N

N

ToscA: An OSC Communication Plugin for
Object-Oriented Spatialization Authoring
Thibaut Carpentier

» To cite this version:

Thibaut Carpentier. ToscA: An OSC Communication Plugin for Object-Oriented Spatialization Au-
thoring. 41st International Computer Music Conference (ICMC), Sep 2015, Denton, TX, United
States. pp.368 — 371. hal-01247588

HAL Id: hal-01247588
https://hal.science/hal-01247588
Submitted on 23 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01247588
https://hal.archives-ouvertes.fr

ToscA: an OSC communication plugin for object-oriented spatialization authoring

Thibaut Carpentier
UMR 9912 STMS IRCAM-CNRS-UPMC
1, place Igor Stravinsky, 75004 Paris
thibaut.carpentier@ircam.fr

ABSTRACT

The paper presents ToscA, a plugin that uses the OSC proto-
col to transmit automation parameters between a digital audio
workstation and a remote application. A typical use case is the
production of an object-oriented spatialized mix independently
of the limitations of the host applications.

1. INTRODUCTION

There is today a growing interest in sound spatialization. The
movie industry seems to be shifting towards “3D” sound sys-
tems; mobile devices have radically changed our listening
habits and multimedia broadcast companies are evolving ac-
cordingly, showing substantial interest in binaural techniques
and interactive content; massively multichannel equipments
and transmission protocols are available and they facilitate the
installation of ambitious speaker setups in concert halls [1] or
exhibition venues.

In all these contexts, object-based production appears to be
the favored approach. In the paradigm of object-based spa-
tialization, an audio source is linked with side informations
and both streams are stored or transmitted to a rendering en-
gine which reproduces the spatial sound scene. Many object-
oriented spatialization processors are used (for instance: Sound
Element Spatializer [2], SoundScape Renderer [3], ICST Am-
bisonics Tools [4], Spatium [5], VBAP [6], HoaLibrary [7],
Zirkonium [8], Wave 1 [9], Spatialisateur [10], etc.), and from
a signal processing viewpoint they are efficient and they of-
fer great possibilities of rendering. However the authoring of
spatial sound scenes remains a major challenge. There are
several reasons for this. 1) Most of the previously mentioned
processors are integrated into realtime environments — such
as Max/MSP or PureData — which are inadequate to mixing
or spatial composing as they are ill-suited to manipulation of
temporal structures. 2) On the other hand, digital audio work-
stations (DAW) provide an efficient timeline and transport
bar, but they lack flexibility for multichannel streams: most of
the DAWSs only support “limited” multichannel tracks/buses
(stereo, 5.1 or 7.1) and inserting spatialization plugins is diffi-
cult and/or tedious. 3) Finally the absence of standardization

Copyright: (©2015 Thibaut Carpentier et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

or consensus on the representation of spatialization metadata
(in spite of several initiatives [11, 12]) complicates the inter-
exchange between applications.

This paper introduces ToscA, a plugin that allows to commu-
nicate automation parameters between a digital audio work-
station and a remote application. The main use case is the
production of massively multichannel object-oriented spatial-
ized mixes.

2. WORKFLOW

We propose a workflow where the spatialization rendering
engine lies outside of the workstation (Figure 1). This archi-
tecture requires (bi-directional) communication between the
DAW and the remote renderer, and both the audio streams and
the automation data shall be conveyed. After being processed
by the remote renderer, the spatialized signals could either
feed the reproduction setup (loudspeakers or headphones), be
bounced to disk, or be sent back to the DAW.

In the remainder of this paper, the remote spatialization ren-
derer (or equivalently the environment that hosts such renderer)
will be denoted by “auxiliary application”.

Digital Audio Workstation Remote application

Track #1

Audio #|
Buoncdun i Lt onons »
T Automation #|

spatialization

renderer
Track #2

S G
B il W
i

Audio #2

A 4

Automation #2

W

spatialized signals

Figure 1. Principle of object-oriented spatialization rendering with a remote
application.

Typically, the audio tracks to be spatialized are mono or
stereophonic, and the automation parameters refers to spatial
data (coordinates, and optionally orientation and/or directivity
data). Localization data are most frequently expressed with
3D Cartesian or spherical coordinates and are consequently
stored on three automation tracks.

mailto:thibaut.carpentier@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2.1 Audio transmission

The “remote rendering” workflow requires to transmit the au-
dio data from the DAW to the auxiliary application. There are
several ways to accomplish such inter-application communica-
tion, and two different use cases shall be distinguished:

o the two applications (DAW and auxiliary) runs on two dif-
ferent computers; in this case one just needs to physically
inter-connect the audio interfaces of each computer,

e both applications lie on the same computer. If possible, one
can physically connect the output channels of the DAW to
input channels of the auxiliary application. When hardware
connection is not possible, the routing can be made software,
e.g. using Jack ', SoundFlower ? or similar virtual drivers.
Some audio interface drivers also allow (software) internal
feedback without latency.

2.2 Automation transmission

For the transmission of automation data, a solution previously
used in various productions at Ircam (or elsewhere) was based
on the MIDI protocol. Indeed MIDI is widely used and per-
fectly supported in all DAWs and in auxiliary applications.
However this approach suffered from many limitations:

o setting up the DAW session is extremely tedious, inconve-
nient, and prone to errors,

e due to its low resolution (8 bits), the MIDI protocol is ill-
suited for encoding some spatialization parameters (e.g.
azimuth or distance of the sources),

e the number of objects that can be controlled is typically
limited by the number of available MIDI channels (i.e. 16),

e as MIDI messages are not typed, transmitted data are not
easily readable, which makes the session difficult to main-
tain.

As a consequence, it was decided to develop an ad-hoc tool:
ToscA aims at overcoming the constraints of the MIDI protocol
and it is based on the Open Sound Control protocol (OSC) [13]
which was chosen for its wide acceptance in the computer
music community and for its ease of integration.

3. TOSCA

ToscA* is a plugin that can be inserted on each audio track
of the DAW. The audio signals on these tracks are unaffected
(bypassed) but several parameters are exposed for automation.
In order to ensure compatibility with a wide range of DAW
softwares, the maximum number of exposed parameters is
restricted to 32.

During playback, active automation tracks are read by ToscA
and the corresponding OSC messages are sent over UDP.
When the automation tracks are armed for recording, ToscA
accepts incoming OSC packets from remote applications and
data are written in the sequencer.

1
2

http://jackaudio.org
http://rogueamoeba.com/freebies/soundflower

3 ToscA stands for Thibaut’s OpenSoundControl Automation.

ToscA
- i +*

®

ircam

iput port 4001 [~ [+ == Centre
@nnmm 4002 [-[+] Pompidou
output IP 127.0.0, | ping |
enable [l invert syntax ||
poliing rate 5 (-«

Figure 2. Interface of the ToscA plugin. @ selection of the ID of the plugin.
@ input/output UDP ports; destination IP. ® option to “invert” the syntax of
the messages. @ load or edit the configuration file.

ProTools Max/MSP

Track #I
Audio #|

et |
il 1\- A #T

Automation #I

Ircam Spat~

T

spatialized signals

Audio #2

|

Automation #2

Figure 3. Typical use case: ToscA running in ProTools and controlling Ircam’s
Spatialisateur in Max/MSP.

3.1 Syntax of the messages

Each instance of the ToscA plugin has an identifier (ID) which
can be adjusted by the user (see Figures 2 and 3). This ID
constitutes the root of the OSC address pattern of incom-
ing/outgoing messages. The syntax is as follows:
“/ID/ParameterName ParameterValue”

for instance: “/3/azimuth 135.0”

For the sake of simplicity, all parameters are treated as floating-
point numbers in double precision. Other OSC types are cur-
rently not supported.

3.2 Mapping file

ToscA is not tied to a specific spatialization renderer and the
exposed automation parameters are generic * . By default the
32 parameters are labelled paraml, param?2, etc. It is possi-
ble to tweak these labels by means of a XML configuration

4 Incidentally, ToscA is not limited to spatialization applications and it
could be used for any other purposes.

http://jackaudio.org
http://rogueamoeba.com/freebies/soundflower

file (called “mapping file”’). Examples of XML syntax are
presented in Figures 4 and 5.

In order to keep the setup easy and quick, it was decided
to share the names of the parameters between all instances
of ToscA. Whenever an XML configuration file is loaded (or
edited) in one instance, all other instances are updated accord-

ingly.

<?xml version="1.8" encoding="UTF-8" standalone="yes"?>

<tosca version="8.4">
<parameter index="1" name="x" min="-1@" max="1@" scaling="linear"/>
<parameter index="2" name="y" min="-1@" max="1@8" scaling="linear"/>
<parameter index="3" name="z" min="-1@" max="1@" scaling="linear"/>
</tosca>

Figure 4. Example of a mapping file: three automation parameters represent-
ing Cartesian coordinates.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<tosca version="0.4">
<parameter index="1" name="azim" min="-180" max="180" scaling="1linear"/>
<parameter index="2" name="elev" min="-90" max='"90" scaling="1linear"/>
<parameter index="3" name="gain" min="-60" max="0" scaling="linear"/>
<parameter index="4" name="aperture" min="@" max="180" scaling="linear"/>
<parameter index="5" name="orientation" min="-180" max="180" scaling="linear"/>
</tosca>

Figure 5. Another example of mapping file.

The XML file can further be used to specify a scaling range
for each parameter: within the DAW, automation tracks are
coded in the [0 — 1] range; ToscA performs a scaling from
[0 — 1] to the user-defined [min — max] range. The scaling is
applied on outgoing data and an inverse transform is applied
on incoming data. The benefits of such scaling transform are
twofolds:

e session setup is fast as no parameter mapping is needed in
the auxiliary application (unlike the MIDI approach pre-
sented in paragraph 2.2),

e it is possible to re-scale an existing mix by editing the [min
— max] range of one or several parameters. Indeed, it is com-
mon practice in sound spatialization to re-work an existing
piece depending on the size or acoustical properties of the
venue. For instance, artists often have to emphasize or de-
crease some spatial parameters (see e.g. [14]) such as the
radius of sound trajectories in order to “fit” the playback
room.

3.3 Touch/latch modes

When authoring spatial sound scenes, it is often necessary to
“touch” the trajectories several times using the DAW touch or
latch modes. In this case, the auxiliary application shall inform
the DAW of the beginning and end of the touch phase. ToscA
uses the following syntax:

“/ID/ParameterName touch 1”: start touching
“/ID/ParameterName ParameterValue”: update the parameter
value

“/ID/ParameterName touch 0”: stop touching.

010

L ¥ INSERTSAE

ToscA

o2 2 [-]+)
inputport 4001 | - |+ | ()
outputport 4002 [- [+ | ()

output IP 127.0.0.1 ()

Figure 6. ToscA inside ProTools. ® plugin inserted on track 1. @ list of
exposed parameters. @ plugin window. @ automation tracks.

[receie sutomaton rom Tosc

(e 0

gate

Spatoscruto /12

Satoscoute T stowouenni =

repenax. epenay | prepenaz ropenax | epenay | prepena z

L L

repond source 1 epend soure 2 Routo Incoming 0SC messages

i
Spatconverter @fomat xyz | convertto Cartesian
ot sourss
(o soure) e it DS et
w1z

ea2e20 Bz
@ foute 07 o 07
0 pack0.0,0, Wpack0.0.0.

2005 e 2648] (25547
181 My st Mizs1 12/x 81 121y 81 12281
iy i
i

send utomaton o Tosch
=

(Lpsend localhost 4001

Figure 7. Interfacing ToscA and Ircam Spatialisateur in Max/MSP: basic
example with two sources in spat.viewer.

This appears especially useful for editing spatial trajectories
with OSC-aware external devices such as Liine’s Lemur> or
Hexler’s TouchOSC© .

3.4 Software development

ToscA uses the Juce’ framework which provides a handy
plugin wrapper. ToscA is thus available in VST, VST3, AU,
AAX formats, for MacOS and Windows platforms (32 and 64

5 http://liine.net/en/products/lemur
http://hexler.net/software/touchosc

7 http://www.juce.com

http://liine.net/en/products/lemur
http://hexler.net/software/touchosc
http://www.juce.com

bit). It is freely distributed through Ircam Forum 8 .

4. CONCLUSION AND OUTLOOK

This paper presented ToscA, a plugin allowing OSC commu-
nication between a DAW and an auxiliary application. The
typical use case of object-oriented spatialized mixing has been
discussed.

ToscA is completely generic and it can control any type of
parameters. In practice, the sound engineers/composers’ needs
are essentially focused on spatial trajectories authoring. In
order to (even) better meet their expectations, a new plugin is
being developed: ToscA-Spat (Figure 8) builds on top of ToscA
and further integrates a graphical visualization of the sound
scene. It aims at providing a fast and intuitive workflow for
geometrical editing.

Figure 8. Preview of ToscA-Spat in Logic Pro. ToscA-Spat is based on Ircam
spat.viewer graphical interface.

5. ACKNOWLEDGEMENTS

The author would like to thank Alexis Baskind for valuable
feedback, ideas, and beta-testing.

6. REFERENCES

[1] M. Noisternig, T. Carpentier, and O. Warusfel, “Espro 2.0
— Implementation of a surrounding 350-loudspeaker array
for sound field reproduction.” in Proceedings of the 25"
Audio Engineering Society UK Conference, York, 2012.

[2] R. McGee and M. Wright, “Sound element spatializer,” in

Proceedings of the International Computer Music Confer-
ence, Huddersfield, 2011.

8 http://forumnet.ircam.fr/product/spat/tosca/

[3] M. Geier and S. Spors, “Spatial Audio Reproduction with
the SoundScape Renderer,” in Proceedings of the 27"

Tonmeistertagung — VDT International Convention, Koln,
Nov 2012.

[4] J. C. Schacher, “Seven years of ICST ambisonics tools
for Max/MSP - a brief report,” in Proceedings of the 2"¢
International Symposium on Ambisonics and Spherical
Acoustics, Paris, May 2010.

[5] R. Penha and J. P. Oliveira, “Spatium, tools for sound
spatialization,” in Proceedings of the Sound and Music
Computing Conference, Stockholm, 2013.

[6] V. Pulkki, “Generic Panning Tools for Max/MSP,” in Pro-
ceedings of the International Computer Music Conference,
Berlin, 2000.

[7]1 A. Sédes, P. Guillot, and E. Paris, “The HOA library, re-
view and prospects,”’ in Proceedings of the International
Computer Music Conference / Sound & Music Computing
conference, Athens, 2014.

[8] C. Ramakrishnan, ‘“Zirkonium: Non-invasive software for
sound spatialisation,” Organised Sound, vol. 14, no. 3, pp.
268 — 276, Dec 2009.

[9] E. Corteel, P. Glaettli, R. Foulon, R. Frauly, I. Hahn,
R. Heiniger, and R. S. Pellegrini, “3D speaker manage-
ment systems — Mixer integration concepts,” in 28" Tonn-

meistertagung VDT International convention, Koln, Nov
2014.

[10] J.-M. Jot, “Real-time spatial processing of sounds for
music, multimedia and interactive human-computer inter-
faces,” ACM Multimedia Systems Journal (Special issue

on Audio and Multimedia), vol. 7, no. 1, pp. 55 — 69, 1997.
[11]

J. Bresson and M. Schumacher, “Representation and in-
terchange of sound spatialization data for compositional
applications,” in Proceedings of the International Com-

puter Music Conference, Huddersfield, 2011.

[12] N. Peters, T. Lossius, and J. C. Schacher, “The Spatial
Sound Description Interchange Format: Principles, Speci-
fication, and Examples,” Computer Music Journal, vol. 37,

no. 1, pp. 11 —22,2013.

[13] M. Wright, A. Freed, and A. Momeni, “Open Sound Con-
trol: State of the Art 2003,” in Proceedings of the Interna-
tional Conference on New Interfaces for Musical Expres-

sion, Montreal, 2003, pp. 153 — 159.

[14] N. Peters, G. Marentakis, and S. McAdams, “Current Tech-
nologies and Compositional Practices for Spatialization: A
Qualitative and Quantitative Analysis,” Computer Music

Journal, vol. 35, no. 1, pp. 10 - 27, 2011.

http://forumnet.ircam.fr/product/spat/tosca/

	 1. Introduction
	 2. Workflow
	2.1 Audio transmission
	2.2 Automation transmission

	 3. ToscA
	3.1 Syntax of the messages
	3.2 Mapping file
	3.3 Touch/latch modes
	3.4 Software development

	 4. Conclusion and Outlook
	 5. Acknowledgements
	 6. References

