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A MODELING OF MICHELSON - MORLEY INTERFEROMETER
IN A PLATONIC FOUR-DIMENSIONAL SPACE

UNE MODELISATION DE L'INTERFEROMETRE DE MICHELSON - MORLEY
DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN

Alain Jégat

Abstract

To illustrate the article hal-01165196 (« A Platonic model for the special theory of
relativity ») is proposed here a modeling of the famous Michelson - Morley experiment in the
late 19th century whose result led to venture the hypothesis of the invariance of the speed of
light ¢ in any inertial reference frame .

Considering the movement of the earth, this experiment was to detect a variation in the
speed of light over paths of identical length, but whose travel times were expected different.
However experience has shown that travel times are always identical.

This modeling provides a geometrical explanation for this result in a Platonic four-
dimensional space.

Résumeé

Pour illustrer I’article hal-01081576 (« Un modele platonicien pour la théorie de la
relativité restreinte ») est proposee ici une modelisation de la célebre expérience de
Michelson-Morley réalisée a la fin du 19°™ siécle dont le résultat a conduit & avancer
I’hypothése de I’invariance de la célérité ¢ de la lumiére dans le vide, dans tout référentiel
galiléen.

Compte-tenu du mouvement de la Terre, cette expérience devait déceler une variation de
la vitesse de la lumiere sur des trajets de longueurs identiques, mais dont les durées de
parcours étaient attendues différentes. Or |’expérience a montré que les temps de parcours
sont toujours identiques.

Cette modélisation propose une explication géométrique de ce résultat dans un espace
quadridimensionnel platonicien.



1. Abriefreminder of the experiment

A light wave L is splitted by a half mirror HM into two sub-beams which converge after
passing through two different pathways (see diagram @ below).

Considering the movement of the earth, this experiment was to detect a variation in the
speed of light over paths of identical length, but whose travel times were expected different.
However experience has shown that travel times are always identical.
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2. The geometrical framework

This modeling is based on the Platonic space outlined in the following articles:

« UN MODELE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THEORIE DE LA
RELATIVITE RESTREINTE » (pré-publication hal-01081576, version 1).

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF
RELATIVITY » (pré-publication hal-01165196, version 1).



3. Modeling

We can model this situation as follows: the experimental device belongs to the reference
frame R, moving in the direction d_ (see diagrams below).

At the beginning of the experiment, the half mirror HM is at the point P; and the source is
at the point Ay. d,,
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The light wave emitted by the source, whose path perceived by the reference frame R is
the one indicated in the introduction (see diagram @), actually travels the following paths

(represented by the dotted lines), in a hyperplane orthogonal to the direction of projection h:
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The initial beam travels the segment ApA; (which corresponds projectively in the
reference frame R, to the path Source-HM ). Note that during this travel (and the

following), the distance I traveled by L "is equal to the distance r traveled by HM.
Isina
1-cosa
(See detailed calculations at the end of the article, particularly about the angle of reflection

AAA, )

Designating by | the arm length Source-HM we have: A)A =
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Then the sub-beam L’; travels the path Aj;A;-A2A3; (which, taking account of the
movement of the reference frame R_, corresponds projectively for the sub-beam L; to

. . |
the round trip HM-Mirrorl then Mirrorl-HM); with AA, = A A =——

sina

While the sub-beam L’ travels the path AjA4-AsAz (which, taking account of the
movement of the reference frame R, corresponds projectively for the sub-beam L; to
the round trip HM-Mirorr2 then Mirror2-HM);

Isina

with AA, =——— and A/A, =Itan [%J

l1-cosa



Both sub-beams L’; and L, meet at As (corresponding projectively into R, to the meeting

of the sub-beams L; and L; at the new position of the half mirror HM), after having traveled a
distance Ar equal to P1P;, traveled by the reference frame containing the device.

With Ar:AbAi+A&A4+A4A3=AbA1+A&AZ+A2A3:PlP2ZI( 2, _sina j

sina 1-cosa

(The last part of the path to the detector being traveled by the beam finally reconstituted
presents it, no real interest.)
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4. Conclusion

The equations thus established, true regardless of the angle « (non-multiple of 7 ), reflect
the fact that when an observer located in HM perceives the return of the sub-beam Lj, he
simultaneously perceives the return of the sub-beam L, whatever the speed of the Galilean
reference frame related to the earth.

Measurements done by Michelson and Morley fit that simultaneous perception, whose result
has led to venture the hypothesis of the invariance of the speed of light c in any inertial frame ...
Then, subsequently, the development of the Platonic model that offers here a purely geometrical
point of view of this result.



5. Additional Calculations

=

Isina
1-cosa

From: r,=lsina+rcosa, with r, = A)/A , we obtain : A)A =
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This diagram shows the modeling of the experiment when the sub-beam L, is perceived at
the mirror 1; which corresponds to the positioning of L’y at A,.

If 4’1 denotes the position of the half mirror HM while the beam is at A; we have
ALHM =AA =Ar.

Furthermore, considering the plane L’1L.;HM, orthogonal to (AOA4) and the intersecting

points B and B’ shown in the diagram, we obtain AB = A'|B’, then ﬁ =B'ALS=«

(congruent triangles) *.

. I
Then we obtain Ar = AA, =—— and, for reasons of symmetry, A/A, = ——.
sina sina

To finish, AA = AA — AA =N _5_| =Itan(%j.

1-cosa tana

(* See note @ for a physical justification of the result m =a.)



© We can argue the following physical reasoning for measuring the angle of reflection
of the sub-beam L’; :

e in a conventional manner, a light beam encountering a reflecting surface RS is
deflected and we have: y = (a;dT) =mx—2f,where § is a measure of the angle

formed by an infinitesimal wavefront and the reflective mirror.

“r

e In the experiment of Michelson-Morley, we have ﬂ:% and 1//:%, angles
measured into R, .
Thus, if AB denotes the

X e ~infinitesimal width of the wavefront at
o l NG = the time of its first contact with RS and

Ar the distance traveled by the beam
/B Ar to the second contact, one has in this
case : AB=Ar.

e Infact, in the four-dimensional projective space, we have the following situation:

v at the first contact, the perceived beam into R, at A is in fact at A’ and the
one perceived at B is actually at B’ ; with A'B'= AB = Ar .




v

=

Taking account of the movement of the reference frame R, to which is

linked the device, we have then Ar'= Arsina _ Ar

1-cosa tan(a]
2

7 | X

Thus, when the wavefront is in contact (projectively) for the second
time with the reflective surface, it has traveled in 4D space the distance Ar’
and the corresponding angle S' is such that:

tanﬂ'z—ﬁ;,z—Arz - ;
Ar tan(aj
2

. T [04

l.e. =,

P 2 2

If we use the classical law of reflection recalled at the beginning of this
remark, we therefore have the following result:
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