
HAL Id: hal-01247244
https://hal.science/hal-01247244

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extended policy gradient algorithm for robot task
learning

Andrea Cherubini, F Giannone, L Iocchi, Pier Francesco Palamara

To cite this version:
Andrea Cherubini, F Giannone, L Iocchi, Pier Francesco Palamara. An extended policy gradient
algorithm for robot task learning. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS’07,
Oct 2007, San Diego, United States. �10.1109/IROS.2007.4399219�. �hal-01247244�

https://hal.science/hal-01247244
https://hal.archives-ouvertes.fr

An extended policy gradient algorithm for robot task learning

A. Cherubini F. Giannone L. Iocchi P. F. Palamara
Dipartimento di Informatica e Sistemistica

Sapienza University of Roma
Via Ariosto 25, 00185 Roma, Italy
{cherubini, iocchi}@dis.uniroma1.it

Abstract— In real-world robotic applications, many factors,
both at low-level (e.g., vision and motion control parameters)
and at high-level (e.g., the behaviors) determine the quality
of the robot performance. Thus, for many tasks, robots re-
quire fine tuning of the parameters, in the implementation of
behaviors and basic control actions, as well as in strategic deci-
sional processes. In recent years, machine learning techniques
have been used to find optimal parameter sets for different
behaviors. However, a drawback of learning techniques is time
consumption: in practical applications, methods designed for
physical robots must be effective with small amounts of data.
In this paper, we present a method for concurrent learning of
best strategy and optimal parameters, by extending the policy
gradient reinforcement learning algorithm. The results of our
experimental work in a simulated environment and on a real
robot show a very high convergence rate.

I. INTRODUCTION

In order for robots to be useful for real-world applications,
they must adapt to novel and changing environments. In most
domains, the robot should be able to respond to changes in
its surroundings by adapting both its low-level skills (e.g.,
vision or motion control parameters) and the higher-level
skills (e.g., the behaviors) which depend on them.

Recently, machine learning techniques have been used in
many robotic applications, both for finding optimal parameter
sets of specific behaviors and for determining the best choice
of behaviors required to accomplish a task in a given situa-
tion. In fact, machine learning approaches generate solutions
with little human interaction, and explore the search space
of possible solutions in a systematic way, whereas humans
are often biased towards exploring a small part of the space.

Despite this growing interest, considerable work remains,
due to the difficulties associated with machine learning in
the real world. Compared to other machine learning scenar-
ios such as classification or action learning in simulation,
learning on physical robots presents several formidable chal-
lenges. In particular, learning methods designed for physical
robots must be effective with small amounts of data, and
should converge in short time. Indeed, it is often prohibitively
difficult to generate large amounts of data due to the
maintenance required on robots, such as battery changes,
hardware repairs, and, usually, constant human supervision.
Thus, learning methods designed for physical robots must be
effective with small amounts of data. Other practical issues
that make robot learning extremely challenging are the time
and material constraints: to be of practical use for robotics,
the learning algorithms must converge in a relatively small
number of training epochs [1].

Following up on all these considerations, and on our
previous work [2], we have developed an extended version
of the policy gradient learning technique introduced in [3].
In [2], we have shown the effectiveness of the incremental
learning approach in complex robot learning scenarios. We
have also studied how to use a 3D simulator for speeding up

robot learning. Finally, we have shown that the learned low-
level parameters are strongly related to the desired behavior.
Consequently, the extended policy gradient algorithm that
we propose in this work must learn the best strategy (i.e.,
composition of simple behaviors), and correspondingly the
best parameters for accomplishing a given task. Our approach
guarantees faster training than the classic policy gradient [3],
by exploiting additional information on the system prop-
erties, such as the contiguities between strategies, and the
relevance of the behavior parameters.

The method has been tested in the application example
of an attacker robot in the RoboCup Four-Legged League.
However, in our opinion, the algorithm is flexible, and can
be extended in order to optimize tasks different from soccer
attack on robot platforms different from Sony AIBO.

II. RELATED WORK

Robot learning is a growing area of research at the
intersection of robotics and machine learning. It is used
both at low level, for sensing and control issues, and at
high level, for cognitive and behavior issues. We include
in the first class – parameter learning – all problems where
learning is aimed at fine-tuning of the parameters used by
the low level algorithms, and in the second class – behavior
learning – problems where learning aims at finding the
optimal composition of behaviors for accomplishing a task.

In the first class of problems, one of the primary appli-
cation areas is robot motion control, in all cases where the
complete mathematical model is not known, and traditional
optimization methods cannot be used. Gait optimization for
legged robots is one of such fields [1]. Parameter learning
has proved very effective for improving other motion control
tasks, such as robot grasping. In [4], this is achieved by
applying the layered learning paradigm [5]: grasping param-
eters rely on previously learned walk parameters. Another
interesting application area for parameter learning is robot
vision. In [6], for instance, biologically inspired perceptual
learning mechanisms are used to improve object identifica-
tion in real-world environments.

On the other hand, researchers have proved the utility of
behavior learning for improving high level robot tasks, e.g.
navigation, exploration, path-planning. In the behavioral de-
composition approach, the desired behavior is broken down
into a set of simpler behaviors, which are activated or sup-
pressed through a coordination mechanism. The structure of
the simpler behavioral modules can emerge from a learning
process, instead of being pre-designed. Nolfi [7] showed how
a good evolutionary approach can produce simpler and more
robust solutions, than those designed by hand. The robot can
evolve by adapting its behaviors to various constraints on the
environment, on the desired task, and on the user satisfaction.
Genetic Programming (GP, [8]) and Reinforcement Learning
(RL, [9]) are useful tools for learning behaviors at the
cognitive layer. The adaptation mechanism of GP is similar

to that of Genetic Algorithms, except that it is based on
symbolic, rather than bit string, representation.

To our knowledge, the aforementioned classes of learning
(parameter and behavior learning) have rarely been joined
in a single framework. One reason is the long time required
to solve the optimization problem in the large search space
including both parameters and behaviors. Here, we present
a fast method based on the policy gradient reinforcement
learning technique [10] useful in all cases where behavior
and parameter learning should be integrated for optimal
task execution. Our method can be considered an extended
version of the policy gradient technique introduced in [3],
which takes into account behavior similarities and parameter
relevance during the learning process, to speed up conver-
gence. Experimental comparison between the policy gradient
from [3] and the extended version that we propose is carried
out in this work, based on an incremental learning approach.

III. PROBLEM DEFINITION

In this paper we consider learning a complex task as a
composition of different behaviors. More specifically, we
consider situations in which a task T can be accomplished
by applying different strategies, where each strategy is a
composition of different behaviors. Each behavior B is
characterized by a set of parameters ΘB = {θ1, ..., θkB

}.
Notice that a behavior can be present in different strategies
and possibly requires the definition of different parameters
depending on the situation in which it is used.

The learning problem is thus twofold: behavior learning is
needed to select the best strategy (i.e., the best composition
of basic behaviors) and meanwhile each behavior requires
fine tuning of each parameter. As in any robot learning prob-
lem, the proposed algorithm should minimize time consump-
tion, which is often related to ’hardware consumption’ in real
robot applications. Hence, the algorithm must converge to the
best solution after few iterations.

The learning problem we are interested in is the following.
Given a set S of different strategies for accomplishing a
certain task T , we want to learn the best choice of the
strategy, as well as the parameters ΘB that ensure the best
performance on the execution of the best strategy. Two main
difficulties arise when dealing with this problem: 1) the
choice of an optimal strategy, 2) an optimization problem
in the behavior parameters space.

In general, the choice about which strategy must be
selected to perform a task is not easy. This is firstly due to the
fact that in complex scenarios, the winning strategy depends
on the context (i.e., the current situation of the environment
around the robot). Secondly, some strategies can perform
similarly in a given context: this similarity (contiguity) can be
used to speed up the learning process. Thirdly, a coarse initial
design of the learning algorithm can lead to overestimation of
the search space dimensions. In particular, this occurs when
parameters which have little relevance on the performance
are learned. Based on these considerations, we will show that
the speed of a robot task learning algorithm can be improved
by: 1) detecting and exploiting similarities between learned
strategies, and 2) updating the search space dimensions, by
removing irrelevant parameters during learning.

Furthermore, in the optimization of behavior parameters,
the optimization function is not known (’black box’) and
analytical computation of its derivatives is impossible. Be-
sides, the parameters are box-constrained due to the physical
characteristics of the system. Hence, conventional derivative-
based optimization methods (e.g., Gradient or Newton meth-
ods) cannot be utilized The selected approach must handle

CLASSIC POLICY GRADIENT

INPUT: S, vX0, Niter

OUTPUT: Sv∗, v∗X∗

1 initialize parameter set for all strategies: vX ←v X0

2 for each strategy v = 1 to Nstr

3 vX∗ = classic policy gradient (vX0, Niter)
4 endfor
5 v∗ ← arg max

v
F (vX∗)

6 return (Sv∗,
v∗X∗)

7 END
Fig. 1. Pseudocode for classic policy gradient task learning.

non differentiable search space, have high convergence rate
and be resistent to noise.

Many algorithms possess these characteristics. In particu-
lar, we will utilize the Policy Gradient learning algorithm,
which has been successfully used for robot learning [3], [2].

In the next section we present a general learning method-
ology that integrates behavior and parameter learning for
executing a complex robot task in a small amount of exper-
iments. The approach is based on an extension of the policy
gradient algorithm that allows for significantly increased
convergence rate for complex robot tasks.

IV. COMPLEX TASK LEARNING

The method for task learning proposed in this paper aims
at determining at the same time the best strategy and the
optimal parameters to be used in the behaviors used in
such a strategy. We will refer in the following to a set
of Nstr different strategies for accomplishing the task T :
S= {S1, . . . , SNstr

}. Each strategy is characterized by a set
of behaviors, for which we want to optimize the characteristic
parameters. Let vX ∈ Rn be a representation of the
parameters used by behaviors in the strategy Sv . Although, in
general, different strategies have different parameter spaces,
we will assume that the parameters of the behaviors for
all the strategies can be represented as a vector in Rn.
Furthermore, we will denote with F the fitness function used
to evaluate strategies and parameters and thus with F (vX)
the evaluation of the parameters X within the strategy Sv .

The objective of the leaning process is to learn the best
choice of the strategy Sv∗, along with the optimal parameters
v∗X∗ that ensure the best performance on the execution
of that strategy, i.e., that maximize F (vX). To achieve
this goal, we first present a straightforward application of
policy gradient approach, and then describe a novel extended
method that substantially increases convergence rate. The
first method simply consists of solving Nstr independent
optimization problems (one for each strategy) in Rn, and
choose the pair Sv∗, v∗X∗ that returns the highest fitness
value for task T .

A. Classic policy gradient method
The policy gradient algorithm [3] estimates the gradient

of the objective function in the parameter space and follows
it towards a local optimum. The parameter optimization
approach starts from an initial parameter set X0 and proceeds
to estimate the partial derivative of F (X0) with respect
to each parameter. From the initial set X0, p randomly
generated policies mX (m = 1, . . . , p), near X0, are eval-
uated, such that: mX = X0 + [ρ1, . . . , ρk]T , and each ρj

is chosen randomly in the set {−εj , 0,+εj}. Each mX is
grouped into one of three sets for each j: G−ε,j , G0,j or
G+ε,j depending whether its jth parameter was obtained

by adding −εj , 0 or +εj . After evaluating the objective
function at each mX , average scores F̄−ε,j , F̄0,j , and F̄+ε,j
are computed for G+ε,j , G0,j and G−ε,j , respectively. These
scores are used to construct an estimate of the gradient,
which is then normalized, multiplied by a scalar step-size
η and added to X0, to begin the next iteration i (i =
1, . . . , Niter). Pseudocode for learning the best strategy Sv∗
and the corresponding best parameters v∗X∗ for a given task
T , using the policy gradient method, is shown in Fig. 1. The
function classic policy gradient (vX0, Niter), summarizes
the algorithm described in [3].

B. Extended policy gradient method
Although effective, the method described above does not

exploit two important factors of this learning process: simi-
larities between strategies and relevance of parameters.

In this section, we present an extension of the method,
which additionally takes into account: contiguities between
strategies, and relevance of parameters within each strategy,
to fasten the learning process. Let us define, at every iteration
step ī 6= 0, the following metrics:
• Contiguity between strategies Sv and Sw:

C ī(v, w) =
1

d(vX ī, wX ī) + 1

where:

d(vX ī, wX ī) =

√√√√ k∑
j=1

(
vX ī

j −w X ī
j

)2

is the euclidean distance between vX ī and wX ī. We
also note vP i the set (’cluster’) containing all points
wXi which are ’near’ vXi.

• Relevance of parameter j for a given strategy v: it is
the norm of the weighted average of the jth gradient
component:

Rī(v, j) =

∣∣∣∣∣ ī∑
i=1

λī−i 5v Xi
j

∣∣∣∣∣
ī∑

i=1

λī−i

where 0 < λ < 1 is a forgetting factor that operates as
a weight diminishing for the more remote data. Small
values of the relevance imply that the estimated gradient
varies ’slightly’ along the jth component during the
learning process: hence, we assume that the corre-
sponding parameter has little relevance on the system
performance. We denote with vJ i ⊆ {1, . . . ,v ki} the
subset of relevant parameters (i.e., parameters j with
’high’ Ri(v, j)) for learning strategy v at iteration i. vJ i

is updated at each iteration step i during the learning
process, depending on the values of Ri(v, j).

The extended algorithm is shown in Fig. 2. This algorithm
has a similar structure than the one described in the previous
section, but it contains two major improvements. Firstly,
for each strategy, the subset vJ i is updated, and at each
iteration, policies are generated by perturbing only relevant
parameters; hence, the size of the search space is reduced,
and the algorithm convergence is faster. Secondly, for con-
tiguous strategies, points reached at each learning iteration
and belonging to vP i are evaluated, and the best point is
chosen as the initial point for the next iteration for each of
the contiguous strategies.

EXTENDED POLICY GRADIENT

INPUT: S, vX0, Niter

OUTPUT: Sv∗, v∗X∗

1 initialize for all v: vX ←v X0, vJ0 ≡ {1, . . . ,v k0}
2 for each iteration i = 1 to Niter
3 for each strategy v = 1 to Nstr

4 generate v
mXi perturbations of vXi−1 on vJ i−1

5 evaluate F (vXi) at all p policies v
mXi for task T

6 vJ i ← ∅
7 for each parameter j ∈vJ i−1

8 evaluate F̄−ε,j , F̄0,j , and F̄+ε,j

9 if F̄0,j > F̄−ε,j and F̄0,j > F̄+ε,j

10 5vXi
j ← 0

11 else
12 5vXi

j ← F̄+ε,j − F̄−ε,j

13 endif
14 evaluate Ri(v, j)
15 if Ri(v, j) > Tr (Tr a given threshold)
16 vJ i ←v J i ∪ j
17 endif
18 endfor %parameters
19 5vXi ← η × 5vXi

|5vXi|
20 vXi ←v Xi−1 +5vXi

21 endfor %strategies
22 for each strategy v = 1 to Nstr
23 for each strategy w = 1 to Nstr

24 evaluate Ci(v, w)
25 if Ci(v, w) > Tc (Tc a given threshold)
26 vP i ←v P i ∪wXi

27 endif
28 endfor %strategies w
29 evaluate F (X) at all X ∈v P i

30 vXi ← arg max
X∈vP i

F (X)

31 endfor %strategies v
32 endfor %iterations
33 for each strategy v = 1 to Nstr

34 vX∗ ← arg max
i

F (vXi)

35 endfor %strategies v
36 v∗ ← arg max

v
F (vX∗)

37 return (Sv∗,
v∗X∗)

38 END
Fig. 2. Pseudocode for extended policy gradient task learning.

V. SOCCER ROBOT APPLICATION

Concurrent behavior and parameter learning is useful in
many complex high dimensional systems. Here we present
a detailed example on which the proposed method has
been applied and experimented (results are commented in
Section VI). We consider a robot playing soccer within the
RoboCup Four-Legged league competitions. One of the main
tasks to be accomplished in this scenario is to approach the
ball and kick it to the opponent goal. This is a complex task
that requires the integration of different behaviors in different
ways. Many strategies can be defined to accomplish this task,
but a winning strategy is difficult to identify since it depends
on many factors: position of the robot and of the ball in the
field, position of the other robots, etc. Besides, each behavior
has several parameters to be tuned: walking gait parameters,
kick parameters, etc. Also, these values should depend on

the situation at hand: for example, we may prefer a fast but
imprecise walk when the robot is far from the ball and an
opponent robot is closer, while a slower but precise walk
may be better when the robot is close to the ball and no other
robots are around. Learning such a complex task requires to
define a strategy (as a combination of behaviors) and tune
the parameters of the behaviors involved in the strategy.

Learning the attacking task for a soccer robot consists in
learning to approach the ball and kick it to the opponent
goal in the ‘best’ way. In the rest of this section, we will de-
scribe our task learning process, by describing behaviors and
parameters of the attacking robot and some implementation
details of the proposed algorithm.

A. Behaviors
For learning the attacking task, a set of seven behaviors
BP = {B1, . . . , B7} has been considered. These behaviors
(see [2] for further details) can be classified in three subsets:
• Ball approaching behaviors:

– B1: fast ball approach – the path length is mini-
mized by an omnidirectional walk;

– B2: aligning ball approach – while the robot
approaches the ball, its heading is concurrently
oriented towards the opponent goal;

• Ball controlling behaviors:
– B3: rotational ball carrying – the robot grasps

the ball with its chin, and subsequently orients its
heading towards the opponent goal;

– B4: gradual ball reaching – the robot gradually
decreases its translational and rotational velocities
in order to reach the ball without knocking it;

• Ball kicking behaviors:
– B5: head straight kick – the robot ’dives’ on the

ball and hits it with the head - the head pan angle
is kept null during this kick;

– B6: head spanning kick – the robot ’dives’ on the
ball and hits it with varying head pan: the kick is
more powerful but less precise than B5;

– B7: lateral head kick – the robot hits the ball
laterally with a varying head pan angle.

A strategy is a combination of such behaviors. In this paper
we consider only a simple form of behavior composition:
chaining between a ball approaching, a ball controlling,
and a ball kicking behavior. Thus we consider strategies as
sequences of three behaviors. For example, {B1;B3;B5} is
a possible strategy for the attacking task.

B. Parameters
Each behavior B is characterized by a set of parameters

ΘB . The parameters are box-constrained due to the physical
characteristics of the system, and we note ∆j the range size
for each θj .

Speed and stability of the ball approach are mainly char-
acterized by the walking gait parameters, which define the
kinematic characteristics of the walk. The trot gait is used,
with a half-ellipsoidal locus shape for foot motion, and con-
tact between the base of the locus and the ground generates
body motion. The gait is characterized by the eleven walking
gait parameters: ΘWG = {θWG,1, . . . , θWG,11}.

Walking gait parameters have little influence on the qual-
ity of ball control, which relies mainly on the way the
robot slows down and stops near the ball (i.e. on the ball
controlling parameters). We use translational and rotational
slowing down velocities that are respectively proportional
to the ball distance and to the relative robot-ball angle.

Thus, ball control is influenced by the four parameters:
ΘBC = {θBC,1, . . . , θBC,4}.

The robot kicks are generated by a sequence of fixed joint
positions (for AIBO’s 15 joints), at three stages of the kick,
related to a timing information, stating for how long the joint
values must be kept (i.e. the kick ’speed’). Motion of the
back leg joints is fixed (since it has little influence on the kick
quality), whereas motion of the head and front legs should be
learned. Hence, twenty three ball kicking parameters ΘBK =
{θBK,1, ..., θBK,23} are used.

The behaviors are not influenced by all of the parameters:
in practice, each behavior is characterized by a subset of such
parameters. For instance, the ball distance at which the robot
stops translating (θBC,2), may be fundamental for behavior
B4 and irrelevant for B3. In particular, we are interested in
learning the seven sets of parameters ΘB :

ΘB1 ⊆ ΘWG ΘB2 ⊆ ΘWG
ΘB3 ⊆ ΘBC ΘB4 ⊆ ΘBC

ΘB5 ⊆ ΘBK ΘB6 ⊆ ΘBK ΘB7 ⊆ ΘBK

C. Learning configuration
The learning process consists in chosing the best strategy

and optimizing the parameter sets: ΘWG, ΘBC , and ΘBK .
These sets are represented as a vector:

X =[θWG,1. . .θWG,11θBC,1. . .θBC,4θBK,1. . .θBK,23]
T∈R38

that also represents a candidate solution of the optimization
problem. As already mentioned, these sets might include
parameters which are irrelevant for the strategy, and the
learning algorithm will deal with them.

The very large dimensions of the search space, and the
system characteristics, suggest the use of the layered learning
paradigm [5] for optimizing this problem. In fact, given
a hierarchical task decomposition, layered learning allows
for learning at each level of the hierarchy, with learning at
each level directly affecting learning at the next higher level.
The incremental learning approach that we use is inspired
by the layered learning paradigm; however, in contrast with
classic layered learning, we utilize the same learning method
for each layer of the hierarchy. Specifically, we decompose
optimization of the strategy parameters in the following three
optimization subtasks (layers):
• L1: find X1,opt = [θWG,1 . . . θWG,11]Topt ∈ R11 for

’best’ walk;
• L2: find X2,opt = [θBC,1 . . . θBC,4]Topt ∈ R4 for ’best’

ball control, given X1,opt found by L1;
• L3: find X3,opt = [θBK,1 . . . θBK,23]Topt ∈ R23 for

’best’ kicking, given X1,opt and X2,opt found by L1

and L2.
The solution of the attacker strategy optimization problem
can then be obtained as:

Xopt = [X1,opt X2,opt X3,opt]
T

The appropriate choice of the objective function for optimiza-
tion is fundamental. The function for evaluating the quality
of an attacking strategy – the fitness function – must take
into account: the quality (speed and precision) of the robot
motion for approaching the ball, the quality of ball control,
and the quality (power and precision) of the kick. Hence, we
adopt the following objective function:

F (X) = KWGfWG(X) + KBCfBC(X) + KBKfBK(X)

where fWG, fBC , fBK indicate respectively the quality
of the ball approaching, ball controlling, and ball kicking

Fig. 3. The best fitness values obtained from each evaluation during
USARSim training with classic policy gradient at layers: L1 (strategies
S1, S2 and S3 in black, S4 and S5 in grey), L2 (strategies S1, S2 in red,
S3 in green, S4 and S5 in blue) and L3: S1 (orange), S2 (red), S3 (green)
S4 (blue) and S5 (cyan).

Fig. 4. The fitness values obtained during USARSim training with extended
policy gradient (considering parameter relevance) at L3: S1 (pink), S2
(red), S3 (green) S4 (cyan) and S5 (blue).

behavior used. These functions are derived with heuristics on
the robot and ball positions at various stages of the attacking
strategy execution. The functions are derived identically for
behaviors in the same subset (e.g., fBC is derived in the same
way for B3 and B4). KWG, KBC , and KBK are positive
weights indicating the significance desired for each of the
three aspects in the learning process. F (X) is thus identical
(i.e., same functions fWG, fBC and fBK and same weights)
for all the strategies used to execute the attacking task.

VI. EXPERIMENTAL RESULTS

In this section, we report the experimental results obtained
by applying the two proposed policy gradient methods for
task learning in the described robot soccer scenario. We
take advantage of two results from our previous work [2]:
the utility of using a 3D simulator for speeding up the
learning process, and the effectiveness of the incremental
approach for robot task learning. The major contribution of
the experiments is the comparison between the classic and
extended policy gradient methods presented in Section IV.

The objective of the learning algorithms is to find the
most suitable strategy Sv∗ and the corresponding optimal
parameters v∗X∗ for a given task. In practice, we focus
on the following task T : ball 50 cm in front of robot,
and direction from ball to goal orthogonal to the robot
sagittal axis, with the goal on the right of the robot. The
five strategies chosen to achieve the task are:

S1 = {B1 B3 B5} S2 = {B1 B3 B6}
S3 = {B1 B4 B7} S4 = {B2 B4 B5} S5 = {B2 B4 B6}

The performance of these strategies can be compared, since
the objective function is the same for all the strategies.

Fig. 5. Evolution of gradient component (dashed line) and relevance
(continuous line) of: θBK,3 (green), θBK,13 (red) and θBK,24 (blue)
during USARSim training of S2 at L3: circles indicate the evaluation step
where the parameter becomes irrelevant (the black line indicates Tr).

Learning this task is initially implemented with the 3D
AIBO simulator [11] embedded in USARSim1 before ex-
perimentation on the real robot. In fact, in [2], we have
shown that the learning configurations tuned in the simulated
environment can be successfully ported on the real robot.

We utilize the incremental learning approach presented
in the previous section. For the 3 layers, we choose the
policy gradient configuration: εj = 0.1 ∆j , η = 3. In the
classic version, the number of policies p at the 3 layers is
set to: p1 = 8, p2 = 4, p3 = 16. Instead, in the extended
version, since the number of parameters decreases during the
learning process (depending on their relevance), p is set to
two thirds of the number of parameters to be learned. The
same initial parameter set 0X is used for starting learning
on each strategy v. Since there is significant noise in the
experiments, each set of parameters is evaluated twice, and
the resulting fitness evaluated for that set, is computed by
averaging over the two experiments. In USARSim, since
’hardware consumption’ is not an issue, for each layer,
we compare the learning algorithms after 10 ki evaluations
have been performed (e.g. for L3, 240 evaluations, i.e.,
480 experiments). Comparison between extended and classic
policy gradient has been carried out at layer L3. For the first
two layers, classic policy gradient learning has been used to
derive X1,opt and X2,opt. The results of incremental learning
at L1 and L2 are shown in Fig. 3, where the best fitness value
found by classic policy gradient is plotted over the number
of evaluations, for each of the 5 strategies.

Afterwards, we proceed by learning layer L3 with the clas-
sic and extended policy gradient. To emphasize the capability
of the extended version to filter out irrelevant parameters, we
add a 24th irrelevant parameter θBK,24 (which is not used by
the robot for kicking the ball) to the set ΘBK . The results of
learning L3 with the classic policy gradient are shown in Fig.
3. The extended policy gradient is initially experimented by
considering solely parameter relevance. We use: Tr = 0.03
and λ = 0.8. At the end of the learning process, for all
five strategies, approximately 50% of the parameters are
filtered out (e.g., 11 parameters for S1, 13 parameters for
S4). For all strategies, θBK,24 is filtered out during the
learning process. The fitness values during learning with
parameter reduction are shown in Fig. 4: for all strategies, the
final fitness outperforms the fitness obtained with the classic
algorithm. The best improvements are for strategies S2 (the
fitness increases by 18%) and S5 (14%). For strategy S2
(which prevails in the experiments), the gradient component
and relevance of parameters: θBK,3, θBK,13 and θBK,24 are
plotted in Fig. 5. Note that, as expected, θBK,24 is filtered out

1http://usarsim.sourceforge.net

Fig. 6. The fitness values obtained during USARSim training with extended
policy gradient (considering parameter relevance and strategy contiguity)
at L3: S1 (pink), S2 (red), S3 (green) S4 (cyan) and S5 (blue)

very early in the learning process. Most of the experiments
reveal the irrelevance of the leg positions at the second (i.e.,
intermediate) stage of the kick. This result implies that it
could be sufficient to learn the leg positions at the first and
final stage of the kick.

In the next experiment, strategy contiguity is also utilized
in the extended algorithm, along with parameter relevance;
we set Tc = 0.002. For all strategies, the final fitness (plotted
in Fig. 6) outperforms the fitnesses obtained with the classic
algorithm and with the extended version that considers
only parameter relevance. The best improvements are for
strategies S3 (the fitness increases by 35% with respect to
classic policy gradient) and S5 (21%). During the learning
process, the algorithm takes advantage of the contiguities
between strategies S1, S2 and S3 and also between strategies
S1, S4 and S5. With this complete version of the extended
policy gradient, strategy S4 prevails.

Finally, both algorithms are ported on the real robot, for
comparison at learning X3,opt with fixed: X1,opt, X2,opt.
The strategies that performed better in USARSim (S2 and
S4) are used. For each strategy, three experiments are carried
out. Firstly, classic policy gradient is applied for learning
all 24 parameters (dotted curves in Fig. 7). Then (dashed
curves), classic policy gradient is applied for learning only
the relevant parameters (12 parameters in S2, 13 in S4)
derived in the simulated experiments. Finally (solid curves),
the extended policy gradient is used, by reducing the pa-
rameter set initialized with the relevant parameters derived
in USARSim. The initial parameter sets are the final sets
obtained from USARSim training. Each set of parameters
is evaluated twice, and the resulting fitness is obtained by
averaging. This time, we terminate learning after 120 eval-
uations have been performed. For both strategies, the utility
of reducing the parameter set in the simulated environment
before porting on the real robot is visible by comparison of
the dotted and dashed curves in Fig. 7. Further improvement,
as expected, is obtained by reducing the parameter set
throughout the learning process (solid curves). At the end
of the experiments, 10 parameters are preserved for S2, 9
for S4. Hence, 2 parameters for S2 and 4 for S4 have not
required further adjustment on the real robot after USARSim
training.

VII. CONCLUSIONS

In this paper, we presented a method for concurrent learn-
ing of best strategy and optimal parameters, by extending
the policy gradient reinforcement learning algorithm. The
proposed method guarantees fast convergence by exploiting
information on the system properties, while learning. In
particular, the contiguities between strategies, and the pa-

Fig. 7. Fitnesses during AIBO training with start point derived from
USARSim training: S2 in red, S4 in blue.

rameter relevance, are estimated and utilized by the algorithm
during training. Parameter relevance enables reduction of the
search space size during learning, while contiguities improve
optimization by search for maxima among similar strategies.

The proposed learning technique has been applied to the
soccer attacking task. It has been implemented in USARSim
and extensively experimented in laboratory on AIBO, show-
ing a notable improvement in the learned robot performance
with respect to robot performance learned with classic policy
gradient. Firstly, our technique outperforms classic policy
gradient when the comparison is carried out over the same
number of evaluations. Moreover, the convergence rate of
our technique is higher than that of classic policy gradient:
the same fitness value (e.g., in USARSim, 400) is attained
much earlier (145 evaluations in advance). These results are
fundamental in robot applications, where hardware consump-
tion is a major issue. Development of a robot task learning
algorithm that identifies the system major characteristics
during training could be the object of further work.

ACKNOWLEDGMENT

The authors thank Maria Sciannelli for her support in the
USARSim experiments.

REFERENCES

[1] S. Chalup, C. Murch, and M. Quinlan, “Machine learning with AIBO
robots in the four-legged league of robocup,” Systems, Man and
Cybernetics, Part C, IEEE Transactions on, 2006.

[2] A. Cherubini, F. Giannone, and L. Iocchi, “Layered learning for a
soccer legged robot helped with a 3D simulator,” in Proceedings of
11th International Robocup 2007 Symposium, 2007.

[3] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in Proceedings of International Conference
on Robotics and Automation, 2004.

[4] P. Fidelman and P. Stone, “The chin pinch: A case study in skill
learning on a legged robot,” in Proceedings of 10th International
Robocup 2006 Symposium, 2006.

[5] P. Stone and M. Veloso, “Layered learning,” in Machine Learn-
ing:ECML 2000 (Proceedings of the Eleventh European Conference
on Machine Learning, R. L. D. Mántaras and E. Plaza, Eds. Springer
Verlag, Barcelona, Spain, May/June 2000, pp. 369–381.

[6] N. Bredeche, Z. Shi, and J.-D. Zucker, “Perceptual learning and
abstraction in machine learning: an application to autonomous robots,”
Systems, Man and Cybernetics, Part C, IEEE Transactions on, vol. 36,
no. 2, pp. 172–181, March 2006.

[7] S. Nolfi, “Evolutionary robotics: Exploiting the full power of self-
organization.” Connection Science, vol. 10, pp. 167–183, 1998.

[8] J. Koza, Genetic Programming: on the programming of computers by
means of natural selection, MIT Press, Cambridge, Mass., 1992.

[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, Mass., 1998.

[10] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, pp.
1057–1063, 2000.

[11] M. Zaratti, M. Fratarcangeli, and L. Iocchi, “A 3D simulator of
multiple legged robots based on USARSim,” in Proceedings of 10th
International Robocup 2006 Symposium, 2006.

