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UNE MODÉLISATION DE L’INTERFÉROMÈTRE DE MICHELSON - MORLEY  

DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN 

 

 

 

Alain Jégat 

 

 

Abstract 

 

To illustrate the article hal-01165196 (« A Platonic model for the special theory of 

relativity ») is proposed here a modeling of the famous Michelson - Morley experiment in the 

late 19th century whose result led to venture the hypothesis of the invariance of the speed of 

light c in any inertial reference frame . 

Considering the movement of the earth, this experiment was to detect a variation in the 

speed of light over paths of identical length, but whose travel times were expected different. 

However experience has shown that travel times are always identical. 

This modeling provides a geometrical explanation for this result in a Platonic four-
dimensional space. 

 

 

Résumé 

 

Pour illustrer l’article hal-01081576 (« Un modèle platonicien pour la théorie de la 

relativité restreinte ») est proposée ici une modélisation de la célèbre expérience de 

Michelson-Morley réalisée à la fin du 19
ème

 siècle dont le résultat a conduit à avancer 

l’hypothèse de l’invariance de la célérité c de la lumière dans le vide, dans tout référentiel 

galiléen. 

Compte-tenu du mouvement de la Terre, cette expérience devait déceler une variation de 

la vitesse de la lumière sur des trajets de longueurs identiques, mais dont les durées de 

parcours étaient attendues différentes. Or l’expérience a montré que les temps de parcours 

sont toujours identiques. 

Cette modélisation propose une explication géométrique de ce résultat dans un espace 

quadridimensionnel platonicien. 
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1. A brief reminder of the experiment 

A light wave L is splitted by a half mirror HM into two sub-beams which converge after 

passing through two different pathways (see diagram below). 

 Considering the movement of the earth, this experiment was to detect a variation in the 

speed of light over paths of identical length, but whose travel times were expected different. 

However experience has shown that travel times are always identical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2. The geometrical framework  

 

This modeling is based on the Platonic space outlined in the following articles: 

 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 
RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 
RELATIVITY » (pré-publication hal-01165196, version 1). 

 

 , , , ,O i j k h
   

 is a frame for the four-dimensional Euclidean space whose axes are denoted

 OX ,  OY ,  OZ ,  Ow ; the direction of the projection is that of the vector h


. 
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3. Modeling 

We can model this situation as follows: the experimental device belongs to the reference 

frame R moving in the direction d  (see diagrams below). 

At the beginning of the experiment, the half mirror HM is at the point P1 and the source is 

at the point A0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 The light wave emitted by the source, whose path perceived by the reference frame R  is 

the one indicated in the introduction (see diagram ), actually travels the following paths 

(represented by the dotted lines), in a hyperplane orthogonal to the direction of projection h


: 
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 The initial beam travels the segment A0A1 (which corresponds projectively in the 

reference frame R  to the path Source-HM ). Note that during this travel (and the 

following), the distance r traveled by L’ is equal to the distance r traveled by HM. 

Designating by l the arm length Source-HM we have: 0 1

sin

1 cos

l
A A







. 

(See detailed calculations at the end of the article, particularly about the angle of reflection


3 1 2A A A .) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Then the sub-beam L’1 travels the path A1A2-A2A3 (which, taking account of the 

movement of the reference frame R , corresponds projectively for the sub-beam L1 to 

the round trip  HM-Mirror1 then  Mirror1-HM); with 1 2 2 3
sin

l
A A A A


  . 

 

 While the sub-beam L’2 travels the path A1A4-A4A3 (which, taking account of the 

movement of the reference frame R , corresponds projectively for the sub-beam L2 to 

the round trip HM-Mirorr2 then Mirror2-HM); 

 with 1 4

sin

1 cos

l
A A







 and 4 3 tan

2
A A l
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Both sub-beams L’1 and L’2 meet at A3 (corresponding projectively into R  to the meeting 

of the sub-beams L1 and L2 at the new position of the half mirror HM), after having traveled a 

distance r equal to P1P2 , traveled by the reference frame containing the device. 

With  0 1 1 4 4 3 0 1 1 2 2 3 1 2

2 sin

sin 1 cos
r A A A A A A A A A A A A PP l



 

 
          

 
. 

 

(The last part of the path to the detector being traveled by the beam finally reconstituted 
presents it, no real interest.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The equations thus established, true regardless of the angle   (non-multiple of  ), reflect 

the fact that when an observer located in HM perceives the return of the sub-beam L1, he 

simultaneously perceives the return of the sub-beam L2, whatever the speed of the Galilean 
reference frame related to the earth. 

Measurements done by Michelson and Morley fit that simultaneous perception, whose result 
has led to venture the hypothesis of the invariance of the speed of light c in any inertial frame ... 
Then, subsequently, the development of the Platonic model that offers here a purely geometrical 
point of view of this result. 

 

 

 

R d 



6 

 

5. Additional Calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From : 
1 1sin cosr l r   , with 

1 0 1r A A , we obtain : 0 1

sin

1 cos

l
A A







. 
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This diagram shows the modeling of the experiment when the sub-beam L1 is perceived at 

the mirror 1; which corresponds to the positioning of  L’1  at  A2. 

If  A’1 denotes the position of the half mirror HM while the beam is at A1  we have 

1 1 2'A HM A A r   . 

Furthermore, considering the plane L’1L1HM, orthogonal to  0 4A A  and the intersecting 

points B and B’ shown in the diagram, we obtain 1 1' 'A B A B , then  
1 2 1' 'BA A B A LS    

(congruent triangles) *. 

Then we obtain 1 2
sin

l
r A A


     and, for reasons of symmetry, 2 3

sin

l
A A


 . 

 

To finish, 4 3 1 4 1 3

sin
2 tan

1 cos tan 2

l l
A A A A A A l

 

 

 
      

  
. 

 

 

 

(*  See note  for a physical justification of the result 3 1 2A A A  .) 
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 We can argue the following physical reasoning for measuring the angle of reflection 

of the sub-beam L’1 : 

 

 in a conventional manner, a light beam encountering a reflecting surface RS is 

deflected and we have:  , 2R Id d    
 

, where   is a measure of the angle 

formed by an infinitesimal wavefront and the reflective mirror. 

 

 

 

 

 

 

 

 

 

 

 In the experiment of Michelson-Morley, we have 
4


   and 

2


  , angles 

measured into R . 

 

Thus, if AB denotes the 

infinitesimal width of the wavefront at 

the time of its first contact with RS and 

r  the distance traveled by the beam 

to the second contact, one has in this 

case : AB r  . 

 

 

 

 

 

 In fact, in the four-dimensional projective space, we have the following situation: 
 

 at the first contact, the perceived beam into R  at A is in fact at A’ and the 

one perceived at B is actually at B’ ; with ' 'A B AB r   . 
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 Taking account of the movement of the reference frame R  to which is 

linked the device, we have then 
.sin

'
1 cos

tan
2

r r
r





 
  

  
 
 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, when the wavefront is in contact (projectively) for the second 

time with the reflective surface, it has traveled in 4D space the distance 'r  

and the corresponding angle '  is such that: 

 

' ' 1
tan '

' '
tan

2

r r

A B r




 
  

  
 
 

 ; 

i.e. '
2 2

 
   . 

 

If we use the classical law of reflection recalled at the beginning of this 

remark, we therefore have the following result: 

 

' 2 '      . 
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