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ABSTRACT
The Web Audio API is a powerful new platform for audio
rendering within the browser and it provides a great oppor-
tunity for large deployment of audio applications. This paper
explores the possibilities and limitations of the API for 3D
sound spatialization based on binaural synthesis over head-
phones. The paper examines different processing structures
and presents a new web-based server which allows the user
to load individualized Head-Related Transfer Functions from
a remote database.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing; D.3.2 [Programming Languages]:
Language Classifications; D.2.2 [Software Engineering]:
Design Tools and Techniques

General Terms
Algorithms

Keywords
Sound spatialization, binaural rendering, 3D audio, Web Au-
dio API, virtual loudspeakers, HRTF

1. INTRODUCTION
The way audiovisual media is consumed and experienced

has changed substantially in recent years with the widespread
use of mobile devices. The number of audiovisual content
sources is multiplying, our exposure to media is increasing and
the time devoted to it is rising steadily. Almost all mobile
phones and tablet computers are now capable of playing
music and/or video and they typically come with a stereo
headset. Basically everybody who owns a mobile phone is
thus a potential headphone user, and listening habits are
evolving accordingly.

At the same time 3D technologies are also developing with
the intention of providing the user with increased sensations
of space. Concomitantly with the rise of 3D movie produc-
tions, 3D audio content for audio and audiovisual consumer
applications is emerging.
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The expression “binaural technology” covers various meth-
ods of sound recording, synthesis and reproduction, which
allow for delivering 3D spatial audio content over headphones.
For instance, binaural recordings can be made by placing
(miniature) microphones in the ear canals of a listener; when
played-back over headphones such recordings can produce
authentic auditory experience including its spatial aspects.
On the other hand, binaural signals can be synthesized by
digital signal processors in order to virtually position a sound
arbitrarily around a listener. Such spatialization method com-
pletely overcomes the limitations of conventional stereophonic
techniques.

Along with the fifth revision of the HTML standard, the
World Wide Web Consortium (W3C) is developing a new
application programming interface (API) for processing and
synthesizing audio in web applications: the Web Audio API
(WAA) provides specifications and description of a high-level
JavaScript (JS) API for audio rendering in the browser [22].
Its goal is to include capabilities for mixing, processing, filter-
ing and other common digital audio tasks. The WAA relies
on an audio graph paradigm where a number of node objects
are connected together to define the overall signal chain. In
addition to the audio nodes natively provided by the API it
is also possible to write custom effects directly in JS.

The global context (societal, cultural, technological and
economical) thus creates favourable conditions for the devel-
opment and large deployment of binaural audio applications
and content. To that purpose, the Web Audio API appears
as a tool to potentially reach broader audience, adapt pro-
ductions to new listening habits and also to explore new
paradigms (e.g. collaborative spatialization, mobile interac-
tive applications). As a matter of fact, several initiatives
have already been launched e.g. by major broadcast insti-
tutions: in 2013, Radio France presented nouvOson [17], a
web platform dedicated to multichannel and binaural audio
productions (documentaries, dramas, music, etc. available in
5.1 or binaural format); similarly BBC Radio [2] uses the
WAA to broadcast radio drama or live orchestral music also
in 5.1 and binaural format; etc.

The intention of this paper is to relate the development
of various prototypes for binaural synthesis using the WAA.
It is not our aim to release a “ready-to-distribute” binaural
application, but to discuss the possibilities and limitations
of the current WAA for such kind of signal processing. This
work can thus be helpful to developers willing to create their
own binaural processors.



This paper is organized as follows: Section 2 briefly presents
the principle of binaural synthesis. Section 3 relates the imple-
mentation of a binaural panner with HRIR implemented as
finite impulse response filters. In Section 4 we investigate the
use of parametric models of HRTFs within the Web Audio
API. Section 5 presents a HRTFs file format which allows
for server/clients usage. Finally Section 6 evokes possible
applications or future extensions.

2. BINAURAL TECHNOLOGY
The term “binaural hearing” refers to being able to inte-

grate information that the auditory system and the brain
receive from the two ears. Indeed our auditory percepts
are essentially built on the basis of two inputs, namely the
sound-pressure signals captured at our two eardrums. One
remarkable property of humans’ binaural hearing is its ability
to localize sound in three-dimensional space to an accuracy of
a few degrees. It is the direction-dependent characteristics of
the sound signals reaching our two ears which enable us to lo-
calize the sound sources. Psychophysical studies have shown
that various mechanisms are involved in the human audi-
tory system for sound localization [24]. For sounds located in
the horizontal plane, the angular direction is predominantly
determined from interaural time differences (ITD) and inter-
aural level differences (ILD), whereas sound elevation mainly
depends on direction-dependent spectral cues generated by
the obstruction of an incoming sound wave by the listener
(diffraction and scattering effects of the pinna, head, and
torso).

These acoustic interactions of an incoming sound with the
listener’s anatomy can be described by spatial filters called
head-related transfer functions (HRTFs) or equivalently head-
related impulse responses (HRIRs). HRTFs completely and
uniquely capture all linear properties of the sound transmis-
sion and they contain all proposed descriptors of localization
cues.

As a consequence, any sound source can be virtually sim-
ulated anywhere in the 3D auditory space by filtering an
audio signal with the HRTFs corresponding to the desired
location and presenting the resulting binaural signals over
headphones (cf. Fig 1). Such audio processing is denoted
“binaural synthesis”.

Figure 1: Left and right HRTFs for a source located
at (θ, φ).

Since they depend on anatomic features such as the size
and shape of head and ears, the cues for sound localization
(especially the spectral cues) are idiosyncratic and HRTFs
differ considerably among individuals. Measuring the HRTFs
of a listener is a tedious task and it is yet restricted to
a few laboratories (the measurements are often made in
anechoic conditions). However databases of HRTFs for several
hundreds of human subjects are available (see e.g. [36][26])
and can be used in a binaural synthesizer.

3. BINAURAL SYNTHESIS USING HRIR
After measurement and post-processing, HRTFs are usu-

ally stored as a set of finite impulse response (FIR) filters
represented in the z-domain:

HRTFk (θ, φ) =

N−1∑
n=0

bk,n (θ, φ) · z−n (1)

where k = l or r for the left or right ear respectively and
{bk,n (θ, φ)}n∈[0..N−1] are the N filter taps for a source lo-
cated at azimuth θ and elevation φ.

Given a source signal x(t), the binaural signals for simu-
lating the source at (θ, φ) are obtained by filtering:

yl(t) = HRTFl (θ, φ)∗x(t)

yr(t) = HRTFr (θ, φ)∗x(t) (2)

Such linear convolution is an expensive operation cpu-wise
(even though HRTFs are usually only a few milliseconds long).
It can however be efficiently implemented thanks to trans-
formation to the spectral domain (complexity O(N log2N)
instead of O(N2)).

3.1 The PannerNode Interface

3.1.1 Current implementation
The Web Audio API provides a PannerNode which allows

to spatialize an incoming audio stream in three-dimensional
space. The PannerNode currenlty supports two panning algo-
rithms: an equal-power panning law and a so-called “HRTF
algorithm” which performs binaural synthesis (and which
turns out to be the default mode of the PannerNode). Al-
though the specifications crucially lack documentation on
this topic, one can get more insights e.g. by examining the un-
derlying source code for open-source browsers such as Google
Chrome or Mozilla Firefox. For this PannerNode Google
Chrome relies on the Blink engine [7] which is a fork of the
WebCore component of WebKit. Similarly Mozilla Firefox
uses its own fork of Blink. Google Chrome and Mozilla Firefox
are then based on the same rendering engine.

The Blink implementation code synthesizes the binaural
signals through FFT-based convolution. The convolution
kernel is not partitioned thus introducing an extra latency
of half the FFT size. The source code embeds one set of
HRTFs which, according to the code comments, is derived
from the IRCAM Listen HRTF Database [36] through aver-
aging of the (diffuse-field equalized) impulse responses and
truncation to 256 samples at 44.1 kHz sampling rate (i.e.
half the length of the original IRCAM HRTFs). For other
sampling rates, the truncated responses are resampled. The
resulting HRTF dataset is dubbed “IRC Composite”. In or-
der to further reduce the computational cost, the HRIRs are
again truncated upon loading in the processing engine: a
leading delay is determined (as the average group delay) and



rendered by a delay line while the remaining part of the im-
pulse response is loaded into the convolver(s). Whenever the
source position is changed (through the setPosition method
of the PannerNode), the delay lines and the kernels of the
convolvers are updated accordingly. The varying delay is im-
plemented by linear interpolation in-between the delay times
with a smoothing time of 20 milliseconds. On the output of
the convolvers a linear crossfade is applied with a transition
time of 45 milliseconds.

Strangely enough, the HRTF panning mode of the Pan-
nerNode also supports stereo input streams, in which case
the output signals are computed as:

yl(t) = HRTFl (θ, φ)∗xl(t)
yr(t) = HRTFr (θ, φ)∗xr(t) (3)

The interpretation of such formulae is doubtful.

3.1.2 Limitations
It is very much appreciated that the WAA provides binaural

synthesis capabilities and the current implementation offers
very decent spatialization effects. However we believe that
the current API could be slightly improved in order to further
widen the field of possibilities and provide an even better
user experience.

It is known that non-individualized HRTFs may suffer
from many limitations (in-head localization, inaccurate lat-
eralization, poor vertical effects, weak front-back distinction,
unwanted coloration effects, etc.). The fact that the WAA is
constrained to one set of HRTFs is thus a restriction both
for the end-users and for the application developers. Offer-
ing the possibility to load other sets of HRTF data would
allow i) the user to select HRTFs that “suit” him/her and
ii) the developers/researchers to create new applications;
for instance the WAA could become a platform for large
scale investigation and evaluation of binaural reproduction
and for assessing individualization techniques (customization
methods, adaptation process, etc.).

In addition to that, we believe that the API should provide
further details and documentation on the HRTF set currently
in use (which technique was used for averaging the data, what
motivated the half-length truncation, etc.) as this may have
a great impact on the spatial quality of the renderer.

It is worth noting that the underlying C++ implementation
of the PannerNode supposedly has the possibility to load
other HRTF sets, although this feature is not available in
the high-level JS API.

3.2 The BinauralFIRNode
Individualization of HRTFs is a large field of research and

one core topic of the BiLi project [3]. In order to overcome
the current limitations of the PannerNode we developed a
new binaural synthesis engine which allows to load custom
HRTFs data set and to process them as FIR filters. The
implementation is straightforward as it only relies on native
nodes: HRIRs are loaded into AudioBuffers structures in
order to be used as filter kernels of the ConvolverNodes
which perform the HRIRs convolution. Whenever the source
is moved in space the kernels are updated according to the
new position and GainNodes are used to apply a crossfade
(with adjustable duration) for smooth transition. A schematic
of the audio graph is depicted in Fig. 2. The resulting audio
processor is called BinauralFIRNode; the JS source code is

made publicly available [5] and released under the BSD-3-
Clause license.

The Source Position Manager can be further improved by
building a k-d tree of all HRTF positions (upon loading a
new HRTF set). This makes all further queries on the data
set much faster than a brute force nearest neighbor search
(complexity O(logn) instead of O(n)). Several JS k-d tree
implementations can be found (e.g. [14] has been successfully
used).

A minimalistic graphical user interface has been developed
(Fig. 3) using jQuery-Knob [15]. It is obviously possible to
spatialize multiple sources simultaneously by inserting several
BinauralFIRNodes in the audio graph. Fig. 4 presents another
user interface with multiple sources.

Figure 2: Overview of the BinauralFIRNode (for the
sake of simplicity, the processing chain is displayed
for one ear only; the processing is similar (i.e. two
GainNodes and two ConvolverNodes) for the other
ear.

Figure 3: Minimalistic user interface for controlling
the azimuth and elevation angle of one sound source.



Figure 4: Another user interface (view from above)
with multiple sources. The black circles represent
sound sources. Clicking on a circle allows to edit the
azimuth, elevation and select the associated sound
file. It is also possible to dynamically add or remove
source elements.

4. BINAURAL SYNTHESIS USING PARA-
METRIC MODELS

For practical real-time applications, HRTFs are frequently
approximated by a model in order to avoid heavy process-
ing cost. This section presents a commonly used model of
minimum-phase + pure-delay HRTF approximation [28].

4.1 Monaural delay and minimum-phase fil-
ter

4.1.1 Background
Being a causal and stable filter, an HRTF can be decom-

posed into a minimum-phase part Hmin component and an
all-pass component Hexc:

HRTF = mag · exp (i · ϕ)

= mag · exp (i ·mph) · exp (i · exc)
= Hmin ·Hexc (4)

with i =
√
−1 the imaginary number andHexc = exp (i · exc).

The phase ϕ of each HRTF is thus decomposed into the
minimum-phase mph and the phase of the all-pass component
i.e. the excess phase denoted exc. The minimum-phase mph
is related to the magnitude spectrum through the Hilbert
transform H (see [34], section 11):

mph = ={H (− log (mag))} (5)

where ={·} represents the imaginary part. The excess phase
of HRTF is usually almost linear (up to approximately 8
or 10 kHz) [32][28] and the phase information of the higher
frequencies is not used by the auditory system to estimate
the directions of arrival. It is thus possible to build a simpli-
fied model of HRTF where the all-pass component Hexc is
replaced by a pure delay τ (which of course depends on the
direction (θ, φ) of the HRTF). This pure delay is referred to
as monaural delay.

Ultimately, filter design techniques can be applied in order
to approximate the minimum-phase part of HRTF Hmin

with an infinite impulse response (IIR) filter [27][28]. Due to
numerical stability reasons (see [34], section 6), the resulting

IIR digital filter needs to be decomposed into a cascade of first
order or second order sections (also known as biquad filters).
For the sake of simplicity, we will consider only second-order
sections for the remainder of this paper (anyway first-order
sections can be seen as a particular case of second-order
sections).

In summary, the parametric model consists in approximat-
ing each HRTF with a minimum-phase cascade of second
order sections (magnitude spectrum) and a monaural delay.
Several perceptual studies (see e.g. [37][27]) have shown the
validity of such simplified model.

Besides computational efficiency, this parametric model
may also be interesting e.g. in case of non-individualized
listening: indeed it would be possible to scale the monaural
delays according to the radius of the listener’s head, which
is a first step towards individualization of HRTFs.

The remainder of this section relates the implementation
of such parametric model with the WAA.

4.1.2 SecondOrderSectionsNode
In the WAA, second-order filters (two poles two zeros) are

implemented in the BiquadFilterNode. The public interface of
this node provides access to the filter type (“lowpass”, “high-
pass”, etc.) and standard control parameters: cutoff frequency,
gain and resonance factor (Q). In the underlying low-level
code, the control parameters are mapped to the coefficients of
the filters thanks to well-known “cookbook formulae”. Unfor-
tunately it is not possible for the JS developer to directly set
the filter coefficients, making the BiquadFilterNode unusable
for filter design techniques.

In order to overcome this limitation, we developed a custom
JS biquad node. This custom node offers the possibility to:

• directly set the low-level filter taps (numerator and
denominator of the z-domain filter); it is however the
caller’s responsibility to ensure that the coefficients
provided are stable;

• serially-cascade several second-order sections.

The source code of this node has been released [6].

Two main issues were faced during the development of this
module:

• at the time of writing, custom effects are handled by
the ScriptProcessorNode which can process audio di-
rectly using JS. The major drawback of this node is
that it runs in the main UI thread (rather than in the
audio processing thread); this makes it sensitive to
UI interactions, such as resizing the browser window,
which may break realtime constraints and provoke au-
dio dropouts. Fortunately it seems that forthcoming
versions of the WAA will solve this issue by introducing
the AudioWorkerNode.

• as most recursive process, biquad filters may generate
denormalized numbers (depending on the hardware be-
ing used). It is known that denormalization processing
can cause serious performance issues and cpu-spikes.
Unfortunately it is not possible to “flush-to-zero” denor-
malized numbers within the ScriptProcessorNode. We
had to use a common workaround consisting in adding
a small inaudible DC offset in the feedback loop.



4.1.3 FractionalDelayNode
The monaural delays τ (or similarly the ITD) of the para-

metric model need to be implemented with variable fractional
delay lines [29] (indeed, rounding delays to the nearest integer
would result in approximately 3 degrees of error in perceived
angle of arrival [27]).

The WAA DelayNode implements variable delay lines. As
stated in the WAA specifications, a mechanism guarantees
smooth transition (“without introducing noticeable clicks
or glitches to the audio stream”) when the delay time is
varying. In the current Google Chrome and Mozilla Firefox
code, this is achieved by means of a linear interpolation
of the delay line. Linear interpolation is a particular case
of 1st order FIR Lagrange interpolator. It is known that
FIR Lagrange interpolators provide a good approximation
of fractional delay for low frequencies [29]: their magnitude
response is maximally flat about the DC; however it rolls off
very quickly (especially for low-order filters), resulting in a
low-pass filtering of the signal. One possible alternative is
to approximate the fractional delay with IIR all-pass filters
such as Thiran interpolators (unity magnitude response in
the whole frequency band and maximally flat group delay at
the DC frequency).

Similarly to the custom SecondOrderSectionsNode (Sec-
tion 4.1.2) we developed a custom JS fractional delay node
using 1st order IIR Thiran allpass interpolator [9]. The node
could easily be extended to other interpolation schemes.

4.1.4 Overall architecture
The overall architecture (see Fig. 5) of the parametric pro-

cessor is quite similar to the BinauralFIRNode; when varying
the position of the source, the HRTF manager updates the
monaural delay (updating the FractionalDelayNode) as well
as the minimum-phase filters (i.e. the coefficients of the Sec-
ondOrderSectionsNode); GainNodes are used to crossfade
during the transition state.

The JS implementation of the complete processor is re-
leased on GitHub [4].

4.2 Other parametric models
Several other parametric models have been proposed in

the literature. Popular approaches are:

• physical modeling: this relies on analytical models of
the HRTFs based on simplified geometrical descriptions
of the head (e.g. spherical head model),

• perceptual modeling: this tries to construct perceptually
relevant sets of HRTFs based on statistical analysis (e.g.
averaging or multidimensional analysis).

Anyway, from a signal processing point of view, most of the
proposed parametric models end up with filters structures
that can be implemented in the WAA with either Secon-
dOrderSectionsNode, ConvolverNode, FractionalDelayNode
or any combination of the latter. These three processing
nodes thus constitute a useful toolbox for most developers
willing to create a binaural synthesis engine.

Figure 5: Overview of the BinauralParametricNode
(for the sake of simplicity, the processing chain is
displayed for one ear only; the processing is simi-
lar (i.e. one FractionalDelayNode two GainNodes and
two SecondOrderSectionsNode) for the other ear.

5. HRTF FILE FORMAT
In 2013 a new data format for storing and exchanging

HRTFs was proposed [30]: the Spatially Oriented Format for
Acoustics (SOFA) is a self-described, network-transparent,
machine-independent data format that supports the creation,
access, and sharing of array-oriented spatial acoustic data.
SOFA prescribes a set of specifications for consistent descrip-
tion of data and on top of these specifications, field-specific
conventions can be elaborated; e.g. the SimpleFreeFieldHRIR
convention represents HRTFs measured in free-field with an
omnidirectional source and stored as impulse responses; the
SimpleFreeFieldSOS convention (currently under discussion
with the SOFA board) stores data with the parametric model
described in Section 4. Main HRTFs databases are already
available under the SOFA format [19] and APIs are provided
for reading/writing data [20]. Furthermore the SOFA format
was recently approved by the AES subcommittee SC-02 and
assigned to the working group SC-02-08 on audio file inter-
change; this initiative is referred to as “AES-X212 HRTF file
format standardization project” [1].

5.1 SOFA architecture
SOFA builds on top of netCDF [16] in order to re-use and

benefit from existing powerful, widely used, data formats.
The general architecture of the SOFA library is depicted in
Fig. 6. From bottom to top:

• zlib [21] is used for data compression,

• HDF5 [10] is the numerical container,

• HDF5 HL is a high-level API to HDF5,

• curl [8] is used for remote data transfers (see Sec-
tion 5.2),



• netCDF4 [16] is the data format,

• netCDF C++ is a high-level API to netCDF4,

• the SOFA library itself has two layers: one layer im-
plements the SOFA specifications i.e. the requirements
common to all kinds of SOFA files (not only HRIR);
another layer implements the different sets of SOFA
Conventions (such as e.g. the SimpleFreeFieldHRIR
convention).

Figure 6: Architecture of the SOFA library.

5.2 SOFA and OpenDAP
As SOFA relies on netCDF, it is compatible with the Open-

source Project for a Network Data Access Protocol (Open-
DAP, [18]). OpenDAP includes standards for encapsulating
structured data and allows for data transport over HTTP.
More specifically an OpenDAP server can host a collection of
data (typically in HDF or netCDF format) and serve them
to remote clients (see Fig. 7) such as web browsers, web
applications, graphics programs or any DAP-aware software
(e.g. Mathworks Matlab). Hyrax [12] is an OpenDAP server
that supports the netCDF format. An Hyrax server has been
installed at IRCAM [13] in order to host HRTF databases
under the SOFA format.

Figure 7: Remote access to SOFA HRTFs files
through OpenDAP protocol.

Standard HTTP requests can be sent to the OpenDAP
server in order to query the metadata of the files or to retrieve
the numerical data (in whole or partially). The queries come
in the form of specially formed URLs and the replies consist

of MIME documents. All the requests start with a root
URL, and they all are in the form of a GET, using a suffix
on the root URL and a constraint expression to indicate
which service is requested and what the parameters are. For
instance the OpenDAP ASCII Service returns an ASCII
representation of the requested data. Given a root URL:
http://hrtf.ircam.fr/listen/irc_1002.sofa

one can send ASCII requests to the server by appending
suffix “.ascii?” to the URL:
http://hrtf.ircam.fr/listen/irc_1002.sofa.ascii?

The server returns a simple text message containing all the
numerical data. It is further possible to query a single variable
within the sofa file, e.g.:
http://hrtf.ircam.fr/listen/irc_1002.sofa.ascii?SourcePosition

returns the matrix of source positions (with coordinates given
by azimuth, elevation and distance):

SourcePosition[0], 0, -45, 1.95
SourcePosition[1], 15, -45, 1.95
SourcePosition[2], 30, -45, 1.95
SourcePosition[3], 45, -45, 1.95
SourcePosition[4], 60, -45, 1.95
...

Such HTTP requests can be easily performed from JS code
using the XMLHttpRequest, then parsed with e.g. regular
expressions, such that an HRTFs loader can be directly inte-
grated within a binaural processor in the WAA. In summary
Fig. 8 depicts a diagram of a general framework for a binaural
synthesizer running in a web browser and fetching HRTFs
from a remote server (discussing the possibilities and difficul-
ties of audio/video streaming to the WAA is however beyond
the scope of this paper).

Figure 8: General framework of a binaural processor
in the Web Audio API.

6. APPLICATIONS AND POSSIBLE EXTEN-
SIONS

Binaural synthesis is potentially useful in many applica-
tions where spatial sound information is of importance. This
is the case in various contexts such as virtual reality, gam-
ing, computer music, telecommunications (e.g. audio/video
chat), advanced human-computer interfaces, auralization of
architectural acoustics [28], etc. It is not the purpose of this
paper to detail all of them; Section 6.1 emphasizes one par-
ticular example which appears to be valuable to TV or radio
broadcasting [17][2].

http://hrtf.ircam.fr/listen/irc_1002.sofa
http://hrtf.ircam.fr/listen/irc_1002.sofa.ascii?
http://hrtf.ircam.fr/listen/irc_1002.sofa.ascii?SourcePosition


6.1 Multichannel downmixing
Multichannel audio/visual contents are mostly produced

with a channel-based approach: the audio file or audio stream
consists of M channels where each channel conveys the signal
feeding one loudspeaker of a predefined multichannel layout
(such as 5.1 ITU-R BS 775 or other surround configurations).
The multichannel stream can be “downmixed” using binau-
ral synthesis based on the “virtual loudspeakers” paradigm
([25][31][33][35]): the HRIRs corresponding to the position
of each virtual speaker is convolved with that speaker feed
and the convolution products for each of the ears are then
summed giving the binaural signal for each ear.

In this approach it might also be helpful to use Binaural
Room Impulse Responses (rather than HRIRs measured in
anechoic conditions) or to add artificial reverberation with
ConvolverNodes as room effect is known to positively affect
externalization and depth perception (see e.g. [28][24][23]).

With such virtual speakers technique the broadcasting
server delivers a unique version of the audio production,
and on the client side the user is able to decode the stream
according to its listening conditions (either headphones or
surround speakers if available).

6.2 Head-tracking
In everyday perception we use head motion along with our

aural and visual senses. The introduction of head-tracking
device into binaural systems is therefore a crucial step as it
introduces interaction of the processor and the listener. The
proficiency of dynamic synthesis has been demonstrated (e.g.
[28][23]) notably to reduce front/back reversals or to resolve
cone-of-confusion errors, even for non-individualized listening
conditions.

A basic dynamic processor has been implemented in the
WAA using head-tracking via a standard webcam camera. We
used the headtrackr JS library [11] which was straightforward
to integrate; the library regularly generates face tracking
events which are used to update the positions of the sources
of the SecondOrderSectionsNode. Informal listenings revealed
satisfactory rendering with acceptable latency; anyway more
detailed listening experiments should be done in the future.

6.3 Cross-talk cancellation
Future work may consider the implementation of a cross-

talk cancellation (CTC) processor for transaural reproduction
[28]. CTC is required to transcode binaural signals for stereo
speakers restitution; this enables 3D spatialization effects
with only a pair of transducers (however with the constraints
that the listener is located at the sweet spot of the system, and
that the loudspeakers are far enough from walls or obstacles
so that acoustical reflections can be neglected). Coding a
CTC node with the WAA is rather straightforward: it only
implies ConvolverNodes or SecondOrderSectionsNodes (if the
CTC are implemented with FIR or IIR filters respectively),
and no crossfading is involved in the audio graph (as CTC
depends only on the loudspeakers span).

7. CONCLUSIONS
This paper discussed the use of the Web Audio API for

binaural synthesis applications. The WAA opens up new
perspectives and offers great opportunities for deployment
of binaural applications in many contexts. However several
restrictions of the current API were pinpointed (not possible

to load custom HRTFs set or to directly set Biquad filter
coefficients, ScriptProcessorNode suffering from interferences
with the UI thread, etc). Several processing nodes were devel-
oped, extending the capabilities of the current PannerNode.
Finally we presented an OpenDAP server allowing for remote
access to HRTF databases.
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