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Abstract

The monitoring of human activities plays an important role in health-care applications and for the data mining community.

Existing approaches work on activities recognition occurring in sensor data streams. However, regular behaviors have not been

studied. Thus, we here introduce a new approach to discover top-k most regular episodes from sensors streams, TKRES. The top-k
approach allows us to control the size of the output, thus preventing overwhelming result analysis for the supervisor. TKRES is

based on the use of a simple top-k list and a k-tree structure for maintaining the top-k episodes and their occurrence information.

We also investigate and report the performances of TKRES on two real-life smart home datasets.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of IAIT2015.
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1. Introduction

Due to improvements in medicine and quality of life, people now live longer, and the proportion of elderly people

increases around the world. However, the aging populations are frailer than the younger generations. One of the

big challenges of the coming years is thus to help them keep living independently at home, comfortably and safely.

Thanks to the development of sensor technologies, smart homes and ambient assisted living systems have spread out

over the last decade16.

The sensors and devices disseminated in the house register traces of the activity in the home setting. Activity

reflects health, and mining these traces is thus most informative on the person’s health condition. A huge part of

the current research focuses on supervised activity recognition, and use for example hidden Markov models and

conditional random fields22, emerging patterns8 or support vector machines11. These techniques use annotated data,

which is hard and expensive to get5. The annotation process also needs to be performed again for every home setting

and patient, since it generalizes poorly.

There is thus a growing interest for unsupervised analysis techniques, such as event streams partitioning and clus-

tering3, or frequent15 and periodic17 episode discovery. The relationships between the episodes are investigated as

well9. However promising these techniques appear, the human activity that generated the events is not explicitly
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identified. The analysis and understanding of the results may thus be overwhelming for the supervisor (physician,

caregiver). One way to reduce this downside is to reduce the number of extracted patterns to a user-defined suitable

amount, or to use different metrics to assess the interest of the patterns, such as regularity or length. Such analyses

can help to optimize energy consumption or to detect anomalies better than if we rely solely on frequency.

Thus, we propose TKRES for the discovery and update of the top-k most regular episodes in an event stream.

The rest of the paper is organized as follows: section 2 presents the formalisms and defines the problem at hand.

Section 3 reviews some of the associated literature, namely episode discovery, regular pattern mining, and event

stream handling. Section 4 presents our contribution, and section 5 present the performance evaluation of TKRES.

Finally, section 6 concludes and presents lines of study for future work.

2. Problem definition

We here present the concepts used for the discovery of episodes from sensor streams. We also introduce the

problem of mining top-k regular episodes.

A stream of events is a potentially infinite sequence of ordered events:

DS = 〈(e1, t1), (e2, t2), . . . (ei, ti), . . . 〉
where (ei, ti) is the ith event in the sequence, with ei the event label, taking values in a finite alphabet ξ; and ti the

timestamp of the event. The events are ordered by their timestamps (for all i, ti ≤ ti+1).

An episode E = {e1, e2, . . . en} is a set (unordered, no duplicate event labels) of n event labels in ξ. Episodes group

labels that occur together, thus highlighting the relationships between the events. They constitute an abstraction to

characterize the activities occurring in the house without prior or expert knowledge. For example, while the cooking

activity cannot be recognized directly, we can discover the frequently reoccurring episode composed of motion sensor

activations in the kitchen and the use of cooking appliances. In the coming definitions, E refers to an episode with n
event labels {e1, e2, . . . en}.

Our goal is to discover regular episodes in the recent past, and update this knowledge when new events occur.

We thus consider a sliding window model, where a window W is composed of m consecutive batches, i.e. W =

〈Bi, Bi+1, . . . Bi+m−1〉, where each batch Bi is a sequence of events. When a new batch of data Bi+m arrives, Bi becomes

outdated and is removed from W. The batches span over a user-specified time unit (such as one day, one week, etc.).

Definition 1 (Occurrence of episode E). There is an occurrence o of E between times t1 and tn if there exists a

permutation p of (1, . . . n) and n timestamps (t1, . . . tn) such that o = 〈(ep(1), t1), . . . (ep(n), tn)〉 is a subsequence of the

window W. o is said to be a Tep-occurrence if tn − t1 < Tep, which we use as a constraint: only the Tep-occurrences

are considered in the regularity measures.

Definition 2 (Minimal occurrence of episode E). Let o be an occurrence of E, spanning from t1 to tn. o is a

minimal occurrence if E has no occurrence o′, spanning from t′1 to t′n such that t1 ≤ t′1, t′n ≤ tn, and t′n−t′1 < tn−t1.

Definition 3 (Non-overlapping occurrences of episode E). Let o and o′ be a minimal occurrences of E spanning

respectively from t1 to tn and from t′1 to t′n. o and o′ are non-overlapping if min(tn, t
′
n) < max(t1, t

′
1). The list of

the non-overlapping minimal Tep-occurrences of E is noted NMOE.

Definition 4 (Regularity of episode E). Let NMOE be the ordered sequence of the non-overlapping minimal occur-

rences of E. The regularity rE of episode E can be defined as the maximal value of the following cases:

• The regularity between the start time of the window (tsw) and the start time of the first minimal occurrence in

NMOE (t1): rsw = t1 − tsw

• The regularity between each pair of consecutive occurrences in NMOE ou, spanning from t1 to tn, and ou+1,

spanning from t′1 to t′n: ru = t′1 − tn

• The regularity between the last occurrence o = 〈(ep(1), t1), . . . (ep(n), tn)〉 in NMOE and the last timestamp of the

window tew: rew = tew − tn
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One can notice that an episode E is more regular than another episode E′ if its regularity value is lower.

Definition 5 (Top-k regular episodes). Let us consider the list of episodes sorted by ascending regularity. An episode

E is a top-k regular episode if there are no more than k − 1 episodes having regularity values lower than that of E.

With the user-given set of parameters: a number of desired interesting episodes k, a batch duration, a number m of

batches in the window, the maximal duration of episodes occurrences Tep; we address the problem of mining the top-k
regular episodes. That is to say, we discover the k episodes with the lowest regularity values in the window sliding

over a sensor data stream DS.

3. Literature Review

The traditional transactional databases contain information on the relationships between the items (the itemsets).

For example in a retail market basket dataset, each transaction contains the products (items) a customer bought. Any

subset of the transaction is an itemset. In event databases, these relationships are not explicit, and need to be searched

in the data. This process is called episode discovery, and was introduced by14. It was later enhanced to cover different

support counting techniques, such as window-based support13, minimal occurrences12, or minimal non-overlapping

occurrences24, which we also consider here (see definitions 2 and 3). Computational enhancements have also been

proposed, exploring different search strategies, such as breadth-first23 and depth-first20 searches; as well as different

pruning techniques: closed episodes23,20, episode length constraints and top-k most frequent patterns21. The interest

of the episodes is systematically evaluated based on their support or frequency.

However, characteristics other than frequency can also characterize interesting episodes, especially in the context

of human activity monitoring:4 explain that routines take an important role in the life of an elderly person. Indeed,

routines allow them to keep control over their environment and reduce anxiety. Periodicity and regularity appear

thus as interesting interest measures in the context of human behavior monitoring. The periodicity of the episodes has

already been investigated17. Introduced in19, regularity focuses on the maximal gap between the transactions covering

an itemset. The concept has been extensively studied and enhanced in the context of transactional databases2,18,1,

mostly coupled with frequency measures.

The sensors disseminated in the house generate events streams. 7 describes the characteristics of such data sources

and the constraints they set on the processing algorithms. In particular, the algorithm should use a fix amount of main

memory, scan the data only once, and adapt to concept drifts. The popular sliding window framework conforms to

these constraints, and has been used for episode mining in the past15,10.

Our proposition gathers in an unprecedented combination: parallel episode mining, using regularity measures over

event streams. In order to do so, we propose an adaptation of the regularity definition to non-transactional temporal

data. We also propose, describe and analyze an efficient algorithm, TKRES, for the discovery and update of the top-k
most regular episodes.

4. Proposed TKRES algorithm

In this section, we introduce TKRES, an efficient single-pass algorithm for mining the top-k regular episodes in a

sensor data stream. TKRES searches the episodes in a sliding window containing m consecutive batches of events, and

can be divided in two main steps: the initialization (section 4.1), that is to say mining the top-k regular episodes from

the first window (the first m batches of the input stream B1 to Bm), and the update with an incoming batch (section 4.2),

updating knowledge on the top-k regular episodes present in the new window (the previous batches, except the oldest

one, plus the new incoming batch).

TKRES uses a list (called top-k list) to maintain the set of top-k regular episodes during data processing, and a tree

structure (the k-tree) to maintain the occurrence information for the short episodes and the top-k regular episodes. The

top-k list is ordered by ascending episode regularity, and is always maintained in order throughout the mining process.

The k-tree is based on prefix trees.
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4.1. Initial mining

As described in algorithm 1, TKRES creates nodes in the k-tree for all the event labels. The timestamps of the

length-1 episodes (the labels) are collected from the events in the batches, and the regularities of these episodes are

computed (lines 2–5). The k event labels with the lowest regularity are collected and ordered in the top-k list. The kth

least regular event label gives an upper bound to the maximal regularity an episode may have and still be of interest.

TKRES then builds the k-tree to generate longer episodes. It reduces its memory consumption by limiting the depth

of the tree to dot. This threshold is defined as the smallest possible depth enabling to hold k episodes in the tree. It is

computed based on the size of the event label alphabet ξ. For example, if the events take values among 5 labels and

the value of k is 25, then dot = 3.

The episode construction step considers pairs of episodes in the k-tree (starting from depth 1 to dot). For each pair

of episodes X and Y, a new entry of Z = X ∪ Y is created and set to be a child node of X. Based on the occurrence

times of X and Y, the occurrence times of X ∪ Y are computed and added to the corresponding node in the k-tree. The

corresponding regularity is computed and compared to the least good regularity in the top-k list. If need be, the top-k
list is updated (lines 8–14).

There is no guarantee that all the top-k regular episodes are shorter than dot. The pairs of episodes at depth dot

and higher having a better regularity than the kth most-regular episode are combined and their union is investigated. If

the new episode belongs in the top-k list, a node is created in the tree and the top-k list is updated. This new episode

is then candidate for further extension with other episodes of the same length (lines 15–21).

Algorithm 1 TKRES–initial mining

Input: k: number of episodes to be discovered,

m batches of sensor data 〈B1, . . . Bm〉
Output: top-k list containing in the top-k most regular episodes,

k-tree, containing the occurrence information for the episodes on 〈B1, . . . Bm〉

1: Initialize the tree, and create entries for all single events

2: for each batch Bi do
3: for each event (e j, t j) in Bi do
4: update e j’s occurrence information in the tree with timestamp t j

5: Compute the regularity of each event label

6: Collect the k labels with the lowest regularity into the sorted top-k list

7: Compute the depth dot of the k-tree to be created

8: for depth d = 1 to dot − 1 do
9: for each episodes X and Y at depth d having d − 1 common labels do

10: Merge episodes X and Y to be Z (it contains thus d + 1 labels)

11: Create a node for Z in the k-tree, set to be a child of X

12: Get the occurrence times for Z from X and Y. Infer its regularity rZ

13: if rZ < rkth then
14: Remove the kth episode from the top-k list, insert Z

15: for depth d = dot to |ξ| do
16: for each pair of episodes X and Y at depth d with d − 1 common labels where rX ≤ rkth

and rY ≤ rkth do
17: Merge episodes X and Y to be Z

18: Get the occurrence times for Z from X and Y. Infer its regularity rZ

19: if rZ < rkth then
20: Remove the kth episode from the top-k list, insert Z

21: Create a node for Z in the k-tree, set to be a child of X on depth d + 1
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4.2. Mining new incoming batches

At the end of the first mining step, TKRES has built the top-k list and the k-tree, which contains all entries for

episodes in depth 1 to dot, and the entries of top-k regular episodes at depth higher than dot. However, when a new

batch of sensor data arrives, the contents of the top-k might not be up to date anymore. Algorithm 2 details the steps

for the maintenance of the data structures.

TKRES first removes all episodes from the top-k list, as well as the nodes in the k-tree which are in depth higher

than dot. Moreover, occurrence information of the oldest batch Bi is also removed from all entries in the k-tree (lines

1–3). The events in the new batch of data Bi+m are investigated and the occurrence information on the single-label

episodes is updated, as well as the regularity. The k most regular length-1 episodes are gathered in the top-k list (lines

4–7).

The longer episodes are generated thanks to a process similar to the one described in algorithm 1 and section 4.1:

through the merging of pairs of episodes. For the episodes at depth lower than dot − 1, we simply need to update

the occurrence information with what occurs during the new batch, the rest is already in the tree (lines 8–15). But for

episodes in depth dot and higher, TKRES has to intersect all of occurrence information, since it was not saved (lines

16–22). After this merging and intersection process, we gain a complete set of top-k regular episodes contained in the

top-k list and the k-tree for mining the next coming batch of sensors data.

Algorithm 2 TKRES–mining a new incoming batch of sensor data

Input: k: number of episodes to be discovered, Bi+m: the new batch,

k-tree, with the occurrence information for the episodes on 〈Bi, . . . Bi+m−1〉
Output: top-k list containing in the top-k most regular episodes,

k-tree, with the occurrence information for the episodes on 〈Bi+1, . . . Bi+m〉

1: Empty the top-k list

2: Remove all the nodes at depth higher than dot

3: For each node, remove the occurrence times occurring during Bi

4: for each event (e j, t j) in the new batch Bi+m do
5: Collect t j in the node for e j in the k-tree

6: Recompute the regularity for the episodes at depth 1

7: Collect the k labels with the lowest regularity into the sorted top-k list

8: for depth d = 1 to dot do
9: for each episodes X and Y at depth d having d − 1 common labels do

10: Merge episodes X and Y to be Z

11: Get the occurrence times for Z from X and Y (Only for what is occurring during Bi+m). Infer its regularity rZ

12: If it is not already in the tree, create a node for Z, set to be a child of X

13: if rX∪Y < rkth then
14: Remove the kth episode from the top-k list, insert Z instead

15: for depth d = dot to |ξ| do
16: for each pair of episodes X and Y at depth d with d − 1 common labels where rX and rY ≤ rkth do
17: Merge episodes X and Y to be Z

18: Get the occurrence times for Z from X and Y. Infer its regularity rZ

19: if rZ < rkth then
20: Remove the kth episode from the top-k list, insert Z instead

21: Create a node for Z in the k-tree, set to be a child of X on depth d + 1
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5. Experimental study on real home activity monitoring datasets

In this section, we investigate the runtime and output of TKRES on two real-life datasets, Twor2009 (#7) and Aruba

(#17)), from the CASAS project1 6, and analyzing the sensor recordings generated by the people living in the two

houses.

The Twor2009 dataset contains data from motion sensors, item sensors in the kitchen, door sensors, and water

usage sensors. The Aruba dataset contains sensor data from a home where a volunteer adult lived, such as motion

sensors, door closure sensors and temperature sensors. Table 1 summarizes the characteristics of the two datasets.

Most sensors give a binary information (motion sensors are either ON or OFF, the doors are either OPENed or

CLOSEd), but some give numerical information (temperature readings for the Aruba dataset, water usage for the

Twor2009 dataset). We chose to leave these raw data points without preprocessing.

Table 1. Characteristics of the two datasets

Aruba Twor2009

Start 2010-11-04 2009-02-02

End 2011-06-11 2009-04-04

Duration 7 months 2 months

# habitants 1 2

Sensors
Motion detectors, door sensors,

temperature

Motion detectors, water usage, door

sensors

# events
1 719 558

(1 602 985 without temperature data)
137 788

(130 097 without water events)

# labels
351

(157 without temperature data)
4 997

(135 without water events)

In order to assess the performance and scalability of TKRES, we ran experiments with different values for k (ranging

from 10 to 5000), the size of the window (ranging from 3 to 30 batches), and the maximal duration Tep of the

occurrences (ranging from 30 minutes to 1 day). Figures 1 and 2 show the runtime for the initial mining on the two

datasets. Each subplot presents the time performance of TKRES for a value of Tep, and contains 4 groups (one per

window length) of 6 bars (one per value of k, which takes successively the values 10, 50, 100, 500, 1000, 5000). The

total execution time in each bar is split between the three mining subtasks: reading the data, creating the tree up to

depth dot, and mining the results. One notices in particular that the runtime increases with k: since more results are

requested, the k-tree is bigger and TKRES spends more time building it and mining the results. In addition, runtime

increases as the size of windows increases: there are more occurrences to process.

Figures 3 and 4 illustrate the average runtime for mining new coming batch sensor stream. The runtime for each

experiment is split the four mining subtasks: (i) removing occurrence information of the old outdated batch, (ii)

reading sensors data from the new batch, (iii) updating tree up to depth dot and (iv) mining the other episodes. In

particular, we can observe that the time for the removal of old information, the reading of new data and the update

of the tree are small compared to the time needed for mining the results. This shows the interest of storing part of

the tree and updating it, at least up to depth dot. After that, the results are computed again each time the window

changes, hence the longer runtime for this mining subtask. However if the whole tree was just stored and updated, it

is the memory usage that would be heavy. dot allows a trade-off between memory and speed.

Both the Twor2009 and Aruba datasets, the most regular episodes are related to temperature events. The reason

for that is that these sensors are programmed to trigger regular measures. Though the performance results presented in

figures 1–4 use the complete event dataset, we also tested TKRES on filtered datasets, containing only sensors triggered

by human activity. Table 2 present the top-10 regular episodes for the Aruba dataset, with m = 3 and Tep = 30 min.

The map of the apartment is available with the dataset, but was not included here for readability matters. Sensors

1 http://ailab.wsu.edu/casas/datasets/
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Fig. 1. Runtime of the initial mining on Twor2009
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Fig. 2. Runtime of the initial mining on Aruba



83 Komate Amphawan et al.  /  Procedia Computer Science   69  ( 2015 )  76 – 85 

3 7 14 30
0

50

100

150

200

#no. of batches

tim
e 

(s
)

remove oldest information
read data
update tree
mine episodes

(a) Tep = 30 min

3 7 14 30
0

50

100

150

200

#no. of batches

tim
e 

(s
)

remove oldest information
read data
update tree
mine episodes

(b) Tep = 1 h

3 7 14 30
0

50

100

150

200

#no. of batches

tim
e 

(s
)

remove oldest information
read data
update tree
mine episodes

(c) Tep = 3 h

3 7 14 30
0

50

100

150

200

#no. of batches

tim
e 

(s
)

remove oldest information
read data
update tree
mine episodes

(d) Tep = 1 day

Fig. 3. Runtime of mining update on Twor2009
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Table 2. Top-10 regular episodes on Aruba without temperature sensors

Top-10 Episode Regularity

1 M002, M003 4.24 h

2 M002 4.24 h

3 M003, M007 5.67 h

4 M002, M003, M007 5.67 h

5 M002, M007 5.67 h

6 M007 5.68 h

7 M002, M005 5.68 h

8 M002, M004 5.68 h

9 M002, M003, M004 5.68 h

10 M003, M005, M007 5.68 h

M001–M007 are located in the main bedroom, with M004 recording movements from and towards the bathroom. The

inhabitant thus seems to come very regularly to her bedroom. The most regular episodes show regular trajectories

in the apartment, and could help the physicians improve the layout of the apartment, based on the behavior of the

monitored person.

6. Conclusion

We address the problem of mining top-k regular episodes from sensors stream. The main objective is to push

measures of regularity to the episode mining problem and to maintain computational time efficiency. Moreover, the

top-k approach allows the user to control the number of desired output episodes. To discover such episodes, we

present an efficient sing-pass algorithm, named TKRES, using a simple top-k list structure to collect the output and a

k-tree structure to maintain the occurrence information of the episodes. We propose to make a trade-off between the

computational time to update episode knowledge when data changes and memory usage, thanks to the setting of a

depth boundary dot on the k-tree: the episodes shorter than dot are fully investigated and stored, the longer episodes

are only if they belong to the top-k list. Experimental results on two smart home datasets show the efficiency of TKRES

and its ability to detect patterns relevant to the human activity monitoring community.

This work could be further extended. In particular, several interest measures, such as the length of episodes, their

frequency or their periodicity could be combined with the regularity to better target interesting episodes. This will

allow comparative studies against traditional approaches which mainly use one or two interest measures. It would

also be interesting to investigate closed regular episodes.
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