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Seeing the Unseen: Revealing Mobile Malware

Hidden Communications via Energy Consumption

and Artificial Intelligence
Luca Caviglione, Mauro Gaggero, Jean-François Lalande, Wojciech Mazurczyk, and Marcin Urbański

Abstract—Modern malware uses advanced techniques to hide
from static and dynamic analysis tools. To achieve stealthiness
when attacking a mobile device, an effective approach is the
use of a covert channel built by two colluding applications
to locally exchange data. Since this process is tightly coupled
with the used hiding method, its detection is a challenging
task, also worsened by the very low transmission rates. As a
consequence, it is important to investigate how to reveal the
presence of malicious software by using general indicators such
as the energy consumed by the device. In this perspective, the
paper aims to spot malware covertly exchanging data by using
two detection methods based on artificial intelligence tools such as
neural networks and decision trees. To verify their effectiveness,
seven covert channels have been implemented and tested over a
measurement framework using Android devices. Experimental
results show the feasibility and effectiveness of the proposed
approach to detect the hidden data exchange between colluding
applications.

Index Terms—Energy-based malware detection, covert chan-
nels, colluding applications, neural networks, decision trees.

I. INTRODUCTION

Modern malware uses advanced techniques to defeat static

analysis tools or live detection systems. Even if designing

a malware is nowadays considered quite common [1], the

most advanced programmers try to hide malicious behaviors

by using different techniques, such as the repackaging of

legitimate applications or the obfuscation/ciphering of code.

Besides, by automating such mechanisms, a single attacker can

add malicious code to several applications that may be sent
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to alternative markets. As a consequence, classical signature-

based methods have limited results [2].

One of the most advanced mechanisms used by malware

to exfiltrate information or to bypass the security frameworks

of mobile devices relies upon information-hiding techniques

to exchange data between different processes. Especially, as

in the case of smartphones, a local covert channel can be

used to setup a communication path between two colluding

applications to extract personal information [3], [4]. As it has

been observed in [5], mobile devices are particularly prone to

hidden-communication attacks due to their variety of hardware

resources, as they incorporate cameras, GPS, WLAN, Blue-

tooth, cellular networks, and many sensors. Moreover, mal-

ware developers turned a significant portion of their attention

to mobile devices, leading to an increase of 1800% in mobile

malware over the past two years [6]. Therefore there is an urge

for research efforts to design original countermeasures and

enable early prevention. Unfortunately, this is very difficult

since the detection strictly depends on the type of covert

channel. For instance, exploiting electromagnetic signals to

covertly transmit data is very different from manipulating the

statistics of the available RAM to embed secrets [5]. Addi-

tionally, covert channels typically achieve limited bandwidths,

thus increasing the complexity of finding out whether a hidden

exchange is ongoing.

In this perspective, a promising approach aims at exploit-

ing general information to detect covert channels. A recent

debate has emerged about the possibility of using the power

consumption as an indicator to identify malicious activities.

Despite [7] claims that malware cannot be detected by high-

level applications measuring energy consumption of processes,

other works demonstrate that proper power measurements can

reveal some threats [8]–[10].

In this paper, we show the feasibility of using measure-

ments of the energy consumed by a device to detect malware

exploiting a covert channel. To this aim, we have implemented

five popular covert channels available in the literature targeting

the Android platform [4], [11], together with two new ones.

Further, we have developed an experimental setup to quantify

the energy consumption of the software components running

on a mobile device. In more details, we have used measure-

ments provided by the high-level model of PowerTutor [8]

together with values available in the /sys portion of the file

system [10], [12].

To perform the detection, we developed an approach based

on two well-known artificial intelligence tools, i.e., neural

http://dx.doi.org/10.1109/TIFS.2015.2510825
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networks [13] and decision trees [14]. They are able to learn

from a set of past collected energy measurements whether

hidden communication is present, and then reveal threats.

Specifically, two detection methods have been developed, each

one using both neural networks and decision trees. The first

approach requires the solution of a regression problem to

predict the future behavior of energy consumption. A hidden

communication is spotted if the difference between the actual

and predicted consumption exceeds a certain threshold. The

second method is based on a classification problem, and

provides information on hidden communications by using a set

of features characterizing the energy behavior of the device.

The considered artificial intelligence tools have been already

used to reveal malicious code [15], [16] or to prevent the

execution of hazardous software on Android devices [17].

However, no previous works using energy consumption to spot

information-hiding-capable malware exist in the literature.

To summarize, the main contributions of this paper are:

(i) showcase the feasibility of using energy footprints for

the detection of malware implementing information-hiding

techniques, (ii) the creation of an ad-hoc testbed and a hybrid

measurement method to characterize seven covert channels,

including two new implementations, and (iii) the development

of two “intelligent” frameworks to perform the detection with

low computational requirements.

The rest of this paper is structured as follows. Section II

reviews the literature dealing with the detection of malware by

using energy measurements. Section III details the reference

scenario and the considered covert channels, while Section IV

describes the methodology used for the measurements of

power consumption. Section V introduces the two detection

methods based on neural networks and decision trees, and

Section VI discusses experimental results. Finally, Section VII

concludes the paper.

II. RELATED WORKS

Anomaly detection using energy footprints has been par-

tially investigated in the literature, primarily for malware and

network attacks. However, at best of the authors’ knowledge,

it has never been applied to covert channels.

In general, energy-based anomaly detection methods are

grouped according to how measurements are performed. In

more details, we have the following approaches.

1) System-based [7], [18]–[20]: an energy footprint is cre-

ated by considering the whole consumption of the device

or some specific sets of applications and/or hardware

parts. The obtained data represents the “clean system”

that serves as a baseline for malware discovery.

2) Application-based [21]: similarly to the previous case,

an energy footprint is created for a well-defined pool

of applications (e.g., games), and each one is measured

separately. The collected traces are then compared at

runtime against the data obtained with a single-process

granularity.

3) User-based [22]–[24]: an energy footprint is created by

analyzing the typical behavior of users and the related

power consumption. This also includes, for instance, the

applications and device features that are active, as well

as their timing statistics.

4) Attack-based [9], [10], [25]–[27]: measurements are done

while real attacks or malicious malware activities are

performed in a controlled environment. The acquired

traces form a database of energy signatures used for the

detection.

It is worth noting that methods belonging to the first three

groups can potentially deal with unknown threats, while the

last one only allows to recognize attacks for which signatures

are available.

Concerning system-based methods, Jacoby et al. [19]

demonstrated how to reveal network attacks by using a

battery-based Intrusion Detection System (IDS) analyzing the

power consumption and the utilization levels of some critical

hardware/software components like the CPU. Later, Nash

et al. [20] proposed to estimate the energy footprint of a

desktop computer by using a multiple linear regression model

considering the CPU load, read/write accesses to the storage

unit, and network transmissions. To evaluate the presence of

malicious activities, the measured parameters are combined

with performance data counters available in the operating

system, and the results are compared with different thresholds.

Such approach was proven to be effective, but its main

drawback is the complexity to compute proper numerical

values for the needed thresholds. Liu et al. [18] proposed

the VirusMeter tool for Symbian smartphones that computes

the energy profile for the whole “clean” system. The user

is alerted by using a heuristic to compare the actual energy

consumption with a reference value. Lastly, Hoffman et al. [7]

performed comprehensive experiments with both artificial and

real-world malware using observation windows of different

lengths. They created energy footprints in a controlled setting

for the IEEE 802.11 and 3G hardware of a smartphone, and

the resulting power consumption was treated as a baseline for

detection. Even if such an approach is effective, the main

contribution of the work is about the noise level of tools

used for measurements: the additional power consumed by a

malware is often too small to be detectable with the resolution

of many measurement software.

Among the techniques using application-based methods, the

most notable work has been proposed by Kim et al. [21],

where the power consumption is monitored to detect malware

in Windows Mobile devices. Their proof-of-concept solution

is based on the energy footprints of the applications running

on the smartphone, which are compared against “clean” con-

sumption templates.

Concerning methods explicitly considering the behavior of

the user, Dixon et al. [22]–[24] showed that there is a strong

correlation between the battery drain of a mobile device and

the user’s location. This can be exploited to determine the

average power consumption for different locations and make

the detection of abnormalities more efficient. In fact, instead

of considering the required power only as a function of

time, location-specific energy profiles are used as additional

indicators.

Regarding attack-based approaches, Buennemeyer et al. [26]

investigated the energy signatures of some network threats
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against mobile devices. In more details, the power consump-

tion of a device is correlated with IEEE 802.11 activities.

If an irregularity is discovered, it is compared with existing

signatures to perform the detection of the attack. Then, each

mobile device exchanges alerts with peers, thus implement-

ing a distributed network IDS. This work has been further

extended by modifying the rates at which the battery status

is polled, and by considering the activity of the Bluetooth

air interface to increase the performance in terms of correct

detections [27]. Moreover, Caviglione and Merlo [9] focused

on how antivirus and network attacks such as port scan and

ping floods impact over the battery depletion of different

smartphones. They state the need for “green security” mech-

anisms to effectively develop consumption-based malware

detection systems [28]. Curti et al. [25] studied the energy

footprints for benign applications like Skype or YouTube

and also for network attacks like Denial of Service. They

also provided a power consumption model for the hardware

involved in IEEE 802.11 communications allowing to distin-

guish a normal traffic pattern from a network threat. This work

has been further extended by Merlo et al. [10] by analyzing

the feasibility of porting the two aforementioned approaches

on Android devices with the aim of developing a malware

detection framework. Unfortunately, the proposed solutions

turned out to be unsuitable, mainly due to implementation

issues, which can be overcome by introducing the direct

observation of power consumption from the battery hardware

without the need to dwell deeply into the drivers.

Literature also indicates that future research directions

should consider hybrid approaches, i.e., the power consump-

tion should be enriched with additional information such as

the memory usage. Even if hybrid approaches are possible,

they are typically implemented in a standalone fashion [19]

or as a part of a larger network-based IDS (see, e.g., [26]).

Furthermore, the technology evolves very dynamically, thus

studies performed even few years ago could quickly become

obsolete as functionality and capabilities of modern devices

significantly outrun the old ones.

III. COVERT CHANNELS

In this section, we describe how a prototypical malware

exploiting a local covert channel to secretly leak sensitive

data has been developed, and how we have studied its main

characteristics.

A. Reference Scenario

We consider the typical scenario depicted in Figure 1, where

a malware composed of two colluding applications exchanges

data through a local covert channel built within the device in

order to exfiltrate sensitive information [3], [4], [11]. In more

details, the process CCSender has access to the data but has

not the permission to use the network. Instead, the colluding

application CCReceiver has access to the network, hence it

is able to exfiltrate the received data to an external server

or a Command & Control (C&C) facility. Obviously, the

communications of the CCReceiver towards the C&C could

be detected, for instance, by inspecting the traffic produced

Fig. 1. Typical communication scenario of two colluding parts of a malware:
CCSender and CCReceiver exchange data through a local covert channel.

by the device. Thus, it is common to use other information-

hiding methods to build a network covert channel within

the produced flow. For instance, some malware uses a TOR

client to reach the server anonymously, making classic traffic

analysis ineffective [29]. Consequently, analyzing an encrypted

flow of information produced by the CCReceiver does not

help to reveal the presence of a malware, and this is why

this paper focuses on the detection of the local covert channel

itself.

Moreover, we assume that the malware monitors the oper-

ations performed by the user in order to transmit data when

he/she is not active [30]. Indeed, waking up the covert channel

during user’s activity could degrade the performances of the

device and reveal the presence of the threat. To this aim, many

modern malware delay their activation in order to be invisible

or not rise attention. Thus, even if the triggering of the malware

may occur at any time, it is more likely to happen when

the user is not active. For example, the families of malware

DroidKungFu 1 and 2 include a time bomb mechanism that

triggers the malicious behavior after a predefined period of

time [31]. With such a protection, a malware would be running

statistically when the smartphone is idle. Therefore, we focus

on such low attention-raising hazards operating when the

device is idle since they are the preferred choice to perform

attacks and to avoid detection [3].

B. Implemented Covert Channels

For experimental purposes we implemented on the Android

platform seven local covert channels between the processes

CCSender and CCReceiver. Five of them have been

already proposed in the literature and they are listed as follows.

1) Type of Intent [11]: the secret receiver registers 256 types

of intent listeners and the secret sender encodes data by

choosing and sending an intent of the right type.

2) File Lock [32]: the secret sender communicates by lock-

ing a file. The secret receiver also tries to lock the same

file and, if it succeeds, a 0 is inferred. Otherwise, an

exception is raised, meaning that the secret sender has

locked the file before the secret receiver. In this case, a

1 is received.

3) System Load [11]: the secret sender sends a 1 by burden-

ing the CPU of the device. The secret receiver checks how

many clock ticks the sender has got since the previous

iteration. If the value is greater than a certain threshold,

a 1 is inferred, a 0 otherwise.

4) Volume Settings [32]: the secret data is encoded into the

ringtone volume level of the device. If the sender can use
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TABLE I
MEASURED BANDWIDTHS (IN BITS PER SECOND) FOR THE CONSIDERED

COVERT CHANNELS COMPARED TO THE THEORETICAL VALUES.

Covert Channel Th. Bandwidth Meas. Bandwidth

Type of Intent 15K 74.62
File Size 2K 73.96

Memory Load 500 74.00
File Lock 250 9.31

System Load 5 6.43
Volume Settings 450 33.39

Unix Socket Discovery 100 74.57

eight levels of volume, it can send up to three bits per

iteration.

5) Unix Socket Discovery [11]: the secret data is sent by

encoding the information within the state of a socket.

Specifically, a closed socket is equal to 1, while an

opened one is equal to 0.

Additionally, we propose the following two new covert

channels that up to now were only tested in a theoretical

fashion.

6) File Size: the secret sender sets the size of a shared file

and the secret receiver interprets it as a byte.

7) Memory Load: the secret receiver acquires the initial

memory load of the secret sender. Then, the secret sender

inflates the allocated data to send a 1 or releases memory

to send a 0.

Before investigating the related energy footprints, we con-

ducted a performance evaluation to assess the correctness

of the implementation, also in the perspective of removing

possible power-hungry bugs that can void measurements.

The literature provides theoretical limits and/or performance

evaluations in a very mixed set of testbeds and with early

implementations of the Android operating system and outdated

smartphones. Thus, we investigated the data throughput to

understand whether the available reference values are still

valid. For this round of tests, we used a Samsung Galaxy SIII

smartphone. Table I reports the mean bitrate achieved by each

covert channel averaged over 100 repeated trials together with

the estimated capacities as provided in the related references.

In more details, the measured values highly differ from those

provided in the literature. This is mainly due to changes in the

Android platform and in the device drivers, hence confirming

the high variability of performances as the result of a tight

coupling between covert channels and the hardware/software

architecture. Besides, the best obtained throughput is equal to

74.62 bit/s for the case of the Type of Intent covert channel,

while the lowest is 6.43 bit/s for the System Load method. At

least four methods have similar maximum bandwidths, which

suggests that we have reached some limits within the Android

platform.

IV. MEASUREMENT METHODOLOGY

In this section we present the methodology used to measure

the power consumption of the malware based on colluding

applications exchanging data through covert channels. To have

reliable data, we first investigated the literature to find the

PowerTutor EnergyCollector CCSender

CCReceiverAndroid kernel

intents covert

channel

collected
measures

monitor
processes

Fig. 2. Box diagram of the energy measurement architecture.

most suitable ways to gather information on the power used

by applications running on Android devices. As pointed out

in [10], the energy can be measured at high level using the

Android APIs or at low level by probing the battery driver.

Performing measures at low level is a difficult task, as it

requires to patch the battery driver to get access to fine-grained

data. Unfortunately, using high-level APIs may lead to values

with a poor degree of reliability. For example, [10] and [12]

report that high-level data is not accurate enough to detect

some form of network attacks, and also proposes an alternative

mechanism defined as “middle-level” exploiting information

stored in the /sys portion of the file system such as the

instantaneous voltage of the battery.

Based on these results, we decided not to collect low-

level energy values for two main reasons: this technique

requires deep changes in the operating system, thus lacking

of portability, and has a non-negligible consumption that can

mask the one of the covert channel used by the colluding

applications. Instead, to quantify the power depletion we relied

upon: (i) high-level energy consumption measures of each

process running on the system, for which we used a modified

version of PowerTutor [8], i.e., we developed a patch to enable

the tool to send different process consumption to a proper

data collector via an Android intent; (ii) middle-level energy

consumption information acquired by gathering current and

voltage values stored in /sys. We point out that since our

objective is the detection of a threat without recurring to data

related to the power consumed by the network subsystem, our

effort of using a mixed high- and middle-level methodology

is novel [33].

We developed a measurement framework both for collecting

data and automatize the experiments. Figure 2 depicts the

box diagram and the major interactions among the different

subsystems. In particular, the EnergyCollector is the controller

of the experiments and is in charge of running repeated trials

and collecting data measured by PowerTutor from APIs and

/sys. The latter receives gathered data each second through

an intent. Obviously, the communication flow between the

EnergyCollector and the CCsender/CCreceiver would

not exist on a real system, and is only used to repeat the

experiments. Nevertheless, after measuring the overhead, we

can assume the impact of intents in terms of additional power

as negligible.

For each covert channel, we conducted repeated trials ac-

cording to the following flow:

1) the EnergyCollector waits a random time;

2) the EnergyCollector sends an intent to the CCsender to

start a covert transmission;

3) CCsender and CCreceiver exchange a message;
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4) CCreceiver sends an intent to notify the EnergyCol-

lector that the transmission is finished;

5) the experiment is repeated.

The random time inserted in the step 1) ensures that the

beginning of the covert channel transmission is not known a

priori and that two different exchanges are not triggered within

a given timeframe. This enables to have an unpredictable

behavior, which is more coherent with real-world use cases

(a discussion on malware randomly activating is provided in

[34] and [35]). The duration of the transmission depends on

the type of the covert channel since each one has a different

bandwidth, as discussed in Section III.

V. ENERGY CONSUMPTION AND BLACK-BOX MODELING

The basic idea of our approach is to detect covert commu-

nications among colluding applications by using the energy

requirements of the processes running on a device as a

marker. The main benefit is the decoupling of the detection

of the covert channel from its implementation. In fact, hidden

communications are tightly coupled with the adopted carrier

and are characterized by a very low bitrate, thus making their

spotting very difficult and poorly generalizable.

To detect covert channels, two general problems have to

be addressed: (i) developing an approximate model for the

power consumption of a process, and (ii) using the obtained

information to recognize whether a covert channel is present.

Achieving such goals is challenging, especially due to the

different sources of power drains, e.g., transmissions over air

interfaces, memory operations, CPU- or I/O-bound behaviors,

and user to kernel space switches [36]. Thus, we propose two

general methods based on the black-box modeling approach.

The first technique, denoted as regression-based detection

(RBD), uses a regression fed with past values of the consump-

tion in a “clean” system to predict its future behavior. Then, if

the expected energy footprint deviates too much from the real

one, hidden communication is assumed present. The second

approach, denoted as classification-based detection (CBD),

exploits a reduced set of features describing the energetic

behavior of the device. More specifically, a classification

problem is solved to detect covert communications between

colluding applications.

To this aim, well-known artificial intelligence tools, such

as one-hidden-layer feedforward neural networks and binary

decision trees, are used to model the power consumption. The

RBD and CBD approaches are composed by two steps, as

shown in Figure 3. First, a model of the power consumption

is constructed based on a set of past collected measurements.

This requires the solution of an optimization problem to find

the best values of the parameters the model depends upon.

Such a step is called “training”, and the collected measures

constitute the training set. This may be computationally de-

manding, but it is usually performed offline and not on the

mobile device. Second, the optimized model is used to detect

covert communications based on the new, actual measurements

of power consumption. This step can be performed online, i.e.,

at runtime on the device.

past collected
measurements

non-optimized
model

optimization of the parameters
(training phase)

optimized
model

actual
measurements

covert channel yes
covert channel no

+

+

optimized
model

+

+

o
ff

li
n

e
o

n
li

n
e

Fig. 3. Two-step procedure for the detection of covert channels.

A. Neural Networks and Decision Trees

In this section, we introduce the tools used to construct

the approximate models of power consumption. Both are

employed in the literature to approximate unknown relation-

ships between input and output variables without any a-priori

knowledge on the underlying dynamics. They can be used to

solve either regression or classification problems [37]. Regres-

sion models map the input space into a real-valued domain.

Instead, classifiers map the input space into predefined classes.

The relationships between inputs and outputs are learned from

the collected data and then used to associate an output to

new, unseen inputs. Neural networks belong to the family

of “parametric” approximators, as their output significantly

depends on the parameters that define the structure of the

model, whereas decision trees are usually referred to as “non-

parametric” approximators, i.e., they strongly depend from the

available data and, less significantly, from a reduced set of

parameters.

As said, the goal is to approximate an input/output mapping

xi 7→ y
i, where xi ∈ R

n is the input and y
i ∈ R

m is the

corresponding output. The unknown functional relationship

between inputs and outputs is approximated by a function γ

belonging to a family Γ of parametrized functions, i.e.,

ỹi = γ(xi, α) (1)

where α ∈ R
p is a vector of parameters and ỹi ∈ R

m is the

estimated value of yi.

In recent years, the literature of learning from data has

mainly concentrated on the use of nonlinear models for the

approximation of complex systems. In fact, it has been proved

from both theoretical and numerical viewpoints, that classical

linear models may be computationally intractable for the

approximation of complex functions, especially in the case

of high dimensionality of the input variables (see, e.g., [38]–

[40] and the references therein). On the contrary, it has been

shown that nonlinear structures have a greater flexibility and

guarantee good approximations with a smaller number of

parameters.

One-hidden-layer feedforward neural networks are a very

popular nonlinear architecture already used to model a variety

of systems (see, e.g., [41], [42] and references therein). In this

paper we focus on neural networks with sigmoidal activation

functions. They enjoy the universal approximation property,
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i.e. the ability to approximate any well-behaved function with

arbitrary precision [43], [44]. The function γ is given by a

linear combination of parametrized basis functions, with a

certain number of free parameters to be optimized inside. For

scalar outputs, we have

γ(x, α) =

ν
∑

k=1

ckσ

(

q
∑

j=1

akjxj + bk

)

+ c0

where σ(·) is the activation function, ν is the number of basis

functions (i.e., the neurons) and α , col (ak, bk, ck, c0) ∈ R
p

is the vector of free parameters.

Concerning binary decision trees, they are widely-diffused

models for learning (see, e.g., [14], [37], [45], [46] and the

references therein). The output of the model is computed via a

binary partition of the input space into smaller subsets called

“leaves”, with sides parallel to the coordinate axes, in which

the values of the output are constant. Each split pursues certain

performance goals and is repeated until a stopping criterion is

met. The partition is called a “tree” since the leaves are added

recursively with binary splits to form a tree structure. Two

different types of trees exist depending on whether they are

used to solve regression or classifications problems. In the

case of regression trees, a constant output value is assigned

to each leaf, corresponding to the average of the observed

output values therein. By contrast, a certain label is assigned

to the terminal leaves in classification trees. In both cases,

to avoid overfitting, the obtained tree is usually “pruned”

according to some regularization costs [37]. In this paper,

we focus on binary trees, in which each step of a prediction

involves checking the value of only one variable at a time. The

functional relation γ in (1) is then approximated by means of

a piecewise-constant function over the various partitions.

After choosing the family of functions Γ, we need to find

an element γ∗ ∈ Γ capable of reproducing at best the system

behavior. This corresponds to a training procedure to optimize

the parameters on the basis of the available data. To this

purpose, a suitable index is used to measure the discrepancy

between the estimated model output ỹi for a certain value of

the parameters and the real measured output values y
i. The

most used metric is a mean squared error (MSE) criterion:

the optimal parameter vector α∗ is the one that minimizes the

quadratic difference between the real output variables and the

estimated ones, i.e.,

α∗ , min
α∈R

p

{

1

N

N
∑

i=1

(yi − γ(xi, α))
2

}

where N is the number of samples used for the training.

In general, the training phase may be computationally de-

manding, especially for large values of N . However, many ad-

hoc-developed procedures are available in the literature (see,

e.g., [47], [48]). Usually, they are implemented in efficient

software packages, allowing to solve the training problem in

a reduced amount of time.

B. Regression-Based Detection

The RBD method is composed of two steps: the first

consists in modeling the power consumed in a “clean” system,

i.e., when no colluding applications performing hidden data

exchanges are present in the device. To this end, a collection

of past values of the consumption are used to predict the future

ones. The second step is based on a comparison between the

forecast consumption and the actual one. Hidden communi-

cation is spotted if the expected energy footprint deviates too

much from the real one.

In more details, we define the following quantities at each

sampling time t = 0, 1, . . .. Let pt ∈ R+ be the power

consumed by a process at time t. Such a quantity is measured

and can be considered as an input. Let wt+1 ∈ R+ be the

prediction of the power needed by the process itself at the

next time instant t+ 1, i.e., it is an output.

At least in principle, the consumption of a process at time

t+ 1 may depend on the energy requirements at the previous

time instants, from 0 to t. However, to avoid dealing with

vectors of increasing dimension as the time grows, we consider

a “fading memory” assumption, which consists in assuming

that the output of the system (i.e., the power consumption of

a process at time t+1) depends only on a finite number q of

past inputs [49]. In this perspective, we define a regression

vector (also called regressor) as the collection of the past

input variables from time t − q + 1 up to time t, i.e.,
p
t , col (pt−q+1, pt−q+2, . . . , pt) ∈ R

q , where q is a positive

constant value.

Thus, the training set for the creation of the model has the

form of a set of input/output pairs

ΣN ,
{

p
t, wt+1

}N

t=1

where N is the total number of available measures. The goal

is to find a model that is able to capture, at each time t, the

functional relationship between past and future consumption,

i.e., the mapping p
t 7→ wt+1. Thus, equation (1) becomes

w̃t+1 = γ(pt, α)

where w̃t+1 is the estimated output at time t+1 and γ is a func-

tion belonging to a family Γ of one-hidden-layer feedforward

neural networks or binary decision trees. Notice that, when

the regressor is made up by long series of past observations,

the dimensionality of the problem rapidly increases, hence the

need of efficient approximators arises.

Once the best model within the class Γ has been found

by the offline training procedure, the second step of the RBD

method requires the definition of a detection rule. Specifically,

the detection is performed online by feeding at each time

step t the trained model with the past q measurements of

the consumption collected into the regressor p
t−1

. Then, the

estimated consumption w̃t is compared with the real measured

value wt in a time window moving over time. The same

procedure is repeated at the next time steps, and a prediction

error et is defined as follows:

et ,
1

τ

t
∑

k=t−τ+1

|w̃k − wk| (2)

where τ is a given time horizon. We assume that a covert

communication among two colluding applications is present if

the prediction error is greater than a certain positive threshold
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ξ. Otherwise, it is considered absent. The rationale is that

the approximate model, if properly trained, is able to predict

the future behavior of the energy consumption of the “clean”

system with a good level of accuracy. Hence, severe deviations

reveals the presence of two processes covertly exchanging

data.

Clearly, the performance of the RBD depends on the quality

of the approximating model and on the parameters q, τ ,

and ξ, which have to be properly tuned. We will observe

their impact on the quality of detection in a real scenario

in Section VI. Notice that the same model γ can be used to

detect covert communications with all the seven covert channel

types described in Section III since it has been obtained using

measurements obtained in a “clean” system.

C. Classification-Based Detection

The CBD method consists in solving a classification prob-

lem starting from a set of measurements both in the presence

and in the absence of colluding applications. It requires

the definition of a set of “features” representing the power

consumption of the device in a concise, effective manner.

More specifically, we focus on three different features

characterizing the energetic behavior of a process at each time

t, collected into the vector xt ∈ R
3: (i) the average power

consumption from time t − λ + 1 to time t, where λ is a

positive constant defining a window of past measurements,

(ii) the total variation of the power consumption from time

t−λ+1 to time t, and (iii) the instantaneous consumption at

time t. Thus, we focus on the following vector of features at

each time t:

f
t
, col

(

t
∑

l=t−λ+1

pl,

t
∑

l=t−λ+1

|pl|, pt

)

∈ R
3 (3)

Each vector f
t

refers to a single measurement and is

associated to a certain class k among two possible ones,

corresponding to the cases in which covert channels are used

to exchanging data between colluding applications (k = 1)

and no covert channels are established (k = 0).

The training set for the creation of the model takes on the

form of a set of N input/output pairs

ΣN ,

{

f
t
, gt

}N

t=1

where the scalar output gt is equal to k if the input vector f
t

belongs to the class k.

The goal is to find a model able to recognize the class

containing a given input vector that is not among the N used

for the training. As in the case of the RBD method, we rely

upon models belonging to a certain family Γ of one-hidden-

layer feedforward neural networks and binary decision trees,

i.e., equation (1) becomes:

g̃j = γ(f
j
, α)

where g̃j is the class assigned to the input vector f
j

by the

model. The output g̃j must be one of the two possible classes.

Clearly, the goal of the classification is to ensure that the

assignment of the model is correct, i.e., the difference between

TABLE II
PARAMETERS OF THE RBD AND CBD DETECTION METHODS.

Method Parameter Description

q Length of the regressor
RBD τ Time window of the prediction error

ξ Threshold of the prediction error

CBD λ Time window for feature construction

g̃j and gj is as small as possible. To this end, as in the case

of the RBD, a suitable training phase is performed offline to

find the optimal values of the parameter vector α. Once the

best model within the family Γ has been found, at each time t

the detection whether a covert channel is present is performed

online by feeding the trained model with the vector f
t

of the

current features and analyzing the value of the output g̃t.

Differently from the RBD method, where the same approx-

imate model is used to detect covert communications with

all the seven techniques introduced in Section III, the CBD

approach requires the training of a different model for each

covert channel.

We point out that the accuracy of the CBD depends on

the quality of the approximating model and on the parameter

λ used to construct the vector of features. Section VI will

discuss its impact on the quality of detection in a real scenario.

Notice that the CBD requires the tuning of only this parameter,

whereas the RBD relies upon three parameters. Table II sum-

marizes the main parameters of the two considered detection

methods and their meaning.

VI. NUMERICAL RESULTS

To evaluate the effectiveness of the proposed approach, we

conducted experimental trials using two different smartphones,

i.e., a Samsung Galaxy SIII and a LG Optimus 4X HD P880.

We tested the RBD and CBD methods using Matlab with the

Neural Networks and Statistics Toolboxes. All the experiments

were done on a computer with a 2.5 GHz Intel i7 CPU and 4

GB of RAM.

A dataset containing the consumption of all the software

components running on the smartphones was generated using

the methodology presented in Section IV. In more details,

the consumption was measured with a per-process granularity,

both in a “clean” set-up and when a local covert channel

among two processes is created. Preliminary investigations

showcased that the overall power consumption of the smart-

phone is well represented by the energy required by processes

with OS-wide dynamics. More specifically, the energy con-

sumption of the process System gave us enough condensed

information to capture the general trend. Indeed, the System

process is the core of all mechanisms required to access

the low-level drivers of Android. It is used for manipulating

notifications, display, audio, alarms, and telephony, just for

naming a few. Therefore, for testing our methods, we relied

upon the information provided solely by the process System.

As said, we focused on a scenario in which information-

hiding-capable malware increases its stealthiness by acting

when the device is idle, i.e., there is no user activity involved.
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Fig. 4. Battery drain for each type of covert channel during 3 hours of
repeated experiments.

As regards the exchanged messages, we set a fixed size of

1000 bytes, which is large enough to represent the exfiltration

of sensitive information such as a bank account or a collection

of contacts stored in the address book. Each covert channel

was tested by performing 100 data transmissions starting at

random time instants. To have a proper statistical relevance,

each trial was repeated 10 times.

Figure 4 shows the trend of the battery drain for a period of

3 hours in the presence of colluding applications transmitting

data with the seven implemented covert channels. Results

indicate that the most consuming methods are the Volume

Settings, the Memory Load, and the System Load, whereas

the lowest one is the Type of Intent. Even if it is one of the

most consuming, the System Load covert channel is also the

one with the smallest bitrate.

The performances of the proposed detection methods were

quantified by means of the percentage of correct detection of

hidden communications, defined as follows:

d =
1

T

T−1
∑

t=0

1− |yt − ỹt| (4)

where T is the length of each trial (dependent on the type

of used covert channel) and yt and ỹt denote the actual and

spotted hidden communications at time t, respectively. In more

details, yt = 1 indicates that two colluding applications are

covertly exchanging data, whereas yt = 0 represents the

absence of hidden communication.

A. RBD Method

A training set composed of 5000 energy consumption

measurements was used to optimize the parameters of neu-

ral networks and decision trees for the RBD method. Such

samples were obtained in a clean system without hidden

communication between colluding applications. The training

was performed using the Levenberg-Marquardt algorithm [47]

for neural networks and by minimizing the MSE of the

predictions compared to the training data for decision trees,

using the Gini’s diversity index as split criterion [50]. As

pointed out in Section V-B, the same approximator was used

to detect all the seven implemented covert channels.

In order to determine the best values of the parameters q,

ξ, τ , and ν a thorough simulation campaign was performed.

Concerning neural networks, Figure 5(a) reports the percent-

age of correct detection d of each covert channel defined as
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Fig. 5. Average percentage of correct detection for each covert channel using
the RBD when varying the parameters of neural networks (a, b, d, and f) and
decision trees (c, e, and g).

in equation (4), averaged over 10 different trials, when ν is

varied from 5 to 50 and the other parameters q, ξ, and τ

are fixed to 20, 30, and 20, respectively. Figures 5(b) and

5(c) show the behavior of the average d obtained with neural

networks and decision trees, respectively, when varying the

length q of the regressor from 5 to 30 and with the other

parameters fixed. Figures 5(d) and 5(e) depict the average d

using neural networks and decision trees, respectively, as a

function of the threshold ξ used for the detection rule, whereas

the other parameters are fixed. Lastly, Figures 5(f) and 5(g)

showcase the average d obtained with neural networks and

decision trees, respectively, as a function of the length τ of

the time window used for the detection rule, with the other

parameters fixed.
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Fig. 6. Boxplots of the percentages of correct detection for each covert
channel using the RBD with neural networks (a) and decision trees (b).
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Fig. 7. Comparison of real and estimated power consumption of the System
process for the Volume Settings by using the RBD with neural networks (a)
and decision trees (b).

From the obtained results, it turns out that the percentage

of correct detection for neural networks increases with ν up

to ν = 40, which is then the best number of activation

functions. For larger values, the phenomenon of overfitting

is experienced, i.e., the number of basis functions is too large

for the available data, and minor fluctuations in the energy

measures may be overemphasized, thus resulting into bad

detection rates. Concerning the length q of the regressor, the

best value turns out to be q = 20. The behavior of neural

networks is more affected by the chosen value if compared to

decision trees, for which all the values of q guarantee almost

the same results. Instead, neural networks and decision trees

exhibit the same behavior when varying the threshold ξ for

the prediction error (2), for which the best value appears to be

ξ = 30. Lastly, the percentage of correct detection grows if the

time horizon τ used in (2) increases up to τ = 20, and then

remains almost constant. Thus, in the perspective of saving

computational time, τ = 20 is the best value.

Figure 6 shows the boxplots of the percentages of correct

detection for each information-hiding technique computed

over 10 different trials by using neural networks and decision

trees with the best values of their parameters, i.e., ν = 40,

q = 20, ξ = 30, and τ = 20. We conclude that the perfor-

mance of neural networks and decision trees are comparable,

i.e., on the average the accuracy of the detection is similar in

both cases. The most easily detectable method appears to be

the System Load covert channel, whereas the method that is

least detectable is the File Size.

Figure 7 depicts the measured trend of the consumption of

the System process compared with its estimation provided
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Fig. 8. Average percentage of correct detection for each covert channel
using the CBD when varying the parameters of neural networks (a and b)
and decision trees (c).

by neural networks and decision trees when using the Volume

Settings covert channel. The presence or absence of hidden

communication is denoted by high or low values of the binary

signal at the bottom of each figure. As it can be seen, the

prediction of the energy consumption is more accurate when

no covert communication is active, whereas the prediction

is not accurate in the presence of colluding applications.

The “bad” prediction when covert channels are present is

fundamental to spot hidden communications. More specifi-

cally, neural networks underestimate the power consumption,

whereas decision trees saturate to a certain value. This is not

surprising since the models have been built using a “clean”

system without colluding applications.

B. CBD Method

To test the effectiveness of the CBD method, we used again

a training set made up of 5000 energy samples. Differently

from the RBD, the training was performed both when the col-

luding applications are active and inactive. Moreover, different

approximators were trained for each of the seven implemented

covert channels.

Since we had to solve a classification problem, the real-

valued output of the neural networks was rounded either

to 1 or 0 depending on whether hidden communication is

spotted or not. Concerning decision trees, we adopted the

so-called classification trees, whose output is directly one

of the classes defined during the training. The training of

neural networks was performed again by using the Levenberg-

Marquardt algorithm, whereas classification trees were trained

by minimizing the MSE of the predictions compared with the

trained data and using the Gini’s diversity index as the split

criterion.

For the case of neural networks, we varied both the number

of neurons ν and the number of time instants λ for the
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Fig. 9. Boxplots of the percentages of correct detection for each covert
channel using the CBD with neural networks (a) and decision trees (b).
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Fig. 10. Comparison of the true covert channel activity over time against the
estimated one for the Volume Settings by using the CBD with neural networks
(a) and decision trees (b).

computation of the features as in (3), in order to investigate

their influence on the accuracy of the detection. Figure 8(a)

depicts the percentage of correct detection d of each covert

channel, averaged over 10 different trials, when ν is varied

from 5 to 30 and λ is fixed to 10. Figure 8(b) presents the

average d for each information-hiding method when λ ranges

from 5 to 30 and ν equals to 10. It turns out that the number of

neurons affects the accuracy of the detection only marginally.

Therefore, to save memory and computational time, one might

choose ν = 5 or ν = 10. As regards the effect of λ, λ = 5
or λ = 10 appear to be the best choice since a small decay

of performance is experienced for large values. Concerning

decision trees, we investigated the effect of the parameter λ

on the accuracy of detection. The results are reported in Figure

8(c) for the average d. Also in this case, λ varies from 5 to

30, and the percentage of detection decreases if λ increases.

Hence, optimal values are again λ = 5 or λ = 10.

Figure 9 depicts the boxplots of the percentages of correct

detection for each covert channel computed over 10 different

trials using the approximate models with the best values of

their parameters, i.e., ν = 10 and λ = 10 for neural networks

and λ = 10 for decision trees. In general, neural networks

guarantee better performance compared with decision trees,

i.e., on the average the accuracy of the detection is higher and

with a lower variance. In all cases, the most easily detectable

covert channels are the File Lock and the Volume Settings.

Instead, the Memory Load method is the most difficult to

detect despite its high consumption. Instead, the System Load

is characterized by the largest dispersion.

Figure 10 portraits the estimated covert channel activity

TABLE III
AVERAGE PERCENTAGES OF CORRECT DETECTION FOR THE DIFFERENT

DETECTION METHODS AND COVERT CHANNELS.

Covert channel RBD CBD
Neural net. Dec. tree Neural net. Dec. tree

Type of Intent 74.3 73.1 90.8 86.7
File Size 65.3 68.6 88.9 80.5

Memory Load 71.5 72.4 84.6 79.0
File Lock 65.9 86.2 96.5 96.2

System Load 90.4 94.2 93.3 91.1
Volume Settings 87.1 86.0 97.6 93.5

Unix Socket 75.4 74.2 94.2 91.4

compared to the real one for the Volume Settings method.

As it can be seen, neural networks and decision trees are able

to correctly spot the channel activity most of the time, thus

showcasing their effectiveness for run-time or static analysis

purposes within the security framework of the device.

C. Comparison Between RBD and CBD

To sum up, Table III reports the percentage of correct

detection averaged over 10 trials for all the implemented covert

channels for the RBD and CBD methods. In both cases, the

System Load and the Volume Settings are the most easily

detectable covert channels. This may be ascribed to the fact

that such methods are also the most power-consuming, i.e.,

their energy footprint is more evident. In this case, the hidden

communication is correctly spotted 9 times over 10 on the

average. The most difficult methods to detect turns out to be

the File Size and the Memory Load. However, even if lower

than the one of the best-performing methods, their average

percentage of correct detection is about 65% when using the

RBD and 85% for the CBD, which is quite a satisfactory result.

The Memory Load covert channel seems the most difficult to

detect. This behavior is due to the absence of code in the

System process that allocates memory: this task is done at

high level by the Dalvik virtual machine and at low level by

the Linux kernel.

According to the obtained results, in general the CBD out-

performs the RBD in terms of percentage of correct detection.

Moreover, it is worth noting that the RBD has three parameters

to be tuned, i.e., q, τ , and ξ, instead of only one for the CBD,

i.e., λ. As a consequence, the implementation of the CBD in

a production quality tool should be preferred, both in terms of

complexity and performance.

Concerning the computational effort, the average time for

the training was equal to 82.5 seconds for the RBD with

ν = 40 and q = 20 and to 15.6 seconds for the CBD with

ν = 10 and λ = 10 when using neural networks. The training

times of the two detection methods when using decision trees

with q = 20 and λ = 10 were equal to 1.92 and 0.27 seconds,

respectively. The higher times of the RBD are mainly due

to the greater dimension of the input vector compared to the

CBD. In fact, in the first case the dimension of the input is

equal to the length q = 20 of the regressor, whereas in the

second one it is equal to the number of features, i.e., 3. This

also requires a larger number of neurons to obtain satisfactory

approximations. In general, neural networks appears to be
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more computationally demanding compared to decision trees.

Nevertheless, the RBD requires the training of only one model,

whereas an approximate model for each covert channel is

required by the CBD, thus resorting to seven different training

procedures.

The average time to spot the presence of a covert channel

for the RBD method with the best values of the parameters

is equal to 0.01 and 0.001 seconds, depending on whether

neural networks or decision trees are used, respectively. As

regards the CBD approach, such times when using the best

values of the parameters are again equal to 0.01 and 0.001

seconds for neural networks and decision trees, respectively.

In all cases, the online computational effort is very small.

Thus, the proposed methods appear to be well-suited to

being implemented in an online detection framework directly

running on a mobile device.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a framework based on arti-

ficial intelligence tools, such as neural networks and decision

trees, to detect the presence of malware using information-

hiding techniques based on power measurements. Specifically,

we have focused on the colluding application scenario, which

is characterized by two processes trying to communicate

outside their sandboxes for malicious purposes, for instance,

for sensitive data exfiltration. Two detection methods have

been developed, requiring the solution of regression and

classification problems. To verify the effectiveness of our

approach, we have implemented seven local covert channels

on the Android platform, and we have performed an exper-

imental measurement and detection campaign. The obtained

results indicate that both methods are characterized by a good

detection performance and can be used as an accurate IDS

software on a modern smartphone to reveal the presence of

hazards exploiting information hiding.

Future works aim at making our detection framework more

effective, for instance by developing proper metrics to recog-

nize at runtime the pair of colluding applications. Moreover,

part of our ongoing research is devoted to understand if

using additional information (e.g., activity correlation) could

increase the accuracy of the approach. At the same time, we

also work to extend the energy-based detection approach to

other threats exploiting information hiding. On the overall,

such improvements should lead to the development of an

application directly running on a mobile device to spot the

presence of covert communications in real-time.
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d’Orléans (LIFO). He is also temporarily associated
with Inria in the CIDRE team. During the Ph.D.,
his research interests focused on the combinatorial
optimization for optical and satellite networks. Since
2005, he has been working on security of operating

systems, C-embedded software (including smart cards), and Android appli-
cations. Currently, he is interested in mobile software security. Prof. Lalande
actively participates to the release of open-source software in order to make
security experiments reproducible.

Wojciech Mazurczyk (SM’13) received the B.Sc.,
M.Sc., Ph.D. (with honors), and D.Sc. (habilitation)
degrees in telecommunications from the Warsaw
University of Technology (WUT), Warsaw, Poland,
in 2003, 2004, 2009, and 2014, respectively. He
is currently an Associate Professor with the In-
stitute of Telecommunications at WUT, where he
is the Head of the Bio-inspired Security Research
Group (bsrg.tele.pw.edu.pl). His research
interests include bio-inspired cybersecurity and net-
working, information hiding, and network security.

Prof. Mazurczyk is involved in the technical program commitee of many
international conferences, including IEEE INFOCOM, IEEE GLOBECOM,
IEEE ICC, and ACSAC. Also, he serves as a Reviewer for the major
international magazines and journals. Since 2013, he is an Associate Technical
Editor of the IEEE Communications Magazine (IEEE Comsoc).
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