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Abstract 
 
A simplified one dimensional rate dependent model for the evolution of plastic distortion 
is obtained from a three dimensional mechanically rigorous model of mesoscale field 
dislocation mechanics. Computational solutions of variants of this minimal model are 
investigated to explore the ingredients necessary for the development of microstructure. In 
contrast to prevalent notions, it is shown that microstructure can be obtained even in the 
absence of non-monotone equations of state. In this model, incorporation of wave 
propagative dislocation transport is vital for the modeling of spatial patterning. One variant 
gives an impression of producing stochastic behavior, despite being a completely 
deterministic model. The computations focus primarily on demanding macroscopic limit 
situations, where a convergence study reveals that the model-variant including non-
monotone equations of state cannot serve as effective equations in the macroscopic limit; 
the variant without non-monotone ingredients, in all likelihood, can. 
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Introduction 
 
A long-standing goal of modern plasticity theory at the meso/macro scale is to model 
physically observed microstructure. In this paper, we define microstructure as spatial 
inhomogeneity in the plastic strain distribution and its development as the question of 
instability of a spatially uniform plastic strain distribution to small perturbations. In more 
common language this issue is also termed as the spontaneous emergence of patterns, and 
the models we develop and deal with here belong to the class of pattern-forming equations. 
 
The minimum ingredients necessary to predict microstructure in plasticity are believed to 
be non-monotone equations of state arising from non-convex (incremental) energy 
(Aifantis, 1984; Ortiz and Repetto, 1999), or reaction diffusion equations with Cahn-
Hilliard (CH) or Ginzburg-Landau (GL) structure (Walgraef and Aifantis, 1985,I, II, III; 
Glazov, Llanes and Laird 1995). In this paper, we show that the simplest models derived 
from Phenomenological Mesoscale Field Dislocation Mechanics, i.e. PMFDM (Acharya 
and Roy, 2006; Acharya, 2010, building on work from the same group from 2001 onwards) 
produces spatial patterning with similarities to ‘cell-wall’ fatigue microstructures  without 
any non-monotone equations of state but due to wave-propagative dislocation transport. 
An important motivation for our study is that (P)MFDM in its full-blown multi-
dimensional system form, as well as very closely related, if not identical, models have been 
shown to produce the emergence of microstructural features without any non-convexity in 
extensive numerical computations (Roy and Acharya, 2006; Limkumnerd and Sethna, 
2006; Chen et al., 2010; Choi et al., 2012; Chen et al. 2013). Another recent work with 
many mathematically similar features as PMFDM but more complicated constitutive 
structure related to multiple-slip behavior (Xia and El-Azab, 2015) shows the development 
of realistic microstructure related to plastic response. It is our intention here to try to 
understand this phenomenon in PMFDM in as simple a setting as possible. 
 
We also demonstrate stick-slip behavior arising from a non-convex energetic constitutive 
statement for kinematic hardening, admittedly of undecidable physical origin. 
Combinations of dislocation transport with the resulting non-monotone back stress produce 
very rich behavior consisting of apparently random nucleation of fronts of plastic 
deformation and their motion under spatially uniform applied stress. 
 
 
1.   Model 
 
1.1.   Physical description 
 
We adapt an ansatz producing an exact time-dependent, quasi-static, 1-dimensional 
problem of Field Dislocation Mechanics from Acharya (2010). Symbols with a subscript 
x represent a spatial partial derivative while a subscript t  represents a temporal partial 
derivative. Consider a long cylinder of rectangular cross-section as shown in Fig. 1. The 
cylinder is subjected to simple shear by applying spatially uniform shear traction  T t on 

the top surface while holding the bottom surface fixed. It is assumed that at any time t  all 
stress and distortion fields vary only along the axis of the cylinder. Consistent with the 
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applied loading, it is assumed that the yz  component of the total displacement gradient is 
the only non-zero one and it is homogeneous on the body. The only non-zero components 
of stress field are the shear stress  T t in the y  direction on planes with normal in the z  

direction and its associated symmetry-related component. Likewise, the only non-zero 
component of plastic distortion is   which represents plastic shearing in the y  direction 

on planes with normal in the z  direction. The spatial gradient of plastic distortion x  

represents the only component of the (polar) dislocation density field representing screw 
dislocations with line and Burgers vector along the y  direction. In this work we model 
plasticity at the mesoscale and consequently think of plastic strain rate produced by motion 
of the dislocation density field plus that due to the motion of unresolved ‘statistical’ 
dislocations, the latter modeled by more-or-less conventional constitutive assumptions 
from macroscopic plasticity theory. 

 
Fig. 1 Cylinder subjected to simple shear 

 
The governing equation for the evolution of plastic distortion   is derived here based on 
Acharya (2010). The dissipation, D , in this 1-d setting  may be written as 

  1
: 2 ,

2
e

tt
B B

D T dv dv      
    (1) 

 
where T  and e  are the yz  component of the stress and elastic distortion respectively, and 

e   is the same component of the total displacement gradient tensor. The free energy 
density,  , is supposed to be of the form 

    2ˆ .
2

e
x G

        (2)

  
Here,  2O b   is a small parameter of the order of the shear modulus   times the 

Burgers vector magnitude  b squared. 

 
The first term of (2), models the energy stored in the body due to elastic deformation. The 
second models the energy stored in dislocation cores, while the third term is associated 
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with the phenomenological energy content of unresolved statistical density that produces 
kinematic hardening. Stress can be obtained from free energy density as follows: 

 .
e

T







 (3) 

Substituting (2) and (3) in (1) we get   

   .t x x tt
B B B

G
D T dv dv dv   




  
    (4) 

Using the governing equations of the mesoscale field dislocation mechanics model 
(Acharya 2010; Acharya and Roy, 2006),it can be shown that in this simplified case the 
conservation law for Burgers vector content can be written as (see Appendix 1) 

 
   

,

p
x xt x

p
t x

V L

V L

 

 

  

   
 (5) 

where the source term, PL , arises in the governing equation as result of averaging (Acharya 
and Roy, 2006), and represents the plastic strain rate produced by ‘unresolved’ statistical 
dislocation density. Substituting (5) in (4),  

     ,p p
x x x x

B B

G
D T V L dv V L dv  


 

        
   (6) 

which implies 

     ,p p
x xx x

B B

G
D T V L dv V L dv  


 

        
    (7) 

(where we have ignored a boundary term). Hence, the driving force for dislocation velocity, 
V , can be expressed as     

 ,x xx

G
V T 


 

     
 (8) 

and that for pL  as 

 p G
L T


 

   
. (9) 

 

In (9), we retain the classical form of pL , where the driving force is dependent only on 
stress and back-stress, and ignore the contributions of core energy. This enables a direct 
comparison with the conventional plasticity model. Nevertheless, we have tested the 
dissipation (7) while using (12) and found that it remains nonnegative throughout the entire 
simulation for various model set-ups as described in Section 2. 
 
Assuming a simple ‘linear’ kinetic relation for V  based on (8): 

 
1

,x xx

G
V T

B
 


  

         (10) 
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where the drag coefficient B is proportional to the magnitude of the polar density x ,the 

following expression for the evolution of plastic distortion tensor,  , is obtained from (5)
:  

 Px
t xx

G
T L

B


 


 

     
. (11) 

The material constant B  has physical dimensions of stress time length . Equation (11) 

is an averaged equation modeling plastic behavior at the meso-scale. We assume pL to be 
of ‘standard’ form 

 

1

0 sgn

m

P

G
T

G
L T

g






 
         

 
 

  

 0 0 ,p s
t x

s y

g g
g L k

g
 



  
       

 (12) 

following conventional plasticity assumptions of  models with a back stress and power-law 
kinetics. Here, 0  is a reference strain rate and g  is the strength of the material which 

evolves according to a gradient modified standard Voce-law (Acharya and Beaudoin, 
2000). The saturation stress is sg , y  is the yield stress, and 0  is the Stage II hardening 

rate, 0k  is a parameter characterizing the hardening rate produced by the presence of polar 

density (containing a length scale), and m  is the rate sensitivity. 
 
An important goal for us in this paper is to understand what the addition of dislocation 
transport does to the conventional plasticity model in as simple a setting as possible. Thus, 
we would like to preserve the structure of (12). To simultaneously achieve this goal and 
ensure non-negative dissipation with our constitutive choices for V and pL  would require 
that the specific free energy cannot be defined as a function on the current state but rather 
as a functional on histories through the following rate equation (cf. Rice, 1971, Sec. 2.4): 

 

 

 

ˆ
, , , ,

        + , , , , .

e e
t t x xx x xxe

p e
x xx

G
V g

G
L g

       
 

   


  
      

 
  

 (13) 

We utilize a non-monotoneback-stress term, G   , in the governing equation whose 
form is sinusoidal with amplitude proportional to the wavelength. It is assumed to arise 
from a nonconvex energy contribution of the form  

   sin 1yG
   

 

  
 

  (14) 
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where   is a nondimensional parameter. Since   is small, the contribution of the  G   

term in the energy is negligible. Thus, in practical terms, if back stress effects are 
determined from measurements of energy storage due to plastic strain (the part of it that is 
determined from the observable dislocation density field), then whether such terms may or 
may not be present in material behavior would be hard to decide. However, the back stress, 

G   , arising from such a small energy contribution can of course be of significant 
magnitude. An ODE of the form,  

   ,
G

f 



  


  (15) 

where f  is a forcing function, is known to produce stick-slip behavior (e.g., Abeyaratne, 
Chu and James, 1996). The particular form of the G    term does not have an influence 

as long as it is a high-frequency bounded oscillatory function with the same amplitude y
. Any high-frequency, bounded oscillatory function in the plastic strain with the same 
amplitude y  is expected to produce similar stick-slip behavior in the high frequency limit. 

In recent experiments of micron-scale plasticity, stick-slip behavior has been observed 
(Dimiduk et al., 2006) and it has often been argued that its origins are stochastic 
(Parthasarathy et al., 2007). We show here that such behavior can be obtained from purely 
deterministic considerations. However, the primary shortcoming of this model is that the 
physical origin of such a small amplitude augmentation of the energy is not clear at this 
point. Thankfully, such an augmentation of the theory is not essential for producing spatial 
microstructure as we show in this paper. In the following, we refer to such oscillatory 
kinematic hardening related energy and back stress by the term ‘wiggly,’ using terminology 
introduced by Abeyaratne et al. (1996) in a different context. 
 
1.2.    Non-dimensionalization of governing equations 
 
We seek to non-dimensionalize the set of governing equations (11) and (12). Consider 
length, stress and time as the primary dimensions of the governing equations. The scaling 
parameter utilized for length variables is the length of the domain L , the stress variables 
is the yield stress y , and the time variable is the reciprocal strain rate 1

0
 . We define the 

following dimensionless variables using the scaling parameters: 

 0
0

, , , , .
p

p

y y y

x T G L g
x t t T G L g

L


   
        


 (16)

  

We have 

 0 .t

t

t t t t

      
  
   




 
 (17)

  

Likewise, 
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2

1
,

1
.

x x

xx xx

L

L

 

 







 

 (18)

  
Substituting(16), (17) and (18) in the governing equation (11) we obtain 

 0 02
.x P

y y xxt

G
T L

BL L

      


 
     


 

    (19)

  
We rearrange (19) to get a non-dimensional form as follows: 

 *
*

,x P
xxt

G
T L

B


  


 

     


 

   (20)

  
where *B  and *  are new constants defined as 

 * *0
2

, .
y y

BL
B

L

 
 

 


 (21)

  
An important order-of-magnitude to keep in mind is that 

 
2

y

b

L




    
 

  (22) 

so that a small value of    may be interpreted as working close to the macroscopic limit 
where the domain size is much larger than the interatomic distance. 

 
The non-dimensional form of pL  is given by 

 

1

sgn .

m

P

G
T

G
L T

g




  
          

 


 


 (23) 

The non-dimensional form of the hardening rate equation is obtained from 

 0
0 0 0

s yp
y xt

s y

g gk
g L

L g


    



  
       

 

   (24)

  
and then rearranging the terms to obtain 

 
*

*
0 0 * 1

p s
xt

s

g g
g L k

g
   

     
 

 , (25)
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where  *
0k and *

sg , and 0q
*  are new constants defined as follows: 

 * *0 0
0 0, , .s

s
y y y

k g
k g

L


  

    (26)

  

For the sake of convenience we drop the tilde and asterisk subscripts in the non-
dimensional governing equations. 
 
1.3.   Notation 
 
The following notation is followed in the numerical scheme described below. Consider the 
discrete field variable  k

hx . The superscript k  indicates the time level counter starting 

from 0k  , with discrete instants of time marked by kt . We refer to 1k k kt t t    . The 
distance from the origin of the domain is indicated by the symbol hx  inside the brackets

   which is the position of the thh  node. The spatial and temporal derivatives are denoted 

by subscripts. The discrete spatial derivative of   at time level k  and location hx  is 

denoted by  k
x hx . Likewise, the temporal derivative of   at time level k  and location 

hx  is denoted by  k
t hx . The discrete double spatial derivative is denoted by  k

xx hx . 

The notations   
k

k
h

G
x





 and   
2

2

k
k

h

G
x





 represent partial derivatives of the 

function G  with respect to  , evaluated at time level k  at the spatial location.  kP
hL x  and 

 k
hg x  represent the value of pL  and g  at time level k  and location hx . 

 
1.4.   Numerical Scheme 
 
We follow Acharya et al. (2004) in formulating the scheme utilized to deal with wave like 
response. This scheme has been subsequently utilized in Das et al. (2012) and Zhang et al. 
(2015) for an extensive class of more complex problems in 1 and 2 space dimensions and 
time including nontrivial coupling with quasi-static and dynamic material deformation, 
some of which serve as verification and validation exercises for it, both individually and 
embedded in more complicated coupled algorithms. We have subsequently realized that 
the scheme is strongly related to a special and simple case of the robust methodology of 
Kurganov et al. (2001) for hyperbolic conservation laws and Hamilton-Jacobi equations. 
 
The essential idea of the scheme is to identify the first order wave-like, second-order 
diffusion-like and (ordinary differential equation) source-like responses in the problem 
from the linearization of the pde for    at each time level. Then at each spatial grid point 
an upwind direction is identified based on this exercise. In addition, time step constraints 
for wave, diffusion, and simple source behavior are evaluated at each spatial grid point 
based on standard stability considerations for consistent standard finite difference 
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approximations for constant coefficient, linear equations describing such behaviors. 
Finally, the minimum time-step arising from these evaluations is adopted in the scheme. 
 
The linearization of non-dimensionalized form (20), ignoring the source term, is performed 
formally by taking its first variation :   

 

 
         

 
    

 
 

2

2

sgn

.

k k
x hk k k k k

t h h xx h x h

k k
x k k

h h

k
x h k

xx h

x G
x T x x x

B

x G
x x

B

x
x

B


   




 






   
          

 
   

   

 (27) 

The first term of (27) provides linearized wave-like behavior. A corresponding velocity 

 k
hc x  is obtained as follows  

 

     

 
    

 
 

 
       

2

2

,

sgn

k k k
t h h x h

k k
x h k k

h h

k
x h k

xx h

k k
x hk k k k

h h xx h

x c x x

x G
x x

B

x
x

B

x G
where c x T x x

B

 


 







 



 

 
   

   

   
          

 (28) 

 
To calculate  k

hc x for a time level k  and at a spatial location hx  the required values of 

 k
x hx and  k

xx hx are computed using central finite differences. 

 
 

 

1 1

1 1
2

( ) ( )

2

( ) 2 ( ) ( )

k k
k h h
x h

k k k
k h h h
xx h

x x
x

d

x x x
x

d

 

  

 

 




 
 

 (29) 

Once  k
hc x  is obtained, depending on the sign of  k

hc x the value of  k
x hx  is updated 

in accordance with the upwind scheme as follows: 



 10

 

   

   

   

1

1

1 1

( ) ( )
: 0

( ) ( )
: 0

( ) ( )
: 0

2

k k
k kh h
x h h

k k
k kh h
x h h

k k
k kh h
x h h

x x
x if c x

d

x x
x if c x

d

x x
x if c x

d

 

 

 





 


 


 


  

 (30) 

where d  is the element size. 
 
The time step is computed as below, taking due account of the source term and linearized 
advection and diffusion: 

 
          
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0.002
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k kh x h h
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c x G x L x
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
  



 
 
  
  

    

 (31) 

The following sequence of steps is followed to solve the governing equations(20) and (25)
. The state at discrete time level k  consists of nodal values of the discrete fields   and g
. 
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 (32) 
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 

(33) 
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1.5. Problem Set-up 

 
The list of parameters selected for performing the simulations is shown in Table 1. 
 

Parameter Description Value 
m  rate sensitivity 0.03 
  non-convex energy parameter 0.01 

*B  scaled drag coefficient 1 
*  scaled dislocation core  

energy parameter 
 53.28 10  

*
0k  

scaled hardening parameter 400 
*

sg  
scaled saturation stress 3.22 

*
0  

scaled stage II  
hardening parameter 

7.84 

 
Table 1: List of non-dimensional model parameters 

 
Lengths are measured in units of L , time in units of 1

0
 , and stress in terms of y . 

 
The initial condition specified for   is of the following form:  

  Initial condition : ,0 sin 0 1,
N x

x
L

     
 

  (34) 

where the chosen value of  and N is equal to 0.001 and 500, respectively. This reflects 
a very small amplitude with high wave-number, N , perturbation to the zero plastic strain 
initial condition. Our goal in all cases is to probe the stability of a spatially homogeneous 
initial profile to this particular type of perturbation. Neumann boundary conditions of 

0x   are applied at the ends of the domain. A linear ramp loading is specified for the 

simulations where the non-dimensional applied load parameter,  T t , increases uniformly 

from zero to a finite value of stress, unless otherwise mentioned.  
 
The initial condition for g  is assumed to be 1 (non-dimensional). 
 
Since the model is rate-dependent, it is expected that the rate of loading will have an 
influence in the response of the governing equation. The effect of different rates of loading 
on the behavior of the governing equation is not pursued in this section because our primary 
interest has been to show the development of spatial microstructure in the model. 
 
Clearly, the initial condition we choose has large polar dislocation content even though it 
derives from a negligible plastic distortion profile. From the point of view of probing 
stability of evolution of plastic deformation, this is, of course, perfectly acceptable. In all 
cases involving dislocation transport, the dislocation density profile rapidly subsides to be 
non-detectable to visual inspection on evolution from the initial condition, much before 
initial yield and subsequent inhomogeneity development. However, the seeds of the 



 12

perturbation remain and without the perturbation in the initial condition no patterning 
develops. Thus we could as well have started with initial conditions as this slightly-
evolved, almost-homogeneous plastic strain and dislocation density profile, if we knew 
their analytical form. Since we do not, we proceed as described in this paper. 
 
In demonstrating our results, we often plot the spatial average of   and its maximum value 

over the domain, denoted by avg  and max  respectively, as functions of time or applied 

load. avg  is computed as follows: 

 
 

1 ,

P
k

h
k h
avg

x

P


 


 (35) 

where P  is the total number of nodes and avg  refers to k
avg  viewed as a function of k (or 

discrete time or load). max
k  represents the maximum value of ,  max maxk k

h
h

x  , over 

the entire set of spatial nodes at the thk  time level, and a similar interpretation as before 
applies for max . Step-like profiles in avg beyond initial yield reflect stick-slip behavior 

on the average in the domain. (Near) discontinuous behavior in max  different from the avg  

variation reflects spatially localized stick-slip behavior. 
 
2.   Results and discussion 
 
2.1.   Case I: Model with dislocation transport, wiggly back stress, and gradient hardening 
 
The results of the simulations performed using the model described by ((20), (23),(25)), 
i.e. 

 

1

0 0

sgn

1

x P
t xx

m

P

p s
t x

s

G
T L

B

G
T

G
L T

g

g g
g L k

g


  






 

 
     

 
         

 
 

  
     

 

are discussed in this section. Fig. 2 (a) is a plot of the evolution of   for the simulation 
performed with the prescribed initial condition (34). A linear ramp loading where the non-
dimensional applied load variable,  T t , increases uniformly from 0 to 3.0  is specified. 

The value of   chosen for this simulation is equal to 0.01. From the initial condition, the 
profile quickly transforms into an almost homogeneous profile shown in Fig. 2 (a) (i). The 
corresponding x  profile has a uniform value close to 0 as shown in Fig. 2 (b) (i). A yield-
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like behavior is observed, as expected from (23) where the   profile remains almost 

unaltered until  T t  reaches approximately a value of 2.0  before evolution occurs. This 

is due to the back–stress in the formulation – for 0  , 1G   and the initial condition 

of 1g   so that evolution occurs only when 2T   for m  small. This phenomenon is 
indicated in Fig. 2 (c) where the variation of average and maximum plastic distortion is 
plotted versus time. When the value of  T t increases beyond 2.0  the profile begins to rise 

and small kinks begin to develop in the profile as shown in Fig. 2 (a) (ii). These small kinks 
begin to grow as shown in Fig. 2 (a) (iii) and (iv) as the applied load increases, and develop 
into peaks representing inhomogeneous development in the   profile. All the peaks 
develop simultaneously at almost the same time. The pattern of the peaks appears to be 
repetitive along the domain. The profile continues to rise and the peaks smooth out as the 
value of  T t approximately reaches 2.07 . Once all the peaks smooth out the profile 

transforms into a nearly homogeneous form. The sequence of evolution depicted in Fig. 2 
(a) (i) – (v) conforms to an almost vertical line in Fig. 2 (c) representing a rapid rise in 
plastic distortion for a minimal increase in applied stress. The profile retains its nearly 
homogenous form and rises uniformly during the remainder of the simulation as the applied 
stress increases to a value of 3.0 . This phenomenon is denoted by an inclined straight line 
in Fig. 2 (c). These plots demonstrate that this model is capable of producing spatial 
microstructure but stick-slip behavior is not predicted. 
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                                   (v) 2.065T                                                   (vi) 3.00T   
 

 

(i)  0.2T   (ii) 2.00T   

(iii) 2.03T   (iv) 2.05T   

Fig. 2 (a) Evolution of   for the model with dislocation 
transport, wiggly back stress, and gradient hardening (Case I) 
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(ii) 2.00T   

(i)  0.2T   (ii) T = 2.0 

(iii) 2.03T   (iv) 2.05T   

Fig. 2 (b) Evolution of x  for the model with 

dislocation transport, wiggly back stress, and gradient 
hardening (Case I) 

(v) 2.065T   (vi) 3.00T   
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Fig. 2 (c) Variation of spatial average and maximum values of   with applied  

load (Case I) 
 
As we shall see in Section 3, the simulations presented in Figure 2 (a-c) above for the 
parameter values mentioned do not produce converged results with respect to mesh 
refinement - the reliable conclusion that can be drawn from the specific simulation shown 
is the appearance of microstructures, but not the specific microstructure itself. However, 
this is simply a feature of the parameter regime we are operating in (close to the 
macroscopic limit) and not any specific ill-posedness associated with the model (or the 
numerical scheme) in more moderate circumstances corresponding to smaller domain sizes 
in comparison to the interatomic distance. A simulation is performed for a reduced wave 
number in the initial condition, N , equal to 5  and a higher value of * , increased by a 
factor of 10  from that mentioned in Table 1. The results of the simulation, shown in Fig. 
3, indicate the development of inhomogeneity and yield-like behavior. The magnitude of 
peaks developed in the   profiles is non uniform across the domain. Stick-slip 
phenomenon is not predicted. It will be shown later in Section 3 that this setup leads to a 
better convergence of results as compared to the model setup for larger domain size.   
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(i) 0.3T   (ii) 2.02   

(iii) 2.03T   (iv) 2.05T   

(v) 2.065T   
(vi) 3.00T   

Fig. 3 (a) Evolution of   for Case I with high    and low N   
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                                 (v) 2.065T                                                  (vi) 3.00T   
 

 

(i)  0.2T   (ii) 2.01T   

(iii) 2.03T   (iv) 2.05T   

Fig. 3 (b) Evolution of x  for Case I 

with high   and low N
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Fig. 3 (c) Variation of spatial average and maximum values of   with applied load for 

Case I with high    and low N  
 
2.2.   Case II: Model with dislocation transport, wiggly back stress, and standard 
hardening 
 
The model for Case I((20), (23) and (25)) is simulated with 0 0k  . Fig. 3 (a) shows an 

evolution of the   profile in this case. The initial   profile specified by (34) quickly 
transforms to nearly homogeneous form shown in Fig. 4 (a) (i). This nearly homogenous 
form is retained until the applied load reaches a value of 2.0  approximately. Sharp peaks, 
uniformly spaced along the domain, originate almost simultaneously in the profile as 
shown in Fig. 4 (a) (ii). These peaks spread out leading to formation of a step-like pattern 
as shown in Fig. 4 (a) (iii), and eventually coalesce with each other as the applied load 
increases marginally resulting in a nearly homogenous form shown in Fig. 4 (a) (iv).Since 
the gradient of   corresponds to dislocation density, the step-like form in the   profile 
corresponds to a pair of positive and negative dislocations. This development is indicated 
by an almost vertical line in Fig. 4 (b) which shows the variation of average and maximum 
plastic distortion with stress. The subsequent phase of evolution is manifested by a plateau 
like region in Fig. 4 (b) during which the  profile remains stationary for an increase in the 

applied stress levels. As  T t reaches a value of 2.365 another peak emanates in the profile 

as shown in Fig. 4 (a) (v). The peak spreads out and forms a step-like pattern in the profile 
as shown in Fig. 4 (a) (vi) and eventually exits the domain resulting in another nearly 
homogenous form similar to that shown in Fig. 4 (a) (iv). More peaks develop at apparently 
random stress levels and locations in the domain as shown in Figs. 4 (a) (vii), (viii) and 
(ix). The locations of origins of peaks are sensitive to the precise details of the prescribed 
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initial condition up to the level of distinguishing different meshes for the same analytical 
initial condition. Stick-slip behavior, evident from Fig. 4 (b), is illustrated from these 
results where a dormant phase (with no plastic growth) is followed by a phase of greater 
plastic growth (with significant movement and interaction of dislocations) and is again 
followed by a dormant phase. Overall, the completely deterministic evolution gives an 
impression of apparently stochastic behavior. The behavior predicted is reminiscent of the 
propagation of Luders’ bands in metals. Given the strong discontinuities, both in space and 
time, that are predicted, it is highly unlikely to expect any type of convergence in these 
results with respect to mesh refinement. We present the results simply because of their 
‘remarkable’ nature. 
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                                  (i)  0.1T                                                        (ii) 2.0189T 

 
                                  (iii) 2.0190T                                               (iv) 2.02T   

 
                                   (v) 2.365T                                                  (vi) 2.366T                            
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                                 (vii) 2.694T                                                (viii) 2.699T                            
 

 
                                  (ix) 2.857T                                                   (x) 2.862T   
 
 Fig. 4 (a) Evolution of   for the model with 

dislocation transport, wiggly back stress, 
and standard hardening (Case II). 
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2.3.   Case III: Model with wiggly back stress, gradient hardening no dislocation transport 
 
As already stated in the Introduction (Section 1), the plastic strain-rate consists of two parts, 
one produced by the motion of dislocation density fields reflected in (5) by xV , plus 

that due to the motion of the unresolved statistical dislocations modeled by pL . In this 
section, we investigate a different model for the first part of the strain-rate, assuming that 
it does not result from transport, but rather is governed by the thermodynamic force 
  . A constitutive relation must be prescribed for this part of the strain-rate, 

replacing the kinetic relation (10) for V , and this is done by assuming a simple linear 
dependence on the thermodynamic force. The resulting set of equations used in the 
simulations is 

Fig. 4 (b) Variation of spatial average and maximum values of   
with applied load (Case II) 
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 (36) 

Note that these equations are apparently similar to (11)-(12), with the noticeable difference 
that there is no transport term x   in the first term on the right-hand side of (36)1 . 

 
Figure 5(a) shows the evolution of the   profiles in time. Although a yield-like behavior 
similar to that in Fig. 2 (c) is observed the yielding happens comparatively earlier when the 
applied stress is approximately equal to 1.2 . This is because the extra plastic strain rate 
term (i.e. the first term on the right-hand side of (36)1) is active without a yield threshold 

and even in the presence of homogeneous plastic strain. After yielding, the profile begins 
to move upwards and there is no development of peaks in the   profile. Hence, in the 
absence of dislocation transport in plastic strain rate, there is neither a development of large 
scale inhomogeneity nor a formation of ideal microstructure.  Fig. 5 (b) shows the variation 
of spatial average and maximum values of   with applied load. The wavy nature of the 
slope after yielding in these plots suggests the presence of stick-slip behavior. 
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Fig. 5 (a) Evolution of   for the model with 
wiggly back   stress, gradient hardening but no 
dislocation transport (Case III) 
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2.4. Case IV: Microstructure due to dislocation transport and gradient hardening with no 
non-monotone equations of state 
 
Fig. 6 (a) is a plot of the evolution of   when the wiggly back-stress term is set to be equal 
to zero. The model is: 
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 (37) 

Development of inhomogeneous profiles is observed. Fig. 6 (d) shows the variation of 
spatial average and maximum values of   with applied load. No stick-slip behavior is 

observed. Figs. 6 (b) (ii) – (vi) show the x  profiles that clearly demonstrate the dislocation 

microstructure that develops. Dense dipolar walls of positive and negative dislocations 
separated by spatially non-periodic ‘cell-like’ regions of relatively sparse dislocations 
density are observed. This microstructure bears some superficial similarity to the persistent 
slip-band microstructures that are observed in fatigue experiments (Mughrabi, Ackerman 
and Herz, 1979). A magnified view, shown in the section plots of Fig. 6 (c), suggests that 

Fig. 5 (b) Variation of spatial average and maximum 
values of   with applied load (Case III) 
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the x profile is continuous which in turn implies that the plastic distortion is smooth in 

this case. 
 
Fig. 6 (c), and the dynamic simulation associated with it, shows that even in this relatively 
(physically) simple model, three separated distinguished microstructural length scales 
emerge, that appear to evolve in time. The first is at the scale of the core width  b  as 

can be seen from the zoomed in view. Second is the width of the dense dislocation walls. 
The third microstructural length scale is the cell-size (regions of low dislocation density 
content). In all three cases there does not appear to be a fixed value for each length, but 
rather they vary in space and time. We think that these lengths are related to the 
nondimensional parameters * , *B , and *

0k , and suspect that there are asymptotic scaling 

laws to be uncovered (cf. Barenblatt, 1996) in this context. 
        

 
Fig. 6 (a) Evolution of   for the model with dislocation transport and 
gradient hardening without non-monotone equations of state (Case IV) 
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(i)  0.3T   (ii) 1.2T   

(iii) 1.5T   (iv) 2.0T   

Fig. 6 (b) Evolution of microstructure due to dislocation transport 
without non-monotone equations of state (Case IV) 

 

(v) 2.5T   (vi) 3.0T   
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                                (i) section 1                                                   (ii) section 2 

 
                                                                  (iii) section 3 

 
Fig. 6 (c) Sections of microstructure developed at stress level 1.5T  (Case IV) 
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It is possible to provide some mathematical understanding of the emergence of 
inhomogeneity in this case. Equation (37) is a degenerate, quasi-linear parabolic system 
that results in a nonlinear (not quasi-linear) first-order system of pde in g  and x   for 

0  , i.e. in the absence of core energy. The principal part of the linearization of this first-
order system belongs to the class analyzed in Sec. 4.2.1 of Roy and Acharya (2006). It was 
shown there that the problem is only weakly-hyperbolic (real eigenvalues, but not a full set 
of eigenvectors) when linearized about a homogeneous plastic strain profile, the case of 
interest here. As is known, weakly hyperbolic systems are unstable (Kreiss and Lorenz, 
1999), and it is no surprise then that we see growth of perturbations. We note that the 
degeneracy of the parabolic regularization in our problem allows the principal part of the 
first-order problem to remain intact for linearization about the homogeneous plastic strain 
state. Thus, development of inhomogeneity is expected to be a generic feature of our model, 
unrelated to non-monotone equations of state. What the linear analysis does not say 
anything about is the long-time response of the growing perturbations, and our calculations 
here provide yet another confirmation of the conjecture in Roy and Acharya (2006) that 
because of the stabilizing feedback, through hardening due to the increase in  , the 

instability should be controlled. Perhaps more convincing is the fact that we have the 
degenerate parabolic regularization due to the core energy for 0   in (37) which provides 
particularly strong diffusive regularization in any region of sharp gradients in   (due to 

the multiplication by x ), and therefore the   solutions of the model may be generically 

expected to remain smooth and   bounded. We remark that in problems where a system 
with more than one plastic strain component is involved, it is known that, at least in 1 

Fig. 6 (d) Variation of spatial average and maximum values 
of   with applied load (Case IV) 
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spatial dimension and time, the system is weakly hyperbolic without core regularization 
even without any involvement from hardening (Acharya and Tartar, 2011), and again the 
development of microstructure is to be expected (cf. Chen et al., 2013). 
 
 
2.5.Case V: Model with dislocation transport standard hardening with no non-monotone 
equations of state 
 
Fig. 7 (a) is a plot of the evolution of   when the wiggly back-stress term and 0k  is set to 

be equal to zero. The model is: 
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 (38) 

 
There is no development of inhomogeneity in the  profile for this model. A yield-like 

behavior is observed at a stress level equal to 1.0. After yielding the spatial average and 
maximum values of   vary nonlinearly with applied load as shown in Fig. 7 (b).In this 
model, the second equation is uncoupled from the first and the evolution of   becomes 
that of a scalar equation with a time dependent forcing. 
 

 
Fig. 7 (a) Evolution of   for the model with dislocation transport, standard 

hardening and no non-monotone equations of state (Case V) 
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2.6.Case VI: Conventional plasticity 
 
The conventional plasticity model can be simulated using the following equations: 
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 (39) 

The result of the simulation performed using (39) is shown in Fig. 8 (a). The applied 
loading increases uniformly from 0  to 3 . The form of the initial   profile is retained 
during the entire simulation. A yield like behavior is observed where the profile remains 
stationary until the applied load reaches 0.95 and rises with further increase in loading.  
There is no development of large-scale inhomogeneity in the   profile. The x  profiles 

appear to be stationary as shown if Fig. 8 (b). Fig. 8 (c) shows the variation of spatial 
average and maximum values of   with applied load. A yield like behavior is observed 
but stick-slip behavior is absent. 
 
 

Fig. 7 (b) Variation of spatial average and maximum 
values of   with applied load (Case V) 
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Fig. 8 (a) Evolution of   for the conventional plasticity model (Case VI) 

 

 
                                  (i)  0.1T                                                       (ii) 3.0T   
 

Fig. 8 (b) Evolution of x  for the conventional plasticity model (Case VI) 
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3.  Limit of the models corresponding to macroscopic scales of observation 
 
The constitutive model (11)-(12) contains a small parameter   which measures the 
intensity of the core energy and, as explained in the discussion surrounding (22), its non-
dimensional counterpart    also measures the length scale of observation with respect to 
the interatomic distance. This core energy plays a (physical) regularizing role in that it 
helps to spread the plastic distortion   and avoids singularities in its gradient. However, 
when observed at large macroscopic scales, such smooth but large gradients appear as 
discontinuities. The objective of this section is to investigate, numerically, the behavior of 
the different models as the nondimensional parameter     goes to 0. 
 
A careful inspection shows that there are at least 3 small parameters at play in the computed 
response of the different models. In addition to the parameter   , the other parameters are 

the wavelength of the initial condition (34), 
1

N
  , and the spatial discretization 

1h hd x x   . 

 
We first discuss the effect of mesh refinement on the results obtained from the model 
governed by ((20), (23),(25)), i.e. Case I. A set of simulations is performed with three 
meshes of 10000, 20000 and 40000 elements for the initial condition prescribed by  (34) 

Fig. 8 (c) Variation of spatial average and maximum 
values of   with applied load (Case VI) 
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for a wave number in the initial condition 5N    and a value of     increased by a factor 
of 10 from that mentioned in Table 1. The results of these simulations are shown in Fig. 9 
(a). The resulting profiles for different mesh sizes have similar form and it can be 
considered that convergence with the mesh size is attained at a rather coarse mesh size. 
 
Next we consider the macroscopic limit which corresponds to 1     as given in Table 1 
and a high wave-number initial condition of 500N  . Simulations are again performed 
with the three different meshes. Evolution of the   profile for different mesh sizes is shown 
in Fig. 9 (b). A lack of convergence is observed, particularly between stress levels 2.0 and 
2.1 when inhomogeneity develops in the profile. A comparatively higher number of peaks 
develop in the profile for the simulation performed with a finer mesh. Two conclusions can 
be drawn from these observations. First, for the parameters considered, a very fine mesh is 
required in order to obtain converged results with respect to the mesh size, if at all. 
 
The second conclusion is that solutions become highly oscillatory when     becomes 
small, a situation reminiscent of that of homogenization (Tartar, 2009), or wiggly energies 
(Abeyaratne et al., 1996). Therefore a careful mathematical analysis of the weak limits of 
these solutions is required in order to derive the “effective” equations governing the 
evolution of the system in the limit as     goes to 0. This is beyond the scope of the present 
paper. 
 
Next we perform the same test in the macroscopic limit for the model described in Case IV 
governed by (37) with     as specified in Table 1 and 500N   . The comparison of results 
obtained with different meshes in shown in Fig. 9(c). The absence of non-monotone 
equations of state in the model leads to good convergence even for a high wave number 
initial condition. 
 
To quantify the differences in the results for different meshes the following error measures 
are computed.  
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 (40) 

where 10K , 20K  and 40K  denote the   values obtained using a mesh of 10000, 20000  

and 40000  elements, respectively.  40 20K K  
 denotes the error for comparison between 

  values for meshes of 40000  and 20000  elements. Likewise,   20 10K K  
 is the error 

for comparison between   values for meshes of 20000  and 10000 elements. The variation 
of error with applied stress is shown in Fig. 10. These figures are consistent with the 
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corresponding plots shown in Fig. 9. The error values are smaller for Case IV and Case I 
(Fig. 9(a)) as compared to Case I (Fig. 9(b)).  
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Fig. 9 (a) Convergence of   evolution for Case I with high 

value of *  and low N  

(i)  0.4T   (ii) 2.02T   

(iii) 2.04T   (iv) 2.06T   

(v) 2.08T   (vi) 3.0T   
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Fig. 9 (b) Lack of convergence of   evolution for Case I 

for low    and high N   
  

(iii) 2.04T   (iv) 2.06T      

(v) 2.08T   (vi) 3.0T   

(i)  0.4T   
(ii) 2.02T   
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Fig. 9 (c) Convergence of   evolution for Case IV 

 
  

(i)  0.3T   (ii) 1.2T   

(iii) 1.5T   (iv) 2.0T   

(v) 2.5T   (vi) 3.0T   
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               Fig. 10 (a) Variation of error for Case I 

 

 
Fig. 10 (b) Variation of error for Case I with high value of 

*  and low N  
 
 



 41

 
            Fig. 10 (c) Variation of error for Case IV 

 
4.   Conclusions 
 
This paper demonstrates that 

 Transport of polar dislocation density coupled with gradient hardening with no non-
monotone equations of state can give rise to spatial patterning in a mechanically 
rigorous model of mesoscale continuum plasticity and dislocation mechanics. 

 Non-monotone equations of state of a certain type induce stick-slip behavior. 
 The presence of transport of polar dislocation density appears to be essential for the 

prediction of spatial patterning.  
 Development of neither large-scale inhomogeneity nor stick slip behavior is 

predicted by the conventional plasticity model.  
 Convergence is achieved for a low wave number initial condition and incorporation 

of an effective mesoscale core energy in the model. Convergence can be achieved 
for a high wave number initial condition in the absence of non-monotone equations 
of state. 

 In the limit as the regularization due to the core energy vanishes (or the macroscopic 
limit), the model with non-monotone equation of state shows oscillations and 
sensitivity to the mesh resolution and to the initial data which are typical of weak 
convergence of the solutions. The limit problem and the type of convergence for 
the solutions remain to be studied but cannot be obtained by simply setting 0    
in the equations. By contrast, in the absence of non-monotone equation of state, 
convergence is achieved even for a high wave-number initial condition. 
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Appendix1 
 
Simplified one-dimensional form of conservation law of Burgers vector content 
 
The conservation law for Burgers vector content in mesoscale field dislocation mechanics 
is given by 

  pcurl     V L  (A1.1) 

where   is the mesoscale Nye tensor, V  is the mesoscale averaged dislocation velocity 
vector, and pL  is the plastic strain rate produced by unresolved, at the mesoscale,  and 
hence ‘statistical’ dislocations (Acharya and Roy, 2006). Here, 

 pcurl U . (A1.2) 
Consider a tensor field of the form 

 12 1 2A A e e  (A1.3) 

and we assume that all fields vary in only the 3x  direction. Then the only non-zero 

component of  

   ,ijk rk jri
curl e AA  (A1.4) 

is 

   132 12,3 12,311
curlA e A A   . (A1.5) 

We assume the ansatz 
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12 1 2
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p p

U

L

V



 

 
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U e e

L e e

e e

V e

 (A1.6) 

Then 

 11 3 1 2V    V e e  (A1.7) 

    11 3 1 1,3
curl V            V e e  (A1.8) 

 12,3 1 1
p pcurl L      L e e  (A1.9) 

 12,3 1 1
p pcurl U        U e e . (A1.10)

  

Denoting 12
pU  , 3 1 2, ,x x x y x z   , 3V V , and 12

p pL L the conservation law 

reduces to the equation 

    p
x xt x

V L    . (A1.11) 
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