
HAL Id: hal-01247242
https://hal.science/hal-01247242

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Layered Learning for a Soccer Legged Robot Helped
with a 3D Simulator

Andrea Cherubini, F Giannone, L Iocchi

To cite this version:
Andrea Cherubini, F Giannone, L Iocchi. Layered Learning for a Soccer Legged Robot Helped with
a 3D Simulator. Int. Robocup Symposium, 2007, 2007, Atlanta, United States. �10.1007/978-3-540-
68847-1_39�. �hal-01247242�

https://hal.science/hal-01247242
https://hal.archives-ouvertes.fr


Layered learning for a soccer legged
robot helped with a 3D simulator

A. Cherubini F. Giannone and L. Iocchi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Eudossiana 18, 00184 Roma, Italy
{cherubini, iocchi}@dis.uniroma1.it

Abstract. In the robotic soccer domain, many factors, such as the speed
of individual robots, the effectiveness of kicks, and the choice of the ap-
propriate attacking strategy, determine the success of a team. Conse-
quently, soccer robots, and in particular legged ones, require fine tuning
of the parameters not only for the vision processes, but also in the im-
plementation of behaviors and basic control actions and in the strate-
gic decisional processes. In recent years, machine learning techniques
have been used to find optimal parameter sets for different behaviors.
In particular, layered learning has been proposed to improve learning
rate in robot learning tasks. In this paper we consider a layered learn-
ing approach for learning optimal parameters of basic control routines,
behaviours and strategy selection. We compare three different methods
in the different layers: genetic algorithm, Nelder-Mead, and policy gra-
dient. Moreover, we study how to use a 3D simulator for speeding up
robot learning. The results of our experimental work on AIBO robots
are useful not only to state differences and similarities between different
robot learning approaches used within the layered learning framework,
but also to evaluate a more effective learning methodology that makes
use of a simulator.

1 Introduction

In order for robots to be useful for many real-world applications, they must be
able to adapt to novel and changing environments. For this purpose, a popular
research field is the annual RoboCup soccer competition1. In this domain, many
factors, such as the speed of individual robots, the effectiveness of kicks, and the
choice of the appropriate attacking strategy, determine the success of a team.
The robot should be able to respond to changes in its surroundings by adapting
both its low-level skills (e.g., the walking style) and the higher-level skills (e.g.,
the behaviour) which depend on them.

Firstly, creating effective motion for walking and kicking the ball is a chal-
lenging task, since there is a large number of parameters to be set, and since
successful motions strongly depend on many factors, including: playing surface,
robot hardware, and game situation. In recent years, machine learning techniques
have been used to find optimal parameter sets. Secondly, in Robocup matches,
the correct choice of the best behaviours required to accomplish a certain task
1 In this work, we focus on AIBO robots and RoboCup Four-Legged league (see
www.tzi.de/4legged/)



(e.g., to score a goal) is fundamental for success. Machine learning techniques
have been used in this field as well, in order to adapt the behaviours to the given
game situation. In fact, machine learning generates solutions with little human
interaction, and explores the search space of possible solutions in a systematic
way, whereas humans are often biased towards exploring a small part of the
space. An analysis of the methods used to learn optimal motion parameters and
optimal behaviours, and comparisons with the approach presented in this paper,
are reported in Section 2.

Following up on these works, we have analyzed different learning techniques
for a AIBO soccer robot. In particular, we have considered a layered-like learning
approach [14] that is suitable with the large dimensions of the search space
we are considering. Besides, we have compared three different methods in the
different layers: genetic algorithm (GA), Nelder-Mead (NM), and policy gradient
(PG). Finally, we have studied how to use a 3D simulator for speeding up robot
learning. The results of our experimental work can be summarized as follows:
1) layered learning is very effective in the complex scenario considered in this
paper; 2) using a 3D simulator can actually speed up the learning process on real
robots; 3) the learned low-level parameters are strongly related to the desired
behavior. We have successfully experimented the presented learning methodology
in preparation of RoboCup 2006, showing a notable improvement of performance
of the basic behaviours of the robots in our team.

2 Related Work

Robot learning is a growing area of research at the intersection of robotics and
machine learning. It has been used both at low level, for sensing and control
issues, and at high level, for cognitive and behavior issues. We include in the
first class – parameter learning – all problems where learning is aimed at fine-
tuning of the parameters used by the low level algorithms. In the second class –
behavior learning – we consider problems where learning is aimed at finding the
optimal composition of simple behaviors for accomplishing a certain task.

In the first class of problems, one of the primary application areas is robot mo-
tion control, in all cases where the complete mathematical model is not known,
and traditional optimization methods cannot be used. Gait optimization for
legged robots is one of such fields. A Genetic Algorithm has been used for opti-
mization of the vector of quadruped walk parameters, as shown in [4]. Algorithms
based on an evolutionary approach achieved four-legged walks of high quality
avoiding the need for gradient approximation [5, 13]. Kohl and Stone, from the
University of Texas at Austin [8], empirically compared four different machine
algorithms for quadruped walk optimization. Parameter learning has proved very
effective for improving other motion control tasks, such as robot grasping. This
task is achieved in [7] by applying the layered learning paradigm [14]: grasping
parameters rely on previously learned walk parameters. Another interesting ap-
plication area for parameter learning is robot vision. Bredeche and others [3],
for instance, have shown the interest of using biologically inspired perceptual
learning mechanisms to improve object identification in real-world environments.
Researchers also proved the utility of behavior learning for improving some high
level robot tasks, i.e. navigation, exploration, path-planning. Genetic Program-
ming (GP, [9]) and Reinforcement Learning (RL) are often used for learning
behaviors at the cognitive layer. The adaptation mechanism of GP is similar to



that of GAs, except that it is based on symbolic, rather than bit string, repre-
sentation. In [6], RL is efficiently used for concept and rule acquisition in high
level navigation in an unknown environment. Behavior learning is also a popular
method for solving complex problems in multi-robot systems [11].

To our knowledge, the aforementioned classes of learning (parameter and
behaviour learning) have rarely been joined in a single framework. In [1], this
possibility has been explored: cognitive capabilities are developmentally created,
starting from abilities for detecting, segmenting and recognizing objects up to
task execution. In such approach, learning can be accelerated by increasing the
complexity of the environment while the robot develops [12]. Moreover, exper-
imental comparisons of different learning methodologies have been rarely ad-
dressed. In this work, we focus our attention on the definition of a learning task
in which behavior learning and parameter learning are integrated and present
an experimental evaluation of a layered learning approach using three differ-
ent learning techniques: Genetic Algorithm, Policy Gradient and Nelder-Mead
Simplex Method.

3 Problem definition

In this paper we consider learning a complex task as a composition of different
behaviors. More specifically, we consider situations in which a task T can be ac-
complished by applying different strategies, where each strategy is a composition
of different behaviors. Each behavior B is characterized by a set of parameters
ΘB = {θ1, ..., θkB

}. Notice that a behavior can be present in different strate-
gies and possibly requires the definition of different parameters depending on
the situation in which it is used. The learning problem is thus twofold: from
one hand, behavior learning is needed to select the best strategy, i.e., the best
composition of basic behaviors; from the other hand, each behavior needs a fine
tuning of each parameter. In the next section we present a learning methodology
that integrates behavior and parameter learning for a complex robot task.

To make this problem more clear we will present the application example
in which we have tested our method. Consider a robot playing soccer within
the RoboCup Four-Legged league competitions. One of the main tasks to be
accomplished is to approach the ball and kick it to the opponent goal. This is
a complex task that requires the integration of different behaviors in different
ways. Many strategies can be defined to accomplish this task, but a winning
strategy is difficult to identify since it depends on many factors: position of the
robot and of the ball in the field, position of the other robots, etc. Besides,
each behavior has several parameters to be tuned: walking gait parameters, kick
parameters, etc. Also, these values should depend on the situation at hand: for
example, we may prefer a fast but imprecise walk when the robot is far from
the ball and an opponent robot is closer, while a slower but precise walk may
be better when the robot is close to the ball and no other robots are around.
Learning such a complex task requires to define a strategy (as a combination of
behaviors) and tune the parameters of the behaviors involved in such a strategy.

4 System description

As aleady mentioned, we focus on learning the attacking task for a soccer robot
in the Four-Legged League, i.e. learning to approach the ball and kick it to the
opponent goal in the ‘best’ way. In the rest of this Section, we will describe our



Fig. 1. The six behaviours that can be used in the attacking task.

task learning approach, by focusing on: the description of the system (behaviors
and parameters of the attacking robot), the definition of learning approach, and
the algorithms used for optimization of the robot performance.

4.1 Behaviors

For learning the attacking task, a set of six behaviors BP = {B1, . . . , B6} have
been considered. These behaviors (see Figure 1) can be classified in three subsets:

– Ball approaching behaviors: B1: fast ball approach (the path length is min-
imized by an omnidirectional walk), B2: aligning ball approach (while the
robot approaches the ball, its heading is concurrently oriented towards the
opponent goal)

– Ball carrying behaviors (aimed at grasping the ball with the robot chin, and
orienting the robot heading towards the opponent goal): B3: rotational ball
carrying (alignment is achieved by pure rotation), B4: rototranslational ball
carrying (alignment is achieved by a rototranslational movement towards
the goal)



– Ball kicking behaviors (realized by direct kinematics control of the 15 joint
positions): B5: head straight kick (the robot ’dives’ on the ball and hits it
with the head), B6: head spanning kick (the robot ’dives’ on the ball and
hits it with varying head pan).

A strategy is a combination of such behaviors. In this paper we consider only
a simple form of behavior composition: chaining. Thus we consider strategies as
sequences of behaviors. For example, {B1;B4;B5} is a possible strategy for the
attacking task.

4.2 Parameters

Each behavior B is characterized by a set of parameters ΘB .
Speed and stability of the ball approach are mainly characterized by the walk-

ing gait parameters, which define the kinematic characteristics of the walk. The
eleven walking gait parameters ΘWG = {θWG,1, . . . , θWG,11} are: the relative
positions of the locus center for fore/hind feet as (x, y, z) offsets (6 parame-
ters), the height of the steps performed by the fore/hind legs (2 parameters),
the step duration (1 parameter), and the maximum amplitude of the locus base
for forward and lateral motions (2 parameters).

Walking gait parameters have little influence on the quality of ball carrying,
which relies mainly on the way the robot slows down and eventually stops near
the ball (i.e. on the ball carrying parameters). The four ball carrying parameters
ΘBC = {θBC,1, . . . , θBC,4}, which control the transition from approaching the
ball to grasping it, are: the ball distance at which linear translational slowing
down begins, the distance at which the robot stops translating, and similarly the
relative robot-ball angle at which linear rotational slowing down begins, and the
angle at which it terminates. These parameters also influence the quality of ball
control in attacking strategies with no ball carrying (e.g., strategy {B1;B5}).

The robot kicks are generated by a sequence of fixed joint positions, related
to a timing information, stating for how long the joint values must be kept (i.e.
the kick ’speed’). The nine ball kicking parameters ΘBK = {θBK,1, ..., θBK,9}
are: the front legs initial and final angular positions (6 parameters), the robot
head tilt initial and final angular positions (2 parameters) and the kick speed (1
parameter).

4.3 Learning to attack

Here, we present the optimization problem that must be solved in order to
improve the attacker performance, based on the above system characteristics. As
aforementioned, we present a learning approach that allows for the concurrent
search of optimal behaviors and optimal parameters. The first issue deserves
some clarification. We represent the attacker strategy Pi with a string of three
integers, instead of symbolic expressions. We use the coding function:

c : Pi → {φ1 φ2 φ3} ∈ Z3 i = 1, . . . , 12

such that: φ1 indicates the ball approaching behaviour used in strategy Pi (1 for
B1, or 2 for B2), φ2 the ball carrying behaviour (1 for B3, 2 for B4, 0 for no ball
carrying), and φ3 the ball kicking behaviour (1 for B5, 2 for B6). For example,
the strategy {B1;B4;B5} is coded with the string {122}.

With this approach, the search for the optimal composition of simple behav-
iors amounts to a parameter optimization problem in the discrete set Sφ ⊂ Z3.



In practice, since we consider parameter and behavior learning together, a can-
didate solution of the optimization problem is:

X = [θWG,1 . . . θWG,11 θBC,1 . . . θBC,4 θBK,1 . . . θBK,9 φ1 φ2 φ3]
T ∈ R24 × Sφ

The very large dimensions of the search space, and the system character-
istics, suggest the use of the layered learning paradigm [14] for optimizing this
problem. In fact, given a hierarchical task decomposition, layered learning allows
for learning at each level of the hierarchy, with learning at each level directly
affecting learning at the next higher level. The incremental learning approach
that we use is inspired by the layered learning paradigm; however, in contrast
with classic layered learning, we utilize the same learning method for each layer
of the hierarchy. Specifically, we can decompose optimization of the attacker task
in the following four optimization subtasks (layers):

– L1: find X1,opt = [θWG,1 . . . θWG,11]Topt ∈ R11 for ’best’ walk;
– L2: find X2,opt = [θBC,1 . . . θBC,4]Topt ∈ R4 for ’best’ ball carrying, given

X1,opt found by L1;
– L3: find X3,opt = [θBK,1 . . . θBK,9]Topt ∈ R9 for ’best’ ball kicking, given

X1,opt and X2,opt found by L2 and by L3;
– L4: find X4,opt = [φ1 . . . φ3]Topt ∈ Z3 for ’best’ attacking strategy, given

X1,opt, X2,opt, and X3,opt, found by the three previous layers.

We note ki the dimension of Xi at each level Li (k1 = 11, k2 = 4, k3 = 9,
k4 = 3). The solution can be obtained as:

Xopt = [X1,opt X2,opt X3,opt X4,opt]
T

Irrespective of whether we use incremental learning or not, the appropriate
choice of the objective function for optimization is fundamental. The function
for evaluating the quality of an attacking performance, must take into account:
the quality (speed and precision) of the robot motion for approaching the ball,
the quality of ball carrying, and the quality (power and precision) of the kick.
Hence, we adopt the following objective function:

F (X) = kWGfWG(X) + kBCfBC(X) + kBKfBK(X)

where kWG, kBC , kBK are positive weights indicating the significance desired for
each of the three aspects in the learning process, and fWG, fBC , fBK indicate
respectively the quality of the walking gait, of ball carrying, and of ball kicking.
These functions are derived with heuristics on the robot and ball positions at
various stages of the attacking task.

4.4 Learning techniques

Our objective is to maximize F (X) in a space of dimension k. This is not trivial,
since F (X) is ’black box’, and although it can be computed on the real system as
well as in the simulated environment, analytical computation of its derivatives
is impossible, and all the parameters are box-constrained due to the physical
characteristics of the system (we note : ∆j the range size for each θj). Hence,
conventional derivative-based optimization methods (e.g. Gradient or Newton



methods) cannot be utilized, and convergence analysis of a method is impos-
sible. The selected approach must handle non differentiable search space, have
high convergence rate, and be resistent to noise in F (X). A variety of algorithms
possess these characteristics. In particular, we will focus on three different ma-
chine learning algorithms: Genetic Algorithms, Nelder-Mead Simplex Method,
and Policy Gradient. Characteristics of the three methods are briefly presented
below.

Genetic algorithms have shown very interesting results in many low level
problems [2]. A population of q parameter sets (individuals) is used to find a
solution for the optimization problem. To evolve a new population from the
tested one, the qe best individuals are preserved (elitism) and the remaining
individuals are generated by applying crossover (qc individuals) and mutation
(qm individuals) operators.

The Nelder-Mead simplex algorithm is a very popular direct search method
for multidimensional unconstrained minimization [10]. In a search space of di-
mension k, a simplex of v = k + 1 vertices is tested, and subsequently moved
through the search space via four possible geometrical transformations: reflec-
tion, expansion, contraction, and shrinkage. From an initial parameter set 0X,
the other lX vertices (l = 1, . . . , k) of the first simplex are generated as: lX =0

X + [0, . . . ,±ζl, . . . , 0]T .
The Policy Gradient algorithm has been successfully used for robot learning

[8]. From an initial parameter set 0X, p randomly generated policies mX (m =
1, . . . , p), near 0X, are evaluated, such that: mX =0 X + [ρ1, . . . , ρk]T , and each
ρj is chosen randomly in the set {+εj , 0,−εj}. Each mX is grouped into one of
three sets for each j: S+ε,j , S0,j or S−ε,j depending whether its jth parameter
was obtained by adding +εj , 0 or −εj . After evaluating the objective function
at each mX, average scores F̄+ε,j , F̄0,j , and F̄−ε,j are computed for S+ε,j , S0,j

and S−ε,j , respectively. These scores are used to construct an estimate of the
gradient, which is then normalized, multiplied by a scalar step-size η and added
to 0X, to begin the next iteration.

5 Experimental results

In this section we report the experimental results that we obtained by applying
the proposed learning methodology in the described robot soccer scenario. More
specifically, we comment on three results: 1) the effectiveness of the incremental
approach; 2) the comparison among the three learning methods implemented:
Genetic Algorithms, Nelder-Mead, and Policy Gradient; 3) the effectiveness of
using a 3D simulator for speeding up the learning process.

We have executed the incremental learning approach presented in the previ-
ous section, but without considering the fourth layer L4, since this would require
additional input to the system. In fact, selecting the best strategy depends on
other variables, such as the position of the robot and of the ball with respect
to the target goal, the position of other robots in the field, etc. For layer L4 it
is necessary to learn a function that maps the current situation with a suitable
strategy for that situation. This aspect needs to be further investigated and it
is thus beyond the scope of the present paper.

In practice, we applied incremental learning, focused on layers L1 to L3, for
optimizing the strategy P1 = {B1, B5}, i.e., the robot approaches the ball as
fast as possible, and kicks it forward, without grasping it, with fixed head pan.



Fig. 2. Fitness values at each evaluation during USARSim training (solid lines: GA
in blue, NM in green and PG in red) and linear interpolations (dashed lines): (a)
incremental learning, (b) learning all parameters.

Learning this task has been initially developed and configured within the 3D
AIBO simulator [15] embedded in USARSim (Urban Search and Rescue Simu-
lator), before experimentation on the real robot. In fact, one of the objectives
of this work is to show that the learning configurations tuned in the simulated
environment can be successfully ported for learning on the real robot.

Here, we briefly outline the configurations of the three learning algorithms.
For the genetic algorithm, we chose: q = 10, qe = 1, qc = 6, qm = 3. Selection of
individuals from the original population is based on the popular roulette wheel
scheme, and mutation is obtained by altering the jth parameter with an offset
chosen randomly in the set [−0.2 ∆j ,+0.2 ∆j ]. For the Nelder-Mead algorithm,
at each layer Li: v = ki + 1, and ζl = ±0.2 ∆j , with the sign of ζl chosen
randomly. For the policy gradient, we use for the three layers: p1 = 8, p2 = 4,
p3 = 6, εj = 0.1 ∆j , η = 3.

The same initial parameter set 0X is used for starting each learning tech-
nique. Since there is significant noise in each experiment, each set of parameters
is evaluated three times, and the resulting fitness evaluated for that set, is com-
puted by averaging over the three experiments. For each layer, and each learning
technique, we terminate learning after a number of evaluations equal to: 10ki has
been performed (e.g. for L1, 110 evaluations, i.e., 330 experiments). We choose
to use the same amount of learning time, since this is usually a given specifica-
tion in learning problems. The results of the incremental learning algorithm are
shown in Fig. 2(a), where the best fitness value found by the learning algorithms
is plotted over the number of evaluations. A similar plot is shown in Fig. 2(b),
where we ran the same number of evaluations by learning all 24 parameters
at the same time Comparison between the two plots confirms the qualitative
properties of the incremental approach: for instance, for the GA, the final fit-
ness obtained by the incremental approach is 34% higher than that obtained
by learning all parameters together, and the slope of the interpolating line is
greater (0.97 versus 0.60) in Fig. 2(a) than in Fig. 2(b). Nelder-Mead slightly
outperforms Genetic Algorithm and Policy Gradient.

Other experiments were carried out to show how the optimal low-level param-
eters are strongly related to the desired behavior. To emphasize this aspect, we
used the same learning configuration used for optimizing strategy P1 = {B1, B5},
to optimize strategy P2 = {B1, B3, B5} (the robot approaches the ball as fast as
possible, rotates while grasping it, and kicks it forward with fixed head pan). This
experiment was carried out with the genetic algorithm, in USARSim: starting



Fig. 3. Fitness values during AIBO training: (a) incremental learning (solid lines: GA
in blue, NM in green, PG in red) with start point derived from USARSim, and linear
interpolations (dashed lines), (b) comparing GA for L1: with initial population derived
from USARSim (solid blue line), and with random initial population (solid black line),
and linear interpolations (dashed lines).

from the optimal walking gait parameters X1,opt learned for the previous strat-
egy, we proceeded with the other two levels to derive X2,opt and X3,opt. Com-
parison between the optima learned for P1 and P2 showed major differences. In
fact, for P1, the optimal parameters are:

X2,opt = [148 5 50 6]T X3,opt = [21 44 969 1611 30 0 − 684 − 350 26]T

whereas for P2, the optimal parameters are:

X2,opt = [300 100 100 7]T X3,opt = [19 71 908 1654 10 0 − 879 − 247 17]T

The differences are reasonable: for P2, the robot must slow down farther away
from the ball (parameters θBC,1 and θBC,2 are different in the two cases) and the
head movement for kicking the ball (which in P2 has been grasped) is different
and depends on parameters θBK,7 and θBK,8.

After having configured the algorithm for learning strategy P1 in the 3D
simulated environment, we ported it on the real robot. The initial parameter
set for each technique is the set derived at the end of simulator optimization.
This time, for each layer, and each learning technique, we terminate learning
after a number of evaluations equal to 5 ki has been performed. The results
of the incremental learning algorithm are shown in Fig. 3(a), where the best
fitness value is plotted over the number of evaluations. On AIBO, policy gradient
slightly outperforms the two other approaches.

To emphasize how the use of a 3D simulator speeds up the learning process
on real robots, we ran another experiment where the GA was used to learn L1

for the same strategy P1, starting from a random population, different from the
one derived at the end of USARSim optimization. The results of this experiment
are shown in Fig. 3(b), where the fitness of GA walking gait learning starting
from different populations are plotted: the figure clearly shows the advantage of
the simulator for deriving the GA initial population.

6 Conclusions

In this paper we presented a layered-like approach for learning optimal parame-
ters, and strategy selection. We compared three different methods in the differ-
ent layers: genetic algorithm, Nelder-Mead, and policy gradient. Moreover, we
showed how the use of a 3D simulator speeds up robot learning.



The proposed learning methodology has been applied to the soccer attacking
task. It has been implemented in USARSim and extensively experimented in
laboratory on AIBO, showing a notable improvement in the performance of the
robot basic behaviours. The main results of the experiments are: the utility of
the layered approach for this complex scenario, and the effectiveness of the 3D
simulator for configuring the learning algorithms before porting on the robot.

Incremental learning has been executed without considering the strategy se-
lection layer. In fact, this depends on the ’game situation’ (e.g., positions of
robot and ball with respect to the goal). Learning a function that maps the
game situation with a suitable strategy will be the object of further work.

References

1. A.M. Arsenio. Developmental learning on a humanoid robot. In IEEE International
Joint Conference on Neural Networks, Budapest, 2004.

2. T. Back. Optimization by means of genetic algorithms. In 36th International
Scientific Colloquium, pages 163–169, 1991.

3. N. Bredeche, Z. Shi, and J.-D. Zucker. Perceptual learning and abstraction in
machine learning: an application to autonomous robots. Systems, Man and Cyber-
netics, Part C, IEEE Transactions on, 36(2):172–181, March 2006.

4. S.K. Chalup, C.L. Murch, and M.J. Quinlan. Machine learning with AIBO robots
in the Four-Legged League of Robocup. Systems, Man and Cybernetics, Part C,
IEEE Transactions on, 2006.

5. S. Chernova and M. Veloso. An evolutionary approach to gait learning for four-
legged robots. In IEEE/RSJ International Conference on Intelligent Robots and
Systems 2004, IROS 2004, 2004.

6. J. del R. Millan. Rapid, safe, and incremental learning of navigation strategies.
Systems, Man and Cybernetics, Part B, IEEE Transactions on, 26(3):408–420,
June 1996.

7. P. Fidelman and P. Stone. The chin pinch: A case study in skill learning on a legged
robot. In Proceedings of 10th International Robocup 2006 Symposium, 2006.

8. N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion. In The
Nineteenth National Conference on Artificial Intelligence, 2004.

9. J.R. Koza. Genetic Programming: on the programming of computers by means of
natural selection. Cambridge, Mass., 1992.

10. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence prop-
erties of the Nelder Mead simplex algorithm in low dimensions. SIAM Journal on
Optimization, 9:112–147, 1998.

11. E. Martinson and R.C. Arkin. Learning to role-switch in multi-robot systems. In
Proceedings of International Conference on Robotics and Automation, 2003.

12. Y. Nagai, M. Asada, and K. Hosoda. A developmental approach accelerates learn-
ing of joint attention. In 2nd International Conference on Development and Learn-
ing, 2003.

13. T. Rofer. Evolutionary gait-optimization using a fitness function based on pro-
prioception. In Springer, editor, ser. LNCS, D. Nardi, M. Riedmiller, C. Sammut
and J. Santos-Victor, volume 3276, 2004.

14. P. Stone and M. Veloso. Layered learning. In R. L. De Mántaras and E. Plaza, ed-
itors, Machine Learning: ECML 2000 (Proceedings of the Eleventh European Con-
ference on Machine Learning, pages 369–381. Springer Verlag, Barcelona, Spain,
May/June 2000.

15. M. Zaratti, M. Fratarcangeli, and L. Iocchi. A 3D simulator of multiple legged
robots based on USARSim. In Proceedings of 10th International Robocup 2006
Symposium, 2006.


