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bFédération de Mathématiques de l’Ecole Centrale Paris, FR CNRS 3487, France
cDepartment of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA

50011-2230, USA

Abstract

The accurate description and robust simulation, at relatively low cost, of global quantities (e.g.
number density or volume fraction) as well as the size distribution of a population of fine particles
in a carrier fluid is still a major challenge for many applications. For this purpose, two types of
methods are investigated for solving the population balance equation with aggregation, continuous
particle size change (growth and size reduction), and nucleation: the extended quadrature method
of moments (EQMOM) based on the work of Yuan et al. (J. Aerosol Sci., 51:1–23, 2012) and a hybrid
method (TSM) between the sectional and moment methods, considering two moments per section
based on the work of Laurent et al. (Commun. Comput. Phys., accepted, 2016, https://hal.archives-
ouvertes.fr/hal-01169730). For both methods, the closure employs a continuous reconstruction of
the number density function of the particles from its moments, thus allowing evaluation of all the
unclosed terms in the moment equations, including the negative flux due to the disappearance of
particles. Robust and accurate numerical methods are developed, ensuring the realizability of the
moments. The robustness is ensured with efficient and tractable algorithms despite the numerous
couplings and various algebraic constraints thanks to a tailored overall strategy. EQMOM and
TSM are compared to the classical sectional method for various test cases, showing their ability
to describe accurately the fine-particle population with a much lower number of variables. These
results demonstrate the efficiency of the modeling and numerical choices, and their potential for
the simulation of real-world applications.

Keywords: aerosol, population balance equation, quadrature-based moment method, sectional
method, hybrid method

1. Introduction

The evolution of a population of fine, that is non-inertial, particles in a carrier fluid can be
described by a population balance equation (PBE) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. There are many
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potential applications such as soot modeling, aerosol technology, nanoparticle synthesis, microbub-
bles, reactive precipitation, and coal combustion (see [5] and references therein). The PBE is a5

transport equation for the number density function (NDF) of the particles. The NDF depends
on time, spatial location and the internal coordinates, which can include, for example, volume,
surface area or chemical composition. The mathematical form of a typical PBE includes spatial
transport (e.g. convection and diffusion), derivative source terms for continuous particle size change
(e.g. oxidation/dissolution and surface growth), integral terms (e.g. aggregation and breakage), and10

Dirac-delta-function source terms describing the formation of particles (e.g. nucleation). Moreover,
it is usually not only important to predict the evolution of global quantities of the particle popula-
tion, but also to have some information on the NDF. For example, when considering soot, the total
produced mass or volume fraction, as well as the size-dependent NDF represent essential elements
in present and future emission regulations. But since the evolution of the NDF is usually coupled15

with the resolution of the Navier-Stokes equation for the carrier fluid [10], the cost of its resolution
has to be reasonable so that the global simulation will be affordable. We therefore seek a robust
method able to describe accurately some global quantities of the particle population, but also able
to give a good idea of the shape of the NDF, at a reasonable cost.

In this work, only size is considered as the internal variable. Moreover, even if the geometry of20

fine particles can be complex, we assume that only one variable, e.g. volume v, is needed to describe
it, eventually taking into account the more complex shape of large particles compared to smaller
ones through a fractal dimension depending on size. This work thus represents a first step before
considering more complex models that add another internal coordinate variable. Different methods
are available in the literature to solve the PBE. The Monte-Carlo method [2] is usually too costly25

to be coupled with a flow solver, especially when considering particle interactions like aggregation.
We therefore focus on deterministic methods.

With one internal variable, deterministic methods can be based on a discretization along the
size variable. Equations are written for the total number density or the total mass density of the
particles inside each interval of the size-discretization. These intervals are called sections in what30

follows, in reference to the sectional methods, which fall in this category. A large literature is
devoted to this type of method, especially for the resolution of the aggregation and/or breakage
PBE (see e.g. [11, 12, 13] and references therein). Among them are the fixed-pivot [11] and the cell-
average [14] techniques, which consider that the particle population of one section is represented
by only one size (pivot size), the new particles after collision or breakup being distributed over35

the sections in such a way that the discrete equations are consistent with the global number and
mass (they are said to be “moment preserving”). These methods have been combined with the
method of characteristics to treat the growth terms in order to solve the PBE with simultaneous
nucleation, growth and aggregation [15]. Some other methods are based on a “conservative form”
of the PBE for the mass density function [16, 17]: a conservative finite-volume method developed40

for aggregation and breakup [16, 17] and extended to growth and nucleation [18], or some moment-
preserving methods [19]. These methods have been shown to be convergent when considering only
aggregation or breakup, with first-order accuracy for the finite-volume methods [16, 17] and second-
order accuracy for the fixed-pivot and cell-average techniques [20, 21, 22]. But a large number of
sections is always used and the ability of these methods to describe adequately the NDF with a45

small number of sections has not been fully explored, especially for the complete problem with
nucleation and growth. Moreover, such methods have never been reported for cases where the
particle size is decreasing through a continuous process.

A different kind of method, the only one that will be called sectional here (even if some of the
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previous ones are also called sectional in the literature), is based on a closure through a continuous50

reconstruction of the NDF inside each section. This reconstruction can be constant [23, 24, 25]
or affine [26, 27]. When considering sprays, sectional methods are also called “Eulerian multi-
fluid methods” [24], and they are developed after reduction of the internal variables to only size
thanks to velocity moments and a mono-kinetic closure. The corresponding model is a finite-volume
method. It was shown to be first-order accurate in the pure-evaporation case [28] and exhibited first-55

order numerical accuracy for the investigated cases, taking into account the collisions (coalescence)
[29]. Moreover, in this approach, an affine reconstruction of MUSCL type was tested in the pure-
evaporation case. However, if its order of accuracy is higher, the effective accuracy is not much
improved compared to the first-order method, except with a large number of sections. Then, as
with other discretized methods, sectional methods lead to an accurate prediction of the NDF with60

a large enough number of sections. However, for many applications, physical transport must also
be considered, as well as coupling with the carrier fluid. This can be done thanks to the use of an
operator-splitting method (see e.g. [30]), but if a large number of sections has to be considered, the
computational cost can be prohibitive, since one has to transport at least one variable per section.

In contrast, moment methods do not use a direct resolution of the NDF, but rather transport65

a finite set of its moments, usually the first few integer order ones. Since they are the moments
of a non-negative NDF (or, more rigorously, a positive measure), this moment set belongs to a
space strictly included in RN+ , where N is the number of moments [31, 32, 33]. This space is
called the moment space. The NDF cannot be recovered from this finite moment set: there is an
infinite number of possibilities in non-degenerate cases, i.e. when the moment set is in the interior of70

moment space, whereas a unique sum of weighted Dirac delta functions is possible for the degenerate
cases, i.e. for the boundary of moment space. One can remark that the degenerate case can appear
in problems of interest due to nucleation of fine particles just as they begin to aggregate. Most
importantly, moment methods give access to some important properties of the NDF.

For moment methods, two major issues arise. The first is closure of the moment equations due to75

the nonlinear source terms in the PBE. This includes the negative flux due to the disappearance of
particles when continuous size reduction is considered (e.g. oxidation or evaporation), which requires
a point-wise evaluation of the NDF [34]. Two kinds of closures are used in the literature: (i) a
functional dependence of the unclosed terms (usually expressed through some fractional moments)
is provided using the moment set; (ii) a NDF, or its corresponding measure, is reconstructed from80

the moment set, allowing evaluation of all the unclosed terms. In the first category, one finds the
interpolative closure (MOMIC) [35, 36] widely used in the soot community and extended to the
bivariate case [37]. MOMIC is based on an interpolation along the order of the moments. However,
this kind of method does not allow one to deal with the disappearance fluxes, except for the hybrid
method of moments (HMOM) [38], which is a combination of MOMIC and DQMOM described85

below and was developed for a bivariate case. Moreover, these methods do not guarantee that the
closure can correspond to any NDF. This is why a second way to close the moment equations has
been developed using quadrature-based moment methods (QBMM) [39, 1, 2].

Because the internal variable (size) is assumed to live in the semi-infinite space [0,∞), the
problem of NDF reconstruction from a finite set of moments is known as the truncated Stieljes90

moment problem [31, 33]1. Among these reconstructions, a sum of weighted Dirac delta functions

1It is the truncated Hausdorff moment problem if the internal variable lives in a compact support, and the
Hamburger problem if it lives on the real line.
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can be used, leading to the widely employed quadrature method of moments (QMOM) [40]. This
reconstruction for an even set of integer moments (m0,m1, . . . ,m2N−1) is the lower principal rep-
resentation, i.e. the corresponding moment m2N is minimal. In its variant, the direct quadrature
method of moments (DQMOM) [41], the equations are directly written for the weights and ab-95

scissas of the reconstruction, leading however to some shortcomings related to the conservation of
moments. Although these methods have the advantage of being applicable to multivariate cases
(directly for DQMOM or using the conditional quadrature method of moments (CQMOM) [42]),
they still cannot deal with disappearance fluxes [43]. A continuous NDF reconstruction must be
considered for this purpose.100

One such reconstruction is entropy maximization, which is well defined for the truncated Haus-
dorff moment problem [44, 45], and an algorithm is available to reproduce any moment set with
reasonable accuracy [46]. Entropy maximization has been used for sprays [34, 47, 46]. However,
when considering the truncated Stieljes moment problem, it fails to reproduce some moment sets
[48]. Some other types of reconstructions have been proposed (see [49] and references therein), but105

either with a too low number of moments in such a way that multi-nodal distributions, which often
appear in the problems of interest here, cannot be described, or with almost always some negative
values for the reconstructed NDF, thus leading to potential instability issues for their numerical res-
olution. For the truncated Hausdorff moment problem, a nonnegative reconstruction was developed
using a superposition of kernel density functions (KDF) (kernel density element method, KDEM)110

[50]. However, KDEM only guarantees that some of the low-order moments are exactly preserved
[49]. First for the truncated Hamburger moment problem [51], and then for the truncated Hausdorff
and Stieljes moment problems [49, 52], a nonnegative reconstruction was developed using QBMM,
allowing to exactly preserve all the moments except sometimes the last one. The reconstructed
NDF is then a sum of nonnegative weighted KDF, able to converge to the Dirac delta function,115

even if this transition is not yet numerically effective in the proposed algorithms. The QBMM
corresponding to this closure is called the extended quadrature method of moments (EQMOM) and
was, for example, applied to soots in [53].

The second major issue associated with moment methods is realizability: the moments must
remain in moment space, which is a convex space [31, 32, 33]. This issue is not always considered,120

especially when the first type of closure is used, thus leading to unphysical results (e.g. invalid
moment sets). Indeed, even if the closure itself ensures the realizability at the continuous level,
the classical schemes for high-order transport in physical space can lead to an invalid moment set
[54, 55, 56], as well as for transport in phase space, especially when considering continuous particle
size reduction [34] and/or the transition between a Dirac distribution (due to the nucleation) and a125

smooth distribution (due to the aggregation/coagulation). To circumvent this issue, some authors
resort to moment correction algorithms [57, 54] based on a necessary but not sufficient condition
for realizability [31] in order to obtain a valid moment set. The cost of the method then increases
and the correction spoils the overall accuracy. This is why, in this paper, the developed schemes
directly preserve the realizability of the moment set [34, 47, 2].130

In recent years, a third type of method, which is a hybrid method between the sectional and
moment methods, has been developed in the context of sprays [29, 58, 59, 34, 47, 46]. This method
uses more than one moment per section and then a more accurate reconstruction on the section from
these moments. If the realizability issue has also to be considered, contrary to moment methods,
its complexity is often low since only a few moments are considered (typically two or eventually135

four). Among these hybrid methods, the two–size moment (TSM) method has been shown to be
very accurate for evaporation (i.e. size reduction), as well as for coalescence (i.e. collisions) thanks
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to a second-order accurate reconstruction of the NDF from the moments in the section [29], leading
also to a good representation of the NDF with a small number of sections. Thus, TSM is a useful
method for the fine-particle applications of interest here.140

In this paper, we focus on both EQMOM and TSM in the context where the following physical
phenomena are considered (i.e. all types of processes except spatial transport): nucleation, aggrega-
tion, continuous growth and size reduction. Robust reconstruction algorithms are provided for each
method, accounting for boundary detection of moment space in the case of EQMOM. Moreover,
since operator time-splitting techniques will be used for the complete problem, realizable schemes145

are developed for each operator separately. The remainder of the paper is organized as follows.
Section 2 is dedicated to the description of EQMOM and TSM: the closures are given, as well as
efficient algorithms to compute them. Then, realizable numerical schemes are provided and the
methods are compared to the classical sectional method when considering particle size reduction
and growth (Sec. 3), aggregation (Sec. 4), and a combination of nucleation, aggregation and size150

reduction (Sec. 5). Conclusions are drawn in Sec. 6.

2. Mathematical Model

The hybrid and quadrature-based moment methods that will be used in this work are derived
from the spatially homogeneous and mono-variate PBE, considering nucleation, aggregation and
continuous particle size change. For the hybrid method, TSM is used, with a reconstruction in155

the volume or radius variable. For the QBMM, EQMOM is used with a gamma or a log-normal
KDF. The PBE is first recalled and the equations for the moments of the NDF on an arbitrary
interval are given. To close the equations, a non-negative NDF is reconstructed and the details of
this reconstruction are provided for each method. Moreover, the moment space is described in each
case.160

2.1. Population balance equation (PBE)

Let us consider the volume v as the only internal variable. In the case of spatial homogeneity,
the NDF f(t, v) is only a function of time t and v and the PBE reads

∂f(t, v)

∂t
= Snuc + Sagg + Sgro + Sred (1)

with t ≥ 0 and v ≥ 0. The source terms corresponding to nucleation Snuc, aggregation Sagg, surface
growth Sgro, and continuous size reduction Sred are given, respectively, by

Snuc = j(t) δ(v − Vnuc) (2a)

Sagg =
1

2

∫ v

0

β(t, v − v′, v′) f(t, v − v′) f(t, v′) dv′ − f(t, v)

∫ ∞
0

β(t, v, v′) f(t, v′) dv′ (2b)

Sgro = ∂v[Rgro(t, v) f(t, v)] Sred = ∂v[Rred(t, v) f(t, v)] (2c)

where the nuclei volume Vnuc is constant and j(t) is the nucleation rate [60, 37, 38]. Moreover,
β(t, v, v′) is the aggregation kernel, Rgro(t, v) ≥ 0 the surface growth rate, and Rred(t, v) ≤ 0 the165

rate of size reduction. From the literature there are several types of aggregation kernels such as
sum, product or Brownian [49, 2]. Only the sum and Brownian kernels will be considered in what
follows, the first for verification purposes since some analytical solutions are available, and the
second for a more physical dependence on the size. Time-dependent kernels will not be considered.
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The drift terms (2c) depend on the particle geometry as well as on the size change process.170

They represent the rate dv
dt of change of the particle volume. In the case of particle size reduction,

Rred(t, v) is usually proportional to the particle surface. For a spherical particle, this leads to

Rred(t, v) = −cred(t) v2/31R+(v) ≤ 0 (3)

where cred(t) depends only on time. While the small particles are nearly spherical, this is usually
not the case of the larger ones. A fractal dimension depending on the volume can be used in
order to express the surface area as a function of the volume. However, this is not done here: the175

methods will be evaluated with simple models in the framework of this paper. For surface growth,
we consider diffusion-controlled growth [40], meaning that the radius r of the particle increases
proportionally to 1/r. For spherical particles, this leads to the following volume change rate (see
Appendix A):

Rgro(t, v) = cgro(t) v1/3 ≥ 0 (4)

where cgro(t) is independent of the volume. In what follows, the variable v1/3, which is proportional180

to the radius when considering spherical particles, will be denoted r and used as the variable of
interest in our example results.

A typical solution of the PBE in fine-particle applications starts with a Dirac delta function, due
to nucleation [4]. Then, the aggregation causes particles of larger sizes to appear, whereas the drift
terms make the sizes of all particles evolve continuously. So, from monodisperse, the distribution185

becomes polydisperse, with eventually a short period of time where there are only a few sizes. One
then has to deal with all these cases with our approximate models based on QBMM and hybrid
methods.

2.2. Moment equations and related issues

Let us consider the interval ]Vmin, Vmax[, which will be the semi-infinite space [0,∞) for QBMM190

or a section for the hybrid method. Consider the moment of order k of the NDF on this interval:
with k ∈ {0, 1, . . . , N}. Multiplying the PBE (1) by vk and integrating over the support, we obtain
the following ordinary differential equations (ODE) for mk:

dmk

dt
= 〈Snuc, v

k〉+ 〈Sagg, v
k〉+ 〈Sgro, v

k〉+ 〈Sred, v
k〉 (5)

where

〈Snuc, v
k〉=V knuc j(t)1]Vmin,Vmax[(Vnuc) (6a)

〈Sagg, v
k〉= 1

2

∫∫
Ω

(v + v′)kβ(t, v, v′)f(t, v) f(t, v′)dvdv′ −
∫ Vmax

Vmin

vkf(t, v)

∫ ∞
0

β(t, v, v′) f(t, v′)dv′dv

(6b)

〈Sgro, v
k〉=V kmaxRgro(t, Vmax)f(t, Vmax)−V kminRgro(t, Vmin)f(t, Vmin)−k

∫ Vmax

Vmin

vk−1Rgro(t, v)f(t, v)dv

(6c)

〈Sred, v
k〉=V kmaxRred(t, Vmax)f(t, Vmax)−V kminRred(t, Vmin)f(t, Vmin)−k

∫ Vmax

Vmin

vk−1Rred(t, v)f(t, v)dv

(6d)
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and Ω = {(v, v′) > 0
/
Vmin ≤ v + v′ ≤ Vmax}. This set of ODEs for k ∈ {0, 1, . . . , N} is unclosed

since the NDF is unknown. Here, in order to be sure that the source terms are physical, the NDF195

will be reconstructed from its moments,. This reconstruction will have to be well defined for all
the physically possible cases, including monodisperse or discrete polydisperse cases, and will have
to give a representative value of the NDF at each bound of the interval in cases where this bound
is not infinite. Finally, the set of moments lives in a convex space, which is described in the next
subsection, and the numerical scheme will have to guarantee that the computed moment set will200

stay in this space.
Let us remark that the volume variable is used for the NDF as well as for the moment definition.

However, for size reduction, the variable r = v1/3 is also interesting since it decreases in an affine
way. This is why integer moments for this variable will also be considered, leading to fractional
moments in v and/or a reconstruction of the NDF as a function of r (see the corresponding change205

of variable in Appendix A).

2.3. Moment space and realizability

In order to give a clear picture of the moment space and the realizability problem, we recall
some knowledge from the theory of moments. For simplicity, we drop time t hereinafter in this
section.210

For hybrid methods, only two moments m0 and m1 are considered and the space in which they
live is clearly M1(Vmin, Vmax){(m0,m1) ∈ R2

+

∣∣Vminm0 ≤ m1 ≤ Vmaxm0}. If m0 is positive, then the
equalities Vminm0 = m1 and Vmaxm0 = m1 correspond to the degenerate cases where the NDF is a
Dirac delta function at Vmin or Vmax, respectively. There is no reason why such cases should appear if
Vmin and Vmax do not coincide with the nuclei size Vnuc. Only the degenerate case (m0,m1) = (0, 0)215

will then be considered, leading to a zero NDF.
For QBMM, the semi-infinite space [0,∞) is considered for the interval ]Vmin, Vmax[, as well as

moments of order 0 to N on this interval in the variable ξ, which is the volume v or the variable
r = v1/3. For any positive measure dµ(ξ), i.e. induced by a nondecreasing function µ(ξ) on [0,∞),
let us denote mN (dµ) the vector of moments defined by220

mN (dµ) = (m0(dµ),m1(dµ), . . . ,mN (dµ))T , mk(dµ) =

∫ ∞
0

ξkdµ(ξ), k ≥ 0, (7)

assuming that such moments are finite. One then has the following definition of the moment space:

Definition 2.1 (Moment space). The moment spaceMN (0,∞) is defined as the set of all moment
vectors mN (dµ), where dµ(ξ) is a positive measure having finite moments of order 0 to N .

To simplify the notation,MN (0,∞) is also denotedMN . The moment space can also be defined
by the moments of the probability measure [32, 33]. Let us denote it by M̃N in this case. There225

is a one-to-one relation betweenMN − (0, . . . , 0)T and M̃N through the division by the zero-order
moment. Here, the zero moment vector can be used and this is why we employ the definition for
positive measures.

Moment space is convex [61] and can be characterized by the Hankel determinants defined by

H2n+d =

∣∣∣∣∣∣∣
md . . . mn+d

...
. . .

...
mn+d . . . m2n+d

∣∣∣∣∣∣∣ (8)
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with d ∈ {0, 1} and n ∈ N. Indeed, mN = (m0,m1, . . . ,mN )T is in MN if and only if the Hankel230

determinants Hk are non-negative for k ∈ {0, 1, . . . , N} [32, 33]. Moreover, if one of the Hankel
determinants is zero, then the moment vector is on the boundary of moment space ∂MN . It is then
interesting to define the minimum integer k such that mk is on the boundary of the kth moment
space Mk. This integer is denoted N (mN ) and then Hk is positive for k < N (mN ), whereas
HN (mN ) = · · · = HN = 0. In this case, the only measure corresponding to this moment vector235

is a sum of k weighted Dirac delta functions, with N (mN ) = 2k − 1 if it is an odd number. If
the considered Hankel determinants are positive, then the moment vector mN is in the interior
Int(MN ) of the moment space MN and, by convention, N (mN ) = N + 1.

Since the boundary of moment space can be attained (monodisperse or discrete polydisperse
cases with a small number of sizes), it is important to be able to determine N (mN ) from a numerical240

point of view. In practical applications, such boundary detection with Hankel determinants is costly
and can be inaccurate when the moments are close to the boundary, due to numerical errors. A
more efficient algorithm can be extracted from the theory of orthogonal polynomials [32, 61, 62]. A
sequence of polynomials {Pk}i∈N, where Pk is of exact degree k and orthogonal with respect to some
positive measure dµ(ξ) on the semi-infinite support [0,∞) if and only if

∫∞
0
Pk(x)Pl(x) dµ(x) = 0245

for any k 6= l. It is then well known that this sequence satisfies a three-term recurrence relation of
the form

Pk+1(x) = (x− ak+1)Pk(x)− bk+1Pk−1(x), k ∈ N, (9)

with bk+1 > 0 and P−1(x) = 0, P0(x) = 1. Conversely, if the sequence of polynomials satisfies (9)
with bk+1 > 0 for all k ∈ N, then there exists a measure on the real line for which the polynomials
are orthogonal. It is also well known [62] that the measure µ is supported on [0,∞) if and only if250

there exists a sequence of positive numbers {ζn}n∈N∗ such that the coefficients in the recurrence
relation (9) satisfy for all k ≥ 1:

bk = ζ2k−1ζ2k, ak = ζ2k + ζ2k+1. (10)

Moreover, the link between {ζn}n∈N and Hankel determinants [32] is given by

ζk =
HkHk−3

Hk−1Hk−2

(11)

where we use Hk = 1 if k ≤ 0. Then, one has the following properties:

Proposition 2.2 (Realizability). Let us consider a moment vector mN and the corresponding255

(ζk)k=1,...,N . Then mN is in the interior Int(MN ) of moment space if and only if ζk > 0 for
k = 1, . . . , N . Moreover mN is on the boundary ∂MN of moment space, with N (mN ) = n if and
only if ζk > 0 for k = 1, . . . , n− 1 and ζn = · · · = ζN = 0.

Several algorithms can be employed to compute efficiently the recurrence coefficients ak and bk
and then the ζk from the moments: Rutishauser’s QD algorithm [63, 64], Gordon’s PD algorithm260

[65, 66] and variation of an algorithm attributed to Chebyshev and given by Wheeler in [67]. Since
it is found to be slightly more stable in practice [67], the last one is used here and referred to as the
Chebyshev algorithm (see Appendix B for the description of the ζ–Chebyshev algorithm, coupling
this Chebyshev algorithm to the computation of the ζk). Moreover, one can remark that, given a
moment vector m2n−1 ∈ Int(M2n−1), the quadrature can be evaluated based on the tridiagonal265

Jacobi matrix [61] formed by the recurrence coefficients ak and bk. Thus, we obtain a consistent
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Figure 1: EQMOM moment-inversion algorithm.

and robust way to compute the quadrature and verify the realizability of an arbitrary moment set,
including boundary detection.

In the rest of the paper, the less rigorous notation f(ξ)dξ is used for the measure, instead of
dµ(ξ), making the NDF apparent.270

2.4. EQMOM

When considering QBMM, the EQMOM reconstruction is able to close the moment transport
equations (6), since it gives a value of the NDF at zero size. Moreover, it is able to degenerate to
a sum of weighted Dirac delta functions in the case where the moment vector is on the boundary
of moment space. In this section, the principle of this method is recalled, as well as two types275

of KDF used for the truncated Stieljes moment problem [49, 52]. Moreover, a more robust and
efficient EQMOM moment-inversion algorithm is developed here, able to deal with the boundary
of moment space.

2.4.1. EQMOM moment inversion

In EQMOM, the NDF is represented by weighted sum of KDF on a semi-infinite support [49]:280

f(ξ) =

N∑
α=1

wα δσ(ξ, ξα) (12)

where σ is a unique nonnegative parameter shared by all KDF. This representation also captures the
tail of the distribution corresponding to large particles. To deal with the boundary of moment space,
the following informal convergence is imposed through the choice of the KDF: limσ→0 δσ(ξ, ξα) =
δ(ξ− ξα). Let us define 〈ξ〉k,α, mn = (m0, . . . ,mn)T and m∗n = (m∗0, . . . ,m

∗
n)T , respectively, using

〈ξ〉k,α =

∫ ∞
0

ξk δσ(ξ, ξα) dv, mk =

N∑
α=1

wα〈ξ〉k,α, m∗k =

N∑
α=1

wαξ
k
α. (13)

A second constraint on the KDF is that for any k ≥ 1, there exists an invertible matrix Ak(σ),285

independent of the weights wα and abscissas ξα such that mk = Ak(σ)m∗k. The purpose of this
constraint is to allow for the use of the quadrature based on the Chebyshev algorithm. Indeed, for
any value of σ, one can compute m∗2N−1(σ) = A2N−1(σ)−1m2N−1, and then use the quadrature
algorithm to compute the weights (wα(σ))Nα=1 and abscissas (ξα(σ))Nα=1 if m∗2N−1(σ) is in the
interior of moment space. The moments of orders 0 to 2N − 1 of the EQMOM reconstruction290

corresponding to these parameters for a given σ, (wα(σ))Nα=1 and (ξα(σ))Nα=1 are m0 to m2N−1,
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and the value of σ has to be adapted in order that its 2Nth-order moment is m2N (which is not
always possible).

The original EQMOM moment-inversion algorithm is given in [49]. There are two open issues
with this algorithm. First, the boundary of moment space was not really dealt with, as well as295

the transition with the interior of moment space since only moment vectors far from this boundary
were considered. This point is however essential here for the robustness and accuracy of our com-
putations, considering the typical solution of the PBE described in Sec. 2.1. Second, the iterative
algorithm for the computation of σ was not optimal. This is why we propose an improved version
of the algorithm, summarized in Fig. 1.300

Here, if m2N is in the interior of moment space, one defines the function m̄2N of σ in the
following way: if m∗2N−1(σ) = A2N−1(σ)−1m2N is in the interior Int(M2N−1) of moment space,
then one computes the corresponding quadrature weights (wα(σ))Nα=1 and abscissas (ξα(σ))Nα=1 and

one defines m∗2N (σ) =
∑2N
α=1 wα(σ)ξα(σ)2N . Let us denote m∗2N (σ) = (m∗0, . . . ,m

∗
2N )T . The value

of m̄2N (σ) is then deduced from this vector thanks to the matrix A2N (σ) (just its last line in fact):

m̄2N (σ) = (0, . . . , 0, 1)A2N (σ)m∗2N (σ).

If m∗2N−1(σ) is not in the interior of moment space, then the value of σ is invalid. The function
m̄2N (σ) is then set to a very high value, e.g. 10100, so that this case will be automatically eliminated.
Hence, the value of σ is obtained by solving the following scalar nonlinear problem:

D2N (σ) = 0 where D2N (σ) = m2N − m̄2N (σ). (14)

Let us remark that, in the case N = 2, an analytical condition on σ of the form σ ≤ σ
(2)
max for the

realizability of m∗2N−1(σ) can usually be obtained, ensuring the non-negativity of the correspond-305

ing Hankel determinants H∗2 and H∗3. Moreover, D2N (0) is positive if m2N is in the interior of
moment space and the problem (14) either has a solution or a nonlinear solver will give the value
corresponding to an upper limit σmax for σ, when a singularity appears for the function D2N (σ).
In this last case, one just has to minimize the error on the last moment by minimizing D2N (σ)2.

The global algorithm of EQMOM reconstruction from a moment vector m2N , able to deal with310

the boundary of moment space, is then:

1. Determine N (m2N ) by computing the (ζk)k=1,...,2N with the ζ-Chebyshev algorithm.

1.1. If N (m2N ) is an odd number 2n−1, then σ = 0 and the quadrature points are obtained
from three-term recurrence coefficients given by the (ζk)k=1,...,2n−1.

1.2. Otherwise, let N (m2N ) = 2n where n ≤ N and move to step 2.315

2. Solve the scalar nonlinear problem (14) in the interval ]0, σ
(2)
max[ using Ridders’ method [68].

2.1. If D2n(σ) = 0 then go to step 4.
2.2. Otherwise, in case of not being able to obtain σ, set σmax = σ and go to step 3.

3. Use Brent’s method [68] on [0, σmax] to minimize D2n(σ)2.

4. Once the parameter σ is obtained, the weights and abscissas are computed with the quadrature320

algorithm, from m∗2n−1 = A2n−1(σ)−1m2n−1.

Two types of KDF are considered for the Stieljes problem: gamma [49] and log-normal [52].
The matrix Ak(σ) can then be given explicitly, as well as the interval on which σ is located.
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2.4.2. Gamma-EQMOM

The gamma KDF reads325

δσ(ξ, ξα) =
ξkα−1 e−ξ/σ

Γ(kα)σkα
(15)

where Γ(·) is the gamma function, σ > 0, kα > 0 and kα = ξα/σ. The moment of order k of the
gamma KDF is given by

〈ξ〉k,α =


1, if k = 0,
k∑
i=1

aki ξ
i
α σ

k−i, if k ≥ 1,
(16)

where ak,k = 1 and aki is given by the following recurrence formula:

aki = (k − 1)ak−1i + ak−1i−1 k = 1, . . . , 2N − 1; i = 2, . . . , k − 1. (17)

Thus, Ak(σ) is a triangular matrix of coefficients [Ak(σ)]i,j = aijσ
i−j for 0 ≤ j ≤ i, which can be

easily inverted. Moreover, the coefficients aij can be precomputed and stored.330

Finally, the maximum value for σ, in the case N = 2 is given by

σ(2)
max = min

{
m2m0 −m2

1

m0m1
,
m3m1 −m2

2

m1m2

}
. (18)

2.4.3. Ln-EQMOM

The log-normal (Ln) KDF reads

δσ(ξ, ξα) =
exp[−(ln ξ − ln ξα)2/2σ2]

ξ σ
√

2π
(19)

where σ and ξα are positive. The moment of order k of the Ln KDF is 〈ξ〉k,α = ξkαe
k2σ2/2. The

matrix Ak(σ) is a diagonal matrix of coefficients [Ak(σ)]i,i = ei
2σ2/2 so that the relation between335

mk and m∗k is easy to compute.

Moreover, a change of variable is used in (14). The nonlinear problem is then solved for b = eσ
2/2,

in the interval ]1, b
(2)
max[, with

b(2)
max = min

{√
m0m2

m1
,

√
m1m3

m2

}
. (20)

2.5. TSM method

For TSM, a discretization 0 = V0 < V1 < . . . < VNs = +∞ is introduced. On each section340

Ik = [Vk−1, Vk], the moments of orders 0 and 1 in volume are considered:

Nk =

∫ Vk

Vk−1

f(v) dv, Mk =

∫ Vk

Vk−1

v f(v) dv. (21)

Physically, they are usually the main variables of interest since the global moment of order 0 is
conserved by the growth term and the global moment of order 1 is conserved by aggregation,
for example. This is one of the advantages of the hybrid TSM method over standard sectional
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Figure 2: The three possible TSM reconstructions.

Mk

Nk
∈

]
Vk, V

(k)
min

[ [
V

(k)
min, V

(k)
max

] [
V (k)

max, Vk

[
V

(k)
a Vk−1 Vk−1 3

Mk

Nk
− 2Vk

V
(k)
b 3

Mk

Nk
− 2Vk−1 Vk Vk

αk
2Nk

V
(k)
b − Vk−1

6

(Vk − Vk−1)2

(
V

(k)
maxNk −Mk

)
0

βk 0
6

(Vk − Vk−1)2

(
−V (k)

minNk +Mk

) 2Nk

Vk − V (k)
a

Table 1: Coefficients of the TSM reconstruction in v, depending of the ratio Mk/Nk.

methods, where a single variable has to be chosen, thus usually loosing some conservation properties.345

Moreover, the last section here is semi-infinite: the size domain does not have to be bounded, as it
must be for the standard sectional methods.

In practice, the change of variable v = r3 can be interesting to consider when dealing with size
reduction. Indeed, the variable r = v1/3 then decreases at a constant rate, making it the best
variable for describing such phenomena [28, 34]. The considered variables are then moments of350

orders 0 and 3 of the corresponding NDF: fr(r) (with fr(r)dr = f(v)dv):

Nk =

∫ Rk

Rk−1

fr(r) dr, Mk =

∫ Rk

Rk−1

r3 fr(r) dr, (22)

with R3
k = Vk for k ≥ 0. So the two types of reconstruction, using variable v or r, are considered

in this work.

2.5.1. v-reconstruction

The NDF is approximated by an affine function on each section Ik:355

f(v)|Ik =

[
αk + (βk − αk)

v − V (k)
a

V
(k)
b − V (k)

a

]
1

[V
(k)
a ,V

(k)
b ]

(v). (23)

We consider three cases represented in Fig. 2:

1. V
(k)
a = Vk−1, V

(k)
b < Vk and βk = 0.
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Mk

Nk
∈

]
Vk, V

(k)
min

[ [
V

(k)
min, V

(k)
max

] [
V (k)

max, Vk

[
R

(k)
a Rk−1 Rk−1 R

(1)
k

R
(k)
b R

(2)
k Rk Rk

αk
2Nk

R
(k)
b −Rk−1

2

(Rk −Rk−1)
(
V

(k)
max − V (k)

min

) (V (k)
maxNk −Mk

)
0

βk 0
2

(Rk −Rk−1)
(
V

(k)
max − V (k)

min

) (−V (k)
minNk +Mk

) 2Nk

Rk −R(k)
a

Table 2: Coefficients of the TSM reconstruction in r, depending of the ratio Mk/Nk.

2. V
(k)
a = Vk−1 and V

(k)
b = Vk.

3. V
(k)
a > Vk−1, V

(k)
b = Vk and αk = 0.

The coefficients αk, βk, V
(k)
a and V

(k)
b have to be determined in such a way that the moments

of orders 0 and 1 on Ik of f are Nk and Mk, respectively. Let us define the two following mean
volumes:

V
(k)
min =

Vk + 2Vk−1

3
, V (k)

max =
2Vk + Vk−1

3
.

For any Nk and Mk such that 0 < Vk−1Nk < Mk < VkNk, the value of the coefficients are given in360

Table 1, depending of the ratio Mk/Nk [29].

2.5.2. r-reconstruction

When considering the r variable, the NDF is approximated by the following function on each
section Ik:

fr(r)|Ik =

[
αk + (βk − αk)

r −R(k)
a

R
(k)
b −R

(k)
a

]
1

[R
(k)
a ,R

(k)
b ]

(r) (24)

with three possible cases:365

1. R
(k)
a = Rk−1, R

(k)
b < Rk and βk = 0.

2. R
(k)
a = Rk−1 and R

(k)
b = Rk.

3. R
(k)
a > Rk−1, R

(k)
b = Rk and αk = 0.

The coefficients αk, βk, R
(k)
a and R

(k)
b have to be determined in such a way that the moments of

orders 0 and 3 on Ik of fr are Nk and Mk, respectively. Let us define the following two mean
volumes:

V
(k)
min = 2

∫ Rk

Rk−1

r3 Rk − r
(Rk −Rk−1)2

dr =
4R3

k−1 + 3R2
k−1Rk + 2Rk−1R

2
k +R3

k

10
(25a)

V (k)
max = 2

∫ Rk

Rk−1

r3 r −Rk−1

(Rk −Rk−1)2
dr =

4R3
k + 3R2

kRk−1 + 2RkR
2
k−1 +R3

k−1

10
(25b)
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For any Nk and Mk such that 0 < Vk−1Nk < Mk < VkNk, the value of the coefficients are given in
Table 2, depending of the ratio Mk/Nk, with

R
(1)
k =

 5

27

−7R3
k + 27

Mk

Nk
+

√(
−7R3

k + 27
Mk

Nk

)2

+ 5R6
k

1/3

+

 5

27

−7R3
k + 27

Mk

Nk
−
√(
−7R3

k + 27
Mk

Nk

)2

+ 5R6
k

1/3

− 2Rk
3

(26a)

R
(2)
k =

 5

27

−7R3
k−1 + 27

Mk

Nk
+

√(
−7R3

k−1 + 27
Mk

Nk

)2

+ 5R6
k−1

1/3

+

 5

27

−7R3
k−1 + 27

Mk

Nk
−
√(
−7R3

k−1 + 27
Mk

Nk

)2

+ 5R6
k−1

1/3

− 2Rk−1

3
(26b)

3. Continuous particle-size changes

We now demonstrate accurate and realizable schemes for the description of continuous particle-370

size changes. They are based on the scheme developed for spray evaporation with moment methods
by Massot et al. [34], and adapted to TSM by Laurent et al. [29]. However, for moment methods,
this scheme was developed for an even number of moments. An adaptation is done here, based
on the interpretation given in [29] of the scheme as an evaluation by a quadrature method of the
integrals deduced from a kinetic scheme. Therefore, the kinetic scheme and the analytical solution of375

the PBE on which it is based are first recalled. Then, the quadrature-kinetic scheme (QKS) is given
for both EQMOM and TSM. The ability of the two methods to describe continuous particle-size
changes is then evaluated, separately for size reduction and growth.

3.1. Analytical solution and kinetic scheme

The rate is denoted by R in general for both growth and size reduction. The PBE then reads380

∂t f(t, ξ) + ∂ξ
[
R(t, ξ) f(t, ξ)

]
= 0 (27)

where ξ can be volume v or the variable r = v1/3. If f(0, ξ) = f0(ξ) is the initial NDF, then the
analytical solution of this equation is given by

f(t, ξ) = f0(Ξ(0; t, ξ))J(0; t, ξ) (28)

where the characteristics Ξ(t; s, ξ) of (27) are defined by the evolution of particle size:

dΞ(t; s, ξ)

dt
= R(Ξ) with Ξ(s; s, ξ) = ξ, (29)

and J(t; s, ξ) is the Jacobian of the transformation ξ 7→ Ξ(t; s, ξ).
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In case of continuous reduction of particle size (3), if the coefficient cred is constant, then the385

analytical solution is given, using the volume for ξ, by

f(t, v) = f0

([
v1/3 +

cred

3
t
]3) (v1/3 + cred

3 t
)2

v2/3
, (30)

since the characteristics are given by

Ξ(t; s, v) =
[
v1/3 − cred

3
(t− s)

]3
. (31)

Let us remark that, when considering r instead of v and starting from a r-NDF fr0 , the solution is

fr(t, r) = fr0

(
r +

cred

3
t
)

(32)

For diffusion-controlled growth (4), we obtain, when the coefficient cgro is constant, the following
analytical solution, using the volume for ξ:390

f(t, v) = f0

([
v2/3 − 2

3
cgrot

]3/2
) √

v2/3 − 2
3cgrot

v1/3
, (33)

since the characteristics are given by

Ξ(t; s, v) =

[
v2/3 +

2

3
cgro(t− s)

]3/2

. (34)

Using the variable r = v1/3 for ξ, we find

fr(t, r) = fr0

(√
r2 − 2

3
cgrot

)
r√

r2 − 2
3cgrot

. (35)

The principle of the kinetic scheme is to use the exact solution of the PBE inside a time step.
Then, from the moments at time tn, a NDF fn(ξ) is reconstructed for ξ ∈ R+, using the algorithms
given in Sec. 2.4 for EQMOM and in Sec. 2.5 for TSM. The exact solution of the PBE (27) between395

tn and tn+1 starting from this NDF is f(t, ξ) = fn(Ξ(tn; t, ξ))J(tn; t, ξ). The moments at time tn+1

are deduced from the NDF f(tn+1, ξ). Since they are moments on some interval ]ξmin, ξmax[ of the
NDF, they are written as∫ ξmax

ξmin

ξkfn(Ξ(tn; tn+1, ξ))J(tn; tn+1, ξ)dξ =

∫ Ξ(tn;tn+1,ξmax)

Ξ(tn;tn+1,ξmin)

(Ξ(tn+1; tn, ζ))kfn(ζ)dζ (36)

where the second expression is obtained thanks to the change of variable ζ = Ξ(tn; tn+1, ξ), equiv-
alent to ξ = Ξ(tn+1; tn, ζ). Depending of the complexity of R(t, ξ), the solution and its moments400

are not always easy to compute analytically. This is why the QKS scheme is used.
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3.2. QKS

The principle of QKS is the same as the kinetic scheme, except that the integrals (36) are now
evaluated thanks to a Gauss quadrature of the measure fn(ζ)1]Ξ(tn;tn+1,ξmin),Ξ(tn;tn+1,ξmax)[(ζ)dζ. In-
deed, from the moments of orders 0 to 2N+1 of fn on the interval ]Ξ(tn; tn+1, ξmin),Ξ(tn; tn+1, ξmax)[,405

quadrature points {wα, ξα}N+1
α=1, are determined and the previous integral is approximated by

N+1∑
α=1

wα Ξ(tn+1; tn, ξα)k. (37)

The number N is equal to 1 for TSM, and corresponds to the number of KDF used for EQ-
MOM. Using at least N + 1 quadrature points is essential so that the moment vector at time
tn+1 is in the interior of the corresponding moment space. Moreover, if the abscissas ξα belong
to ]Ξ(tn; tn+1, ξmin),Ξ(tn; tn+1, ξmax)[, then Ξ(tn+1; tn, ξα) belongs to ]ξmin, ξmax[ and the scheme is410

realizable. Then, the ODE (29) defining the characteristics has to be solved once in reverse time to
compute each bound Ξ(tn; tn+1, ξmin), when the result is nontrivial, and N + 1 times to determine
the evolution of the quadrature abscissas. In a one-way coupling context, this can be done easily,
even if the drift rate is time dependent due to a dependence on the gas variables. In a two-way
coupling context with a time-dependent drift rate, either the evolution of the drift term during the415

time step can be estimated or it is set constant.

3.2.1. QBMM

For QBMM, the evolution of the moments due to continuous size reduction is as follows:

1. Given the moment set
{
mn
k

}2N

k=0
at time tn, reconstruct a NDF fn(ξ).

2. Compute the moments
{
m̃k

}2N+1

k=0
of fn on ]Ξ(tn; tn+1, 0),∞[: m̃k =

∫∞
Ξ(tn;tn+1,0)

ξkfn(ξ)dξ.420

3. Compute quadrature points to obtain {wα, ξα}N+1
α=1 from the new moment set

{
m̃k

}2N+1

k=0
.

4. Update the moment set thanks to the characteristics

mn+1
k =

N+1∑
α=1

wα Ξ(tn+1; tn, ξα)k, k = 0, . . . , 2N. (38)

Let us remark that the moments m̃k are computed analytically. The moments of the NDF between
0 and Ξ(tn; tn+1, 0) correspond to the disappearance fluxes. When considering surface growth,
these fluxes are zero and m̃k = mk. The same algorithm can be used, then computing one more425

moment m2N+1 and the N corresponding quadrature points. However, instead of these quadrature
points, the secondary quadrature defined in Sec. 4 can be used, as soon as the number of secondary
quadrature points Nα is greater than N+1. This was done in [49], which required solving the ODE
N ×Nα times. The use of secondary quadrature points with a suitability chosen Nα is especially
recommended for cases where the function R(t, ξ) takes on both positive (growth) and negative430

(size reduction) values for varying ξ, as soon as there is no disappearance fluxes.

3.2.2. TSM

For TSM, the scheme is similar, but dividing the interval ]Ξ(tn; tn+1, ξmin),Ξ(tn; tn+1, ξmax)[ into
two sub-intervals on which the reconstructed NDF is smooth. This allows for a better accuracy of
the scheme [29]. Let us denote by V (ξ) the volume corresponding to the variable ξ (i.e. V (v) = v435

and V (r) = r3) and Ξk the bounds of the sections in terms of the variable ξ, in such a way that
V (Ξk) = Vk. Then, the evolution of the moments through continuous size reduction is as follows:
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1. Given the moments {Nn
k ,M

n
k }Nsk=1 at time tn, reconstruct a NDF fn(ξ).

2. Compute the moments of orders 0 to 3 of fn on each interval [Ξ(tn; tn+1,Ξk−1),Ξk] and on

[Ξk,Ξ(tn; tn+1,Ξk)] and the corresponding quadrature points {w(k,I)
α , ξ

(k,I)
α }2α=1 and {w(k,II)

α , ξ
(k,II)
α }2α=1.440

3. Update the moments on section k: Nn+1
k =

∑2
α=1 w

(k,I)
α +

∑2
α=1 w

(k,II)
α and

Mn+1
k =

2∑
α=1

w(k,I)
α V

[
Ξ(tn+1; tn, ξ

(k,I)
α )

]
+

2∑
α=1

w(k,II)
α V

[
Ξ(tn+1; tn, ξ

(k,II)
α )

]
.

A similar scheme is employed for growth, but using the two intervals [Ξ(tn; tn+1,Ξk−1),Ξk−1] and
[Ξk−1,Ξ(tn; tn+1,Ξk)] in step 2.

Let us remark that the time step ∆tn = tn+1 − tn has to be limited in order for the obtained
moment set to stay in moment space. Indeed, the value Ξ(tn+1; tn, ξ) has to stay in [Ξk−1,Ξk] if the
variable ξ is in [Ξ(tn; tn+1,Ξk−1),Ξ(tn; tn+1,Ξk)]. In the case of a size-reduction rate given by (3)445

or for the growth rate given by (4), this is realized, respectively, through the following conditions:

max
k∈{1,...,Ns}

cred∆tn

3(V
1/3
k − V 1/3

k−1)
≤ 1 max

k∈{1,...,Ns}

2cgro∆tn

3(V
2/3
k − V 2/3

k−1)
≤ 1. (39)

The coefficient on the left-hand side of each inequality is called here the CFL number.

3.3. Numerical results for size reduction

We discuss in this section numerical results for continuous size reduction using EQMOM and
TSM. The initial NDF is the sum of two log-normal distributions:450

f0(v) = w1
exp[−(ln v − µ1)2/2σ2

1 ]

v σ1

√
2π

+ w2
exp[−(ln v − µ2)2/2σ2

2 ]

v σ2

√
2π

(40)

where w1 = w2 = 0.5, µ1 = 3, µ2 = 0, σ1 = 0.1 and σ2 = 1. The initial NDF is bimodal, as
is typical of the ones induced by nucleation and aggregation. The size-reduction rate is given by
(3) with cred = 50. The analytical solution is given by (30). The simulations are done for time t
between 0 and T = 0.1.

The results of the simulations are compared to the analytical solution. Some global quantities455

are considered: the global v-moments m0, m1, m2, the average volume m1/m0, and the variance

σ2
v =

m2m0−m2
1

m2
0

. The maximum values in time of the errors between numerical qnu and exact qex

quantities, normalized by the maximal value of the exact solution are computed:

errq =
maxt∈[0,T ] |qnu(t)− qex(t)|

maxt∈[0,T ] qex(t)
. (41)

Moreover, the reconstructed NDF, fnu(t, v), as well as the corresponding volume density function
(VDF) vfnu(t, v) are also compared with the exact solution, fex(t, v) and vfex(t, v), respectively.
The maximal value of the L1 norm of the difference between the computed and exact functions,
normalized by the maximal value of the L1 norm of the exact solution, is then computed:

errNDF =
maxt∈[0,T ]

∫∞
0
|fnu(t, v)− fex(t, v)|dv

maxt∈[0,T ]

∫∞
0
fex(t, v) dv

(42)

errV DF =
maxt∈[0,T ]

∫∞
0
v |fnu(t, v)− fex(t, v)|dv

maxt∈[0,T ]

∫∞
0
vfex(t, v) dv

(43)
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Figure 3: Evolution of m0 for size reduction using v-reconstruction: exact (solid red line) and numerical (dashed
blue line) solutions. Ln-EQMOM N = 4 (top left). Gamma-EQMOM N = 4 (top right). TSM with 41 sections:
CFL=0.9 (bottom left) and CFL=0.05 (bottom right).

3.3.1. Use of v-reconstruction

Computations are done with gamma- and Ln-EQMOM with a reconstruction in v using N = 4460

KDF. The considered moments in v are (mk)8
k=0. TSM is also used with a uniform discretization

in the volume between V0 = 0 and VNs−1 = Vmax, the last section being ]Vmax,∞[. The number of
sections is Ns = 41 and Vmax = 50. QKS is used with a constant time step given by ∆t = 0.001,
corresponding to a CFL of 0.05 for TSM. A second time step ∆t = 0.018 is also used for TSM,
corresponding to a larger CFL, equal to 0.9.465

In all the cases, the global moments of orders 1, 2 and 3 (not shown) are well reproduced by
all methods. However, the errors on the 0th-order moment, plotted in Fig. 3 can attain 30 to
45 %, depending on the simulation. Moreover, this error does not decrease with the time step (it
actually increases for TSM). When looking at the NDF reconstruction (see Fig. 4 corresponding
to t = 0.033), one can see that the shape of this function is well captured by TSM, except an470

accumulation at zero size in the first section, whereas a shift is observed for EQMOM. This is due
to the singularity in the exact solution (30) at v = 0. Indeed, the reconstructed NDF is regular
at v = 0 for TSM, equal to zero at v = 0 for Ln-EQMOM and either equal to zero or singular
at v = 0 for gamma-EQMOM. In all cases, the behavior at v = 0 is very different compared to
the exact solution, which behaves like v−2/3. This means that even if the considered moments had475

good values, the reconstruction close to zero would be far from the real one and the evolution of m0

would then be badly reproduced. This also explains the accumulation of particles of small size until
some time-step dependent time when they suddenly disappear. For gamma-EQMOM, the effect is
smoother due to the possible singularity at zero. For TSM, it concerns only the first section, which
is why the NDF is well reproduced in this case, except close to zero, even with a wrong value for480
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Figure 4: NDF at t = 0.033 for size reduction using v-reconstruction: exact (solid red line) and numerical (dashed
blue line) solutions. Ln-EQMOM N = 4 (top left). Gamma-EQMOM N = 4 (top right). TSM with 41 sections:
CFL=0.9 (bottom left) and CFL=0.05 (bottom right).

the global 0th-order moment. In order to overcome this issue, we use the r = v1/3 variable so that
the exact NDF turns out to be advection of the initial NDF in phase space.

3.3.2. Numerical results with r-reconstruction

The computations are repeated with gamma- and Ln-EQMOM using the variable r and N = 2,
3 and 4 KDFs. The considered moments in v are (mk/3)2N

k=0 and fr is now reconstructed. TSM485

is also used with the same moments as in the previous section, but with a reconstruction in r and
several uniform discretizations in r between R0 = 0 and RNs−1 = Rmax, the last section being

[Rmax,∞[, where Rmax = V
1/3
max and Vmax = 50. A sectional method, called the one-size moment

(OSM) method, is also used, considering the same kind of discretization as TSM (without the
last section, which is almost empty), using the variables Mk and a constant reconstruction in the490

variable r. For all methods, QKS is employed with a constant time step, ∆t = 0.001, small enough
so that the simulations are converged in time.

The errors induced by the EQMOM simulations are gathered on Table 3, showing first that
these methods reproduce accurately the moments of orders 1 and 2 in v. The error on the 0th-order
moment is smaller than with the v-reconstruction, but it is still between 14 and 23 % for Ln-495

EQMOM, and 10 and 16 % for gamma-EQMOM. When looking at the evolution of m0 for N = 4
(see Fig. 5), one observes a discontinuous behavior for Ln-EQMOM, with four discontinuities,
corresponding to some discontinuities of the abscissas (see Fig. 6-left). Indeed, in this case, the
reconstructed NDF is always equal to zero at zero size. The corresponding fluxes are then very
small, especially if the time step is small. But size reduction induces in particular a decrease of the500

first abscissa and then a concentration of the first KDF close to zero, making it suddenly disappear
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Ln-EQMOM gamma-EQMOM
N 2 3 4 2 3 4
m0 0.23 0.15 0.14 0.16 0.11 0.10
m1 1.2× 10−3 1.5× 10−4 10−4 1.2× 10−3 1.5× 10−4 9.3× 10−5

m2 - 1.9× 10−5 5.8× 10−6 - 1.8× 10−5 5.5× 10−6

m1

m0
0.13 6.8× 10−2 7.5× 10−2 8.6× 10−2 5.8× 10−2 5.1× 10−2

σ2
v - 1.3× 10−2 1.6× 10−2 - 1.1× 10−2 9.6× 10−3

NDF 1.6 1.1 1.0 1.2 0.82 0.69
VDF 0.97 0.33 0.28 0.95 0.31 0.27

Table 3: Normalized L∞ norm in time of errors for size reduction with EQMOM using r-reconstruction.
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Figure 5: Evolution of m0 for size reduction using r-reconstruction: exact (solid red line) and numerical (dashed
blue line) solutions. Ln-EQMOM N = 4 (top left). Gamma-EQMOM N = 4 (top right). TSM with 9 (bottom left)
and 41 sections (bottom right).
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N = 4. Red: v1. Green: v2. Blue: v3. Magenta: v4.

OSM TSM
Ns 10 18 82 5 9 21 41
m0 0.12 0.11 2.7×10−2 8.2×10−2 2.8×10−2 3.8×10−3 5.5×10−4

m1 2.4×10−2 1.5×10−5 2.2×10−3 7.5×10−3 2.8×10−3 4.6×10−4 4.4×10−5

m2 0.40 0.38 0.34 4.4×10−2 1.4×10−2 1.5×10−3 8.1×10−5

m1

m0
7.8×10−2 6.5×10−2 1.3×10−2 4.4×10−2 1.4×10−2 1.9×10−3 2.5×10−4

σ2
v 1.7 1.3 1.3 0.10 3.1×10−2 3.5×10−3 2.2×10−4

NDF 1.3 1.4 0.85 1.4 1.0 0.42 0.18
VDF 2.0 1.7 0.89 1.5 1.1 0.44 0.19

Table 4: Normalized L∞ norm in time of errors for size reduction with TSM using r-reconstruction.

when it is too small (and the moment set is then briefly close to the boundary of the moment
space, also showing the robustness of the reconstruction algorithm). With gamma-EQMOM, the
evolution of m0 as well as the abscissas is smoother (see Fig. 6-right) thanks to the possibility of
the reconstruction to not be zero, even if it is singular in this case (but the flux itself is not singular505

thanks to the integration over a small interval).
Concerning TSM, errors for three discretizations (Ns = 5, 9, 41) are given in Table 4. When

compared to gamma-EQMOM with N = 4 (using 9 moments), which gives the best results among
the EQMOM simulations, TSM with only 5 sections (10 variables) is less accurate for m1 and m2,
but gives slightly better accuracy on m0 and on the mean volume m1/m0, with errors close to 8 %510

and 4 % respectively. The accuracy, however, rapidly increases with the number of sections, as
shown in Fig. 7, where the errors on m0, m1 and m2 are plotted as functions of the section size,
using 3 to 65 sections. One then sees at least second-order accuracy for TSM. TSM is compared
to OSM. In Table 4, errors induced by OSM for Ns = 10, 18, 82 are shown, thus using double the
number of sections and then the same number of variables as TSM. The errors on all quantities515

are higher than with TSM and the convergence, when increasing the number of sections, is slow
(first-order accuracy for m1 and m0 and smaller order for m2, as shown on Fig. 7).

The NDF f(t, v) at t = 0.033 is plotted on Fig. 8, from the reconstruction fr(t, r) obtained from
EQMOM and TSM with f(t, v) = fr(t, v1/3)/(3v2/3). For N = 4, the reconstruction obtained with
gamma-EQMOM is much better than when considering v-reconstruction and quite similar to the520

reconstruction with Ln-EQMOM, except near zero. Both are close to the exact solution, with some
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Figure 7: Error curves of moments for size reduction using OSM (red line) and TSM (blue line) with r-reconstruction.
Dashed black line: order 1 and 2.
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Figure 8: NDF at t = 0.033 for size reduction using r-reconstruction: exact (solid red line) and numerical (dashed
blue line) solution. Ln-EQMOM N = 4 (top left). Gamma-EQMOM N = 4 (top right). TSM with 9 (bottom left)
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Ln-EQMOM gamma-EQMOM
N 2 3 4 2 3 4
m0 6.2× 10−14 1.3× 10−13 7.0× 10−14 1.3× 10−13 1.6× 10−13 8.0× 10−14

m1 6.3× 10−4 1.3× 10−4 3.5× 10−5 4.1× 10−4 1.2× 10−4 4.1× 10−5

m2 - 1.4× 10−3 4.3× 10−13 - 7.6× 10−11 6.4× 10−13

m1

m0
6.3× 10−4 1.3× 10−4 3.5× 10−5 4.1× 10−4 1.2× 10−4 4.1× 10−5

σ2
v - 1.7× 10−3 2.1× 10−5 - 9.0× 10−5 2.6× 10−5

NDF 0.36 0.34 0.34 0.42 0.42 0.43
VDF 0.25 0.26 0.30 0.38 0.41 0.47

Table 5: Normalized L∞ norm in time of errors for diffusion-controlled growth with EQMOM using r-reconstructions.

shift for the second mode of this bimodal function. The error on this distribution and on the VDF
(eliminating the singularity at zero) is indeed quite good for gamma-EQMOM (see Table 3) and
also for Ln-EQMOM. When considering TSM, this error is higher than with EQMOM using N = 4
KDFs, except with more than 21 section and the NDF is very well reproduced with 41 sections.525

However, TSM is more accurate than OSM, which is not able to reproduce correctly the NDF with
82 sections, the error on the NDF and VDF being then larger than the one with gamma-EQMOM.

In summary, when considering size reduction, one can see from the examples presented in
this section that gamma-EQMOM is always more accurate than Ln-EQMOM. Moreover, gamma-
EQMOM gives a quite good estimate of the NDF. The convergence of EQMOM in terms of the530

number of moments is, however, quite slow and induces an increasing complexity of the moment
space, so that considering more than nine moments (i.e. N = 4) may not be worthwhile for most
applications. For better accuracy, TSM can be used, with a larger number of variables, which
would have to be transported in space in many applications. However, the good convergence of
TSM allows the use of a much smaller number of sections (and also of variables) than OSM for the535

same accuracy.

3.4. Numerical results for diffusion-controlled growth

The test case described by McGraw [40] is used here to test the schemes for diffusion-controlled
growth. The initial distribution is fr(0, r) = ar2 exp(−b r) where r is the particle radius (µm),
a = 0.108 µm−3cm−3 and b = 0.6 µm−1. The growth rate is given by (4) with cgro = 2.34 µm2/s540

(considering v = r3). Simulations are done between time 0 and T = 20s, with EQMOM and TSM
using r-reconstruction, and OSM using a constant reconstruction in v (the method is unstable with
the constant reconstruction in r). For OSM and TSM, a uniform discretization is used in the r
variable, between 0 and Rmax = 60µm. Moreover, for all methods, QKS is used with a constant
time step, ∆t = 0.01, small enough so that the simulations are converged in time. The same545

kinds of post-treatments are done as with the size-reduction case, except that the NDF in r in now
considered.

The normalized errors for all methods are given in Tables 5 and 6. For Ln- and gamma-
EQMOM, the moment errors are very small, even with N = 2. One can remark that the growth
model conserves the zeroth-order moment and yields closed equations for even-order r-moments.550

For EQMOM, the even-order r-moments are thus very accurately reproduced, e.g. m2 when N = 4,
except eventually for the last moment since it is not always well reproduced by the reconstruction.
For TSM, the zeroth-order moment is also conserved, such that its error is very small and the
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OSM TSM
Ns 10 30 90 5 15 45
m0 0.53 0.19 3.0× 10−2 3.6× 10−14 4.6× 10−13 1.9× 10−13

m1 0.22 8.4× 10−2 2.1× 10−2 0.11 4.7× 10−3 4.7× 10−4

m2 1.1 0.22 6.0× 10−2 0.23 1.1× 10−2 3.4× 10−4

m1

m0
0.87 0.17 2.6× 10−2 0.11 4.7× 10−3 4.7× 10−4

σ2
v 4.7 0.68 0.14 0.54 1.2× 10−2 1.4× 10−4

NDF 0.95 0.75 0.42 1.2 0.54 0.19
VDF 1.1 0.53 0.19 0.67 0.29 6.9× 10−2

Table 6: Normalized L∞ norm in time of errors for diffusion-controlled growth with TSM using r-reconstructions.
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Figure 9: Error curves of moments for diffusion-controlled growth using OSM (red line) and TSM (blue line) recon-
structions. Dashed black line: order 1 and 2.
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Figure 10: NDF for diffusion-controlled growth at t = 20: numerical (dashed blue line) vs. exact (solid red line).
EQMOM reconstruction with r-moments, N = 4: Ln (top left), gamma (top right). OSM reconstruction (bottom
left) with 90 (dashed cyan line) and 500 (dashed blue line) sections. TSM reconstruction (bottom right) with 15
(dashed cyan line) and 45 (dashed blue line) sections.

accuracy of the moments of orders 1 and 2 is high, even with only 15 sections. For OSM, a large
number of sections is needed to reproduce the moments (even at zero order, which is not conserved)555

with an error of a few percent. The error curves for the moments found with OSM and TSM are
shown in Fig. 9 as functions of the section size, using 3 to 129 sections. It can be clearly observed
that the convergence rates are at least first and second order, respectively, for OSM and TSM.

Results for the reconstructed NDFs at time T are shown in Fig. 10. As can be observed, the
EQMOM results are very similar for Ln- and gamma-EQMOM, and in relatively good agreement560

with the exact solution. The errors on the NDF and VDF (see Table 5 ) do not really depend
on the number of KDFs and are about 30 or 40 %. On the other hand, the OSM result does not
capture correctly the sharp jump in NDF at r ≈ 5.5, except with a very large number of sections
(e.g. 500). In contrast, TSM with 45 sections does a good job of reproducing the exact NDF.

In summary, when considering surface growth, one can see from the examples presented in this565

section that gamma- and Ln-EQMOM give equivalent results, which are very good for the moments
and relatively good for the NDF, and not significantly improved using a larger number of moments.
Discretized methods, especially OSM, are disfavored by the fact that the NDF is shifted toward
the larger sizes and by the sharp jump of the exact NDF. However, TSM is able to reproduce well
moments and the sharp NDF with a quite small number of sections, much smaller than for OSM.570
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4. Aggregation

In this section we apply EQMOM and the discretized methods to solve a PBE with only aggre-
gation. Such applications are known to be particularly challenging for discretized methods because
the mean particle size and variance grow continuously with time. From a numerical perspective,
the aggregation operator has an integro-differential form that strongly couples all points in size575

phase space. In real applications, numerical simulation of the aggregation term is often the most
computationally expensive operation.

4.1. EQMOM

As first shown by Marchisio et al. [39], QBMM are particularly well suited for aggregation
because the abscissas evolve in phase space to adapt to the changing shape of the NDF. After580

using the EQMOM moment-inversion algorithm, we obtain a closure for (5) and (6). Solving these
moment equations requires the numerical approximation of the integrals in (6) since the KDF
δσ(ξ, ξα) is a smooth function. This can be done by using the quadrature specific to each KDF:∫ ∞

0

g(v) δσ(ξ, ξα) dv ≈
Nα∑
β=1

ωαβ g(vαβ) (44)

where Nα is the number of secondary quadrature points. Nα must be larger than N (in practice
Nα = N + 1), in such a way that (44) is exact when g is a polynomial of degree less than or equal585

to 2N . These weights ωαβ and abscissas vαβ can be easily computed from the known recurrence
coefficients of the orthogonal polynomials corresponding to the KDF: the generalized Laguerre [61]
and Stieltjes-Wigert [69] for gamma- and Ln-EQMOM, respectively. The approximation of the
integral for any arbitrary function with respect to the reconstructed NDF is then∫ ∞

0

g(v) f(v) dv =

N∑
α=1

Nα∑
β=1

wαβ g(vαβ) (45)

where wαβ = wα ωαβ . Finally, we obtain the system of moment equations for aggregation, for590

k ∈ N:

dmk

dt
=

1

2

N∑
α1=1

Nα1∑
β1=1

N∑
α2=1

Nα2∑
β2=1

wα1β1
wα2β2

[
(vα1β1

+ vα2β2
)k − vkα1β1

− vkα2β2

]
β(vα1β1

, vα2β2
) (46)

A realizable ODE solver must be used to solve this system.

4.2. TSM

The equations for the moments in one section [Vmin, Vmax] = [Vk−1, Vk] are given by (5) and (6).
For aggregation, the integration domain Ωk = {(v∗, v′) > 0

/
Vk−1 < v∗ + v′ < Vk} then appears.595

Since the closure consists in a reconstruction of the NDF on each section, this domain is divided
into some elementary sub-domains: Dijk = Ωk ∩ ([Vi−1, Vi]× [Vj−1, Vj ]) [59]. One then defines the
following elementary integrals:(

Qnijk
Q∗ijk

)
=

∫∫
Dijk

(
1
v∗

)
β(v∗, v′) f(v∗) f(v′) dv∗ dv′, (47)
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The equations for the moments of orders zero and one in v in section k are then

∂tNk =
1

2

Ns∑
i=1

Ns∑
j=1

Qnijk −
Ns∑
i=1

Ns∑
j=1

Qnkij (48a)

∂tMk =

Ns∑
i=1

Ns∑
j=1

Q∗ijk −
Ns∑
i=1

Ns∑
j=1

Q∗kij (48b)

The elementary integrals are computed using a 5-point Gauss-Legendre quadrature in the variable
r, in each direction. Let us also remark that in the case of a time-independent collision kernels, a600

numerically efficient way to compute the source terms can be developed [29], as for the sectional
method in the spray context [25], using pre-computation of some terms and a compact storage of the
variables. Finally, as for QBMM, the realizability constraint has to be respected in the resolution
of this ODE system.

4.3. Realizable, adaptive time step605

Due to the complexity of aggregation kernels in practical problems [2], the ODE system can
be stiff and we then want to use an adaptive time step to limit the cost of the computations.
Concerning realizability, since the aggregation operator does not move the moment vector to the
boundary of moment space, explicit Euler methods with small enough time steps can be used as
well as any convex combination of Euler explicit time steps, such as the strong-stability-preserving610

(SSP), explicit Runge-Kutta methods [70]. We therefore use an adaptive time-step algorithm,
based on embedded SSP explicit Runge-Kutta methods, with a time-step selection designed both
to control the error and to ensure the realizability of the moment set (see Appendix C for details).

4.4. Numerical results

We present results in this section for two aggregation test cases from [49] (cases 9 and 11).615

First, the sum kernel β(v, v′) = v + v′ is used with initial condition f(0, v) = exp(−v). An
analytical NDF for this problem is given in [71]. Then, the more complex Brownian kernel:
β(v, v′) =

(
v−1/3 + v′−1/3

) (
v1/3 + v′1/3

)
is used with the same initial condition. In this case, a

self-similar NDF is found for large enough time [72]. For TSM, we consider the following geometric
discretization:620

V0 = 0, Vk =
Vmax

(RNs)
Ns−k+1
Ns−1

, k ∈ {1, . . . , Ns − 1}, VNs =∞ (49)

where R is a user-defined parameter, as well as Vmax: here, Vmax = 25000 and R = 5000. The same
kind of discretization is used for OSM, without the last section and then with a larger value for
Vmax (Vmax = 30000, R = 104). A dependence on the number of sections is then introduced in the

ratio between two successive section sizes, (RNs)
1

Ns−1 , in such a way that the discretization tends
to a uniform discretization when Ns tends to infinity.625

Aggregation with the sum kernel yields quantitatively similar results for r- and v-moments.
In general, the results found with v-reconstruction are slightly more accurate, but since the r
variable gives better accuracy for other phenomena (e.g. size reduction), all results presented here
are obtained using r-reconstruction. The normalized errors are given in Tables 7 and 8. For the
moments, EQMOM yields very small errors for both KDFs, even with N = 2. These results are630
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Ln-EQMOM gamma-EQMOM
N 2 3 4 2 3 4
m0 4.5× 10−7 1.1× 10−7 3.3× 10−8 4.7× 10−7 1.2× 10−7 3.3× 10−8

m2 − 1.8× 10−6 5.1× 10−7 − 1.9× 10−6 5.2× 10−7

m1

m0
4.5× 10−7 1.1× 10−7 3.3× 10−8 4.7× 10−7 1.2× 10−7 3.3× 10−8

σ2
v − 1.7× 10−6 5.0× 10−7 − 1.8× 10−6 5.0× 10−7

NDF 0.22 0.36 0.66 0.25 0.18 0.12
VDF 0.17 0.20 0.27 0.36 0.27 0.20

Table 7: Aggregation with the sum kernel: L∞ norm in time of relative errors with EQMOM using r-reconstruction.

OSM TSM
Ns 10 30 90 5 15 45
m0 0.25 0.13 5.3× 10−2 1.7× 10−3 4.5× 10−3 6.3× 10−3

m2 1.5× 103 31 0.26 0.73 0.13 2.4× 10−3

m1

m0
0.20 0.12 5.0× 10−2 1.7× 10−3 4.5× 10−3 6.3× 10−3

σ2
v 1.4× 103 29 0.22 0.75 0.13 3.7× 10−3

NDF 0.55 0.22 8.4× 10−2 0.32 2.7× 10−2 1.5× 10−2

VDF 0.94 0.37 8.3× 10−2 0.79 9.1× 10−2 1.1× 10−2

Table 8: Aggregation with the sum kernel: L∞ norm in time of relative errors with OSM and TSM using r-
reconstruction.

consistent with previous work using QBMM [39, 49] and are due to the fact that for the sum kernel,
the equations on the moments are closed, except for the last one. In comparison, for OSM and TSM
the errors on the moments are significantly larger than with EQMOM. This difference is mainly
due to the nature of aggregation where the NDF moves to larger and larger r as time progresses
(if it is not in competition with size-reduction phenomena, as it might be in some applications).635

With QBMM, the abscissas follow the movement of the NDF in phase space, while for discretized
methods the discretization of phase space is fixed and the value of Vmax has to be adapted to the
final time. Nevertheless, for finite times, TSM with as few as 15 sections provides a much more
accurate reconstruction of the NDF as compared to EQMOM.

For Brownian aggregation, the time evolutions of selected moments are shown in Fig. 11, and640

the NDFs at t = 10 are given in Fig. 12. For the moments, EQMOM with either KDF yields very
accurate predictions (not shown), confirming previous observations [39]. OSM converges to the
reference solution after approximately 90 sections, while TSM gives accurate predictions with as
few as 15 sections. With a small number of sections, OSM tends to over-predict the variance σ2

v by a
large amount. This is due to the behavior of the reconstructed NDF in the largest sections, which for645

OSM decays too slowly with increasing v. For this reason, the errors in moments of orders greater
than two are significant, making OSM unsuitable for aggregation processes. The reconstructed
NDFs in Fig. 12 confirm the general trend that gamma-EQMOM yields better results than Ln-
EQMOM. The NDF found with gamma-EQMOM is quite accurate, as previously reported [49]. In
order to obtain a comparable NDF with OSM at least 30 sections are required, while for TSM 15650

sections yield an accurate NDF.
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Figure 11: Brownian aggregation with self-similar NDF. Evolution of m0 (top left), mean particle diameter (top
right) and variance (bottom) versus reference solution (red solid line). OSM (top, bottom left) with 10 (dashed
magenta line), 30 (dashed cyan line) and 90 (dashed blue line) sections. TSM (bottom right) with 5 (dashed cyan
line), and 15 (dashed blue line) sections.
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Figure 12: Brownian aggregation with self-similar NDF (red solid line). Ln-EQMOM (top left): N = 4 (dashed blue
line). Gamma-EQMOM (top right): N = 4 (dashed blue line). OSM (bottom left) with 10 (dashed magenta line),
30 (dashed cyan line) and 90 (dashed blue line) sections. TSM (bottom right) with 5 (dashed cyan line), and 15
(dashed blue line) sections.
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5. Operator time-splitting method for general problems

5.1. Strang time-splitting method

We consider in this section an algorithm to solve moment equations with all the types of source
terms appearing in fine-particle applications. The idea is to use an operator time-splitting method655

that solves successively in one time step the nucleation-aggregation and particle-size-change opera-
tors. In this work, we use the Strang time-splitting method [73], which is second order in time: we
solve successively, in one time step ∆t = tn+1 − tn,

1. the nucleation-aggregation operator on
[
tn, tn + ∆t

2

]
2. the particle-size-change operator on [tn, tn+1]660

3. the nucleation-aggregation operator on
[
tn + ∆t

2 , tn+1

]
Since the nucleation-aggregation operator is stiffer than the particle-size-change operator, in general,
the splitting time step ∆t is chosen to satisfy the stability of the latter. Then, we apply an adaptive
time step for the nucleation-aggregation operator. For each operator, we use the realizable and
robust schemes given in Secs. 3 and 4 for particle-size-change and nucleation-aggregation processes,665

respectively.

5.2. Numerical results

We investigate here a test case with nucleation, aggregation and size reduction where the nuclei
size is Vnuc = 1 and the nucleation rate is j(t) = 103 1[0,0.5](t). The Brownian kernel is used for
aggregation, and the size-reduction rate is given by (3) with cred = 3. For this test case, a large670

number of nuclei are produced at the start, leading to significant particle growth due to aggregation.
Eventually, growth is moderated by size reduction, resulting in a maximum in time of the mean
particle diameter m1/3/m0. For sufficiently long times, size reduction would consume all particles.
Here, we show results only up to the time where size reduction begins to overtake aggregation
(t ≈ 6).675

For TSM, we use the following geometric discretization, similar to the one classically used for
soot applications with the sectional method:

Vk = V̄

(
Vmax

V̄

) k−1
Ns−2

, k ∈ {1, . . . , Ns − 1}, (50)

with V0 = 0 and VNs = ∞. The volume V̄ is slightly larger than the nuclei size (V̄ = 1.001) and
Vmax = 104. For OSM, the last section is skipped, Vmax = 2 × 104 and the first section is divided
in two sections (Ns = 10) or three (Ns = 30) or seven (Ns = 90) where the last one ([0.95 1.05],680

V̄ = 1.05) contains the nuclei size. All simulations are done with a constant splitting time step
∆t = 0.003. A reference solution is also computed, using TSM with 101 sections and a ten time
smaller splitting time step.

Except for OSM, all methods yield essentially the same results for m0 and the mean particle
diameter as seen in Fig. 13. With OSM, the mean particle diameter during the nucleation period685

(t < 0.5) is under-predicted and m0 is over-predicted even when a relatively large number of sections
is used. For the variance σ2

v , the EQMOM results for N = 3 and 4 are essentially identical, and equal
to the TSM result found with 101 sections (see Fig. 14). In contrast, OSM converges slowly towards
the reference solution with increasing numbers of sections, while TSM requires approximately 45
sections to attain convergence. As seen in Fig. 15, the reconstructed NDFs differ significantly690
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Figure 13: Time evolution of m0 (left) and mean particle diameter (right). Ln-EQMOM (top row): N = 3 (dashed
cyan line), N = 4 (dashed blue line). OSM (bottom row): 10 (dashed magenta line), 30 (dashed cyan line), 90
(dashed blue line) sections. TSM, with 101 sections: (red solid line).
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Figure 14: Time evolution of σ2
v . Gamma-EQMOM (top): N = 3 (dashed cyan line), N = 4 (dashed blue line).

OSM (bottom left): 10 (dashed magenta line), 30 (dashed cyan line), 90 (dashed blue line) sections. TSM (bottom
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between the methods. In general, Ln-EQMOM has more obvious modal peaks as compared to
gamma-EQMOM, which are associated with the behavior of the KDFs at v = 0. Increasing N
from 3 to 4 KDFs shows some improvement (especially for gamma-EQMOM), but the convergence
is slow. In contrast, TSM yields a better NDF reconstruction as compared to EQMOM, even with
as few as 5 sections, while OSM requires a much larger number of sections to obtain reasonably695

accurate results.

6. Conclusions

In this work, we have developed quadrature-based moment methods (EQMOM with gamma and
log-normal KDF) and a hybrid method (TSM) for modeling fine particles undergoing nucleation,
aggregation and continuous changes (growth and size reduction). For both classes of methods,700

efficient algorithms are given to reconstruct the NDF, using analytical formula for TSM and an
improved algorithm compared to [49] for EQMOM, which are able to deal with the boundary of
moment space. In addition, realizable numerical schemes are presented for each individual term in
the PBE, as well as an operator-splitting approach to resolve the complete problem.

In the test cases considered, for EQMOM the gamma KDF leads to more accurate results705

than the log-normal KDF. Moreover, better results are obtained using fractional (r) moments. For
example, more accurate results are found for cases with size reduction and the results for aggregation
are not significantly different with fractional moments. Consistent with previous results in the
literature [1, 39], we find that EQMOM is well suited for accurately predicting the evolution of the
moments for general problems, especially when aggregation processes are involved. Furthermore,710

EQMOM with N = 4 predicts the NDF with a reasonably good accuracy.
We also showed that the hybrid TSM method is much more accurate than the widely used

sectional method. Indeed, TSM conserves both the global number and mass of the particles, and
can deal with a semi-infinite support of the NDF, even if the size-space discretization must be
adapted to the expected range of particle sizes for good accuracy. Because the NDF reconstruction715

found with TSM is much better in each section, the number of sections needed to obtain good
accuracy for the first few moments and the NDF is much smaller as compared to OSM. In general,
discretized methods are usually not as efficient as EQMOM for predicting the moments, but TSM
is able to accurately predict the NDF with a reasonably small number of sections. In contrast,
EQMOM converges slowly to the exact NDF as the number of moments increases and can not deal720

with too large a number of moments due to the increasing complexity of moment space and the
numerical accuracy of the Chebyshev algorithm.

Further studies are needed to extend the accurate and realizable numerical schemes presented
here to multivariate PBE models for fine-particle formation [4, 8, 74]. This can be accomplished by
conditioning the other internal variable by the volume, using the mono-kinetic assumption, along725

the lines of what has been done with the size-velocity internal variables for sprays [24, 25, 46, 29]
and bubbly flows [2, 75, 76]. Another very important topic for fine-particle applications involving
spatial transport of the moments is the development of realizable, high-order advection [55, 47]
and diffusion [56] schemes, which can be coupled with a Navier-Stokes solver for the carrier fluid.
Ideally, such schemes should accommodate unstructured computational grids and both explicit and730

implicit time stepping.
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Appendix A. Change of variable in the PBE for spherical particles735

In this work, the chosen size variable is volume v, which is then the internal variable of the NDF:

f(t, v). However, for spherical particles, the radius r =
(

3v
4π

)1/3
can be equivalently used. Since the

corresponding NDF fr represents the same particle population, one has f(t, v)dv = fr(t, r)dr, and
thus

fr(t, r) = 4πr2 f

(
t,

4π

3
r3

)
. (A.1)

While the change of variable is easy for most of the terms in the PBE, the drift terms are written740

∂ξ[Rξ(t, ξ) f(t, ξ)] with ξ being radius or volume. Since Rξ(t, ξ) represents the rate of change dξ
dt

for the size ξ, one has

Rr(t, r)4πr2 = Rv
(
t,

4π

3
r3

)
. (A.2)

For example, ifRr(t, r) = c(t)/r (e.g. diffusion-controlled growth), thenRv(t, v) = 31/3(4π)2/3c(t)v1/3.
Note that for simplicity Rv is denoted R in the rest of the paper.

Appendix B. ζ–Chebyshev algorithm745

In order to compute the coefficients {ζk}k∈N∗ from the moments {mk}k∈N, the Chebyshev al-
gorithm is used, combined to formula (10). Then, setting σ0,k = mk for k ≥ 0, a0 = m1/m0 and
ζ1 = a0, one computes, for l ≥ 1:

σ1,l = σ0,l+1 − a0σ0,l.

For k ≥ 1, one then computes successively:

bk =
σk,k

σk−1,k−1
, ζ2k =

bk
ζ2k−1

(B.1)

ak =
σk,k+1

σk,k
− σk−1,k

σk−1,k−1
, ζ2k+1 = ak − ζ2k (B.2)

σk+1,l = σk,l+1 − akσk,l − bkσk−1,l , l ≥ k + 1 (B.3)

Appendix C. Realizable, adaptive time-step algorithm

Let us consider the system of ODEs arising from solving the moment equations:

dy(t)

dt
= f(t, y(t)) (C.1)

where t ∈ R+, y, f ∈ Rd. Explicit Runge-Kutta methods (ERK) [70, 77, 78, 79] are used to solve
this equation: from the approximate solution y(n) at time tn, the solution at time tn+1 = tn + h is
approximated by750

y(n+1) = y(n) + h

s∑
i=1

bif(τi, ηi) (C.2)
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where s is the number of stages of the ERK method, τi and ηi are given by

τi = tn + cih (C.3a)

ηi = y(n) + h

i−1∑
j=1

aijf(τj , ηj) (C.3b)

and the coefficients bi, aij , ci are given by Butcher tables [77, 78, 79].
An adaptive time-step method can be obtained with an embedded-explicit Runge-Kutta method

(EERK) [77, 78, 79]. Then, two ERK methods are considered, using the same auxiliary values ηi,
but with a different linear combination of these values so that one is pth-order accurate and the
other (p+ 1)th-order accurate. This provides an error estimate. The method can be written in the755

form of a combined Butcher table:

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs
b′1 b′2 . . . b′s−1 b′s

where the two last lines stand for ERK of order p and p+ 1, respectively, and the solutions read

y(n+1) = y(n) + h

s′∑
i=1

bif(τi, ηi) (C.4a)

ŷ(n+1) = y(n) + h

s∑
i=1

b′if(τi, ηi) (C.4b)

where s′ = s or s′ = s − 1. In this work, we use strong stability preserving (SSP) Runge-Kutta
methods [70]: one of order-two embedded in the optimal third-order SSP Runge-Kutta method.
The coefficients are given by760

0
1 1

1/2 1/4 1/4
1/2 1/2
1/6 1/6 2/3

Owing to the fact that SSP Runge-Kutta yields a convex combination of some explicit Euler steps,
we are able to ensure the realizability of the final moment set by checking each of the intermediate
sets and adjusting the time step such that they are realizable. The parameter ierr (see Fig. C.16)
is set to ierr = 0 when the corresponding intermediate moment sets are realizable.765

The local error estimate reads

ε = ‖y(n) − ŷ(n)‖ =
h

3
‖f(τ1, η1) + f(τ2, η2)− 2f(τ3, η3)‖ (C.5)
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h(n) > htol

h(n) = h(n)/2

ierr = 0

compute y(n+1), ŷ(n+1)

err ≤ 1
output: y(n+1)

h(n+1) = hnew

input: y(n), h(n)

reconstruction (TSM,
EQMOM, etc.)

and compute τi, ηi
STOP

h(n) > htol

h(n) = hnew
facmax = 1

no

yes

yes

yes
no

no

no

yes

Figure C.16: Realizable, adaptive time-step algorithm.

We want this error to satisfy component-wise

|y(n)
i − ŷ(n)

i | ≤ sci, sci = Atoli + max
(
|y(n−1)
i |, |y(n)

i |
)
Rtoli (C.6)

where Atoli and Rtoli are, respectively, user-defined absolute and relative tolerances. As a measure
of the error we take

err =

√√√√ 1

n

d∑
i=1

(
y

(n)
i − ŷ(n)

i

sci

)2

(C.7)

Then err is compared to 1 to find an “optimal” step size:770

hnew = hmin

{
facmax,max

[
facmin,

fac

err1/(p+1)

]}
. (C.8)

The algorithm for the realizable, adaptive time step is shown in Fig. C.16.
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