)

deg(h)
card

({
i ∈ {1, . . . ,deg(g1)},αi g2 ∈ΛhΛ

})
.

Confer [AZ95, Lemma 1.5 Page 96]. In particular,

Λdiag(r,r,r )Λ∗ΛgΛ=Λr gΛ (2.6)

for g ∈GL3(Q) and r ∈Q× ( [AZ95, Lemma 2.4 Page 107]). In addition, for p and q
two distinct prime numbers,

Λdiag(1, pα1 , pα2 )Λ∗Λdiag(1, qβ1 , qβ2 )Λ=Λdiag(1, pα1 qβ1 , pα2 qβ2 )Λ (2.7)

where α1,α2,β1,β2 are non-negative integers by [AZ95, Proposition 2.5 Page 107].
Every double cosetΛgΛwith g in GL3(Q) contains a unique representative of

the form

r diag(1, s1(g ), s2(g )) (2.8)

where r ∈ Q∗ and s1(g ), s2(g ) are some positive integers satisfying s1(g ) | s2(g )
(see [AZ95, Lemma 2.2]).

Finally, let g = [gi , j ]1Éi , jÉ3 be a 3×3 matrix with integer coefficients. Its deter-
minantal divisors are the non-negative integers given by

d1(g ) = gcd({gi , j ,1 É i , j É 3}),

d2(g ) = gcd({determinants of 2×2 submatrices of g }),

d3(g ) = |det(g )|.
and its determinantal vector is d (g ) = (

d1(g ),d2(g ),d3(g )
)
. The determinan-

tal divisors turn out to be useful since if h is another 3×3 matrix with integer
coefficients then h belongs to ΛgΛ if and only if dk (h) = dk (g ) for 1 É k É 3
(see [New72]).

3. PROOF OF THE LINEARIZATIONS GIVEN IN THEOREM A

3.1. Linearization ofΛdiag(1,1, p)Λ∗Λdiag(1, p, p)Λ. This section contains the
proof of (1.4).

By (2.4), the product of these double cosets equals

∑
ΛhΛ⊂Λdiag(1,1,p)Λdiag(1,p,p)Λ

m

1
1

p

 ,

1
p

p

 ;h

ΛhΛ

where h ∈GL3(Q) ranges over a system of representatives of theΛ-double cosets
contained in the set

Λ

1
1

p

Λ
1

p
p

Λ.
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Let us determine the matrices h occuring in this sum. Let h in GL3(Q) be such
thatΛhΛ is included in the previous set. By (2.8), one has uniquely

ΛhΛ=Λελ1

λ2
diag(1, s1, s2)Λ

with ε=±1, λ1,λ2 > 0, (λ1,λ2) = 1, s1, s2 > 0, s1 | s2. The inclusion is equivalent to

Λελ1diag(1, s1, s2)Λ=Λλ2δ1δ2Λ

for some matrices δ1 ∈ R1,1,p and δ2 ∈ L1,p,p by (A.3) and (A.4). So, both matrices
have the same determinantal divisors ie

ελ1 = λ2d1(δ1δ2),

λ2
1s1 = λ2

2d2(δ1δ2),

ελ3
1s1s2 = λ3

2d3(δ1δ2) =λ3
2p3.

One can check that the set{
δ1δ2, (δ1,δ2) ∈ R1,1,p ×L1,p,p

}
is made exactly of the matricesp

p
p

  d (δ1δ2) = (p, p2, p3),

p d1 +D1

p
p

  d (δ1δ2) = ((p,d1 +D1), p(p,d1 +D1), p3),

p e1 +E1

p f1 +F1

p

  d (δ1δ2) = ((p,e1 +E1, f1 +F1), p(p,e1 +E1, f1 +F1), p3)

and p2 pE1

p F1

1

  d (δ1δ2) = (1, p, p3),

p2 pD1

1
p

  d (δ1δ2) = (1, p, p3),

1 pd1

p2

p

  d (δ1δ2) = (1, p, p3),

p pd1 d1F1 +E1

p2 pF1

1

  d (δ1δ2) = (1, p, p3),

1 pe1

p p f1

p2

  d (δ1δ2) = (1, p, p3),

p d2 pe1
1 p f1

p2

  d (δ1δ2) = (1, p, p3)
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with 0 É d1,e1, f1,D1,E1,F1 < p. As a consequence, only two cases can occur
since

d (δ1δ2) ∈ {(1, p, p3), (p, p2, p3)}.

First case: d (δ1δ2) = (1, p, p3).

ελ1 = λ2,

λ2
1s1 = λ2

2p,

ελ3
1s1s2 = λ3

2p3.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The
second equation gives s1 = p. The third equation gives s2 = p2. Thus,

ΛhΛ=Λdiag(1, p, p2)Λ.

Second case: d (δ1δ2) = (p, p2, p3).

ελ1 = λ2p,

λ2
1s1 = λ2

2p2,

ελ3
1s1s2 = λ3

2p3.

The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2.
The second equation gives s1 = 1. The third equation gives s2 = 1. Thus,

ΛhΛ=Λdiag(p, p, p)Λ.

As a consequence,

Λdiag(1,1, p)Λ∗Λdiag(1, p, p)Λ= m1Λ

1
p

p2

Λ+m2Λ

p
p

p

Λ
where

m1 := m

1
1

p

 ,

1
p

p

 ;

1
p

p2

 ,

m2 := m

1
1

p

 ,

1
p

p

 ;

p
p

p

 .

Let us compute the value of m2 first. By (2.5), (A.5) and (2.1),

m2 = (p2 +p +1)

∣∣∣∣∣∣
δ1 ∈ R1,1,p ,δ1

1
p

p

 ∈Λ
p

p
p

Λ


∣∣∣∣∣∣ .

Let us compute the remaining cardinality. One can check that the setδ1

1
p

p

 ,δ1 ∈ R1,1,p


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is exactly made of the matricesp
p

p

  (d1,d2,d3) = (p, p2, p3),

1 pd1

p2

p

  (d1,d2,d3) = (1, p, p3),

1 0 pe1

p p f1

p2

  (d1,d2,d3) = (1, p, p3)

with 0 É d1,e1, f1 < p. The fact that the determinantal vector of diag(p, p, p) is
diag(p, p2, p3) implies thatδ1 ∈ R1,1,p ,δ1

1
p

p

 ∈Λ
p

p
p

Λ
=


p

p
p


and is of cardinality 1 such that m2 = p2 +p +1.

Now, let us compute the value of m1. By (2.5), (A.5) and (A.7),

m1 = 1

p(p +1)

∣∣∣∣∣∣
δ1 ∈ R1,1,p ,δ1

1
p

p

 ∈Λ
1

p
p2

Λ


∣∣∣∣∣∣ .

Let us compute the remaining cardinality. Both the analysis done for m2 and the
fact that the determinantal vector of diag(1, p, p2) is (1, p, p2) imply thatδ1 ∈ R1,1,p ,δ1

1
p

p

 ∈Λ
1

p
p2

Λ
= ⋃

0Éd1<p


1 d1

p
1


⋃

0Ée1, f1<p


1 e1

1 f1

p


which is of cardinality p(p +1) such that m1 = 1.

3.2. Linearization ofΛdiag(1, p, p2)Λ∗Λdiag(1, p, p2)Λ. This section contains
the proof of (1.5).

By (2.4), the product of these double cosets equals

∑
ΛhΛ⊂Λdiag(1,p,p2)Λdiag(1,p,p2)Λ

m

1
p

p2

 ,

1
p

p2

 ;h

ΛhΛ

where h ∈GL3(Q) ranges over a system of representatives of theΛ-double cosets
contained in the set

Λ

1
p

p2

Λ
1

p
p2

Λ.
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Let us determine the relevant matrices h occuring in this sum. Let h in GL3(Q)
be such thatΛhΛ is included in the previous set. By (2.8), one has uniquely

ΛhΛ=Λελ1

λ2
diag(1, s1, s2)Λ

with ε=±1, λ1,λ2 > 0, (λ1,λ2) = 1, s1, s2 > 0, s1 | s2. The inclusion is equivalent to

Λελ1diag(1, s1, s2)Λ=Λλ2δ1δ2Λ

for some matrices δ1 ∈ R1,p,p2 and δ2 ∈ L1,p,p2 by (A.6). So, both matrices have
the same determinantal divisors ie

ελ1 = λ2d1(δ1δ2),

λ2
1s1 = λ2

2d2(δ1δ2),

ελ3
1s1s2 = λ3

2d3(δ1δ2) =λ3
2p6.

By (A.6), a straightforward but tedious computation ensures that the set{
d (δ1δ2), (δ1,δ2) ∈ R1,p,p2 ×L1,p,p2

}
is a subset of

{(1, p2, p6), (1, p3, p6), (p, p2, p6), (p, p3, p6), (p2, p4, p6)}.

Case 1: (d1,d2,d3) = (1, p2, p6).

ελ1 = λ2,

λ2
1s1 = λ2

2p2,

ελ3
1s1s2 = λ3

2p6.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The
second equation gives s1 = p2. The third equation gives s2 = p4. Thus,

ΛhΛ=Λdiag(1, p2, p4)Λ.

Case 2: (d1,d2,d3) = (1, p3, p6).

ελ1 = λ2,

λ2
1s1 = λ2

2p3,

ελ3
1s1s2 = λ3

2p6.

The first equation gives ε = λ1 = λ2 = 1 by the coprimality of λ1 and λ2. The
second equation gives s1 = p3. The third equation gives s2 = p3. Thus,

ΛhΛ=Λdiag(1, p3, p3)Λ.

Case 3: (d1,d2,d3) = (p, p2, p6).

ελ1 = λ2p,

λ2
1s1 = λ2

2p2,

ελ3
1s1s2 = λ3

2p6.

The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2.
The second equation gives s1 = 1. The third equation gives s2 = p3. Thus,

ΛhΛ=Λdiag(p, p, p4)Λ.
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Case 4: (d1,d2,d3) = (p, p3, p6).

ελ1 = λ2p,

λ2
1s1 = λ2

2p3,

ελ3
1s1s2 = λ3

2p6.

The first equation gives ε = λ2 = 1 and λ1 = p by the coprimality of λ1 and λ2.
The second equation gives s1 = p. The third equation gives s2 = p2. Thus,

ΛhΛ=Λdiag(p, p2, p3)Λ.

Case 5: (d1,d2,d3) = (p2, p4, p6).

ελ1 = λ2p2,

λ2
1s1 = λ2

2p4,

ελ3
1s1s2 = λ3

2p6.

The first equation gives ε= λ2 = 1 and λ1 = p2 by the coprimality of λ1 and λ2.
The second equation gives s1 = 1. The third equation gives s2 = 1. Thus,

ΛhΛ=Λdiag(p2, p2, p2)Λ.

As a consequence,

Λdiag(1, p, p2)Λ∗Λdiag(1, p, p2)Λ= m1Λ

1
p2

p4

Λ+m2Λ

1
p3

p3

Λ
+m3Λ

p
p

p4

Λ+m4Λ

p
p2

p3

Λ+m5Λ

p2

p2

p2

Λ
where

m1 := m

1
p

p2

 ,

1
p

p2

 ;

1
p2

p4

 ,

m2 := m

1
p

p2

 ,

1
p

p2

 ;

1
p3

p3

 ,

m3 := m

1
p

p2

 ,

1
p

p2

 ;

p
p

p4

 ,

m4 := m

1
p

p2

 ,

1
p

p2

 ;

p
p2

p3

 ,

m5 := m

1
p

p2

 ,

1
p

p2

 ;

p2

p2

p2

 .

Let us compute the value of m1. By (2.5), (A.7) and (A.8),

m1 = 1

p4

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 ,δ1

1
p

p2

 ∈Λ
1

p2

p4

Λ


∣∣∣∣∣∣ .
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Let us compute the remaining cardinality. One can check that the setδ1

1
p

p2

 ,δ1 ∈ R1,p,p2


is exactly made of the matrices p2

p p2 f1

p3

  (d1,d2,d3) = (p, p3, p6),

p pd2

p3

p2

 (p | d2)  (d1,d2,d3) = (p, p3, p6),

p pd1 p2e1

p2 p2 f1

p3

 (d1 f1 = 0,(d1,e1, f1) 6= (0,0,0))  (d1,d2,d3) = (p, p3, p6)

and 1 pd1 p2e2

p2 p2 f2

p4

 (p | f2)  (d1,d2,d3) = (1, p2, p6)

and 1 pd2 p2e1

p3

p3

  (d1,d2,d3) = (1, p3, p6)

and p p2e2

p p2 f2

p4

 (p | e2)  (d1,d2,d3) = (p, p2, p6)

and p2

p2

p2

  (d1,d2,d3) = (p2, p4, p6)

where 0 É d1,e1, f1 < p and 0 É d2,e2, f2 < p2. The fact that the determinantal
vector of diag(1, p2, p4) is (1, p2, p6) implies that m1 = 1.

Let us compute the value of m2. By (2.5), (A.7) and (A.9),

m2 = p +1

p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 ,δ1

1
p

p2

 ∈Λ
1

p3

p3

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of
diag(1, p3, p3) is (1, p3, p6) imply that m2 = p +1.

Let us compute the value of m3. By (2.5), (A.7), (2.1) and (A.10),

m3 = p +1

p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 ,δ1

1
p

p2

 ∈Λ
p

p
p4

Λ


∣∣∣∣∣∣ .



THE AMPLIFICATION METHOD IN THE GL(3) HECKE ALGEBRA 15

Both the analysis done for m1 and the fact that the determinantal vector of
diag(p, p, p4) is (p, p2, p6) imply that m3 = p +1.

Let us compute the value of m4. By (2.5), (A.7), (2.1) and (A.7),

m4 = p +1

p3

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 ,δ1

1
p

p2

 ∈Λ
p

p2

p3

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of
diag(p, p2, p3) is (p, p3, p6) imply that m4 = (p +1)(2p −1).

Let us compute the value of m5. By (2.5), (A.7) and (2.1),

m5 = p(p +1)(p2 +p +1)

∣∣∣∣∣∣
δ1 ∈ R1,p,p2 ,δ1

1
p

p2

 ∈Λ
p2

p2

p2

Λ


∣∣∣∣∣∣ .

Both the analysis done for m1 and the fact that the determinantal vector of
diag(p2, p2, p2) is (p2, p4, p6) imply that m5 = p(p +1)(p2 +p +1).

APPENDIX A. DECOMPOSITION OF Λ-DOUBLE COSETS INTO Λ-COSETS

By [AZ95, Lemma 1.2 Page 94 and Lemma 2.1 Page 105], we know that every
Λ-double coset ΛgΛ with g in GL3(Q) with integer coefficients is both a finite
union of Λ-left cosets and Λ-right cosets. In addition, every Λ-right coset Λg
contains a unique upper-triangular column reduced representative, namely

Λg =Λ
a d e

b f
c


where 0 É d < b and 0 É e, f < c by [AZ95, Lemma 2.7 Page 109].

As a consequence, everyΛ-left coset gΛ contains a unique upper-triangular
row reduced representative, namely

gΛ=
a d e

b f
c

Λ
where 0 É d ,e < a and 0 É f < b. More explicitely, if UW t gW = H is the upper-
triangular column reduced representative of theΛ-right cosetΛW t gW with W
the anti-diagonal matrix with 1’s on the anti-diagonal then gW tUW =W t HW is
the upper-triangular row reduced representative of theΛ-left coset gΛ.

The previous fact also entails that

ΛgΛ= ⋃
δ∈Rg

Λδ⇒ΛgΛ= ⋃
δ∈W t Rg W

δΛ (A.1)

since

ΛgΛ=WΛgΛ=W t (
ΛgΛ

)=W
⋃
δ∈Rg

tδΛ= ⋃
δ∈Rg

W tδWΛ.

Let us finish with a useful elementary practical remark for the computations
done in the following sections of the appendix. If H is an upper-triangular column
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reduced matrix in a Λ-double coset Λdiag(pα1 , pα2 , pα3 )Λ where p is a prime
number and α1, α2 and α3 are non-negative integers then

H =
pδ1 ∗ ∗

pδ2 ∗
pδ3

 ,
3∑

j=1
(α j −δ j ) = 0,∀ j ∈ {1,2,3},0 É δ j É max

1ÉkÉ3
αk . (A.2)

The fact that the diagonal cofficients of H are powers of p comes from the deter-
minant equation. The condition on the exponents of these diagonal coefficients
follows from the fact that pmax{αk ,1ÉkÉ3}H−1 has integer coefficients.

A.1. Decomposition and degree ofΛdiag(1,1, p)Λ.

Proposition A.1– One has

Λdiag(1,1, p)Λ= ⋃
δ∈R1,1,p

Λδ= ⋃
δ∈L1,1,p

δΛ (A.3)

where

R1,1,p = {
diag(p,1,1)

} ⋃
0Éd1<p


1 d1

p
1

 ⋃
0Ée1, f1<p


1 0 e1

1 f1

p


and

L1,1,p = {
diag(1,1, p)

} ⋃
0É f1<p


1

p f1

1

 ⋃
0Éd1,e1<p


p d1 e1

1
1

 .

In particular,

deg
(
diag(1,1, p)

)= p2 +p +1.

Proof of Proposition A.1. The decomposition intoΛ-right cosets implies the de-
composition intoΛ-left cosets by (A.1). The possible upper-triangular column
reduced matrices δ that can occur in the decomposition intoΛ-right cosets are1 0 e1

1 f1

p

  d (δ) = (1,1, p),

1 d1 0
p 0

1

  d (δ) = (1,1, p),

p 0 0
1 0

1

  d (δ) = (1,1, p)

where 0 É d1,e1, f1 < p. The fact that the determinantal vector of diag(1,1, p)
is (1,1, p) implies the decomposition into Λ-left cosets given in (A.3) and the
computation of the degree too. �
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A.2. Decomposition and degree ofΛdiag(1, p, p)Λ.

Proposition A.2– One has

Λdiag(1, p, p)Λ=∪δ∈L1,p,pδΛ (A.4)

where

L1,p,p = {
diag(1, p, p)

} ⋃
0Ée1, f1<p


p e1

p f1

1

 ⋃
0Éd1<p


p d1

1
p


In particular,

deg
(
diag(1, p, p)

)= p2 +p +1. (A.5)

Proof of Proposition A.2. By (A.2), the possible upper-triangular row reduced ma-
trices δ that can occur in the decomposition intoΛ-left cosets arep d1 e1

p f1

1

  d (δ) = (1, (p,d1,d1 f1), p2),

p d1 e1

1
p

  d (δ) = (1, (p,e1), p2),

1
p f1

p

  d (δ) = (1, (p, f1), p2)

where 0 É d1,e1, f1 < p. The fact that the determinantal vector of diag(1, p, p)
is (1, p, p2) implies the decomposition into Λ-left cosets given in (A.4) and the
computation of the degree too. �

A.3. Decomposition and degree ofΛdiag(1, p, p2)Λ.

Proposition A.3– One has

Λdiag(1, p, p2)Λ=∪δ∈R1,p,p2Λδ=∪δ∈L1,p,p2δΛ (A.6)

where

R1,p,p2 = ⋃
0Éd1<p

0Ée2, f2<p2

p| f2


1 d1 e2

p f2

p2

 ⋃
0Ée1<p

0Éd2<p2


1 d2 e1

p2

p


⋃

0Ée2, f2<p2

p|e2


p e2

1 f2

p2

 ⋃
0É f1<p


p2

1 f1

p

 ⋃
0Éd2<p2

p|d2


p d2

p2

1


⋃

0Éd1,e1, f1<p
d1 f1=0

(d1,e1, f1)6=(0,0,0)


p d1 e1

p f1

p

⋃
p2

p
1


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and

L1,p,p2 = ⋃
0É f1<p

0Éd2,e2<p2

p|d2


p2 d2 e2

p f1

1

 ⋃
0Ée1<p
0É f2<p2


p e1

p2 f2

1


⋃

0Éd2,e2<p2

p|e2


p2 d2 e2

1
p

 ⋃
0Éd1<p


p d1

1
p2

 ⋃
0É f2<p2

p| f2


1

p2 f2

p


⋃

0Éd1,e1, f1<p
d1 f1=0

(d1,e1, f1) 6=(0,0,0)


p d1 e1

p f1

p

⋃
p2

p
1

 .

In particular,
deg

(
diag(1, p, p2)

)= p(p +1)(1+p +p2). (A.7)

Proof of Proposition A.3. The decomposition intoΛ-right cosets implies the de-
composition into Λ-left cosets by (A.1). By (A.2), the possible upper-triangular
column reduced matrices δ that can occur in the decomposition into Λ-right
cosets are

Type 1:

p d1 e1

p f1

p

  d (δ) = ((p,d1,e1, f1), (p2, pd1, p f1,d1 f1 −pe1), p3)

and

Type 2:

1 d1 e2

p f2

p2

  d (δ) = (1, (p, f2), p3),

Type 3:

1 d2 e1

p2 f1

p

  d (δ) = (1, (p, f1), p3),

Type 4:

p e2

1 f2

p2

  d (δ) = (1, (p,e2), p3),

Type 5:

p2 e1

1 f1

p

  d (δ) = (1, (p,e1), p3),

Type 6:

p d2

p2

1

  d (δ) = (1, (p,d2), p3),

Type 7:

p2 d1

p
1

  d (δ) = (1, (p,d1), p3)

where 0 É d1,e1, f1 < p and 0 É d2,e2, f2 < p2. Let us count the matrices among
the previous ones, whose determinantal vector is the same as the one of diag(1, p, p2),
namely (1, p, p3).
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Let us consider the matrices of type 1. The condition on d2(δ) implies d1 6= 0.
The condition on d1(δ) implies that (d1,e1, f1) 6= (0,0,0). The condition on d2(δ)
implies p | d1 f1 such that p | d1 or p | f1, namely d1 = 0 or f1 = 0. There are
(p −1)(2p +1) such matrices of type 1.

Let us consider the matrices of type 2. The condition on d2(δ) implies p | f2.
There are p4 such matrices of type 2.

Let us consider the matrices of type 3. The condition on d2(δ) implies f1 = 0.
There are p3 such matrices of type 3.

Let us consider the matrices of type 4. The condition on d2(δ) implies p | e2.
There are p3 such matrices of type 4.

Let us consider the matrices of type 5. The condition on d2(δ) implies e1 = 0.
There are p such matrices of type 5.

Let us consider the matrices of type 6. The condition on d2(δ) implies p | d2.
There are p such matrices of type 6.

Let us consider the matrices of type 7. The condition on d2(δ) implies d1 = 0.
There is 1 such matrix of type 7.

One can recover the decomposition in Λ-right cosets given in (A.6) and the
value of the degree given in (A.7) by summing all the contributions in the previous
paragraphs. �

A.4. Degree ofΛdiag(1, p2, p4)Λ.

Proposition A.4– One has

deg
(
diag(1, p2, p4)

)= p5(p +1)(p2 +p +1). (A.8)

Proof of Proposition A.4. By (A.2), the possible upper-triangular column reduced
matrices δ that can occur in the decomposition intoΛ-right cosets are

Type 1:

p4 d2

p2

1

  d (δ) = (1, (p2,d2), p6),

Type 2:

p4 e2

1 f2

p2

  d (δ) = (1, (p2,e2), p6),

Type 3:

p2 d4

p4

1

  d (δ) = (1, (p2,d4), p6),

Type 4:

p2 e4

1 f4

p4

  d (δ) = (1, (p2,e4), p6),

Type 5:

1 d4 e2

p4 f2

p2

  d (δ) = (1, (p2, f2,d4 f2), p6),

Type 6:

1 d2 e4

p2 f4

p4

  d (δ) = (1, (p2, f4,d2 f4), p6)
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and

Type 7:

p4 d1 e1

p f1

p

  d (δ) = ((p,d1,e1, f1), (p2, pd1,d1 f1 −pe1), p6),

Type 8:

p d4 e1

p4 f1

p

  d (δ) = ((p,d4,e1, f1), (p2, p f1, pd4,d4 f1), p6),

Type 9:

p d1 e4

p f4

p4

  d (δ) = ((p,d1,e4, f4), (p2, p f4,d1 f4 −pe4), p6)

and

Type 10:

p3 d3

p3

1

  d (δ) = (1, (p3,d3), p6),

Type 11:

p3 e3

1 f3

p3

  d (δ) = (1, (p3,e3), p6),

Type 12:

1 d3 e3

p3 f3

p3

  d (δ) = (1, (p3, f3,d3 f3), p6)

and

Type 13:

p3 d2 e1

p2 f1

p

  d (δ) = ((p,d2,e1, f1), (p3, pd2,d2 f1 −p2e1), p6)

Type 14:

p3 d1 e2

p f2

p2

  d (δ) = ((p,d1,e2, f2), (p3, p2d1,d1 f2 −pe2), p6)

Type 15:

p2 d3 e1

p3 f1

p

  d (δ) = ((p,d3,e1, f1), (p3, pd3, p2 f1,d3 f1), p6)

Type 16:

p2 d1 e3

p f3

p3

  d (δ) = ((p,d1,e3, f3), (p3,d1 f3 −pe3, p2 f3), p6)

and

Type 17:

p d3 e2

p3 f2

p2

  d (δ) = ((p,d3,e2, f2), (p3, p f2, p2d3,d3 f2), p6)

Type 18:

p d2 e3

p2 f3

p3

  d (δ) = ((p,d2,e3, f3), (p3, p f3,d2 f3 −p2e3), p6)

and

Type 19:

p2 d2 e2

p2 f2

p2

  d (δ) = ((p2,d2,e2, f2), (p4, p2d2, p2 f2,d2 f2 −p2e2), p6)
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where 0 É d j ,e j , f j < p j for j = 1,2,3,4. Let us count the matrices among the pre-
vious ones, whose determinantal vector is the same as the one of diag(1, p2, p4),
namely (1, p2, p6).

Let us consider the matrices of type 1. The condition on d2(δ) implies d2 = 0.
There is 1 relevant matrix of type 1.

Let us consider the matrices of type 2. The condition on d2(δ) implies e2 = 0.
There are p2 relevant matrices of type 2.

Let us consider the matrices of type 3. The condition on d2(δ) implies p2 | d4.
There are p2 relevant matrices of type 3.

Let us consider the matrices of type 4. The condition on d2(δ) implies p2 | e4.
There are p6 relevant matrices of type 4.

Let us consider the matrices of type 5. The condition on d2(δ) implies e2 = 0 .
There are p6 relevant matrices of type 5.

Let us consider the matrices of type 6. The condition on d2(δ) implies p2 | f4 .
There are p8 relevant matrices of type 6.

Let us consider the matrices of type 7. The condition on d2(δ) implies d1 =
e1 = 0 and the condition on d1(δ) implies f1 6= 0. There are p−1 relevant matrices
of type 7.

Let us consider the matrices of type 8. The condition on d2(δ) implies f1 = 0
and p | d4. The condition on d1(δ) implies e1 6= 0. There are p3(p −1) relevant
matrices of type 8.

Let us consider the matrices of type 9. The condition on d2(δ) implies p | f4

and p | d1 f4/p−e4. One has d1 6= 0 since otherwise d1(δ) = 1 = (p,e4) and d2(δ) =
p(p,e4) = p 6= p2. Thus, d1 is invertible modulo p and f4/p ≡ e4d1 (mod p) such
that f4/p can take p2 values. There are (p −1)p6 relevant matrices of type 9.

Let us consider the matrices of type 10. The condition on d2(δ) implies p2 || d3.
There are p −1 relevant matrices of type 10.

Let us consider the matrices of type 11. The condition on d2(δ) implies p2 || e3.
There are (p −1)p3 relevant matrices of type 11.

Let us consider the matrices of type 12. The condition on d2(δ) implies p2 || f3.
There are (p −1)p6 relevant matrices of type 12.

Let us consider the matrices of type 13. Note that (e1, f1) 6= (0,0) since oth-
erwise d1(δ) = 1 = (p,d2), which implies that d2(δ) = (pd2, p3) = p 6= p2. As a
consequence, d1(δ) = 1 = (p,d2,e1, f1). The fact that d2(δ) = p2 implies that p | d2

and p | f1d2/p, namely f1 = 0 or d2 = 0. If d2 = 0 then d2(δ) = p2 = (p3, p2e1)
such that e1 6= 0. There are p(p −1) such matrices. If d2 6= 0 then f1 = 0, d2(δ) =
p2(p,d2/p,e1) = p2 since d2/p is coprime with p and d1(δ) = 1 = (p,e1) such that
e1 6= 0. There are (p −1)2 such matrices. Finally, there are (p −1)(2p −1) relevant
matrices of type 13.

Let us consider the matrices of type 14. The fact that d2(δ) = p2 implies
that p2 | d1 f2 −pe2. If d1 = 0 then p | e2 and d2(δ) = p2 = (p3, p2e2/p) if e2 6= 0.
d1(δ) = 1 = (p, f2) implies that p - f2. There are (p −1)(p2 −p) such matrices. If
d1 6= 0 then the value of f2 is fixed by f2 ≡ pe2d1 (mod p2) and d1(δ) = (p,d1) = 1.
There are p2(p − 1) such matrices. Finally, there are (p − 1)(2p2 − p) relevant
matrices of type 14.

Let us consider the matrices of type 15. The condition d2(δ) = p2 implies that
p | d3 and p | f1d3/p. If f1 = 0 then d2(δ) = p2 = p2(p,d3/p) such that p || d3. The
condition d1(δ) = 1 = (p,e1) implies that e1 6= 0. There are (p2 −p)(p −1) such
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matrices. If f1 6= 0 then p2 | d3 and d1(δ) = 1. There are p2(p −1) such matrices.
Finally, there are (p −1)(2p2 −p) relevant matrices of type 15.

Let us consider the matrices of type 16. The condition d2(δ) = p2 implies
that p2 | d1 f3 − pe3. If p | e3 then p2 | d1 f3. If p | e3 and p | d1 then d1 = 0
and the condition d1(δ) = 1 = (p, f3) implies that p - f3 and d2(δ) = p2. There
are p2(p3 − p2) such matrices. If p | e3 and p - d1 then p2 | f3 then d2(δ) =
p2(p,d1 f3/p2−e3/p) 6= p2 if and only if f3/p2 ≡ d1e3/p (mod p), which given d1

and e3/p can happen for only one value of f3/p2. There are (p −1)p2(p −1) such
matrices. If p - e3 then d1(δ) = 1 = (p,d1,e3, f3). The condition p2 | d1 f3 − pe3

implies that p2 - d1 f3 and p - d1 but p | f3. The condition d2(δ) implies that
p || d1 f3/p−e3. Given d1 and e3, there are p choices for f3/p given by f3/p ≡ d1e3

(mod p) but one has to remove the value satisfying f3/p ≡ d1e3 (mod p2). There
are (p−1)(p3−p2)(p−1) such matrices. Finally, there are p3(p−1)(2p−1) relevant
matrices of type 16.

Let us consider the matrices of type 17. The condition d2(δ) = p2 implies that
p | f2. If f2 = 0 then d2(δ) = p2 = p2(p,d3) such that p - d3, which implies d1(δ) =
1. There are (p3 − p2)p2 such matrices. If f2 6= 0 then p | d3 since p | d3 f2/p,
in which case d2(δ) = p2. The condition d1(δ) = 1 implies that p - e2. There
are p2(p2 −p)(p −1) such matrices. Finally, there are p3(p −1)(2p −1) relevant
matrices of type 17.

Let us consider the matrices of type 18. The condition d2(δ) = p2 implies that
p | f3 and p | d2 f3/p. If p2 | f3 then d2(δ) = p2 = p2(p,d2 f3/p2 − e3). One has
to remove the p2 values of e3 satisfying e3 ≡ d2 f3/p2 (mod p). In this case, one
has d1(δ) = (p,d2,e3) = 1 since if p | (d2,e3) then (p,d2 f3/p2 −e3) 6= 1. There are
p2(p3 −p2)p such matrices. If p2 - f3 then p | d2 and the conditions on d1(δ) and
d2(δ) are satisfied. There are p(p3 −p2)(p2 −p) such matrices. Finally, there are
p4(p −1)(2p −1) relevant matrices of type 18.

Let us consider the matrices of type 19. The condition on d2(δ) implies that p2 |
d2 f2. If d2 = 0 then d2(δ) = p2 = p2(p4,e2, f2) and d1(δ) = 1 = (p2,e2, f2). One has
to remove the couples (e2, f2) satisfying p | e2 and p | f2, namely p2 couples. There
are p4 − p2 such matrices. If d2 6= 0 and f2 = 0 then d2(δ) = p2 = p2(p2,d2,e2)
and d1(δ) = 1 = (p2,d2,e2). One has to remove the couples (d2,e2) satisfying
p | d2 and p | e2, namely (p −1)p couples. There are (p2 −1)p2 − (p −1)p such
matrices. If d2 6= 0 and f2 6= 0 then d2(δ) = p2 = p2(p2, pd2/p, p f2/p,d2 f2/p2−e2)
and d1(δ) = 1 = (p2,e2). Thus, p - e2 and p - d2 f2/p2−e2. Among the p2−p values
of e2 satisfying p - e2, one has to remove these satisfying e2 ≡ d2 f2/p2 (mod p)
of cardinal p. There are (p −1)(p2 −2p)(p −1) such matrices. Finally, there are
p(p −1)(3p2 −p +1) relevant matrices of type 19.

One can recover the value of the degree given in (A.8) by summing all the
contributions in the previous paragraphs. �

A.5. Degree ofΛdiag(1, p3, p3)Λ.

Proposition A.5– One has

deg
(
diag(1, p3, p3)

)= p4(p2 +p +1). (A.9)
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Proof of Proposition A.5. By (A.2), the possible upper-triangular column reduced
matrices δ that can occur in the decomposition intoΛ-right cosets are

Type 1:

p3 d3

p3

1

  d (δ) = (1, (p3,d3), p6),

Type 2:

p3 e3

1 f3

p3

  d (δ) = (1, (p3,e3), p6),

Type 3:

1 d3 e3

p3 f3

p3

  d (δ) = (1, (p3, f3,d3 f3), p6)

and

Type 4:

p3 d2 e1

p2 f1

p

  d (δ) = ((p,d2,e1, f1), (p3, pd2,d2 f1 −p2e1), p6),

Type 5:

p3 d1 e2

p f2

p2

  d (δ) = ((p,d1,e2, f2), (p3, p2d1,d1 f2 −pe2), p6),

Type 6:

p2 d3 e1

p3 f1

p

  d (δ) = ((p,d3,e1, f1), (p3, pd3, p2 f1,d3 f1), p6),

Type 7:

p2 d1 e3

p f3

p3

  d (δ) = ((p,d1,e3, f3), (p3, p2 f1,d1 f3 −pe3), p6),

Type 8:

p d3 e2

p3 f2

p2

  d (δ) = ((p,d3,e2, f2), (p3, p2d3, p f2,d3 f2), p6),

Type 9:

p d1 e3

p2 f3

p3

  d (δ) = ((p,d1,e4, f4), (p3, p f3,d2 f3 −p2e3), p6)

and

Type 10:

p2 d2 e2

p2 f2

p2

  d (δ) = ((p2,d2,e2, f2), (p4, p2d2, p2 f2,d2 f2 −p2e2), p6)

where 0 É d j ,e j , f j < p j for j = 1,2,3. Let us count the matrices among the pre-
vious ones, whose determinantal vector is the same as the one of diag(1, p3, p3),
namely (1, p3, p6).

Let us consider the matrices of type 1. The condition on d2(δ) implies d3 = 0.
There is 1 relevant matrix of type 1.

Let us consider the matrices of type 2. The condition on d2(δ) implies e3 = 0.
There are p3 relevant matrices of type 2.

Let us consider the matrices of type 3. The condition on d2(δ) implies f3 = 0.
There are p6 relevant matrices of type 3.
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Let us consider the matrices of type 4. The condition on d2(δ) implies d2 = 0
and e1 = 0. Then, d1(δ) = 1 = (p, f1) such that f1 6= 0. There are p −1 relevant
matrices of type 4.

Let us consider the matrices of type 5. The condition on d2(δ) implies d1 = 0
and e2 = 0. Then, d1(δ) = 1 = (p, f2) such that p - f2. There are p2 −p relevant
matrices of type 5.

Let us consider the matrices of type 6. The condition on d2(δ) implies f1 = 0
and p2 | d3. Then, d1(δ) = 1 = (p,e1) such that e1 6= 0. There are p(p −1) relevant
matrices of type 6.

Let us consider the matrices of type 7. The condition on d2(δ) implies p | f3

and p | d1 f3/p − e3. One has d1 6= 0 since otherwise p2 | e2 by the condition on
d2(δ) such that d1(δ) = p 6= 1. Thus, d1 is invertible modulo p and f3/p ≡ e3d1

(mod p2) is fixed. There are (p −1)p3 relevant matrices of type 7.
Let us consider the matrices of type 8. The condition on d2(δ) implies p | d3

and f2 = 0. Then, d1(δ) = 1 = (p,e2) such that p - e2. There are p2(p2 −p) relevant
matrices of type 8.

Let us consider the matrices of type 9. The condition on d2(δ) implies p2 | f3

and p | d2 f3/p − e3. If f3 = 0 then p | e3 and d1(δ) = 1 = (p,d2) such that p - d2.

There are (p2 −p)p2 such matrices. If f3 6= 0 then d2 ≡ e3 f3/p2 (mod p) can take
p values. Then, d1(δ) = 1 = (p,e3) such that p - e3. There are p(p3 −p2)(p −1)
such matrices. Finally, there are p4(p −1) relevant matrices of type 9.

Let us consider the matrices of type 10. The condition on d2(δ) implies p | d2,
p | f2 and p | d2 f2/p2 − e2. One has d2 6= 0 since otherwise d2(δ) = p2(p2,e2) =
p2d1(δ) = p2 6= p3. Thus, d2/p is invertible modulo p and f2 is fixed by f2/p ≡
e2d2/p (mod p). Then, d1(δ) = 1 = (p,e2) such that p - e2, p - f2/p and d2(δ) = p3.
There are (p −1)(p2 −p) relevant matrices of type 10.

One can recover the value of the degree given in (A.9) by summing all the
contributions in the previous paragraphs. �

A.6. Degree ofΛdiag(1,1, p3)Λ.

Proposition A.6– One has

deg
(
diag(1,1, p3)

)= p4(p2 +p +1). (A.10)

Proof of Proposition A.6. By (A.2), the possible upper-triangular column reduced
matricesδ that can occur in the decomposition of theΛ-double cosetΛdiag(1,1, p3)Λ
intoΛ-right cosets are

Type 1:

p3

1
1

  d (δ) = (1,1, p3),

Type 2:

1 d3

p3

1

  d (δ) = (1,1, p3),

Type 3:

1 e3

1 f3

p3

  d (δ) = (1,1, p3)
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and

Type 4:

1 d1 e2

p f2

p2

  d (δ) = (1, (p, f2), p3),

Type 5:

1 d2 e1

p2 f1

p

  d (δ) = (1, (p, f1), p3),

Type 6:

p e2

1 f2

p2

  d (δ) = (1, (p,e2), p3),

Type 7:

p2 e1

1 f1

p

  d (δ) = (1, (p,e1), p3),

Type 8:

p d2

p2

1

  d (δ) = (1, (p,d2), p3),

Type 9:

p2 d1

p
1

  d (δ) = (1, (p,d1), p3)

and

Type 10:

p d1 e1

p f1

p

  d (δ) = ((p,d1,e1, f1), (p2, pd1, p f1,d1 f1 −pe1), p3)

where 0 É d j ,e j , f j < p j for j = 1,2,3. Let us count the matrices among the
previous ones, whose determinantal vector is the same as the one of diag(1,1, p3),
namely (1,1, p3).

Let us consider the matrices of type 1. There is 1 relevant matrix of type 1.
Let us consider the matrices of type 2. There are p3 relevant matrices of type 2.
Let us consider the matrices of type 3. There are p6 relevant matrices of type 3.
Let us consider the matrices of type 4. The condition on d2(δ) implies p - f2.

There are p3(p2 −p) relevant matrices of type 4.
Let us consider the matrices of type 5. The condition on d2(δ) implies f1 6= 0.

There are p3(p −1) relevant matrices of type 5.
Let us consider the matrices of type 6. The condition on d2(δ) implies p - e2.

There are p2(p2 −p) relevant matrices of type 6.
Let us consider the matrices of type 7. The condition on d2(δ) implies e1 6= 0.

There are p(p −1) relevant matrices of type 6.
Let us consider the matrices of type 8. The condition on d2(δ) implies p - d2.

There are p2 −p relevant matrices of type 7.
Let us consider the matrices of type 9. The condition on d2(δ) implies d1 6= 0.

There are p −1 relevant matrices of type 9.
Let us consider the matrices of type 10. One has d1 6= 0 since otherwise p | d2(δ).

Thus, d1(δ) = 1. In addition, f1 6= 0 since otherwise p | d2(δ). There are p(p −1)2

relevant matrices of type 10.
One can recover the value of the degree given in (A.10) by summing all the

contributions in the previous paragraphs. �
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