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From ultrafilters on words to the expressive power of a fragment of logic ⋆

We give a method for specifying ultrafilter equations and identify their projections on the set of profinite words. Let B be the set of languages captured by first-order sentences using unary predicates for each letter, arbitrary uniform unary numerical predicates and a predicate for the length of a word. We illustrate our methods by giving profinite equations characterizing B ∩ Reg via ultrafilter equations satisfied by B. This suffices to establish the decidability of the membership problem for B ∩ Reg.

In two earlier papers, Gehrke, Grigorieff, and Pin proved the following results:

Result 1 [5] Any Boolean algebra of regular languages can be defined by a set of equations of the form u = v, where u and v are profinite words. 3

Result 2 [6] Any Boolean algebra of languages can be defined by a set of equations of the form u = v, where u and v are ultrafilters on the set of words.

These two results can be summarized by saying that Boolean algebras of languages can be defined by ultrafilter equations and by profinite equations in the regular case. Restricted instances of Result 1 have proved to be very successful long before the result was stated in full generality. It is in particular a powerful tool for characterizing classes of regular languages or for determining the expressive power of various fragments of logic, see the book of Almeida [START_REF] Almeida | Finite semigroups and universal algebra[END_REF] or the survey [START_REF] Pin | Equational descriptions of languages[END_REF] for more information.

Result 2 however is still awaiting convincing applications and even an idea of how to apply it in a concrete situation. The main problem in putting it into practice is to cope with ultrafilters, a difficulty nicely illustrated by Jan van Mill, who cooked up the nickname three headed monster for the set of ultrafilters on N. Facing this obstacle, the authors thought of using Results 1 and 2 simultaneously to obtain a new proof of the equality FO[N ] ∩ Reg = (x ω-1 y) ω+1 = (x ω-1 y) ω for x, y words of the same length [START_REF] Almeida | Residually finite congruences and quasi-regular subsets in uniform algebras[END_REF] This formula gives the profinite equations characterizing the regular languages captured by FO[N ], the first order logic using arbitrary numerical predicates and the usual letter predicates. This result follows from the work of Barrington, Straubing and Thérien [START_REF] Barrington | Non-uniform automata over groups[END_REF] and Straubing [START_REF] Straubing | Constant-depth periodic circuits[END_REF] and is strongly related to circuit complexity. Indeed its proof makes use of the equality between FO[N ] and AC 0 , the class of languages accepted by unbounded fan-in, polynomial size, constantdepth Boolean circuits [START_REF] Straubing | Finite automata, formal logic, and circuit complexity[END_REF]Theorem IX.2.1,p. 161]. See also [START_REF] Mckenzie | Extensional uniformity for Boolean circuits[END_REF] for similar results and problems. However, before attacking this problem in earnest we have to tackle the following questions: how does one get hold of an ultrafilter equation given the non-constructibility of each one of them (save the trivial ones given by pairs of words)? In particular, how does one generalize the powerful use in the regular setting of x ω ? And how does one project such ultrafilter equations to the regular fragment? In answering these questions and facing these challenges, we have chosen to consider a smaller and simpler logic fragment first. Our choice was dictated by two parameters: we wanted to be able to handle the corresponding ultrafilters and we wished to obtain a reasonably understandable list of profinite equations. Finally, we opted for FO[N 0 , N u 1 ], the restriction of FO[N ] to constant numerical predicates and to uniform unary numerical predicates. Here we obtain the following result (Theorem 4.7)

FO[N 0 , N u 1 ] ∩ Reg = (x ω-1 s)(x ω-1 t) = (x ω-1 t)(x ω-1 s), (x ω-1 s) 2 = (x ω-1 s) for x, s, t words of the same length (2) 
which shows in particular that membership in FO[N 0 , N u 1 ] is decidable for regular languages.

Although this result is of interest in itself, we claim that our proof method is more important than the result. Indeed, this case study demonstrates for the first time the workability of the ultrafilter approach.

This method can be summarized as follows. First we find a set of ultrafilter equations satisfied by FO[N 0 , N u 1 ] (Theorem 3.2). These equations do not necessarily suffice to characterize FO[N 0 , N u 1 ]4 , but projecting ultrafilters onto profinite words, we convert our ultrafilter equations to profinite equations for FO[N 0 , N u 1 ] ∩ Reg (Theorems 3.3 and 3.4). The last step consists in verifying that the set of profinite equations thus obtained suffices to characterize FO[N 0 , N u 1 ] ∩ Reg (Theorem 4.7). Now, a closer look at our proof shows that we are far from making use of the potential power of ultrafilters. For instance, difficult combinatorial results like Szemeredi's theorem on arithmetic progressions can be formulated in terms of ultrafilters. Thus it is quite possible that more sophisticated arguments are required to extend our results to larger fragments of logic, including FO[N ].

Stone duality and equations

In this paper, we denote by S c the complement of a subset S of a set E.

Stone duality

Let A be a finite alphabet. A Boolean algebra of languages is a set B of languages of A * closed under finite unions, finite intersections and complement. It is closed under quotients if, for each L ∈ B and u ∈ A * , the languages u -1 L and Lu -1 are also in B.

Recall that u -1 L = {x ∈ A * | ux ∈ L} and Lu -1 = {x ∈ A * | xu ∈ L}.
Let B be a Boolean algebra of languages of A * . An ultrafilter of B is a nonempty subset γ of B such that:

(1) the empty set does not belong to γ, (

) if K ∈ γ and K ⊆ L, then L ∈ γ (closure under extension) 5 , ( 2 
) if K, L ∈ γ, then K ∩ L ∈ γ (closure under intersection), 3 
for every L ∈ B, either L ∈ γ or L c ∈ γ (ultrafilter condition). Stone duality tells us that B has an associated compact Hausdorff space S(B), called its Stone space. This space is given by the set of ultrafilters of B with the topology generated by the basis of clopen sets of the form {γ ∈ S(B) | L ∈ γ}, where L ∈ B.

Two Stone spaces are of special interest for this paper. The first one is the Stone space of the Boolean algebra of all the subsets of a set X. It is known as the Stone-Čech compactification of X and is usually denoted by βX. An important property is that every map f : X → Y has a unique continuous extension βf : βX → βY defined by L ∈ βf (γ) if and only if f -1 (L) ∈ γ for each subset L of Y . Moreover, the map sending an element x of X to the principal ultrafilter generated by x defines an injective map from X into βX.

Our second example is the Stone space of the Boolean algebra Reg of all regular subsets of A * . It was proved by Almeida [START_REF] Almeida | Residually finite congruences and quasi-regular subsets in uniform algebras[END_REF] to be equal to the topological space underlying the free profinite monoid on A, denoted by A * . We refer to [START_REF] Almeida | Finite semigroups and universal algebra[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF][START_REF] Pin | Equational descriptions of languages[END_REF] for more information on this space, but it can be seen as the completion of A * for the profinite metric d defined as follows. A finite monoid M separates two words u and v of A * if there is a monoid morphism ϕ : v) , with the usual conventions min ∅ = +∞ and 2 -∞ = 0. Then d is a metric on A * and the completion of A * for this metric is denoted by A * . The product on A * can be extended by continuity to A * , making A * a compact topological monoid, called the free profinite monoid. Its elements are called profinite words. We will only use two types of profinite words in this paper. In a compact monoid, the smallest closed subsemigroup containing a given element x has a unique idempotent, denoted by x ω . Thus if x is a (profinite) word, so is x ω . In fact, one can show that x ω is the limit of the converging sequence x n! . Moreover, the sequence x n!-1 is also converging to an element denoted by x ω-1 . More details can be found in [START_REF] Almeida | Finite semigroups and universal algebra[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF][START_REF] Pin | Equational descriptions of languages[END_REF].

A * → M such that ϕ(u) = ϕ(v). We set r(u, v) = min |M | | M is a finite monoid that separates u and v } and d(u, v) = 2 -r(u,

Equations

Assigning to a Boolean algebra its Stone space is a contravariant functor: if B ′ is a subalgebra of B, then S(B ′ ) is a quotient of S(B). More precisely, the function which maps an ultrafilter of B onto its trace on B ′ induces a surjective continuous map π : S(B) → S(B ′ ).

This leads to the notion of equation relative to B or B-equation. Let γ 1 , γ 2 be two ultrafilters on B and let L ∈ B. We say that L satisfies the B-equation

γ 1 = γ 2 provided L ∈ γ 1 ⇐⇒ L ∈ γ 2 . (3) 
By extension, we say that B ′ satisfies the B-equation Specializing this result to B = Reg and to B = P(A * ) yields Results 1 and 2 of the introduction. Another case of interest for this paper is to take B = Reg and for B ′ a Boolean algebra closed under quotients. In this case, it is easier to reformulate Result 1 in terms of syntactic morphisms. Let L be a regular language and η : A * → M be its syntactic morphism. We say that η satisfies the profinite equation u = v or that L syntactically satisfies the profinite equation

γ 1 = γ 2 provided (3) holds for all L ∈ B ′ , or equivalently π(γ 1 ) = π(γ 2 ). Note that if B ′ is
u = v if η(u) = η(v)
, where η : A * → M is the unique continuous extension of η to A * . It is easy to see that a regular language syntactically satisfies a profinite equation if and only if all of its quotients satisfy this equation. Therefore we have Result 3. Any Boolean algebra of regular languages closed under quotients can be syntactically defined by a set of profinite equations.

When working with ultrafilter equations, the following two observations will be helpful. Let us denote by K △ L the symmetric difference of the sets K and L.

Proposition 1.2. Let γ be an ultrafilter of B and let K, L ∈ B. Then the following statements are equivalent: Let us turn to the logical description of B. Let u = a 0 . . . a n-1 be a nonempty word where a 0 , . . . , a n-1 are letters of the alphabet A. Then u may be viewed as a first-order model whose domain is the set Dom(u) = {0, . . . , |u|-1}, carrying, for each letter a ∈ A, the unary predicate a u as defined above. For each subset P of N, we also define two predicates: a 0-ary predicate which is true on u if and only if |u|-1 ∈ P and a unary uniform predicate6 defined by P (n) = P ∩{0, ..., n-1}. Its interpretation on a word u is the subset P (|u|) of {0, ..., |u| -1}.

(1) K ∈ γ if and only if L ∈ γ, (2) K △ L ∈ γ. Proposition 1.3. Let f : X → Y be a map and let L be a subset of Y . If f -1 (L) satisfies u = v for some u, v ∈ βX, then L satisfies βf (u) = βf (v).

A Boolean algebra and its logical description

We denote by FO[N 0 , N u 1 ] the set of first-order formulas built on these predicates. Note that we do not consider = as a logical symbol so that each formula is equivalent to one of quantifier depth one. The language defined by a sentence ϕ is the set 7L(ϕ) = {u ∈ A + | u satisfies ϕ}

For instance if ϕ = ∃x ax, then L(ϕ) = A * aA * . Let P be a subset of N. If P is considered as a 0-ary numerical relation, then L(P ) = L P . If P is interpreted as a unary uniform numerical relation, then the formula ∀x (ax → P x) defines the language L a,P since P is interpreted as P (|u|). This proves one direction of the following logical description of B.

Theorem 2.2. A language L of A + belongs to B if and only it can be defined by a sentence of

FO[N 0 , N u 1 ].
3 Some equations of B

For 1 i k, let π i : A * ×N k → N be the map defined by π i (u, n 1 , . . . , n k ) = n i .
The following proposition shows that the classes of equations we will define subsequently contain at least one non-trivial equation for each α ∈ βN -N.

Proposition 3.1. Let γ ∈ β(A * × N k ) with k 1.
Then, for each α ∈ βN, the following conditions are equivalent:

(1) βπ i (γ) = α for each i ∈ {1, . . . , k};

(2) {A * × P k | P ∈ α} ⊆ γ. Furthermore, these conditions hold for γ with respect to some α if and only if

(3) For each partition {P 1 , . . . , P n } of N, we have n j=1 (A * × P k j ) ∈ γ.

Proof.

(1) implies (2) since A * × P k = k i=1 π -1 i (P ) and γ is closed under finite intersections.

(2) implies (1). Let P ∈ α and i ∈ {1, . . . , k}. Then by (2), A * × P k ∈ γ and thus π -1 i (π i (A * × P k )) ∈ γ so that P = π i (A * × P k ) ∈ βπ i (γ). It follows that α ⊆ βπ i (γ) and thus α = βπ i (γ) since ultrafilters are maximal.

For the second assertion, suppose there is an α ∈ βN such that (1) and ( 2) hold and {P 1 , . . . , P n } is a partition of N. Then n j=1 P j = N implies P ℓ ∈ α for some ℓ and thus A * × P k ℓ ∈ γ by (2). Since γ is an upset, condition (3) holds. Suppose now that γ satisfies (3) and let α = {P | A * × P k ∈ γ}. Then α is an upset closed under intersection. Furthermore, for each P ⊆ N, the partition {P, P c } forces A * ×P k ∈ γ or A * ×(P c ) k ∈ γ so that α is an ultrafilter. It follows by the equivalence of ( 1) and ( 2) that βπ i (γ) = α for each i ∈ {1, . . . , k}.

We are now ready to introduce the first class of equations pertinent to the languages treated in this paper. For this purpose, given u, s, t ∈ A * , where u = u 0 • • • u n-1 with each u k ∈ A and |s| = |t| = ℓ, and i, j ∈ N, define u(s@i, t@j) = u 0 . . . u i-1 su i+ℓ . . . u j-1 tu j+ℓ . . . u n-1 if i + ℓ j and j + ℓ n u otherwise Informally, we put s at position i and t at position j.

u0 • • • ui-1 ui • • • u i+ℓ-1 u i+ℓ • • • uj-1 uj • • • u j+ℓ-1 u j+ℓ • • • un-1 ↑ ↑ s t
For each pair (s, t) of words of the same length, let f s,t : A * × N 2 → A * be the function defined by f s,t (u, i, j) = u(s@i, t@j).

Theorem 3.2. Let s, t ∈ A * with |s| = |t|. If γ ∈ β(A * × N 2 ) and βπ 1 (γ) = βπ 2 (γ), then B satisfies the equation βf s,t (γ) = βf t,s (γ). (4) 
Proof. Let a ∈ A and P ⊆ N. We show that L a,P and L P satisfy the equations (4). First we have

L a,P ∈ βf (γ) ⇐⇒ f -1 (L a,P ) ∈ γ.
Thus (4) holds for L a,P if and only if

f -1 s,t (L a,P ) ∈ γ ⇐⇒ f -1 t,s (L a,P ) ∈ γ
and by Proposition 1.2 this is equivalent to S / ∈ γ, where

S = f -1 s,t (L a,P ) △ f -1 t,s (L a,P ).
Let ℓ be the common length of s and t. If an element (u,

n 1 , n 2 ) ∈ A * × N 2 is in S then n 1 + 2ℓ n 2 + ℓ |u| since otherwise f s,t (u, n 1 , n 2 ) = f t,s (u, n 1 , n 2 ) = u. Suppose that (u, n 1 , n 2 ) ∈ f -1 s,t (L a,P ) \ f -1 t,s (L a,P ), that is, f s,t (u, n 1 , n 2 ) ∈ L a,P and f t,s (u, n 1 , n 2 ) /
∈ L a,P . Then all the positions of a in f s,t (u, n 1 , n 2 ) are in P and some position of a in f t,s (u, n 1 , n 2 ) is not in P . This latter position necessarily occurs inside one of the factors s or t of f s,t (u, n 1 , n 2 ). Consequently, there is an i ∈ {0, . . . , ℓ -1} such that one of the two following possibilities occurs:

(1) the letter in position

n 1 + i in f t,s (u, n 1 , n 2 ) is an a but n 1 + i / ∈ P , (2) the letter in position n 2 + i in f t,s (u, n 1 , n 2 ) is an a but n 2 + i / ∈ P . Now, in the first case, the letter in position n 2 + i in f s,t (u, n 1 , n 2 ) is an a. Thus n 2 + i ∈ P since f s,t (u, n 1 , n 2 ) ∈ L a,P .
Similarly, we conclude that n 1 + i ∈ P in the second case. In summary, we have either n 1 + i / ∈ P and n 2 + i ∈ P (first case) or n 1 + i ∈ P and n 2 + i / ∈ P (second case). In both cases we conclude that

(u, n 1 , n 2 ) ∈ ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) .
The case (u, n 1 , n 2 ) ∈ f -1 t,s (L a,P ) \ f -1 s,t (L a,P ) leads to the same conclusion and thus we have shown that

S ⊆ ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) . If S ∈ γ, then ℓ-1 i=0 π -1 1 (P -i) △ π -1 2 (P -i) ∈ γ and since γ is an ultrafilter, π -1 1 (P -i) △ π -1
2 (Pi) ∈ γ for some i ∈ {0, . . . , ℓ -1}. We complete the proof that S ∈ γ by showing that, for every

Q ⊆ N we have π -1 1 (Q) △ π -1 2 (Q) / ∈ γ, or equivalently, (π -1 1 (Q) △ π -1 2 (Q)) c ∈ γ. But this is a direct consequence of Proposition 3.1(3) since (π -1 1 (Q) △ π -1 2 (Q)) c = A * × (Q × Q) ∪ (Q c × Q c ) .
Thus S / ∈ γ and L a,P satisfies the equation βf s,t (γ) = βf t,s (γ). By the same argument as applied above, L P satisfies the equations (4) if and

only if f -1 s,t (L P ) △ f -1 t,s (L P ) / ∈ γ. However, since |f s,t (u, n 1 , n 2 )| = |f t,s (u, n 1 , n 2 )| and since x ∈ L P implies y ∈ L P if |y| = |x|, we have f -1 s,t (L P ) = f -1
t,s (L P ) and thus f -1 s,t (L P ) △ f -1 s,t (L P ) = ∅ and therefore it does not belong to γ.

We now consider the projection of the equations introduced above on the Stone space of the regular fragment of the Boolean algebra B.

Theorem 3.3. Let x, s, t, ∈ A * with |s| = |t| = |x|. Then B ∩ Reg satisfies the profinite equation x ω-1 sx ω-1 t = x ω-1 tx ω-1 s.
Proof. It suffices to show that there is a γ ∈ β(A * × N 2 ) with βπ 1 (γ) = βπ 2 (γ) such that the projection π Reg : βA * → A * defined by π Reg (γ) = γ ∩ Reg maps βf s,t (γ) to x ω-1 sx ω-1 t and βf t,s (γ) to x ω-1 tx ω-1 s.

Proposition 3.1 shows that in order for γ to satisfy βπ 1 (γ) = βπ 2 (γ), we just need γ to contain the down-directed filter base

n j=1 (A * × P 2 j ) | {P 1 , . . . , P n } is a partition of N .
We now show that for ℓ = |x|, adding the sets

W N = {(x m! , (k! -1)ℓ, (m! -1)ℓ) | N k < m}
for each N ∈ N to this filter base still yields a filter base. To this end we just need to show that for each partition {P 1 , . . . , P n } of N and N ∈ N, the set

W N ∩ ( n j=1 (A * × P 2 j ))
is non-empty. But since {P 1 , . . . , P n } is a partition of N, there is j ∈ {1, . . . , n} with P j ∩ {(k! -1)ℓ | k N } infinite. It readily follows that W N ∩ (A * × P 2 j ) is infinite and thus the bigger set W N ∩ ( n j=1 (A * × P 2 j )) is non-empty. Let γ ∈ β(A * ×N 2 ) be an ultrafilter containing the extended filter base. Then clearly βπ 1 (γ) = βπ 2 (γ) so that, by Theorem 3.2, the Boolean algebra B satisfies the equation βf s,t (γ) = βf t,s (γ). Now let L ∈ βf s,t (γ) ∩ Reg. Then f -1 s,t (L) ∈ γ. Also, since

W N ∈ γ for each N ∈ N, it follows that f -1 s,t (L) ∩ W 1 is infinite, or equivalently L ∩ f s,t (W 1 ) is infinite. But f s,t (W 1 ) = {x n!-1 sx (m!-n!)-1 t | 1 n < m}
and m!n! = (m!/n! -1)n! where (m!/n! -1) 1. Since any sequence in this set with n → ∞ converges to x ω-1 sx ω-1 t in A * , and since L ∩ f s,t (W 1 ) ⊆ L with the latter closed, we must have x ω-1 sx ω-1 t ∈ L. But as A * is Hausdorff,

{ L | L ∈ βf s,t (γ) and L ∈ Reg} = π Reg (βf s,t (γ)) so x ω-1 sx ω-1 t = π Reg (βf s,t (γ)). Similarly x ω-1 tx ω-1 s = π Reg (βf t,s (γ)).
A similar argument using the ultrafilter equations βf tss (γ) = βf tts (γ) with βπ 1 (γ) = βπ 2 (γ) = βπ 3 (γ) and projecting yields the profinite equation (x ω-1 t)(x ω-1 s)(x ω-1 s) = (x ω-1 t)(x ω-1 t)(x ω-1 s). Specializing to x = t we get (x ω-1 s)(x ω-1 s) = (x ω-1 s), which proves the following result.

Theorem 3.4. Let x, s ∈ A * with |s| = |x|. Then B ∩ Reg satisfies the profinite equation (x ω-1 s)(x ω-1 s) = (x ω-1 s).

Applications of the ultrafilter equations introduced in this section are not limited to the interplay with regular languages and they can also be used to prove separation results for nonregular languages. For instance, it is easy to find an ultrafilter equation of B not satisfied by the language {uav | u, v ∈ {a, b} * and |u| = |v|}.

The regular case

Consider the two profinite equations introduced in the previous sections, where x, s and t are words of the same length

(x ω-1 s)(x ω-1 t) = (x ω-1 t)(x ω-1 s) (5) 
(x ω-1 s)(x ω-1 s) = (x ω-1 s) (6) 
We will show that the regular languages of our class B are exactly the languages whose syntactic morphism satisfies the equations ( 5) and ( 6) for all words x, s and t of the same length. Before we do this, it is useful to introduce some further notation. For each positive integer d, let ∼ d be the equivalence on A * defined as follows. Given u, v ∈ A * , u ∼ d v if and only if the three following conditions are satisfied:

Let k, r, d ∈ N with d > 0. Given a word u = a 0 • • • a n ∈ A * where a i ∈ A, let p k (u) = a 0 • • • a k-
(1) for 0 We now consider a regular language L and we denote by η : A * → M its syntactic morphism. We also let d = |M |!. It is well known that, for each x ∈ M , x d is idempotent, that is, x 2d = x d . For the remainder of the paper, we use the notation u = η v for η(u) = η(v), and, for any r ∈ N, we denote by [r] the remainder after division of r by d. We will need a small combinatorial lemma: Proof. For each k 0, let s k = η(p k (u)). If s 0 , . . . , s |M|-1 are all distinct, one of them, say s i , is idempotent. Then p = p i (u) and x = p |M|!/(i+1) give the result. On the other hand, if s i = s j with i < j < |M |, then p = p i (u) and x = z |M|!/|z| where p j (u) = pz yield the result. Let B Reg be the Boolean algebra generated by the languages L P or L a,P where P is a regular subset of N, that is, a finite union of languages of the form r + dN for r, d ∈ N. Clearly B Reg ⊆ B ∩ Reg. Our aim is to show that if η satisfies the equations ( 5) and ( 6), then L is a union of ∼ d -classes. In view of the following proposition, it then follows that L ∈ B Reg . Proposition 4.3. For every d 1, every ∼ d -class is a language of B Reg .

< k d, p k (u) = p k (v), ( 2 
) |u| ≡ |v| mod d, (3) 
We now suppose that η satisfies equations ( 5) and ( 6) for all words x, s and t of the same length. Proof. We prove the result by induction on the length of the word a 0 a 1 • • • a r . If the length is 0, the result simply follows from the relation px = η p. Suppose by induction that the result holds for a word of length r, that is

pa 0 • • • a r-1 = η pa 0 • • • a r-1 (b [r] • • • b d-1 b 0 • • • b [r-1] ) d (7) 
Then we get by ( 7)

pa 0 • • • a r-1 a r (b [r+1] • • • b d-1 b 0 • • • b [r] ) d = η pa 0 • • • a r-1 (b [r] • • • b d-1 b 0 • • • b [r-1] ) d a r (b [r+1] • • • b d-1 b 0 • • • b [r] ) d = η pa 0 • • • a r-1 b [r] (b [r+1] • • • b d-1 b 0 • • • b [r] ) d-1 b [r+1] • • • b d-1 b 0 • • • b [r-1] a r s (b [r+1] • • • b d-1 b 0 • • • b [r] ) d-1 b [r+1] • • • b d-1 b 0 • • • b [r]
t Equation ( 5) allows one to swap s and t and consequently we obtain

pa 0 • • • a r (b [r+1] • • • b d-1 b 0 • • • b [r] ) d = η pa 0 • • • a r-1 b [r] (b [r+1] • • • b d-1 b 0 • • • b [r] ) d-1 b [r+1] • • • b d-1 b 0 • • • b [r] t (b [r+1] • • • b d-1 b 0 • • • b [r] ) d-1 b [r+1] • • • b d-1 b 0 • • • b [r-1] a r s = η pa 0 • • • a r-1 (b [r] • • • b d-1 b 0 • • • b [r-1]
) 2d a r = η pa 0 • • • a r-1 a r by [START_REF] Mckenzie | Extensional uniformity for Boolean circuits[END_REF], which concludes the induction step. 

z k = b 0 b 1 • • • b [k-1] a [k] b [k+1] • • • b d-1
the following relation holds

pa 0 • • • a r = η px d-1 z 0 x d-1 z 1 • • • x d-1 z [r] x d-1 b 0 • • • b [r] (8) 

For

  each word u = a 0 . . . a n-1 where a 0 , . . . , a n-1 ∈ A and each letter a ∈ A, let a u = {i ∈ Dom(u) | a i = a}. For instance, if u = aabcbaba, then a u = {0, 1, 5, 7}, b u = {2, 4, 6}, and c u = {3}. The length of u is denoted by |u|. For each letter a in A and for each subset P of N, let L P = {u ∈ A + | |u| -1 ∈ P } and L a,P = {u ∈ A + | a u ⊆ P }. In this paper, we are interested in the Boolean algebra B generated by the languages L P and L a,P for P ⊆ N and a ∈ A. A little combinatorics on words leads to the following result: Proposition 2.1. The Boolean algebras B and B ∩ Reg are closed under quotients and under the operations L → uL for each word u ∈ A * .

1

 1 be the prefix of length k of u and let C d,r (u) = {a i | i d and i ≡ r mod d} be the content of u at r modulo d. For instance, if u = ccbbacabac, then p 5 (u) = ccbba, C 3,0 = {a, b, c}, C 3,1 = {a, b} and C 3,2 = {a, c}.

Proposition 4 . 1 .

 41 for 0 r < d, C d,r (u) = C d,r (v). The relation ∼ d is a congruence of finite index on A * .

Lemma 4 . 2 .

 42 Let u be a word of length at least |M |. Then there exist a prefix p of u of length lesser than |M | and a word x of length |M |! such that px = η p.

Lemma 4 . 4 .

 44 Let a 0 , a 1 , . . . , a r be letters and let p and x be two words such that |x| = d and px= η p. Setting x = b 0 • • • b d-1 where b 0 , b 1 , . . . , b d-1 are letters, we have pa 0 • • • a r = η pa 0 • • • a r (b [r+1] • • • b d-1 b 0 • • • b [r] ) d .

Lemma 4 . 5 .

 45 Let a 0 , a 1 , . . . , a r be letters and let p and x = b 0 • • • b d-1 be two words such that px = η p. Setting for each k 0

We recently proved that these equations actually do suffice to characterize FO[N0, N u 1 ], but this will be the topic of another paper.

In other words, γ is an upset.

Following the terminology of[START_REF] Straubing | Finite automata, formal logic, and circuit complexity[END_REF], a unary numerical relation R associates to each n > 0 a subset R(n) of {0, ..., n -1}. It is uniform if there exists a subset P of N such that, for all n > 0, R(n) = P ∩ {0, . . . , n -1}. Not every numerical relation is uniform: for instance, the unary numerical relation R defined by R(n) = {n -1} is not uniform.

The empty word is excluded to avoid any problem related to empty models.
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Proof. Applying Lemma 4.4 repeatedly yields the formula

It suffices now to observe that the right hand sides of (9) and of ( 8) are the same word. Let

we get by Lemma 4.5

Since L satisfies the equations ( 5) and ( 6), one has for each i, j

We can now conclude the proof of Proposition 4.6. Since u ∼ d v, for each i d there is a j such that j ≡ i mod d and a i = c j . Therefore, for each i there is a j such that y i = z j . Similarly, for each j there is an i such that z j = y i . It follows that u = η v.

We are now ready to prove the main result of this section.

Theorem 4.7. Let L be regular language, let η : A * → M be its syntactic morphism and let d = |M |!. Then the following conditions are equivalent:

(1) η satisfies the profinite equations ( 5) and (6) for all words x, s and t of the same length,

Proof. Proposition 4.6 proves that (1) implies (2). Proposition 4.3 shows that (2) implies ( 3), (3) implies ( 4) is trivial and (4) implies (1) follows from Theorems 3.3 and 3.4.

Corollary 4.8. One can effectively decide whether or not a given a regular language belongs to B.

Coming back to logic, one could derive the following characterization, in which = c stands for the set of unary predicates of the form {c}, for c ∈ N and MOD stands for the set of modulo predicates, as defined in [START_REF] Chaubard | First order formulas with modular predicates[END_REF].