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Abstract. We present a practical bias correction method for classifier
and regression models learning under a general class of selection bias.
The method hinges on two assumptions: 1) a feature vector, Xs, exists
such that S, the variable that controls the inclusion of the samples in the
training set, is conditionally independent of (X,Y ) given Xs; 2) one has
access to some external samples drawn from the population as a whole
in order to approximate the unbiased distribution of Xs. This general
framework includes covariate shift and prior probability shift as special
cases. We first show how importance weighting can remove this bias. We
also discuss the case where our key assumption about Xs is not valid
and where XS is only partially observed in the test set. Experimental
results on synthetic and real-world data demonstrate that our method
works well in practice.
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1 Introduction

Selection bias, which occurs when training and test joint distributions are differ-
ent, i.e. Ptr(x, y) 6= Pte(x, y), is pervasive in almost all empirical studies, includ-
ing Machine Learning, Statistics, Social Sciences, Economics, Bioinformatics,
Biostatistics, Epidemiology, Medicine, etc. It is therefore highly desirable to de-
vise algorithms that remain effective under such distribution shifts. In general,
the estimation problem with two different distributions Ptr(x, y) and Pte(x, y)
is unsolvable, as the two terms could be arbitrarily far apart. However, when
Ptr(x, y) and Pte(x, y) differ only in Ptr(x) and Pte(x) (known as covariate shift)
or only in Ptr(y) and Pte(y) (known as prior probability shift), effective adapta-
tion is possible. In this paper, we present a practical correction method for classi-
fier and regression model learning under a more general class of selection bias. We
assume implicitly that there exists a joint probability distribution P (x, y, s) that
satisfies: Pte(x, y) = P (x, y) =

∑
s
P (x, y, s) and Ptr(x, y) = P (x, y|s = 1), where



the variable S controls the selection of examples in the training set (1 means
the example is selected, 0 means the example is not selected). While Pte(x, y)
and Ptr(x, y) are derived from the same distribution P (x, y, s), we assume no
independence assumption holds between X, Y , and S. This is termed complete
selection bias in the literature. In this case, we have to resort to some additional
information on the mechanism by which the samples were preferentially selected
to the data set to correct the bias.

The recent paper by Bareinboin et al. [1] has been very influential in our
thinking. Mirroring their work, we show that, if we have a combination of bi-
ased data and unbiased data and qualitative probabilistic assumptions that are
deemed plausible about our sampling mechanism, our problem becomes solvable.
More specifically, we assume we have access to a S-control feature vector, Xs,
and some additional sample of the form (xs) that is drawn from the population
as a whole, such that S is conditionally independent of (X,Y ) given Xs. Despite
being limited to specific or idealized situations, this framework includes covariate
shift and prior probability shift as special cases. We also consider the case where
Xs is not fully measured in the target population. This situation typically arises
in various clinical studies or epidemiological scenarios, where some variables are
too difficult or costly to measure in the target population.

We show that one may account for the difference between Ptr(x, y) and
Pte(x, y) by reweighting the training points using the so-called importance weight,
denoted as β(xs). If the selection process is explicitly known, then β(xs) is sim-

ply given by P (s=1)
P (s=1|xs)

, otherwise, we resort to an external (bias-free) data set

of Xs in order to estimate β(xs) directly [3, 5]. Furthermore, as one usually has
a partial understanding of the sampling mechanism, we investigate whether co-
variate shift and prior probability shift corrections may help reduce complete
selection bias despite not being valid.

2 Bias correction

In this section, we investigate the interplay between two types of variables, VB
and VP , where VB are variables collected under selection bias, P (VB |S = 1),
and VP are variables collected in the population-level, P (VP ) 1. We assume that
Y ∈ VB . In [1], Bareinbom et al. provide a sufficient condition for P (x, y) to be
recoverable when no data is gathered over X and Y in the population level. We
extend slightly their result by considering also the case where either Y or some
input variables in X are not only collected under selection bias, but also in the
population-level, (i.e. {X,Y } ∩ VP ∩ VB 6= ∅),

Theorem 1. The bias-free distribution P (x, y) is recoverable from a S-bias train-
ing samples if there exists a set of variables Xs ⊆ VB ∩ VP , such that S ⊥⊥
1 Upper-case letters in italics denote random variables (e.g., X,Y ) and lower-case

letters in italics denote their values (e.g., x, y). X denotes the input variables and Y
the target.



(X,Y )|Xs and the support of P (xs|s = 1) contains the support of P (xs). Let

β(xs) = P (s=1)
P (s=1|xs)

, P (x, y) is then given by the formula,

P (x, y) =
∑

xs\{x,y}

P (x, y, xs|s = 1)β(xs) (1)

β(xs) can be reformulated as β(xs) = P (xs)
P (xs|s=1) . So β(xs) may be estimated

from a combination of biased and unbiased data. Theorem 1 relies on qualitative
assumptions (Xs controls S over (X,Y )) that may appear difficult to satisfy in
practice. However, in certain domains like epidemiology, information about the
selection process can sometimes be expressed and modeled in a communicable
scientific language (e.g., graphs or structural equations) by the domain experts.
The selection bias mechanisms depicted in Figure 1 are common examples2. in
epidemiology [2]. The directed acyclic graphs should be regarded as graphical
structures encoding conditional independence between X, Y , and S which may
involve other variables as as well variables, like M , that is not observed in the
target domain, and thus that is not included as input variable to the model.
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Fig. 1: Examples of complete selection bias mechanisms depicted graphically.
The S-control vector is shown along each plot. X1 is some input variable to the
model, M denotes a variables that is not observed in the target domain, and
thus not used a input variable.

Theorem 2. Given that condition of Theorem 1 is satisfied, if P̂ is a distribu-
tion such that: P̂ (x, y, xs, s) = P (x, y, xs, s)β(xs) then P̂ (x, y|s = 1) ≡ P (x, y).

Proof.

P̂ (x, y, xs, s = 1) = P (x, y, xs, s = 1)β(xs) = P (x, y, xs, s = 1)
P (xs)

P (xs|s = 1)

= P (s = 1)P (xs|s = 1)P (x, y|xs, s = 1)
P (xs)

P (xs|s = 1)
= P (s = 1)P (x, y, xs)

Thus, P̂ (x, y, xs, s = 1) = P (x, y, xs)P (s = 1). If we sum this expression over
x, y, xs we obtain P̂ (s = 1) = P (s = 1). Therefore,

P̂ (x, y, xs|s = 1) =
P̂ (x, y, xs, s = 1)

P̂ (s = 1)
=
P (x, y, xs)P (s = 1)

P (s = 1)
= P (x, y, xs)

2 We assume the reader is familiar with the concepts of d-separation [6]



Finally, P̂ (x, y|s = 1) =
∑

xs\{x,y} P̂ (x, y, xs|s = 1) = P (x, y). ut

Theorem 2 states that an unbiased training sample can be obtained by

weighting each training example by β(xs) = P (xs)
P (xs|s=1) . Note however that the

support of P (xs) should be contained in the support of P (xs|s = 1) for the
β(xs) to be always defined. A similar technique applied to covariate shift was
discussed in [9]. The unbiased expected loss of the model follows:

Corollary 1. Given that condition of Theorem 1 is satisfied, and P̂ in Theorem
2, for all classifier h, all loss function l = l(h(x), y),

Ex,y∼P (l) = Ex,y∼P̂ (l|s = 1)

Ex,y∼P (l) is the loss that we would like to minimize and Ex,y∼P̂ (l|s = 1)) is
the loss that may be estimated from the new biased sample drawn from weighted
distribution P̂ .

3 Experiments

In this section, we assess the ability of importance weighting to remove complete
selection bias based on Theorem 2. In the toy experiment, we investigate whether
covariate shift and prior probability shift corrections may help reduce complete
selection bias despite our assumptions between the training and test distributions
difference being violated (through an invalid choice for Xs).

When the selection process is explicitly known, β(xs) is simply given by
P (s=1)

P (s=1|xs)
. Otherwise, we resort to an external (bias-free) data set of Xs in order

to estimate β(xs) as P (xs)
P (xs|s=1) . In this study, we use the Kernel Mean Matching

(KMM) [3, 8] estimator for β(xs) denoted as KMM(Xs). As one usually has a
partial understanding of the sampling mechanism, we investigate whether covari-

ate shift (i.e., β(x) = P (x)
P (x|s=1) ) and prior probability shift (i.e., β(y) = P (y)

P (y|s=1) ),

corrections may help reduce complete selection bias despite not being valid.
These strategies are denoted as KMM(X), KMM(Y ). We first apply our method
to a simple toy problem and then compare KMM to another estimator called
the Unconstrained Least-Square Importance Fitting (uLSIF) [5] on a variety of
regression and classification benchmarks from the UCI Archive.

3.1 Toy problem

Consider the S-bias mechanism displayed in Fig. 1b, where the feature X has a
uniform distribution in [0, 1]: P (X) ∼ U(0, 1). Note that the influence of M on Y
is mediated by {X,S}. The observations are generated according to y = 1−0.5x
and are observed in Gaussian noise with standard deviation 0.5 (see Fig. 2c; the
black solid line is the noise-free signal). The intermediate variable M , between
X and S, is generated according to M = X+N (0, 0.32). As M is only measured
in the training set, it is not used as an input variable in our regression model.



Therefore, we investigate a case where Xs is partially missing in the test set.
The probability of a given example being included in the training set depends
on Y and M and is given by

P (S = 1|m, y) ∼


y −m, if 0.1 ≤ (y −m) ≤ 1

0.1, if (y −m) ≤ 0.1

1, otherwise
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Fig. 2: Toy regression problem 1. (a) and (b) Contour plots X-Y on training
and test sets; (c) Polynomial models of degree 1 fit with OLS and WOLS; (d)
Average performances of four WOLS methods and OLS on the test data as a
function of the number of training points.

Note that the minimum value of P (S = 1|m, y) needs to be greater than 0
so that the support of P (m, y) is contained in the support of P (m, y|s = 1), as
required by Theorem 1. The choice of P (m, y) is intended to induce a noticeable
discrepancy between P (y|x, s = 1) and P (y|x). We sampled 200 training (red
crosses in Fig. 2c) and testing (grey circles) points from Ptr and Pte respectively.
The bias is clearly noticeable from the X-Y contour plots in Fig. 2a and b. The



bias-free distribution P (x, y) is recoverable from the S-bias training samples since
{M,Y } satisfies Theorem 1. Thus we use Theorem 2, to remove selection bias
by weighting each example by the importance ratio:

β(xs) = β(m, y) =
P (m, y)

P (m, y|s = 1)
=
P (s = 1|m, y)

P (s = 1)

where P (s = 1|m, y) and P (s = 1) may be obtained from the known selection
mechanism shown above or directly estimated by KMM. We attempted to model
the observations with a degree 1 polynomial. The black dashed line in Fig. 2c is
a best-case scenario given our test points, which is shown for reference purposes:
it represents the model fit using ordinary least squared (OLS) on the test set.
The brown line is a second reference result, derived only from the training data
via OLS, and predicts the test data very poorly. The green dashed line is a third
reference result, fit with weighted ordinary least square (WOLS), using the true
β(xs) values calculated from the true data generating mechanism, and predicts
the test data quite well. The other three dashed lines are fit with WOLS using
the KMM weighting schemes under the three assumptions. Note that the true
generating model between X and Y is included in the hypothesis space. We
estimated the effect of the number of training points on the estimation of the
reweighting factors by examining the average mean square error (MSE) on the
test set as a function of the number of training points. As may be observed in Fig.
2d, the error goes down as the sample size increases, until it reaches an asymp-
totic value. KMM(Xs) performs well even with relatively moderate amounts of
data achieving almost optimal error quite quickly, handily outperforming the
reweighting method based on KMM(X) and KMM(Y ) by a noticeable margin.
More interestingly, KMM(Xs) also outperforms the reweighting method based
on the true data generating mechanism, especially when sample size is small.
This result may seem counter-intuitive at first sight: the reason is that the exact
importance-sampler weights are not always optimal unless we have an infinite
sample size. See [7] for a thorough discussion. Remarkably, despite our assump-
tion regarding the difference between the training and test distributions being
violated, KMM(Y ) and KMM(X) improve the test performance.

3.2 Real-world data sets

We now examine whether using importance weighting can reduce selection bias
in 10 UCI data sets with 5 classification tasks and 5 regression tasks. We em-
ploy three methods to estimate importance weighting: ratio of underlying prob-
ability, KMM and uLSIF and compare their performance against the baseline
unweighted method. For each data set, Xs is chosen to be the label Y and
the most correlated input variable to Y (denoted as X1 for simplicity). The
selection bias mechanism is illustrated in Fig. 1c. The selection variable S for
each training example is determined according to two scenarios depending on
whether it is regression or classification problem. For regression problem, we use
P (s = 1|x1, y) = exp(ax1 + by + c)/[1 + exp(ax1 + by + c)], where a, b, c, are
parameters that determine the bias. For binary classification problem, we use:



P (s = 1|x1, y) =

{
0.5 if x1 > mean(x1) and y = 1

1 if otherwise.

For each data set, we then train 4 predictive models learned under the four
weighting schemes discussed above and a model learned from the unbiased data
(baseline) using SVM-light [4] which allows importance weighting to be fed di-
rectly to SVM. All classifiers are trained with the common Radial Basis Function
(RBF), with a kernel size σ chosen through a 5-fold cross validation. This pro-
cedure is repeated 100 times for each data set.

Data set No weighting KMM uLSIF Underlying P Unbiased model

India diabetes 0.338 ± 0.049 0.266 ± 0.040 0.332 ± 0.053 0.287 ± 0.055 0.258 ± 0.035
Ionosphere 0.069 ± 0.039 0.066 ± 0.039 0.067 ± 0.040 0.067 ± 0.039 0.065 ± 0.036
BreastCancer 0.044 ± 0.016 0.039 ± 0.015 0.043 ± 0.017 0.040 ± 0.016 0.038 ± 0.015
Haberman 0.264 ± 0.069 0.262 ± 0.071 0.263 ± 0.070 0.262 ± 0.071 0.262 ± 0.071
GermanCredit 0.300 ± 0.044 0.298 ± 0.046 0.298 ± 0.045 0.298 ± 0.046 0.295 ± 0.046

Airfoil self noise* 0.534 ± 0.104 0.470 ± 0.122 0.475 ± 0.082 0.445 ± 0.081 0.403 ± 0.059
Abanlone* 0.526 ± 0.048 0.484 ± 0.054 0.521 ± 0.057 0.466 ± 0.041 0.456 ± 0.036
Computer Hardware* 0.326 ± 0.308 0.321 ± 0.304 0.321 ± 0.299 0.319 ± 0.307 0.305 ± 0.201
Auto MGP* 0.268 ± 0.148 0.298 ± 0.192 0.212 ± 0.129 0.203 ± 0.128 0.129 ± 0.063
Boston Housing* 0.323 ± 0.110 0.327 ± 0.127 0.349 ± 0.133 0.332 ± 0.127 0.298 ± 0.112

Table 1: Mean test error averaged over 100 trials of different weighting schemes
on UCI data set. Data sets marked with * are for regression problems

The results are reported in Tab. 1. As may be seen, all importance weighting
schemes achieve lower prediction error with respect to the baseline unweighted
scheme. The underlying probability weighting scheme performs pretty good. Cu-
riously, on the Boston Housing data set, all three weighting schemes perform
worse than the baseline unweighted method. It seems therefore that the effec-
tiveness of bias correction based on importance weighting is data dependent. In
order to better assess the overall results obtained for each of the 4 weighting
schemes, a non-parametric Friedman test was firstly used to evaluate the re-
jection of the hypothesis that all the models perform equally well (except the
unbiased model of course) at significant level 5%. Statistically significant dif-
ferences were observed. So we proceeded with the Nemenyi post hoc test. The
results along with the average rank diagrams are shown in Fig. 3. The ranks are
depicted on the axis, in such a manner that the best ranking algorithms are at
the rightmost side of the diagram. The algorithms that do not differ significantly
(at p = 0.05) are connected with a line. As may be observed in Fig. 3, contrary
to uLSIF, KMM is significantly better than no weighting.

4 Discussion & Conclusion

The aim of this paper was to elaborate on the idea of exploiting the assumptions
that are deemed plausible about the sampling mechanism to correct or reduce
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Fig. 3: post hoc analysis

selection bias in machine learning tasks. The method hinges on the existence of a
S-control feature vector, Xs, and an additional (biased-free) sample that allows
us to estimate the distribution of Xs. We showed experimentally that direct
weighting estimation is able to achieve significant improvements in accuracy over
the unweighted method, even in situations where our key assumption is not valid
(assuming covariate shift and prior probability shift instead of complete selection
bias). However the gain in accuracy is data dependent. In fact, all conclusions
are extremely sensitive to which variables we choose for Xs. As the choice of
Xs usually reflects the investigator’s subjective and qualitative knowledge of
statistical influences in the domain, the data analyst must weight the benefit
of reducing selection bias against the risk of introducing new bias carried by
unmeasured covariates even where none existed before. Nevertheless, we hope
this study will convince others about the importance of selection bias correction
methods in practical studies and suggest relevant tools which can be used to
achieve that goal.
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