Antonio Cano 
  
Giovanna Guaiana 
  
Jean-Éric Pin 
  
Regular languages and partial commutations *

published or not. The documents may come    

The closure of a regular language under commutation or partial commutation has been extensively studied [START_REF] Red | On the commutative closure of events[END_REF][START_REF] L ′ Vov | Commutative closures of regular semigroup languages[END_REF][START_REF] Achache | Opérateurs de fermeture semi-commutatifs[END_REF][START_REF] Ginsburg | Bounded regular sets[END_REF][START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF][START_REF] Gohon | An algorithm to decide whether a rational subset of N k is recognizable[END_REF], notably in connection with regular model checking [START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF][START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF][START_REF] Cécé | Clôtures transitives de semicommutations et model-checking régulier[END_REF][START_REF] Cécé | Efficiency of Automata in Semi-Commutation Verification Techniques[END_REF] or in the study of Mazurkiewicz traces, one of the models of parallelism [START_REF] Guaiana | On the product of trace languages[END_REF][START_REF] Guaiana | On the trace product and some families of languages closed under partial commutations[END_REF][START_REF] Muscholl | A note on the commutative closure of star-free languages[END_REF][START_REF] Ochmański | On closures of lexicographic starfree languages[END_REF][START_REF] Ochmański | Star-free star and trace languages[END_REF][START_REF] Ochmański | A Star Operation for Star-Free Trace Languages[END_REF][START_REF] Sakarovitch | The "last" decision problem for rational trace languages[END_REF]. We refer the reader to the book [START_REF]The book of traces[END_REF] and to the survey [START_REF] Diekert | Partial commutation and traces[END_REF] for further references.

In this paper, we present new advances on two problems of this area. The first problem is well-known and has a very precise statement. The second problem is more elusive, since it relies on the somewhat imprecise notion of robust class. By a robust class, we mean a class of regular languages closed under some of the usual operations on languages, such as Boolean operations, product, star, shuffle, morphisms, inverses of morphisms, quotients, etc. For instance, regular languages form a very robust class, commutative languages (languages whose syntactic monoid is commutative) also form a robust class. Finally, group languages (languages whose syntactic monoid is a finite group) form a semi-robust class: they are closed under Boolean operations, quotients and inverses of morphisms, but not under product, shuffle, morphisms or star.

Here are the two problems:

Problem 1. When is the closure of a regular language under [partial]commutation still regular?

Problem 2. Are there any robust classes of languages closed under [partial] commutation?

Apart from group languages, the classes considered in this paper are all closed under polynomial operations. Taking the polynomial closure usually increase robustness. For instance, the class Pol(G) of polynomials of group languages is closed under union, intersection, quotients, product, shuffle, lengthpreserving morphisms and inverses of morphisms. There is also a very robust class of languages, denoted W, which contains Pol(G) and is closed under union, intersection, quotients, product, shuffle, length-decreasing morphisms and inverses of morphisms [START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF]. This class is decidable and can be defined as the largest positive variety of languages not containing (ab) * . Let I be a partial commutation and let D be its complement in A × A. Our main results on Problems 1 and 2 can be summarized as follows:

(1) The class Pol(G) is closed under commutation. If D is transitive, it is also closed under I-commutation. (2) Under some simple conditions on the graph of I, the closure of a language of Pol(G) under I is regular. (3) The class W is closed under commutation. (4) If I is transitive, the closure of a language of W under I is regular. Result (3) is probably the most important of these results. It is, in a sense, optimal since (ab) * is the canonical example of a regular language whose commutative closure is not regular.

The proofs are nontrivial and combine several advanced techniques, including combinatorial Ramsey type arguments, algebraic properties of the syntactic monoid [START_REF] Cano Gómez | On a conjecture of Schnoebelen[END_REF][START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF], finiteness conditions on semigroups [START_REF] De Luca | Finiteness and regularity in semigroups and formal languages[END_REF] and properties of insertion systems [START_REF] Bucher | On total regulators generated by derivation relations[END_REF]. A part of these results were first presented in [START_REF] Cano Gómez | When does partial commutative closure preserve regularity?[END_REF].

Our paper is organised as follows. We first survey the known results in Section 2. Then we establish some combinatorial properties, notably on group languages in Section 3. In Section 4, we present two results to compute the closure under I-commutation of a given language. Section 5 is devoted to polynomials of group languages and Section 6 to our main results on the class W. We conclude the paper by presenting some open problems in Section 7.

Definitions and notation 1.Words and subwords

In this paper, A denotes a finite alphabet and A * is the free monoid on A. The empty word is denoted by 1. For each letter a, we denote by |u| a the number of occurrences of a in u. Thus, if A = {a, b} and u = abaab, one has is the length of the word u.

A word u is a subword of v if v can be written as

v = v 0 u 1 v 1 u 2 v 2 • • • u k v k
where u i and v i are words (possibly empty) such that u 1 u 2 • • • u k = u. For instance, the words baba and acab are subwords of abcacbab.

Partial commutations

Let A be an alphabet. A partial commutation is a symmetric and irreflexive relation on A, often called the independence relation in the literature. We denote by ∼ I the congruence on A * generated by the relations 

{

Operations on languages

The marked product of k + 1 languages L 0 , L 1 , . . . , L k of A * is a product of the form

L = L 0 a 1 L 1 • • • a k L k ,
where a 1 , . . . , a k are letters of A.

The shuffle product (or simply shuffle) of two languages L 1 and L 2 over A is the language

L 1 L 2 = {w ∈ A * | w = u 1 v 1 • • • u n v n for some words u 1 , . . . , u n , v 1 , . . . , v n of A * such that u 1 • • • u n ∈ L 1 and v 1 • • • v n ∈ L 2 } .
The shuffle product defines a commutative and associative operation over the set of languages over A.

Given a class L of regular languages, the polynomial closure of L, denoted by Pol(L), consists of the finite unions of languages of the form

L 0 a 1 L 1 • • • a k L k
where a 1 , . . . , a k are letters and L 0 , . . . , L k are languages of L. For instance, if I is the trivial class of languages defined by I(A * ) = {∅, A * } for each alphabet A, then Pol(I) is the class of finite unions of languages of the form

A * a 1 A * • • • a k A * , with a 1 , . . . , a k ∈ A.
A morphism between two free monoids A * and B * is a map ϕ : A * → B * such that, for all u, v ∈ A * , ϕ(uv) = ϕ(u)ϕ(v). This condition implies in particular that ϕ(1) = 1. We say that ϕ is length-preserving if, for each u ∈ A * , the words u and ϕ(u) have the same length. Equivalently, ϕ is length-preserving if, for each letter a ∈ A, ϕ(a) ∈ B. Similarly, ϕ is length-decreasing if the image of each letter is either a letter or the empty word.

Syntactic ordered monoid

Let L be a regular language of A * . The syntactic preorder of L is the relation

L defined on A * by : u L v iff, for every x, y ∈ A * , xvy ∈ L ⇒ xuy ∈ L The syntactic congruence of L is the relation ∼ L defined on A * by : u ∼ L v iff, for every x, y ∈ A * , xvy ∈ L ⇔ xuy ∈ L The syntactic ordered monoid of L is (A * /∼ L , L /∼ L )
, where L /∼ L denotes the order induced by L on the quotient set A * /∼ L . The syntactic ordered monoid can be computed from the minimal automaton as follows. First observe that if A = (Q, A, • , q -, F ) is a minimal deterministic automaton, the relation defined on Q by p q if for all u ∈ A * ,

q• u ∈ F ⇒ p• u ∈ F
is an order relation, called the syntactic order. Then the syntactic ordered monoid of a language is the transition monoid of its ordered minimal automaton. The order is defined by u v if and only if, for all q ∈ Q, q• u q• v. The order on the set of states is 1 < 0 and 2 < 0. Indeed, one has 0• u = 0 for all u ∈ A * and thus, the formal implication

0• u ∈ F ⇒ q• u ∈ F
holds for any state q. One can verify that there is no other relations among the states. For instance, 1 and 2 are incomparable since 1

• ab = 1 ∈ F but 2• ab = 0 / ∈ F and 1• b = 0 / ∈ F but 2• b = 1 ∈ F .
The syntactic monoid of (ab) * and its syntactic order are represented below : Let M be a finite monoid. The exponent of M is the least integer ω such that for all x ∈ M , x ω is idempotent. Its period is the least integer p such that for all x ∈ M , x ω+p = x ω . By extension, the period (respectively exponent ) of a regular language is the period (respectively exponent) of its syntactic monoid.

The definition of the star-free languages follows the same definition scheme as the one of rational languages, with the difference that the star operation is replaced by the complement. Thus the star-free languages of A * are obtained from the finite languages by using Boolean operations and concatenation product. A well-known result of Schützenberger states that a regular language is star-free if and only if its syntactic monoid has period 1.

Opposite to the star-free languages are the group languages. Recall that a group language is a language whose syntactic monoid is a group, or, equivalently, is recognised by a finite deterministic automaton in which each letter defines a permutation of the set of states. Note that if a group language is recognised by a group G, then its period divides |G|.

Example 1.2

The set of words over A = {a, b} having an even number of subwords equal to ab is a group language whose syntactic monoid is the dihedral group of order 8. A regular expression for this language is

b + a(b(ab * a) * b) * a * (1 + a(b(ab * a) * b) * )
and its minimal automaton is represented below. 

Known results

In this section, we briefly survey the kwown results on our two problems. We also include two easy results, Corollary 2.4 and Proposition 2.6.

The first problem

For the commutative closure, the problem is solved [START_REF] Red | On the commutative closure of events[END_REF][START_REF] Ginsburg | Bounded regular sets[END_REF][START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF][START_REF] Gohon | An algorithm to decide whether a rational subset of N k is recognizable[END_REF]:

Theorem 2.1 One can decide whether the commutative closure of a given regular language is regular.

The commutative closure of the language (ab) * is not regular since [(ab

) * ] = {u ∈ {a, b} * | |u| a = |u| b }.
Unfortunately, the class of languages whose commutative closure is regular is not robust. In particular, it is not even closed under intersection as shown in the next example. For partial commutations, the result of Sakarovitch [START_REF] Sakarovitch | The "last" decision problem for rational trace languages[END_REF] concluded a series of previous partial results.

Theorem 2.2 One can decide whether the closure [L] I of a regular language L is regular if and only if I is a transitive relation.

The following useful result also holds [START_REF] Cori | Automates et commutations partielles[END_REF][START_REF] Clerbout | Semi-Commutations[END_REF]. Proof. Suppose that, for each language L of L, [L] I is regular. We claim that for each language L of Pol(L), [L] I is regular. Since, for each family (L j ) j∈J of languages, one has j∈J

L j I = j∈J [L j ] I (1) 
it suffices to establish the result for a language L of the form

L 0 a 1 L 1 • • • a n L n ,
where L 0 , . . . , L n ∈ L and a 1 , . . . , a n are letters. Now, since [a] I = {a} for each letter a, the result follows directly from Theorem 2.3.

The second problem

Only a few results are known for the second problem. They concern the following classes of languages:

(1) the class Pol(I) of finite unions of languages of the form

A * a 1 A * • • • a k A * , with a 1 , . . . , a k ∈ A, (2) 
the class J of piecewise testable languages (the Boolean closure of Pol(I)), (3) the class Pol(J ), which consists of finite unions of languages of the form

A * 0 a 1 A * 1 • • • a k A * k with A i ⊆
A and a 1 , . . . , a k ∈ A, also called APC (Alphabetic Pattern Constraints) in [START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF], (4) the class Pol(Com) of polynomials of commutative languages. Syntactic characterizations are known for J [START_REF] Simon | Piecewise testable events[END_REF] and for Pol(J ) [START_REF] Pin | Polynomial closure and unambiguous product[END_REF]. The following theorem summarises the results of Guaiana, Restivo and Salemi [START_REF] Guaiana | On the product of trace languages[END_REF][START_REF] Guaiana | On the trace product and some families of languages closed under partial commutations[END_REF], Bouajjani, Muscholl and Touili [START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF][START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF] and Cécé, Héam and Mainier [START_REF] Cécé | Clôtures transitives de semicommutations et model-checking régulier[END_REF][START_REF] Cécé | Efficiency of Automata in Semi-Commutation Verification Techniques[END_REF].

Theorem 2. [START_REF] Cano Gómez | When does partial commutative closure preserve regularity?[END_REF] The following properties hold:

( We now exhibit another small class closed under any partial commutation. It follows from the definition of Pol that a language belongs to Pol(I) if and only if it is a shuffle ideal, that is, a language of the form L A * for some language L.

Let J -be the class of all complements of shuffle ideals. It is a positive variety of languages and the corresponding variety of ordered monoids is defined by the identity 1

x (see the dual version of [START_REF] Pin | A variety theorem without complementation, Russian Mathematics[END_REF]Theorem 6.4]). Further, a language belongs to J -if and only if it is closed under taking subwords.

Proposition 2.6

The class J -is closed under any partial commutation.

Proof. Let L be a language of A * closed under taking subwords and let I be a partial commutation on A. Let u ∈ L. We claim that if u ∼ I v, then for each subword v ′ of v, there is a subword u ′ of u such that u ′ ∼ I v ′ . It suffices to prove the statement for u and v such that u = xaby and v = xbay for some (a, b) ∈ I. Then a simple induction will conclude the proof. Let v ′ be a subword of v. If v ′ is a subword of xay or of xby, then it is also a subword of u. Let us now assume that v ′ = x ′ bay ′ for some subword x ′ of x and some subword y ′ of y. Let u ′ = x ′ aby ′ . Then u ′ is a subword of u and u ′ ∼ I v ′ , which proves the claim. It follows that [L] I is closed under taking subwords.

Star-free languages

Two nice results on star-free languages were proved by Muscholl and Petersen [START_REF] Muscholl | A note on the commutative closure of star-free languages[END_REF]. The first one is the counterpart of Theorem 2.2 for star-free languages.

Theorem 2.7 Let I be a partial commutation. One can decide whether the closure [L] I of a star-free language L is star-free if and only if I is a transitive relation.

The second result is related to our second problem.

Theorem 2.8 Let I be a partial commutation and let L be a star-free language. If D is transitive, then [L] I is either star-free or non regular. If D is not transitive, then there exist star-free languages such that [L] I is regular but not star-free. Let us remind the example given in [START_REF] Muscholl | A note on the commutative closure of star-free languages[END_REF]. The language (abcbac) * is star-free, whereas the language [L] ab=ba = (((ab + ba)c) 2 ) * is regular but not star-free.

Some combinatorial properties

In this section, we gather together the combinatorial properties that are used in this paper. We first state some consequences of Ramsey's theorem, then we prove some properties of group languages. Finally, we establish a few results on insertion systems.

Ramsey type properties

In this section, we briefly survey a few consequences of a celebrated result in combinatorics on words, Ramsey's theorem. Similar results can be found for instance in [START_REF] De Luca | Finiteness and regularity in semigroups and formal languages[END_REF][START_REF] Lothaire | Combinatorics on words[END_REF][START_REF] Pin | Varieties of formal languages[END_REF], with a slightly different formulation. Proposition 3.1 Let M be a finite monoid and let π : A * → M be a surjective morphism. For any n > 0, there exists N > 0 and an idempotent e in M such that, for any u 0 , u 1 , . . . , u N ∈ A * there exists a sequence 0

i 0 < i 1 < . . . < i n N such that π(u i0 u i0+1 • • • u i1-1 ) = π(u i1 u i1+1 • • • u i2-1 ) = . . . = π(u in-1 • • • u in-1 ) = e.
When M is a finite group, 1 is the unique idempotent of M and Proposition 3.1 can be simplified as follows:

Corollary 3.2 Let G be a finite group and let π : A * → G be a surjective morphism. Then for any n > 0, there exists N > 0 such that, for any u 0 , u 1 , . . . , u N ∈ A * there exists a sequence 0

i 0 < i 1 < . . . < i n N such that π(u i0 u i0+1 • • • u i1-1 ) = π(u i1 u i1+1 • • • u i2-1 ) = . . . = π(u in-1 • • • u in-1 ) = 1.

Properties of group languages

In this section, we establish some simple properties of group languages. Let us start with an elementary lemma.

Lemma 3.3 Let g 1 , g 2 , . . . , g |G| be a sequence of elements of G. Then there exist two indices i, j with i j |G| such that g i • • • g j = 1.
Proof. Consider the sequence g 1 , g 1 g 2 , . . . , g 1 g 2 • • • g |G| . Either one of these elements is equal to 1, or two of them are equal, say

g 1 • • • g i-1 = g 1 • • • g j with i j. In this case, g i • • • g j = 1.
The next lemma is a kind of insertion property. Let π be a morphism from A * onto a finite group G, let R = π -1 (1) and let L be a language recognised by π. Lemma 3.4 Let x be a word of R and let u and v be two words. Then uv ∈ L if and only if uxv ∈ L.

Proof. If x ∈ R, then π(x) = 1. It follows that π(uxv) = π(u)π(x)π(v) = π(u)π(v) = π(uv)
which proves the lemma.

We shall also need the following consequence of the previous lemma. Lemma 3.5 Let a 1 , . . . , a r be letters, let x be a word of R and let u and v be two words.

If uv ∈ Ra 1 Ra 2 R • • • Ra r R, then uxv ∈ Ra 1 Ra 2 R • • • Ra r R. Proof. If uv ∈ Ra 1 Ra 2 R • • • Ra r R, then there exist an index i and two words x ′ , x ′′ ∈ A * such that u ∈ Ra 1 R • • • Ra i x ′ , v ∈ x ′′ a i+1 R • • • Ra r R and x ′ x ′′ ∈ R. Since x ′ xx ′′ ∈ R by Lemma 3.4, one gets uxv ∈ Ra 1 Ra 2 R • • • Ra r R.

Insertion systems

An insertion system is a special type of rewriting system whose rules are of the form 1 → r for all r in a given language R. We write

u → R v if u = u ′ u ′′ and v = u ′ ru ′′ for some r ∈ R. We denote by * → R the reflexive transitive closure of the relation → R . The closures of a language L of A * under → R and * → R are respectively the languages [L] →R = {v ∈ A * | there exists u ∈ L such that u → R v} [L] * →R = {v ∈ A * | there exists u ∈ L such that u * → R v}
Recall that a well quasi-order on a set E is a reflexive and transitive relation such that for any infinite sequence x 0 , x 1 , . . . of elements of E, there are two integers i < j such that x i x j . The results of this section rely on an important result of [START_REF] Bucher | On total regulators generated by derivation relations[END_REF] which extends Higman's theorem on the subword order: Theorem 3.6 (Bucher, Ehrenfeucht and Haussler) If H is a finite set of words such that the language A * \ A * HA * is finite, then the relation * → H is a well quasi-order on A * .

We are especially interested in the case R = π -1 (1), where π is a morphism from A * onto a finite group G. In this case, the set of words that can be derived from a given word has a simple expression. Let us introduce a convenient (but nonstandard!) notation to state this result more easily. Given a word u = a 1 • • • a n and a language K, let us denote by u ↑ K the language

Ka 1 K • • • Ka n K. Proposition 3.7 For each word u of A * , one has [u] * →R = u ↑ R. Proof. The inclusion of u ↑ R in [u] * → R
is an immediate consequence of the definitions. For the opposite inclusion, since u ∈ u ↑ R, it suffices to prove that the language u ↑ R is closed under → R . But this is just another formulation of Lemma 3.5.

Let F be the set of words of R of length |G|. Then F is finite by construction. The next lemma states that sufficiently long words contain a factor in F . Proof. Let a 1 • • • a n be a word of length n |G|. By Lemma 3.3, there exist two indices i, j, with i j

|G| such that π(a i ) • • • π(a j ) = 1. It follows that π(a i • • • a j ) = 1 and hence a i • • • a j ∈ F .
The following result can be viewed as a special case of a well-known result [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]Proposition I.6.4]. →R is a polynomial of group languages.

Proposition 3.9 The relations * → F and * → R coincide. Proof. Since F ⊆ R, it is clear that u * → F v implies u * → R v. Since * → F is transitive, it is now sufficient to show that u → R v implies u * → F v. Thus suppose that u = u ′ u ′′ , and v = u ′ ru ′′ for some r ∈ R.
→ F u ′ xyu ′′ . Now, since u ′ xyu ′′ → F u ′ xf yu ′′ = v, one has u * → F v.

Free products

Recall that the free product (or coproduct ) of a family of monoids M 1 , . . . , M n is the free monoid generated by the disjoint union of M 1 , . . . , M n quotiented out by the relations x i • y i = x i y i (1 i n, x i , y i ∈ M i ) and the relations 1 i = 1, where 1 i denotes the identity of M i (1 i n). Let (A 1 , I 1 ), . . . , (A k , I k ) be the connected components of the graph (A, I). 

Then P = {A 1 , . . . , A k } is a partition of A and A * /∼ I is isomorphic to the free product A * 1 /∼ I1 * • • • * A * k /∼ I k . For instance, if A = {a, b, c, d, e, f,
A * /∼ I = {a, b, c} * /∼ I1 * {d, e} * /∼ I2 * {f } * * {g} *
where I 1 and I 2 are defined by ab ∼ I1 ba, bc ∼ I1 cb and de ∼ I2 ed. The aim of this section is to construct a generalized automaton recognising [L] I , given the minimal automaton of L. By a generalized automaton, we mean a finite automaton in which transitions are labelled by some (non necessarily regular) languages.

Let A = (Q, A, • , q 0 , F ) be the minimal automaton of a language L of A * . Recall that the states of Q are partially ordered by the relation defined by p q if and only if,

for all u ∈ A * , q• u ∈ F implies p• u ∈ F .
We now construct a generalized automaton B over the same set of states Q. The automaton B also has the same initial state and the same final states as A. The description of the transitions of B requires some further notation. For each pair of states (p, q), let us set

K p,q = {u ∈ A * | p• u q}
It is easy to see that K p,q is actually an intersection of quotients of L. Let x be a word such that q 0 • x = p. Lemma 4.1 The following formula holds:

K p,q = q•y∈F x -1 Ly -1 (2) 
Proof. If u ∈ K p,q , then p• u q and thus q 0 • xu q. Therefore, if q• y ∈ F , then q 0 • xuy ∈ F by the definition of , whence xuy ∈ L and u ∈ x -1 Ly -1 .

In the opposite direction, suppose that u ∈ x -1 Ly -1 for all words y such that q• y ∈ F . Let us show that p• u q. Indeed, if q• y ∈ F , then u ∈ x -1 Ly -1 , whence xuy ∈ L and (p• u)• y ∈ F . Since this holds for any y such that q• y ∈ F , we have p• u q and hence u ∈ K p,q .

Since a regular language has finitely many quotients, Lemma 4.1 shows that the languages K p,q are regular. We now create a transition in B from p to q labelled by the (non necessarily regular) language

R p,q = 1 j k K p,q ∩ A * j Ij Proposition 4.2 The generalized automaton B recognises [L] I . Proof. Let u ∈ [L] I . Let us factorise u as u = u 1 • • • u n
where all the letters of each u i belong to the same class of P, but the letters of two consecutive u i belong to different classes of P. Continuing our example, the factorisation of acbadebcbagdef g would be (acba

)(de)(bcba)(g)(de)(f )(g). Since u ∈ [L] I , there exist some words v 1 , . . . , v n such that u 1 ∼ I v 1 , . . . , u n ∼ I v n and v 1 • • • v n ∈ L. Let q 1 = q 0 • v 1 , q 2 = q 1 • v 2 , . . . , q n = q n-1 • v n . Since v 1 • • • v n belongs to L, q n is a final state. q 0 q 1 q 2 q n-1 q n . . . v 1 v 2 v n
Now, it follows from the definition of the sets R p,q that u 1 ∈ R q0,q1 , . . . , u n ∈ R qn-1,qn . Consequently u is accepted by B.

In the opposite direction, consider a word u accepted by B and let

q 0 q 1 q 2 q n-1 q n . . . u 1 u 2 u n
be a successful path of B labelled by u. This means that q n is a final state and that u 1 ∈ R q0,q1 , . . . , u n ∈ R qn-1,qn . Consequently, for 1 i n, there is a single class A σ(i) of the partition P such that

u i ∈ K qi-1,qi ∩A * σ(i) I σ(i)
. According to the definition of the sets K p,q , there exist some words [START_REF] Achache | Opérateurs de fermeture semi-commutatifs[END_REF] shows that u ∼ I v and Property (2) that q 0 • v q n . Now, by the definition of the order , the condition q n ∈ F implies Suppose that

v 1 ∈ A * σ(1) , . . . , v n ∈ A * σ(n) such that (1) u 1 ∼ I σ(1) v 1 , . . . , u n ∼ I σ(n) v n and (2) q 0 • v 1 q 1 , . . . , q n-1 • v n q n . Setting v = v 1 • • • v n , Property
q 0 • v ∈ F and hence v ∈ L. It follows that u ∈ [L] I .
A * /∼ I = A * 1 × • • • × A * k .
In this case, it is possible to express [L] I as a shuffle product of k languages (one for each component). Denote by π j the projection from A * onto A * j , which is the morphism defined by

π j (a) = a if a ∈ A j 1 otherwise
and let π I be the morphism from

A * onto A * 1 × • • • × A * k defined by π I (u) = (π 1 (u), . . . , π k (u))
This morphism is intimately connected to our problem, since u ∼ I v if and only if π

I (u) = π I (v). In particular, recall that [L] I is regular if and only if π I (L) is a recognisable subset of A * 1 × • • • × A * k .
Proposition 4.3 Let L be a language of A * . If

π I (L) = 1 i n L i,1 × • • • × L i,k (3) 
where for 1 j k, the languages L 1,j , . . . , L n,j are languages of A * j , then

[L] I = 1 i n L i,1 • • • L i,k (4) 
Proof. Let K denote the right hand side of (4). We first show that

[L] I is a subset of K. Let u ∈ [L] I . Then there is a word v ∈ L such that u ∼ I v. Let, for 1 j k, v j = π j (v). Then v ∈ v 1 • • • v k and thus (v 1 , . . . , v k ) ∈ π I (L). Therefore, one has (v 1 , . . . , v k ) ∈ L i,1 × • • • × L i,k for some i ∈ {1, . . . , n}. Now, since u ∼ I v, the projections of u and v on each A * j coincide. It follows that u ∈ v 1 • • • v k and hence u ∈ L i,1 • • • L i,k and finally u ∈ K.
To prove the opposite inclusion, consider a word u ∈ K. Then one has u ∈ L i,1 • • • L i,k for some i ∈ {1, . . . , n}. Therefore, there exist some words

v 1 ∈ L i,1 , . . . , v k ∈ L i,k such that u ∈ v 1 • • • v k . Now, since (v 1 , . . . , v k ) ∈ L i,1 × • • • × L i,k , one gets by (3) (v 1 , . . . , v k ) ∈ π I (L). Consequently, there exists a word v ∈ L such that π I (v) = (v 1 , . . . , v k ), that is v ∈ v 1 • • • v k .
It follows that the projections of u and v on each A * j coincide and hence u ∼ I v. Thus u ∈ [L] I .

Polynomials of group languages

Let us first recall some basic facts about polynomial of group languages. Recall that a positive variety of languages is a class of regular languages closed under union, intersection, quotients and inverses of morphisms. Proof. It was shown in [START_REF] Pin | Semidirect products of ordered semigroups[END_REF] that Pol(G) is a positive variety of languages corresponding to the variety of finite ordered monoids PG + . It follows then from the results of [START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF] that Pol(G) is closed under shuffle. It is also closed under marked product by construction.

Let L and L ′ be two languages. Then

LL ′ = a∈A La(a -1 L ′ ) if 1 / ∈ L ′ a∈A La(a -1 L ′ ) ∪ L if 1 ∈ L ′
Let now L and L ′ be two group languages. Since group languages are closed under quotients, a -1 L ′ is a group language. It follows that LL ′ belongs to Pol(G) and it follows immediately that Pol(G) is closed under product.

We now prove a result which should be compared to Corollary 2.4

Theorem 5.2 Let I be partial commutation on A. If, for each group language K of A * , [K] I is a polynomial of group languages, then for each polynomial of group languages L of A * , [L] I is a polynomial of group languages.

The short proof below was communicated to us by Pierre-Cyrille Héam.

Proof. Suppose that for each group language K of A 

Commutative closure

The main result of this section states that the commutative closure of a group language is regular, and is in fact a polynomial of group languages. We start with a proof of the weaker property, which relies only on Ramsey type arguments and will serve as a guide for the more technical proof of Theorem 6.2.

Theorem 5.3 The commutative closure of a group language is regular.

Proof. Let L ⊆ A * be a group language and let π : A * → G be its syntactic morphism. Let n = |G| and let N be the integer given by Corollary 3.2. We claim that for any letter a ∈ A, a N ∼ [L] a N +n . Let g = π(a).

Suppose that xa N y ∈ [L]. Then there exists a word w of L commutatively equivalent to xa N y. It follows that wa n is commutatively equivalent to xa N +n y. Further, since G is a finite group, one has g n = 1 by Lagrange's theorem, whence π(wa n ) = π(w)π(a n ) = π(w). Thus the words w and wa n have the same syntactic image by π and hence wa n ∈ L. Therefore xa N +n y ∈ [L].

Conversely, assume that xa N +n y ∈ [L]. Then xa N +n y is commutatively equivalent to some word of L, say w = u 0 au 1 a • • • u N -1 au N au N +1 . By applying Corollary 3.2 to the sequence of words u 0 a, u 1 a, . . . , u N a, we obtain a sequence

0 i 0 < i 1 < . . . < i n N such that π(u i0 a • • • au i1-1 a) = π(u i1 a • • • au i2-1 a) = . . . = π(u in-1 a • • • au in-1 a) = 1
(5) This implies in particular

π(u i0 a • • • au i1-1 ) = π(u i1 a • • • au i2-1 ) = . . . = π(u in-1 a • • • au in-1 ) = g -1 (6)
Let r and s be the words defined by

w = r(u i0 a • • • au i1-1 a)(u i1 a • • • au i2-1 a)(u in-1 a • • • au in-1 a)s
Since w is commutatively equivalent to xa N +n y, the word

w ′ = r(u i0 a • • • au i1-1 )(u i1 a • • • au i2-1 ) • • • (u in-1 a • • • au in-1 )s
is commutatively equivalent to xa N y. Furthermore, Formulas ( 5) and [START_REF] Cano Gómez | On a conjecture of Schnoebelen[END_REF] show that π(w) = π(r)π(s) and π(w ′ ) = π(r)(g -1 ) n π(s). Since (g -1 ) n = 1 by Lagrange's theorem, π(w) = π(w ′ ) and thus w ′ ∈ L. It follows that xa N y ∈ [L], which proves the claim. Now, the syntactic monoid of [L] is a commutative monoid in which each generator has a finite index. Since the alphabet is finite, this monoid is finite and thus [L] is regular. Theorem 5.3 indicates that the commutative closure of a group language is a commutative regular language. One may wonder whether, in turn, any commutative regular language is the commutative closure of a group language. The answer is no, but requires an improved version of Theorem 5.3.

Theorem 5.4

The commutative closure of a group language is a polynomial of group languages.

Proof. Let L be a group language, let π : A * → G be its syntactic morphism and let R = π -1 (1). Let K be the commutative closure of L. We claim that K = [K] →R . It suffices to prove that if xy ∈ K and r ∈ R, then xry ∈ K. Since xy ∈ K, there exists a word v ∈ L which is commutatively equivalent to xy. Thus the word vr is commutatively equivalent to xry. Now, since π(r) = 1, one gets π(vr

) = π(v)π(r) = π(v)
Therefore vr ∈ L and xry ∈ K, which proves the claim. It follows by Corollary 3.12 that K is a polynomial of group languages.

Example 5.1 Let A = {a, b} and let L be the group language of A * accepted by the automaton represented below. The next example shows that the commutative closure of a group language is not in general a group language.

Example 5.2 Let L be the set of words over A = {a, b} having an odd number of subwords equal to ab. Then L is a group language, but its commutative closure A * aA * bA * ∪ A * bA * aA * is not a group language.

Theorem 5.4 can be extended to polynomials of group languages.

Corollary 5.5 The commutative closure of a polynomial of group languages is also a polynomial of group languages.

Proof. This is an immediate consequence of Theorems 5.2 and 5.4. Here is another proof, which does not rely on topological arguments. It is shown in [START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF] that for any polynomial of group languages L, there exists a morphism π : A * → G from A * onto a finite group G such that L is a finite union of monomials of the form Ra 1 R • • • Ra n R, where R = π -1 (1) and a 1 , . . . , a n are letters of A. Clearly, it suffices to prove the theorem when L is one of these monomials. Let K be its commutative closure. By Corollary 3.12, it suffices to prove that K = [K] →R to show that K is a polynomial of group languages.

Let x, y and r be words such that xy ∈ K and r ∈ R. Let v be a word of L commutatively equivalent to xy. Then vr is commutatively equivalent to xry. As an element of L, v can be written as r 0 a 1 r 1 • • • a n r n for some words r 0 , . . . , r n ∈ R. Thus vr ∈ L since r n r ∈ R. It follows that xry ∈ K and hence K = [K] →R .

Closure under partial commutations

Some of the results of Section 5.1 can be extended to partial commutations, usually under some restrictions on the set I. We consider the following subcases: first when D consists of a clique and some isolated vertices, then the more general case where D is transitive and finally an extension of this latter case.

A simple case

We first consider the case when D consists of a clique and some isolated vertices. An example is represented below, with A = {a, b, c, d, e}. In this case, it is not too hard to modify the proofs of Theorem 5.4 and Corollary 5.5 to obtain the following results:

Theorem 5.6 Let I be a partial commutation such that D consists of a clique and some isolated vertices. If L is a group language, then [L] I is a polynomial of group languages.

Proof. Let L be a group language, let π : A * → G be its syntactic morphism and let R = π -1 (1). We also denote by 

B
u i = u ′ i u ′′ i such that x = u 0 b 1 u 1 • • • b i u ′ i and y = u ′′ i b i+1 u i+1 • • • b k u k . Since u ∈ K, there exists a word v ∈ L such that u ∼ I v. It follows that π B (u) ∼ I π B (v) and since the restriction of I to B × B is the equality, one can write v as v 0 b 1 v 1 • • • b k v k with v 0 , . . . , v k ∈ C * . Further, since π C (u) ∼ I π C (v) and since the restriction of I to C × C is a total commutation, one has u 0 u 1 • • • u k ∼ I v 0 v 1 • • • v k . Consider the word w = (v 0 b 1 v 1 • • • v i-1 b i )r(v i b i+1 • • • b k v k ). Since π(r) = 1, one gets π(w) = π(v 0 b 1 v 1 • • • v i-1 b i )π(r)π(v i b i+1 • • • b k v k ) = π(v 0 b 1 v 1 • • • v i-1 b i )π(v i b i+1 • • • b k v k ) = π(v)
and hence w ∈ L. Further, since the letters of C commute with any other letter and since

u 0 u 1 • • • u k ∼ I v 0 v 1 • • • v k , one gets w ∼ I b 1 • • • b i rb i+1 • • • b k v 0 • • • v k ∼ I b 1 • • • b i rb i+1 • • • b k u 0 • • • u k ∼ I xry
It follows that w ∼ I xry and hence xry ∈ K, which proves the claim. The result now follows from Corollary 3.12.

Corollary 5.7 Let I be a partial commutation such that D consists of a clique and some isolated vertices. If L is a polynomial of group languages, then [L] I is a polynomial of group languages.

Proof. The proof is similar to that of Corollary 5.5.

The case where D is transitive

In this section we extend the results of Section 5.2.1 to the more general case where D is transitive, already considered in Section 4.2.

The proof we present is totally different from that of Theorem 5.6, which does not seem to generalize easily to the transitive case. We adapt an argument from [6, Proposition 9.6] to compute π I (L) in the special case of a group language. Let π : A * → G be the syntactic morphism of a group language L. Proposition 5.8 Let N = k|G| k+2 and, for 1 i k, let R i = A * i ∩ π -1 (1). Then the following formula holds:

π I (L) = (u 1 ↑ R 1 ) × • • • × (u k ↑ R k ) ( 7 
)
where the union runs over the set E of k-tuples of words

(u 1 , . . . , u k ) ∈ π I (L) such that |u 1 |, . . . , |u k | N .
Proof. First observe that the conditions

(u 1 . . . , u k ) ∈ π I (L) and L ∩ (u 1 • • • u k ) = ∅
are equivalent. We shall use freely this remark in the remainder of the proof. Let K denote the right hand side of [START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF]. We first prove that K is a subset

of π I (L). If t is a k-tuple of K, there is a k-tuple (u 1 . . . , u k ) ∈ E such that t = (r 1,0 a 1,1 r 1,1 • • • a 1,n1 r 1,n1 , . . . , r k,0 a k,1 r k,1 • • • a k,n k r k,n k )
where, for 1 i k, u i = a i,1 • • • a i,ni and r i,j ∈ R i for 0 j n i . Since (u 1 , . . . , u k ) ∈ E, there exists a word u ∈ L such that π I (u) = (u 1 , . . . , u k ).

Thus u belongs to u 1 • • • u k . Let us replace each letter a i,j in u by the word r i,j-1 a i,j if j < n i and by r i,ni-1 a i,ni r i,ni if j = n i . Let us do this operation for 1 i k and 1 j n i . Since π(r i,j ) = 1 for all i, j, the resulting word v has the following properties:

(1) for

1 i k, π i (v) = r i,0 a i,1 r i,1 • • • a i,ni r i,ni and hence π I (v) = t, (2) 
π(v) = π(u) and thus v ∈ L. It follows that t ∈ π I (L) and therefore K is a subset of π I (L).

In the opposite direction, consider a k-tuple t = (u 1 , . . . , u k ) ∈ π I (L). We prove that t ∈ K by induction on

|t| = |u 1 | + . . . + |u k |. First assume that |t| N . Then t ∈ E and thus t ∈ (u 1 ↑ R 1 ) × • • • × (u k ↑ R k ), since 1 ∈ R i for 1 i k. It follows that t belongs to K.
We may now assume that |t| > N . By assumption, there is a word u ∈ L such that π I (u) = (u 1 , . . . , u k ). First suppose that, for some i, u contains a factor of length |G| in A * i . Then by Lemma 3.8, this factor contains a nonempty factor in R i and thus u = u ′ xu ′′ with x ∈ R i ∩ A + . It follows by Lemma 3.4 that u ′ u ′′ ∈ L. Further, x is also a factor of u i , so that

u i = u ′ i xu ′′ i . Let t ′ = π I (u ′ u ′′ ). Then t ′ = (u 1 , . . . , u i-1 , u ′ i u ′′ i , u i+1 , . . . , u k ) and since |t ′ | < |t|, one gets t ′ ∈ K by the induction hypothesis. Therefore, there is a k-tuple (v 1 , . . . , v k ) ∈ E such that t ′ ∈ (v 1 ↑ R 1 )× • • • ×(v k ↑ R k ). In particular, u ′ i u ′′ i ∈ v i ↑ R i and by Lemma 3.5, u i = u ′ i xu ′′ i ∈ v i ↑ R i . It follows that t ∈ (v 1 ↑ R 1 ) × • • • × (v k ↑ R k ) and hence t ∈ K.
Suppose now that u has no factor of length |G| in

A * i . Let us factorize u as u = u 1,1 u 1,2 • • • u 1,k u 2,1 • • • u 2,k • • • u n,1 • • • u n,k
where, for 1 j n and 1 i k, u j,i ∈ A * i and u j,1 • • • u j,k = 1. For instance, if A 1 = {a, b}, A 2 = {c} and A 3 = {d, e}, the factorization of the word cabddabcade would be (1)(c)(1)(ab)(1)(dd)(ab)(c)(1)(a)(1)(de). Since u has no factor of length |G| in A * i , the length of each word u i,j is strictly less than |G|. On the other hand, |u| = |t| > N and thus n > |G| k+1 . Note that

π I (u) = (u 1,1 • • • u n,1 , u 1,2 • • • u n,2 , . . . , u 1,k • • • u n,k )
Let, for 1 r n, g r be the element of the group G k+1 defined by

g r = (π(u r,1 ), π(u r,2 ), . . . , π(u r,k ), π(u r,1 u r,2 • • • u r,k ))
By Lemma 3.3, applied to the group G k+1 , there exist two indices i and j, with

i j |G| k+1 such that g i • • • g j = (1, . . . , 1) which means that for 1 s k, u i,s • • • u j,s ∈ R s and that (u i,1 u i,2 • • • u i,k ) • • • (u j,1 u j,2 • • • u j,k ) ∈ π -1 (1). Now, since u ∈ L, it follows by Lemma 3.4 that (u 1,1 • • • u 1,k ) • • • (u i-1,1 • • • u i-1,k )(u j+1,1 • • • u j+1,k ) • • • (u n,1 • • • u n,k ) ∈ L Therefore the k-tuple (u 1,1 • • • u i-1,1 u j+1,1 • • • u n,1 , . . . , u 1,k • • • u i-1,k u j+1,k • • • u n,k )
belongs to π I (L) and by the induction hypothesis, also belongs to K. It follows by Lemma 3.5 

that (u 1,1 • • • u n,1 , u 1,2 • • • u n,2 , . . . , u 1,k • • • u n,k ) belongs to K. Therefore π I (L) = K.
Theorem 5.9 Let I be a partial commutation such that D is transitive. If L is a group language, then [L] I is a polynomial of group languages.

Proof. It follows from Proposition 5.8 that if L is a group language, then π

I (L) = 1 i n L i,1 × • • • × L i,k
, where each language L i,j is a polynomial of group languages. Since Pol(G) is closed under shuffle, the result now follows from Proposition 4.3 and more precisely from (4).

Corollary 5.10 Let I be a partial commutation such that D is transitive. If L is a polynomial of group languages, then [L] I is also a polynomial of group languages.

Proof. The result follows from Theorems 5.2 and 5.9, but we give also a direct proof.

Since Pol(G) is closed under shuffle, it suffices, by Proposition 4.3, to prove that if L ∈ Pol(G), then π I (L) is a finite union of languages of the form

L 1 × • • • × L k , where L i ∈ Pol(G)(A * i ) for 1 i k.
Since π I is a morphism, it preserves union and product. Therefore it suffices to prove the result if L is of the form L 0 a 1 L 1 • • • a n L n , where L 0 , . . . , L n are group languages. Theorem 5.9 shows that the result holds for the languages L 0 , L 1 , . . . , L n , since they are group languages. Further, if a is a letter, then π I (a) = (1, . . . , 1, a, 1, . . . , 1), where the i-th component is a if and only if a

∈ A i . It follows that π I (L 0 a 1 L 1 • • • a n L n ) is a finite union of languages of the form R × • • • × R k , where each language R i is a product of the form S 0 c 1 S 1 • • • c r S r , with S 0 , . . . , S r ∈ Pol(G)(A * i )
and each c j is either a letter of A i or the empty word. But since Pol(G) is closed under product and marked product, R i belongs to Pol(G)(A * i ).

A more general case

Let (A 1 , I 1 ), . . . , (A k , I k ) be the connected components of the graph (A, I) and put, for 1 j k,

D j = {(a, b) ∈ A j × A j | (a, b) / ∈ I j } Theorem 5.11 Suppose that, for 1 j k, (A j , D j ) is transitive. Then, if L is a polynomial of group languages, [L] I is regular.
Proof. Formula (2) shows that if L ∈ Pol(G)(A * ), then the language K p,q is also in Pol(G)(A * ). Since Pol(G) is a positive variety of languages, it is closed under inverse of morphisms. In particular, if ı denotes the identity map from

A * j into A * , one has K p,q ∩ A * j = ı -1 (K p,q ) and thus K p,q ∩ A * j belongs to Pol(G)(A * j ). If (A j , D j ) is transitive, it follows from Corollary 5.10 that R p,q is in Pol(G)(A * ). Finally [L] I is regular by Proposition 4.2.
Note that the condition on I given in the statement of Theorem 5.11 is more general than D be transitive. For instance, the partial commutation of Example 5.3 below satisfies the conditions of Theorem 5.11 but the corresponding set D is not transitive. We now give a simple graph theoretic interpretation of this condition.

Let us adopt a standard graph terminology [START_REF] De Ridder | Information System on Graph Classes and their Inclusions (ISGCI)[END_REF] and denote respectively by P 3 , P 4 and paw the graphs represented below: The graph co-P 3 is the complement of the graph P 3 . We recall a few definitions from graph theory. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The diameter of a graph is the greatest distance between two vertices of the graph. Let G and H be two graphs. Let us say that a graph G is H-free if there is no subgraph of G isomorphic to H. A P 4 -free graph is called a cograph. Proposition 5.12 Let I be a partial commutation, let (A 1 , I 1 ), . . . , (A k , I k ) be the connected components of the graph (A, I) and let (A j , D j ) be the complement graph of (A j , I j ). Then the following conditions are equivalent:

(1) for 1 j k, (A j , D j ) is transitive, (2) the graph (A, I) is a paw-free cograph.

Proof.

(1) implies [START_REF] Bouajjani | Permutation Rewriting and Algorithmic Verification[END_REF]. Suppose that ( 1) is satisfied but (2) is not. If there is a subgraph of (A, I) isomorphic to P 4 , then the four vertices a, b, c, d are in the same connected component, say (A j , I j ). However, (a, d) and (d, b) are in (A j , D j ) but (a, b) is not. This contradicts the fact that (A j , D j ) is transitive. Suppose now there is a subgraph of (A, I) isomorphic to paw. Again, (a, d) and (d, b) are in (A j , D j ), but (a, b) is not. This contradicts the fact that (A j , D j ) is transitive.

(2) implies [START_REF] Achache | Opérateurs de fermeture semi-commutatifs[END_REF]. First observe that (A j , D j ) is transitive if and only if the graph (A j , I j ) is (co-P 3 )-free. Suppose that (A, I) is a paw-free cograph. Then every graph (A j , I j ) is a connected paw-free cograph and thus is either trianglefree or (co-P 3 )-free [START_REF] Olariu | Paw-free graphs[END_REF]. Therefore it suffices to show that if G is a connected triangle-free cograph, then it is co-P 3 -free. It follows from [START_REF] Corneil | Complement reducible graphs[END_REF]Theorem 2] that in a connected cograph, every subgraph has diameter 2. Suppose that G contains a copy of co-P Other characterizations of paw-free cographs can be found in [START_REF] Cardoso | On hereditary properties of the class of graphs with convex quadratic stability number[END_REF]. We can now state the last result of this section. Theorem 5.13 Let L be a polynomial of group languages. If the graph (A, I) is a paw-free cograph, then [L] I is regular.

One may wonder whether under the conditions of Theorem 5.13, the language [L] I is a polynomial of group languages. The following example gives a negative answer to this question.

Example 5.3 Let A = {a, b, c} and let I be the partial commutation defined by ab ∼ I ba. Let L be the set of words having an even number of subwords equal to ab. Then L is a group language. We claim that [L] I is not a polynomial of group languages. Indeed, one has aab ∈ L, whence aba ∈ [L] I . However, for each n > 0, one has abc n a / ∈ [L] I . It follows by [START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF]Theorem 7.1] that [L] I is not a polynomial of group languages.

Example 5.3 also shows that Pol(G) is not closed under partial commutation.

Languages of W

We now define the class of regular languages W first introduced and studied in [START_REF] Cano Gómez | On a conjecture of Schnoebelen[END_REF][START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF].

The class W is the unique maximal positive variety of languages which does not contain the language (ab) * , for all letters a = b. It is also the unique maximal positive variety satisfying the two following conditions: it is proper, that is, strictly included in the variety of regular languages, and it is closed under the shuffle operation. It is also the largest proper positive variety closed under length-preserving morphisms. Being closed under intersection, union, quotients, shuffle, concatenation, length-decreasing morphisms and inverses of morphisms, W is a quite robust class, which strictly contains the classes APC, Pol(Com) and Pol(G).

The class W has an algebraic characterization [START_REF] Cano Gómez | On a conjecture of Schnoebelen[END_REF][START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF] which requires a few auxiliary definitions. Recall that an ideal of a monoid M is a subset I ⊆ M such that M IM ⊆ I. A nonempty ideal I is called minimal if, for every nonempty ideal J of M , J ⊆ I implies J = I. Every finite monoid admits a unique minimal ideal. Let a and b be two elements of a monoid. Then b is an inverse of a if aba = a and bab = b. Now, a regular language belongs to W if and only if its syntactic ordered monoid (M, ) satisfies the following condition ( * ):

For any pair (a, b) of mutually inverse elements of M , and any element z of the minimal ideal of the submonoid generated by a and b, (abzab) ω ab.

The finite ordered monoids satisfying ( * ) form a variety of ordered monoids W [START_REF] Cano Gómez | Shuffle on positive varieties of languages[END_REF]. Condition ( * ) might appear quite involved, but has an important consequence: the variety W is decidable. That is, given a regular language L, one can decide whether or not L belongs to W. We also mention for the specialists that W contains the variety of finite monoids DS.

Commutative closure of W

The main result of this section states that W is closed under commutative closure. In fact, we prove a stronger result, which relates the period of a language of W to the period of its commutative closure. We will need the following proposition. Proposition 6.1 Let L be a commutative language of A * and let d be a positive integer. If there exists N > 0 such that, for each letter c of A, c N +d L c N , then L is regular and its period divides d.

Proof. It follows from [14, Theorem 6.6.2, page 215] that, under these conditions, L is a regular language. Let ω be the exponent of L. The relation

c N +d L c N gives c N (ω-1) c N +d L c N (ω-1) c N , whence c N ω+d L c N ω and since c ω ∼ L c 2ω ∼ L c N ω , one gets finally c ω+d L c ω . It follows that c ω ∼ L c ω+ωd L . . . L c ω+2d L c ω+d L c ω
and hence c ω ∼ L c ω+d . Since L is commutative, its syntactic monoid is commutative and therefore u ω ∼ L u ω+d for all u ∈ A * . It follows that the period of L divides d.

The main result of this section can now be stated.

Theorem 6.2 Let L be a language of W(A * ). Then [L] belongs to W(A * ) and its period divides that of L.

Proof. Let L be a language of W(A * ) and let [L] be its commutative closure. Since [L] is commutative and since W contains the variety of commutative languages, proving that [L] belongs to W(A * ) amounts to show that [L] is regular.

Since L ∈ W(A * ), there exist an ordered monoid (M, ) ∈ W, a surjective monoid morphism π : A * → M and an order ideal P of (M, ) such that π -1 (P ) = L. Let ω, p and n be respectively the exponent, the period and the size of M . Let also d be any number such that, for all t ∈ M , t d is idempotent. In particular, d can be either ω or ω + p. We claim that, for every such d, there exists an integer N such that, for every letter c ∈ A, c N +d [L] c N . If the claim holds, then Proposition 6.1 shows that [L] is regular and that its period divides d. Taking d = ω and d = ω + p then proves that this period also divides p.

The rest of the proof consists in proving the claim. We need three combinatorial results. The first one is almost trivial. Proposition 6.3 For every m ∈ M , there exists a word u of length n such that π(u) = m.

Proof. Let m ∈ M and let u = a 1 • • • a |u| be a word of minimal length in π -1 (m). Suppose that |u| n. Then, by the pigeonhole principle, two of the n + 1 elements π(1), π(a 1 ), π(a 1 a 2 ), . . . , π(a

1 • • • a n ) are equal, say π(a 1 • • • a i ) and π(a 1 • • • a j ) with i < j. It follows that π(u) = π(a 1 • • • a i a j+1 • • • a |u| ), which contradicts the definition of u. Thus |u| n.
The second one is a slight variation of Proposition 3.1. Proposition 6.4 Let c be a letter of an alphabet A. For any r > 0, there exists an integer N = N (r) such that, for every word u of A * containing at least N + 1 occurrences of c, there exist an idempotent e of M and a factorization u

= v 0 v 1 cv 2 c • • • v r cv r+1 such that, for 1 i r, π(v i c) = e.
Proof. Let u be a word containing at least N + 1 occurrences of c. Let us write this word as u = u 0 cu 1 c • • • u N cu N +1 , where, for 0 i N + 1, u i ∈ A * . By Proposition 3.1, applied to the words u 0 c, . . . , u N c, there exist integers 0 i 0 < i 1 < . . . < i r N and an idempotent e of M such that

π(u i0 c • • • u i1-1 c) = . . . = π(u ir-1 c • • • u ir -1 c) = e
Setting s = π(c)e, one gets π(g i ) = s for 1 i n 2 . Further, by the choice of n 2 and by the pigeonhole principle, one can find n 3 indices i 1 < . . . < i n3 and an element s ∈ M such that π(f i1 ) = . . . = π(f in 3 ) = s. Setting

w 0 = v 0 f 1 g 1 • • • f i1-1 g i1-1 x 1 = f i1 y 1 = g i1 w 1 = f i1+1 g i1+1 • • • f i2-1 g i2-1 x 2 = f i2 y 2 = g i2 . . . . . . w n3-1 = f in 3 -1 +1 g in 3 -1+1 • • • f in 3 -1 g in 3 -1 x n3 = f in 3 y n3 = g in 3 w n3 = f in 3 +1 g in 3 +1 • • • f n2 g n2 v n1+1
we obtain a factorization

u = w 0 x 1 y 1 w 1 x 2 y 2 w 2 • • • w n3-1 x n3 y n3 w n3 (8) 
such that π(w 1 ) = . . . = π(w n3-1 ) = e, π(x 1 ) = . . . = π(x n3 ) = s and π(y 1 ) = . . . = π(y n3 ) = s. Recall that n 3 = d(1 + r) where r = |z| a = |z| b . We now define words z 1 , . . . , z d as follows: the word z j is obtained by replacing in z the first occurrence of a by x d+(j-1)r+1 , the second occurrence of a by x d+(j-1)r+2 , . . . , the r th occurrence of a by x d+jr and, similarly, the first occurrence of b by y d+(j-1)r+1 , the second occurrence of b by y d+(j-1)r+2 , . . . , the r th occurrence of b by y d+jr . Finally, set

u ′ = w 0 (v 3i1-2 ccv 3i1-1 cz 1 v 3i1 c)(v 3i2-2 ccv 3i2-1 cz 2 v 3i2 c) • • • (v 3i d -2 ccv 3i d -1 cz d v 3i d c)w 1 • • • w n3 (9) 
We are now ready for the three final steps. Lemma 6.7 The word u ′ is commutatively equivalent to xc N +d y.

Proof. It is clear that u ′ is commutatively equivalent to c d w 0 (v 3i1-2 cv 3i1-1 cv 3i1 c) • • • (v 3i d -2 cv 3i d -1 cv 3i d c)(z 1 • • • z d )(w 1 • • • w n3 ) Now, v 3i1-2 cv 3i1-1 cv 3i1 c = f i1 g i1 = x 1 y 1 . . . v 3i d -2 cv 3i d -1 cv 3i d c = f i d g i d = x d y d Further, by construction, z 1 • • • z d ∼ x d+1 y d+1 • • • x n3 y n3 . Therefore u ′ ∼ c d w 0 x 1 y 1 w 1 x 2 y 2 w 2 • • • w n3-1 x n3 y n3 w n3 and finally u ′ ∼ uc d ∼ xc N +d y.
Let T be the submonoid of M generated by s and s and let γ : {a, b} * → T be the morphism defined by γ(a) = s and γ(b) = s. By Proposition 6.5, γ(z) belongs to the minimal ideal of T and since e = ss, the definition of W shows that in M , (eγ(z)e) d e. Lemma 6.8 One has π(z 1 ) = . . . = π(z d ) = γ(z).

Proof. Each of the words z j is obtained by replacing in z the occurrences of a by some x k and each occurrence of b by some y k . Since all the x k (resp. y k ) have the same image by π, namely s (resp. s), π(z j ) is equal to γ(z). Lemma 6.9 The word u ′ belongs to L. Putting Lemmas 6.7 and 6.9 together, we conclude that xc N +d y ∈ [L], which proves the claim and the theorem.

Note that there are regular languages outside of W whose commutative closure is in W. For instance the language (ab) * (a * + b * ) is not in W but its commutative closure is A * .

Partial commutations

In this section, we give two results on partial commutations applied to languages of W. When I is transitive, we show that if L is a language of W, then [L] I is regular. Our second result is similar to Theorem 2.3.

It is also tempting to extend Corollary 5.10 to the languages of W, but this is not possible. Indeed we exhibit in Example 6.1 a partial commutation I such that D is transitive and a language L of W such that [L] I is not regular. Proof. Since W is closed under quotients, it follows from (2) that K p,q belongs to W(A * ). Since W is closed under total commutation by Theorem 6.2, R p,q is also in W(A * ). Thus the transitions of the automaton B described in Section 4.1 are regular and [L] I is regular by Proposition 4.2.

We do not know whether [L] I also belongs to W(A * ).

Product and partial commutation

Let I be a partial commutation on A and let L 1 , . . . , L n be languages of A * . Theorem 

[X 1 • • • X n ] J = [A * 1 • • • A * n ] J ∩ (X 1 • • • X n ). ( 10 
)
Let ϕ : B * → A * be the morphism defined, for each a ∈ B, by ϕ(a) = λ -1 i (a) if a ∈ A i . By [START_REF] Guaiana | On the trace product and some families of languages closed under partial commutations[END_REF]Theorem 8], we have

[L 1 • • • L n ] I = ϕ([X 1 • • • X n ] J ) (11) 
Now, the language A * 1 • • • A * n is closed under taking subwords and thus belongs to J -(B * ). By Proposition 2.6, [A * 1 • • • A * n ] J also belongs to J -and hence to W(B * ), since J -is contained in W. Since W is a positive variety closed under length-preserving morphisms and under shuffle product, the languages X i belong to W and ( 10) and [START_REF] Clerbout | Semi-Commutations[END_REF] show that [L 1 • • • L n ] I belongs to W.

Conclusion and open problems

Our results on commutations can be summarized in a nutshell as follows :

(1) Both Pol(G) and W are closed under commutation.

( 

  |u| a = 3 and |u| b = 2. The sum |u| = a∈A |u| a

  (ab, ba) | (a, b) ∈ I} If L is a language on A * , we denote by [L] I the closure of L under ∼ I . A class C of languages is closed under I-commutation if L ∈ C implies [L] I ∈ C. When I is the relation {(a, b) ∈ A × A | a = b}, we simplify the notation to ∼ and [L], respectively. Thus ∼ is the commutation relation and [L] is the commutative closure of L. A class of languages C is closed under commutation if L ∈ C implies [L] ∈ C. The non-commutation relation (also called dependence relation) associated with I, is the relation D = {(a, b) ∈ A × A | (a, b) / ∈ I}. The relations I and D define two (undirected) graphs (A, I) and (A, D) with A as set of vertices.

Example 1 . 1 1 Figure 1 . 1 :

 11111 Figure 1.1: The minimal deterministic automaton of (ab) *

Example 2 . 1

 21 Consider the languages L 1 = (ab) * +(ab) * a + b + and L 2 = (ab) * + (ab) * b + a + . The commutative closure of these languages is regular, since [L 1 ] = [L 2 ] = {a, b} * \ (a + + b + ) However, L 1 ∩ L 2 = (ab) * and [(ab) * ] is not regular.

Theorem 2 . 3 Corollary 2 . 4

 2324 Let I be a partial commutation on A and let L 1 , . . . , L n be languages of A * . If the languages [L 1 ] I , . . . , [L n ] I are regular, then [L 1 • • • L n ] I is regular. Let I be a partial commutation on A and let L be a set of regular languages on A * . If, for each language L of L, [L] I is regular, then for each language L of Pol(L), [L] I is regular.

Lemma 3 . 8

 38 Every word of A * of length |G| contains a nonempty factor in F .

  We prove the result by induction on the length of r. If |r| |G|, then r ∈ F and u → F v. Otherwise, Lemma 3.8 shows that r contains a nonempty factor in F . Thus r = xf y with f ∈ F . Further, Lemma 3.4 shows that xy ∈ R. Thus u → R u ′ xyu ′′ and by the induction hypothesis, u *

Theorem 3 .

 3 6 now leads to a key property of * → R . Proposition 3.10 The relation * → R is a well quasi-order on A * . Proof. Lemma 3.8 shows that A * \ A * F A * is finite and by Theorem 3.6, * → F is a well quasi-order on A * . Further, Proposition 3.9 shows that * → R is equal to * → F . We now derive an important consequence of Proposition 3.10. Proposition 3.11 For each language L of A * , the language [L] * → R is a polynomial of group languages. Proof. Since * → R is a well quasi-order, the language [L] * →R is equal to [G] * →R for some finite language G. Thus [L] * →R is a finite union of languages of the form [u] * →R . It follows from Proposition 3.7 that [L] * →R is a polynomial of group languages. Corollary 3.12 A language L that satisfies L = [L] →R is a polynomial of group languages. Proof. Indeed, the equality L = [L] →R implies L = [L] * →R and by Proposition 3.11, the language [L] *

  g} and I is the partial commutation represented below P = {{a, b, c}, {d, e}, {f }, {g}}, and

4. 2

 2 The case where D is transitive It is easy to see that D is transitive if and only if A * /∼ I is isomorphic to a direct product of free monoids. For instance, if A = {a, b, c, d, e, f, g}, and I and D are the relations represented below, then A * /∼ I = {a, b, c} * × {d, e} * × {f } * × {g} * .

Theorem 5 . 1

 51 The class Pol(G) is a positive variety of languages closed under shuffle, product and marked product.

  Thus L is recognised by the group of all permutations of a three-element set. Its commutative closure is the languageL 1 + (a 3 ) * + (b 2 ) * + (b 2 ) * ab(b 2 ) * + (b 2 ) * ba(b 2 ) * ,where L 1 = A * aA * aA * bA * + A * aA * bA * aA * + A * bA * aA * aA * . Its minimal automaton is the following Finally, one can write [L] as a polynomial of group languages as follows: [L] = L 1 + L 2 where L 2 is the group language defined by L 2 = {u ∈ A * | |u| a ≡ 0 mod 3 and |u| b ≡ 0 mod 2 or |u| a ≡ 1 mod 3 and |u| b ≡ 1 mod 2}.

  the set of vertices of the clique D and by C the set A \ B. For instance, in our example, we get B = {a, b, c} and C = {d, e}. We claim that the language K = [L] I satisfies K = [K] →R . Let u ∈ K and let r ∈ R. Let us write u as u 0 b 1 u 1 • • • b k u k , where b 1 , . . . , b k ∈ B and u 0 , . . . , u k ∈ C * . If u = xy, there is an index i and a factorisation

  3 : an edge (a, b), a vertex c such that nor (c, a) nor (c, b) are edges of G. Since G is connected and has diameter 2, there is path of length 2 from c to a, say (c, d), (d, a). Now, since G is triangle-free, (d, b) is not an edge and (c, d), (d, a), (a, b) form a subgraph isomorphic to P 4 , a contradiction.

Proof.

  It follows from[START_REF] Cardoso | On hereditary properties of the class of graphs with convex quadratic stability number[END_REF] that π(u) = π(w 0 )eπ(w n3 ), and hence, since P = π(L), π(w 0 )eπ(w n3 ) ∈ P . Now, observe thatπ(v 3i1-2 ccv 3i1-1 cz 1 v 3i1 c) = π(v 3i1-2 c)π(c)π(v 3i1 -1 c)π(z 1 )π(v 3i1 c)= eπ(c)eπ(z 1 )e = esγ(z)e by Lemma 6.8By a similar argument, one hasπ(v 3i1-2 ccv 3i1-1 cz 1 v 3i1 c) = . . . = π(v 3i d -2 ccv 3i d -1 cz d v 3i d c) = esγ(z)eFinally, since π(w 1 ) = . . . = π(w n3-1 ) = e, it follows from (9) thatπ(u ′ ) = π(w 0 )(esγ(z)e) d π(w n3 )Furthermore, since s ∈ T , sγ(z) belongs to the minimal ideal of T and since M is in W, one has (esγ(z)e) d e. Since π(L) is an order ideal, the element π(w 0 )(esγ(z)e) d π(w n3 ) is also in π(L) and hence u ′ ∈ L.

Example 6 . 1 Theorem 6 . 10

 61610 Consider the alphabet A = {a, b, c, d} and the partial commutation relation I (with D transitive) defined by ab ∼ I ba ad ∼ I da bc ∼ I cb cd ∼ Let L be a language of W(A * ) and let I be a transitive partial commutation. Then [L] I is a regular language.

2 . 3

 23 shows that if [L 1 ] I , . . . , [L n ] I are regular languages, then the language [L 1 • • • L n ] I is regular. We prove in this section a more precise result.Proposition 6.11 If [L 1 ] I , . . . , [L n ] I are languages of W, then [L 1 • • • L n ] I is also in W. Proof. Let A 1 , . . . , A n be n disjoint copies of A and let B = A 1 ∪ • • • ∪ A n .For 1 i n, let λ i : A → A i be a bijection, which extends to an isomorphism fromA * to A * i . Let X i = λ i ([L i ] I ) ⊆ A * i .Consider the partial commutation J on B defined byJ = {(a, b) ∈ B 2 | a ∈ A i , b ∈ A j , i = j and (λ -1 i(a), λ -1 j (b)) ∈ I} By [21, Theorem 6], we have

  ) If I transitive and if L is in W, then [L] I is regular. (3) If D transitive and if L is a polynomial of group languages, then so is [L] I . (4) If (A, I) is a paw-free cograph and if L is a polynomial of group languages, then [L] I is regular. Many questions remain open. (1) If L is a group language, is [L] I always regular? The cases where the graph (A, I) is P 4 or paw are especially interesting. Note that a positive answer to this question would also show that if L is a polynomial of group languages, then [L] I is regular. (2) If I is a transitive partial commutation and if L is in W, does [L] I also belong to W? (3) If D consists of a single clique and some isolated vertices and if L is in W, is [L] I regular? (4) Let V be smallest variety of languages containing the commutative languages and the group languages. Is Pol(V) closed under [partial] commutation?

Computation of [L] IWe have seen that if L is a regular language, then [L] I is not necessarily regular, which makes the computation of [L] I a nontrivial problem. This section gathers two results related to this problem.
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Setting

we obtain a factorization u = v 0 v 1 c • • • v r cv r+1 such that, for 1 i r, π(v i c) = e.

The third one requires an auxiliary definition. A word u of {a, b} * is said to be balanced if |u| a = |u| b . Proposition 6.5 Let B = {a, b}. There exists a balanced word z ∈ B * such that, for any morphism γ : B * → M , γ(z) belongs to the minimal ideal of the monoid γ(B * ).

Proof. Let z be a balanced word of B * containing all words of length n as a factor. Let γ : B * → M be a morphism and let m be an element of the minimal ideal J of γ(B * ). By Proposition 6.3, applied to γ, there exists a word u of length n such that γ(u) = m. Since |u| n, u is a factor of z and γ(z) belongs to M γ(u)M . Now, since m ∈ J, M γ(u)M = M mM = J and hence γ(z) ∈ J.

Let z be the balanced word given by Proposition 6.5. Let r = |z| a = |z| b , n 3 = d(1 + r), n 2 = nn 3 and n 1 = 3n 2 . Finally let N = N (n 1 ) be the constant given by Proposition 6.4.

Let x, y ∈ A * . If xc N y ∈ [L], there exists a word u of L commutatively equivalent to xc N y and hence containing at least N occurrences of c. By Proposition 6.4, there exist an idempotent e of M and a factorization

Now, since n 1 = 3n 2 , one can also write u as

where, for 1 i n 2 , f i = v 3i-2 cv 3i-1 and g i = cv 3i c. The next lemma is the key argument to the proof of Theorem 6.2.

Lemma 6.6 For 1 i n 2 , the elements π(f i ) and π(g i ) are mutually inverse.

Proof. The result follows from the following formulas:

We first show that L belongs to W and next that [L] I is not regular.

Let (M, ) be the syntactic ordered monoid of L. A short computation, using the software Semigroupe 2.01 [START_REF] Pin | Semigroupe 2.01: a software for computing finite semigroups[END_REF] shows that M is an aperiodic monoid with zero, containing 170 elements grouped into 4 regular J -classes and some nonregular J -classes. These regular J -classes comprise the singleton {1}, the minimal ideal {0}, a unique 0-minimal J -class with 12 R-classes and 12 L- The presentation of M computed by Semigroupe has 116 relations and cannot be reproduced here. Similarly, we shall not give the syntactic order in detail, but we mention that the relation 0 x holds for all x ∈ M . It follows that if x and y are mutually inverse elements of M such that 0 belongs to the submonoid generated by x and y, then (xy0xy) ω = 0 and Condition ( * ) defining W is trivially satisfied. This covers the trivial case x = y = 1 and the cases where x and y belong to the minimal ideal or to the unique 0-minimal ideal. The only remaining case occurs when both x and y belong to D. If x and y are both equal to the same idempotent e of D, Condition ( * ) is also trivially satisfied. The remaining possibilities for the pair (x, y) are (abcda, bcd), (bcdab, cda), (ab, cd), (abc, dabcd), (bc, da) and (cdabd, dab). But in all these cases, one gets either x 2 = 0 or y 2 = 0 and again, Condition ( * ) is trivially satisfied. We now show that the language [L] I is not regular by showing that its syntactic congruence has infinite index. For each n 0, set x n = (ac) n . We claim that if i = j, then x i ∼ [L]I x j . Indeed, setting z i = (bd) i , we get x i z i = (ac) i (bd) i ∈ [L] I since (abcd) i ∈ L and (abcd) i ∼ I (ac) i (bd) i , but x j z i = (ac) j (bd) i ∈ [L] I since no word u in L satisfies (ac) j (bd) i ∼ I u. This proves the claim.

The case where I is transitive

Suppose that I is transitive. Let (A 1 , I 1 ), . . . , (A k , I k ) be the connected components of the graph (A, I). Then each relation I j is a total commutation and thus A * /∼ I is isomorphic to a free product of free commutative monoids. For instance, if A = {a, b, c, d, e, f, g}, and I and D are the relations represented below, A * /∼ I is isomorphic to the free product of the four monoids N 3 , N 2 , N and N.