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In this work we consider the numerical resolution of the bilateral obstacle optimal control problem given in Bergounioux et al. Where the main feature of this problem is that the control and the obstacle are the same.

Introduction

Variational inequalities and related optimal control problems have been recognized as suitable mathematical models for dealing with many problems arising in different fields, such as shape optimization theory, image processing and mechanics, (see for example [START_REF] Bergounioux | Shape optimization with Stokes constraints over the set of axisymmetric domains[END_REF], [START_REF] Bergounioux | An optimal control problem in photoacoustic tomography[END_REF], [START_REF] Desong | A variational inequality principle in solid mechanics and application in physically non-linear problems[END_REF], [START_REF] Lions | Variational inequalities[END_REF], [START_REF] Rodrigues | Obstacle Problems in Mathematical Physics[END_REF]).

Optimal control problem governed by variational inequalities has been studied extensively during the last years by many authors, such as [START_REF] Barbu | Optimal Control of Varitional Inequalities[END_REF], [START_REF] Mignot | Optimal control in some variational inequalities[END_REF], [START_REF] Mignot | Contrôle dans les inéquatons variationelles elliptiques[END_REF]. These authors have studied optimal control problems for obstacle problems (or variational inequalities) where the obstacle is a known function, and the control variables appear as variational inequalities. In other words, controls do not change the obstacle and, on the other hand , in [START_REF] Adams | An obstacle control problem with a source term[END_REF], [START_REF] Bergounioux | Optimal control of the bilateral obstacle problems[END_REF], [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF] the authors have studied another class of problems where the obstacle functions are unknowns and are considered as control functions.

In this paper, we investigate optimal control problems governed by variational inequalities of obstacle type. This kind of problem is very important and it can lead to the shape optimization problem governed by variational inequality, it may concern the optimal shape of dam [START_REF] Chipot | Variational inequalities and flow in porous media[END_REF], for which the obstacle gives the shape to be designed such that the pressure of the fluid inside the dam is close to a desired value. Besides, if we want to design a membrane having an expected shape, we need to choose a suitable obstacle. In this case, the obstacle can be considered as a control, and the membrane as the state (see for example [START_REF] Hlavcek | Optimal control of a variational inequality with applications to structural analysis. I. Optimal design of a beam with unilateral supports[END_REF]).

It should be pointed out that, in the optimal control problem of a variational inequality, the main difficulty comes from the fact that the mapping T between the control and the state (control-to-state operator) is not Gateaux differentiable as pointed it out in [START_REF] Mignot | Contrôle dans les inéquatons variationelles elliptiques[END_REF], [START_REF] Mignot | Optimal control in some variational inequalities[END_REF] where one can only define a conical derivative for T but only Lipschitz-continuous and so it is not easy to get optimality conditions that can be numerically exploitable.

To overcome this difficulty, different authors (see for example, Kunisch et al. [START_REF] Ito | Optimal control of obstacle problems by H 1 -obstacles[END_REF] V. Barbu [START_REF] Barbu | Optimal Control of Varitional Inequalities[END_REF] and the references therein) consider a Moreau-Yosida approximation technique to reformulate the governing variational inequality problem into a problem governed by a variational equation. Our approach is based on the penalty method and Barbu's treatment as a penalty parameter approaching zero. We then obtain a system of optimality for suitable approximations of the original problem which can be easily used from the numerical point of view.

Nevertheless, the optimal control of variational inequalities of obstacle type is still a very active field of research especially for their numerical treatment which are given in the recent publication [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF].

The problem that we are going to study can be set in a wider class of problems, which can be formally described as follows min {J (y, χ) , y = T (χ) , χ ∈ U ad ⊂ U } where T is an operator which associates y to χ, when y is a solution to ∀y ∈ K (y, χ) , A (y, χ) , yv ≥ 0, (obs

)
where K is a multiplication from χ × U to 2 χ when χ is a Banach space and A is a differential operator from Y to the dual Y ′ . Let h be an application from R × R to R, then the variational inequality that relates the control χ to the state y can be written as

A (y, χ) , y -v Y,Y ′ + h (χ, v) -h (χ, y) ≥ (χ, v -y) , ∀y ∈ Y,
where this formulation gives the obstacle problems where the obstacle is the control. Following the previous ideas, we may apply a smoothed penalization approach to our problem. More precisely, the idea is to approximates the obstacle problem by introducing an approximating parameter δ, where the approximating method is based on the penalization method and it consists in replacing the obstacle problem ((obs) by a family of semilinear equations. In [START_REF] Bergounioux | Optimal control of the bilateral obstacle problems[END_REF], Bergounioux et al. considered the following bilateral optimal control obstacle problem min{J (ϕ, ψ) = 1 2 Ω (T (ϕ, ψ)z)

2 dx + ν 2 Ω (∆ϕ) 2 + (∆ψ) 2 dx, (ϕ, ψ) ∈ U ad × U ad } (1)
where ν is a given positive constant and z belongs to L 2 (Ω) as a target profile, such that y = T (ϕ) is a solution of the bilateral obstacle problem given by Ay, vy ≥ (f, vy) , for all v in K (ϕ, ψ) ,

where K (ϕ, ψ) is given by K (ϕ, ψ) = y ∈ H 1 0 (Ω) , ψ ≥ y ≥ ϕ , and the set of admissible controls U ad is defined as follows

U ad = {(ϕ, ψ) ∈ U × U | ϕ ≤ ψ} ,
where U = H 2 (Ω) × H 1 0 (Ω). As we need H 2 -priori estimate, we could assume that U ad is H 2 bounded. For example, we can suppose that U ad is B H 2 (0, R) i.e. a ball of center 0 and radius R, where R is a large enough positive real number, but according to [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF], this choice can lead to technical difficulties to get a numerical solution of the optimality system.

In [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF], Ghanem et al., have solved numerically the unilateral optimal control of obstacle problem given by min J (ϕ) = 1 2 Ω (T (ϕ)z)

2 dx + ν 2 Ω (∆ϕ) 2 dx, ϕ ∈ U (2) 
instead of the one defined by min

J (ϕ) = 1 2 Ω (T (ϕ) -z) 2 dx + ν 2 Ω (∇ϕ) 2 dx, ϕ ∈ U ad
where

U ad = ϕ ∈ H 2 (Ω) , ϕ ∈ B H 2 (0, R) (3) 
such that y = T (ϕ) is a solution of the unilateral obstacle problem given by

Ay, v -y ≥ (f, v -y) , for all v in K (ϕ)
where K (ϕ) is defined by

K (ϕ) = y ∈ H 1 0 (Ω) , y ≥ ϕ .
According to the result given in [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF] the authors point out that, in spite of the elimination of the inequality constraint given by (3), we still get a local convergence property implied by the constraint ϕ n H 2 (Ω) ≤ R. Hence, we are again confronted to the inequality constraint [START_REF] Bergounioux | Optimal Control of Bilateral Obstacle Problems[END_REF].

So we note that it is not necessary to suppress the constraint (3), because it is going to appear again to get the local convergence of the algorithm used for the numerical solution of the problem give by [START_REF] Barbu | Optimal Control of Varitional Inequalities[END_REF].

For the numerical solution of optimal control problem, it is usual to use two kinds of numerical approaches: direct and indirect methods. Direct methods consist in discretizing the cost function, the state and the control and thus reduce the problem to a nonlinear optimization problem with constraints. Indirect methods consist of solving numerically the optimality system given by the state, the adjoint and the projection equations.

The aim of this paper is the numerical solution of the optimal control problem given in [START_REF] Bergounioux | Optimal control of the bilateral obstacle problems[END_REF] by using the indirect approach (after optimisation) based on the same idea and techniques given in [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF], where the optimality system is characterized by

               Ay δ + (β δ (y δ -ϕ δ ) -β δ (ψ δ -y δ )) = f in Ω and y δ = 0 on ∂Ω A * p δ + µ δ 1 + µ δ 2 = y δ -z in Ω and p δ = 0 on ∂Ω µ 1 + ϕ δ -ϕ * , ϕ -ϕ δ + µ 2 + ψ δ -ψ * , ψ -ψ δ + +ν ∆ϕ δ , ∆ ϕ -ϕ δ + ν ∆ψ δ , ∆ ψ -ψ δ = 0, for all ϕ in U ad
For the numerical solution, we first begin by discretizing the optimality system by using finite differences schemes and then by proposing an iterative algorithm based on Gauss-Seidel method that is a combination of damped-Newton-Raphson and a direct method.

The main difficulties of this work compared to the one considered in [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF], is to get an optimality system numerically exploitable by the proposed algorithm.

In the sequel, we denote by B V (0, r) the V -ball around o of radius r and by C generic positive constants.

The rest of paper is organized as follows: in section 2 we give precise assumptions and some well-known results. In section 3, we introduce the iterative algorithm and give convergence results to solve the optimality system. Section 4 is devoted to numerical examples that illustrate the theoretical findings and in section 5 we present some remarks and a conclusion.

Preliminaries and known results

We consider the bilinear form σ(•, •) defined in H 1 (Ω) × H 1 (Ω), where we assume that the following conditions are fulfilled

H 1 . Continuity ∃ C > 0, ∀u, v ∈ H 1 (Ω), |σ(u, v)| ≤ C u H 1 (Ω) v H 1 (Ω) H 2 . Coercivity ∃ c > 0, ∀u ∈ H 1 (Ω), σ(u, u) ≥ c u 2 H 1 (Ω)
We call A in L(H 1 (Ω), H -1 (Ω)) the linear self-adjoint elliptic operator (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]) associated to σ such that Au, v = σ(u, v), and assume that the adjoint form σ * (•, •) satisfies the conditions H 1 and H 2 .

For any ϕ and ψ in H 1 0 (Ω), we define

K(ϕ, ψ) = y ∈ H 1 0 (Ω) | ψ ≥ y ≥ ϕ in Ω , (4) 
and consider the following variational inequality

σ (y, v -y) ≥ (f, v -y) , for all v in K(ϕ, ψ), (5) 
where f belongs to L 2 (Ω) is a source term. From now on, we define the operator T (control-to-state operator) from U × U to U , such that y = T (ϕ, ψ) is the unique solution to the obstacle problem given by ( 4) and (5) (see [START_REF] Lions | Variational inequalities[END_REF]), where U = H 2 (Ω) ∩ H 1 0 (Ω). Let U ad be the set of admissible controls which is assumed to be H 2 (Ω)-bounded subset of H 2 (Ω) ∩ H 1 0 (Ω), convex and closed in H 2 (Ω). We may choose, for example,

U ad = B H 2 (0, R) = {v in H 2 (Ω) ∩ H 1 0 (Ω)| v H 2 ≤ R} ( 6 
)
where R is a large enough positive real number. This boundedness assumption for U ad is crucial: it gives a priori H 2 -estimates on the control functions and leads to the existence of a solution. Now, we consider the optimal control problem (P) defined as follows

min{J(ϕ, ψ) = 1 2 Ω (T (ϕ, ψ) -z) 2 dx + ν 2 Ω (∇ϕ) 2 + (∇ψ) 2 dx , for all ϕ, ψ ∈ U ad }, (P)
where ν is a strictly given positive constant, z in L 2 (Ω). We seek the obstacles (optimals controls) φ, ψ in U 2 ad , such that the corresponding state is close to a target profile z.

To derive necessary conditions for an optimal control, we would like to differentiate the map (ϕ, ψ) → T (ϕ, ψ). Since the map (ϕ, ψ) → T (ϕ, ψ) is not directly differentiable (see [START_REF] Mignot | Contrôle dans les inéquatons variationelles elliptiques[END_REF]), the idea here consists in approximating the map T (ϕ, ψ) by a family of maps T δ (ϕ, ψ) and replacing the obstacle problem ( 5) and ( 4) by the following smooth semilinear equation (see [START_REF] Mignot | Optimal control in some variational inequalities[END_REF], [START_REF] Brzis | The smoothness of solutions to nonlinear variational inequalities[END_REF]):

Ay + (β δ (yϕ)β δ (ψy)) = f in Ω, and y = 0 on ∂Ω.

Then, the approximation map (ϕ, ψ) → T δ (ϕ, ψ) will then be differentiable and approximate necessary conditions will be derived, such that

β δ (r) = 1 δ      0 if r ≥ 0 -r 2 if r ∈ -1 2 , 0 r + 1 4 if r ≤ -1 2
where β(•) is negative and belongs to C 1 (R), such that δ is strictly positive and goes to 0. Then β ′ δ (•) is given by

β ′ δ (r) = 1 δ      0 if r ≥ 0 -2r if r ∈ -1 2 , 0 1 if r ≤ -1 2 As β δ (• -ϕ) -β δ (ψ -•)
is nondecreasing, it is well known (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), that boundary value problem (2) admits a unique solution y δ in H 2 (Ω) ∩ H 1 0 (Ω) for a fixed ϕ and ψ in H 2 (Ω) ∩ H 1 0 (Ω) and f in L 2 (Ω). In the sequel, we set y δ = T δ (ϕ, ψ) and in addition, c or C denotes a general positive constant independent of any approximation parameter. So for any δ > 0, we define

J δ (ϕ, ψ) = 1 2 [ Ω T δ (ϕ, ψ) -z 2 dx + ν Ω (∇ϕ) 2 + (∇ψ) 2 dx]. (P δ )
Then, the approximate optimal control problem is given by

min{J δ (ϕ, ψ) , ϕ, ψ in U ad × U ad }. (7) 
and by using the same techniques given in [START_REF] Barbu | Optimal Control of Varitional Inequalities[END_REF] and [START_REF] Bergounioux | Optimal control of the bilateral obstacle problems[END_REF], the problem (7) has, at least, one solution denoted by (y δ , p δ , ϕ δ , ψ δ ) and characterized by the following Theorem Theorem 2.1. Since ϕ δ , ψ δ is an optimal solution to P δ , and

y δ = T δ ϕ δ , ψ δ . Then there exist p δ in U , µ δ 1 = β ′ δ (y δ -ϕ δ )p δ and µ δ 2 = β ′ δ (ψ δ -y δ )p δ in L 2
(Ω) such that the following optimality system S δ is satisfied

                   Ay δ + (β δ (y δ -ϕ δ ) -β δ (ψ δ -y δ )) = f in Ω A * p δ + µ δ 1 + µ δ 2 = y δ -z in Ω ν∆ϕ δ + ν∆ψ δ + β δ ′ (y δ -ϕ δ )p δ + β δ ′ (ψ δ -y δ )p δ = 0 y δ = p δ = ϕ δ = ψ δ = 0 on ∂Ω
Now, we give some important results relevant for the sequel of this paper.

Lemma 2.1. From the definition of β(•) and since p δ n belongs to B H 1 0 (Ω) (0, ρ3 ), where ρ3 is a positive constant, and for

y δ i , ϕ δ i , p δ i in Ũ where Ũ =H 1 0 (Ω) × H 2 0 (Ω) × H 1 0 (Ω) and i = 1, 2, we get β ′ δ y δ 2 -ϕ δ 2 p δ 2 -β ′ δ y δ 1 -ϕ δ 1 p δ 1 L 2 (Ω) ≤ C δ p δ 2 -p δ 1 H 1 (Ω) + C ρ3 δ y δ 2 -y δ 1 L 2 (Ω) + C ρ3 δ ϕ δ 2 -ϕ δ 1 L 2 (Ω)
Proof. By the definition of β ′ (•) we get

(β ′ δ y δ 2 -ϕ δ 2 p δ 2 -β ′ δ y δ 1 -ϕ δ 1 p δ 1 ) = β ′ δ y δ 2 -ϕ δ 2 (p δ 2 -p δ 1 )+ (β ′ δ y δ 2 -ϕ δ 2 -β ′ δ y δ 1 -ϕ δ 1 )p δ 1 .
Then, by Cauchy-Schwarz inequality and since p δ 1 belongs to B H 1 (Ω) (0, ρ 3 ) and by the Mean-Value Theorem applied in the interval of sides { y δ 2ϕ δ 2 , y δ 1ϕ δ 1 }, we can deduce

β ′ δ y δ 2 -ϕ δ 2 p δ 2 -β ′ δ y δ 1 -ϕ δ 1 p δ 1 L 2 (Ω) ≤ C δ p δ 2 -p δ 1 H 1 (Ω) + C ρ3 δ y δ 2 -y δ 1 -ϕ δ 2 -ϕ δ 1 L 2 (Ω)
Lemma 2.2. Let y δ i , ϕ δ i , p δ i belong to Ũ where i = 1, 2 and by the properties of β δ (•), we get

(β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 )) -(β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 )) L 2 (Ω) ≤ C δ y δ 2 -y δ 1 L 2 (Ω) + C δ ϕ δ 2 -ϕ δ 1 L 2 (Ω) + C δ ψ δ 2 -ψ δ 1 L 2 (Ω) .
Proof. It is easy to see that

(β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 )) -(β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 )) L 2 (Ω) ≤ β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 ) L 2 (Ω) + β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 ) L 2 (Ω) .
By the Mean-Value Theorem applied in the interval of sides

{(y δ 2 -ϕ δ 2 ), (y δ 1 -ϕ δ 1 )} and {(ψ δ 2 -y δ 2 ), (ψ δ 1 -y δ 1 )}, we get (β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 ) -(β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 )) L 2 (Ω) ≤ C δ y δ 2 -y δ 1 L 2 (Ω) + C δ ϕ δ 2 -ϕ δ 1 L 2 (Ω) + C δ ψ δ 2 -ψ δ 1 L 2 (Ω) .
Theorem 2.2. For any triplet y δ i , ϕ δ i , ψ δ i in Ũ that satisfies the optimality system S δ where i = 1, 2, and since δ ≤ C, we get

y δ 2 -y δ 1 H 1 (Ω) ≤ l 1 ( ϕ δ 2 -ϕ δ 1 L 2 (Ω) + ψ δ 2 -ψ δ 1 L 2 (Ω) ).
where l 1 := C δ . This means that the mapping y δ := T δ ϕ δ , ψ δ , is Lipschitizian, with a Lipschitz constant l 1 .

Proof. From the state equation of the optimality system S δ and by subtraction of the two previous equations and, if we take v = y δ 2y δ 1 , we get

σ(y δ 2 -y δ 1 , y δ 2 -y δ 1 ) + (β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 ) -(β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 )), y δ 2 -y δ 1 ) = 0. By the proprieties of β δ (•), we deduce σ(y δ 2 -y δ 1 , y δ 2 -y δ 1 ) ≤ -(β δ (y δ 2 -ϕ δ 2 ) -β δ (y δ 1 -ϕ δ 1 ), ϕ δ 2 -ϕ δ 1 ) -(β δ (ψ δ 2 -y δ 2 ) -β δ (ψ δ 1 -y δ 1 ), ψ δ 1 -ψ δ 2 ).
Then, by using the Mean-Value Theorem and the coercivity condition H 2 of σ(•, •), we get

c y δ 2 -y δ 1 2 H 1 (Ω) ≤ c δ (c y δ 2 -y δ 1 H 1 (Ω) + ϕ δ 2 -ϕ δ 1 L 2 (Ω) ) ϕ δ 2 -ϕ δ 1 L 2 (Ω) + c δ (c y δ 2 -y δ 1 H 1 (Ω) + ψ δ 1 -ψ δ 2 L 2 (Ω) ) ψ δ 1 -ψ δ 2 L 2 (Ω) .
From above, and since and since the hypothesis of the Theorem are satisfied, we deduce that in all the previous cases we have

y δ 2 -y δ 1 H 1 (Ω) ≤ c δ ϕ δ 2 -ϕ δ 1 L 2 (Ω) + ψ δ 1 -ψ δ 2 L 2 (Ω) .
Lemma 2.3. For any triplet y δ , ϕ δ , ψ δ in Ũ , satisfying the optimality system (S δ ), we have

y δ H 1 (Ω) ≤ max C ϕ δ H 1 (Ω) , C ψ δ H 1 (Ω) ,
and moreover when ϕ δ and ψ δ belong to B H 2 (Ω) (0, ρ 1 ) ∩ W, we deduce that

y δ H 1 (Ω) ≤ ρ 2 . This means that y δ belongs to B H 1 (Ω) (0, ρ 2 ) ∩ U , where ρ 2 := Cρ 1 . Proof. Let v in K(ϕ δ , ψ δ ), where K(ϕ δ , ψ δ ) is given by K(ϕ δ , ψ δ ) = y ∈ H 1 0 (Ω) | ψ δ ≥ y ≥ ϕ δ in Ω . • If y δ -ϕ δ ≥ 0 and ψ δ -y δ ≥ 0, we get β(y δ -ϕ δ ) = β(ψ δ -y δ ) = 0. • If y δ -ϕ δ ≥ 0 and ψ δ -y δ < 0, then β(ψ δ -y δ )(ψ δ -y δ ) ≥ 0 and β(y δ -ϕ δ ) = 0. For all v in K(ϕ δ , ψ δ ), we have v -y δ < v -ψ δ < 0, then -β(ψ δ -y δ )(v -y δ ) ≤ 0.
Then, by the following equation

σ(y δ , v -y δ ) + (β δ (y δ -ϕ δ ) -β δ (ψ δ -y δ ), v -y δ ) = = f, v -y δ , for all v in K(ϕ δ , ψ δ ),
and, if we take v = ψ δ , we get

σ(y δ , y δ ) ≤ σ(y δ , ψ δ ) + f, y δ -ψ δ .
By the coercivity and continuity conditions of σ(•, •) given respectively by H 1 and H 2 , we get

c y δ 2 H 1 (Ω) ≤ C y δ H 1 (Ω) ψ δ H 1 (Ω) + f L 2 (Ω) C y δ H 1 (Ω) + ψ δ L 2 (Ω) .
From the above inequality, we can deduce that we have two cases

a. If ψ δ L 2 (Ω) ≤ C y δ H 1 (Ω)
Then, we get

y δ H 1 (Ω) ≤ C ψ δ H 1 (Ω) . b. If C y δ H 1 (Ω) ≤ ψ δ L 2 (Ω)
, then we obtain

y δ H 1 (Ω) ≤ C ψ δ H 1 (Ω) .
• If y δϕ δ < 0 and ψ δy δ ≥ 0, we deduce

β(y δ -ϕ δ )(y δ -ϕ δ ) ≥ 0 and β(ψ δ -y δ ) = 0. For all v in K(ϕ δ , ψ δ ), we have v -y δ > v -ϕ δ ≥ 0, then β(y δ -ϕ δ )(v -y δ ) ≤ 0.
The following equation

σ(y δ , v -y δ ) + (β δ (y δ -ϕ δ ) -β δ (ψ δ -y δ ), v -y δ ) = f, v -y δ , for all v in K(ϕ δ , ψ δ ), gives σ(y δ , y δ -v) ≤ f, y δ -v , for all v in K(ϕ δ , ψ δ ).
If we take v = ϕ δ , and by the coercivity and continuity conditions of σ(•, •) given respectively by H 1 and H 2 , we get

c y δ 2 H 1 (Ω) ≤ C y δ H 1 (Ω) ϕ δ H 1 (Ω) + f L 2 (Ω) C y δ H 1 (Ω) + ϕ δ L 2 (Ω) .
From the above inequality, we can deduce the following two cases

a. If ϕ δ L 2 (Ω) ≤ C y δ H 1 (Ω) , we get y δ H 1 (Ω) ≤ C ϕ δ H 1 (Ω) . b. If C y δ H 1 (Ω) ≤ ϕ δ L 2 (Ω) , we have y δ H 1 (Ω) ≤ C ϕ δ H 1 (Ω) .
Therefore, in all cases we get

y δ H 1 (Ω) ≤ C ϕ δ H 1 (Ω) .
• The case when y δϕ δ ≤ 0 and ψ δy δ ≤ 0, is similar to case 3.

Lemma 2.4. For any pair p δ , y δ in U × (U ∩ B H 1 (0, ρ 2 )), satisfying the optimality system (S δ ), we have

p δ H 1 ≤ C y δ H 1 (Ω) ,
and when y δ belongs to B H 1 (0, ρ 2 ) ∩ U , we deduce that

p δ H 1 (Ω) ≤ ρ 3 .
This means that p δ belongs to B H 1 (0, ρ 3 ) ∩ U , where ρ 3 := Cρ 2 .

Proof. From the adjoint equation of optimality system (S δ ), we have

σ * p δ , v + µ δ 1 + µ δ 2 , v = y δ -z, v , for all v in H 1 0 (Ω)
if we take v = p δ , and by the coercivity condition H 2 of σ * (•, •), we obtain

p δ H 1 (Ω) ≤ C y δ H 1 (Ω) .

Convergence study of an iterative algorithm

In this section, we give an algorithm to solve problem (P δ ). Roughly speaking, we propose an implicit algorithm to solve the necessary optimality system (S δ ). The proposed algorithm is based on the Gauss-Seidel method and is given below. This algorithm can be seen as a successive approximation method to compute the five points of the function F that we are going to define. From the different steps of the above algorithm, we define the following functions F i , for i = 1, 2, 3, 4 as Algorithm 1 Gauss-Seidel algorithm (Continuous version)

1: Input : y δ 0 , p δ 0 , ϕ δ 0 , ψ δ 0 , λ δ 0 , δ, ν, ε choose ϕ δ 0 , ψ δ 0 in U, ε and δ in R * + ; 2: Begin: 3: Solve Ay δ n + 1 δ β y δ n -ϕ δ n-1 -β ψ δ n-1 -y δ n = f on y δ n 4: Solve A + β ′ δ y δ n -ϕ δ n-1 + β ′ δ ψ δ n-1 -y δ n p δ n = y δ n -z on p δ n . 5: Calculate λ δ n = ν∆ϕ δ n-1 + β ′ δ y δ n -ϕ δ n-1 p δ n 6: Solve ν∆ψ δ n + β ′ δ ψ δ n -y δ n p δ n = -λ δ n on ψ δ n . 7: Solve -λ δ n + ν∆ϕ δ n + β ′ δ y δ n -ϕ δ n p δ n = 0 on ϕ δ n . 8: If the stop criteria is fulfilled Stop. 9: Ensure : s δ n := y δ n , ϕ δ n , ψ δ n , p δ n is a solution 10:
Else; n ← n + 1, Go to Begin. 11: End if 12: End algorithm.

• From step 1, we define F 1 : U × U → U , such that y δ n := F 1 ϕ δ n-1 , ψ δ n-1 ,
we see that F 1 depends on ϕ δ n-1 , ψ δ n-1 , and gives y δ n as the solution of the following state equation

Ay δ n + β δ y δ n -ϕ δ n-1 -β δ ψ δ n-1 -y δ n = f in Ω, and y δ n = 0 on ∂Ω. (8) 
• From step 2, we define

F 2 : U × U × U → U , such that p δ n := F 2 y δ n , ϕ δ n-1 , ψ δ n-1 , (9) 
we see that F 2 depends on ϕ δ n-1 , ψ δ n-1 and y δ n , and gives p δ n as the solution of the following adjoint state equation

Ap δ n + β ′ δ y δ n -ϕ δ n-1 p δ n + β ′ δ ψ δ n-1 -y δ n p δ n = y δ n -z in Ω, and p δ n = 0 on ∂Ω. (10) 
• From step 3, we define

F 3 : U × U → U , such that ψ δ n := F 3 y δ n , p δ n ,
we see that F 3 depends on p δ n and y δ n , and gives ψ δ n as the solution of the following equation

-λ δ n = ν∆ψ δ n + β ′ δ ψ δ n -y δ n p δ n in Ω, and ψ δ n = 0 on ∂Ω. (11) 
• From step 4, we define F 4 : U × U → U , such that

ϕ δ n := F 4 y δ n , p δ n ,
we see that F 4 depends on p δ n , and y δ n , and gives ϕ δ n as the solution of the optimality condition equation

-λ δ n + ν∆ϕ δ n + β ′ δ y δ n -ϕ δ n p δ n = 0 in Ω, and ϕ δ n = 0 on ∂Ω. ( 12 
)
Remark 3.1. We note that the equation given by [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF] is only used to solve the equation given by [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF].

Then according the above definitions of F i , where i = 1, 2, 3, 4, let us define the map

F : U × U → U × U , as ϕ δ n , ψ δ n := F ϕ δ n-1 , ψ δ n-1 ,
where

ϕ δ n := F1 ϕ δ n-1 , ψ δ n-1 := F 4 F 1 ϕ δ n-1 , ψ δ n-1 , F 2 F 1 ϕ δ n-1 , ψ δ n-1 , ϕ δ n-1 , ψ δ n-1
, and

ψ δ n := F2 ϕ δ n-1 , ψ δ n-1 := F 3 F 1 ϕ δ n-1 , ψ δ n-1 , F 2 F 1 ϕ δ n-1 , ψ δ n-1 , ϕ δ n-1 , ψ δ n-1 such that F ϕ δ n-1 , ψ δ n-1 = F1 ϕ δ n-1 , ψ δ n-1 , F2 ϕ δ n-1 , ψ δ n-1
Proposition 3.1. Let ϕ δ n-1 and ψ δ n-1 belong to U and y δ n , ϕ δ n , ψ δ n , p δ n satisfies equations (8), [START_REF] Desong | A variational inequality principle in solid mechanics and application in physically non-linear problems[END_REF], [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF] and [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF] given respectively by F 1 , F 2 , F 3 and F 4 such that δ ≤ C, then we get

y δ n H 1 (Ω) ≤ c δ ϕ δ n-1 H 2 (Ω) + c δ ψ δ n-1 H 2 (Ω) +c f L 2 (Ω) (13) 
p δ n H 1 (Ω) ≤ C + C y δ n H 1 (Ω) (14) 
ϕ δ n H 2 (Ω) ≤ C δν p δ n H 1 (Ω) +C (15) 
and

ψ δ n H 2 (Ω) ≤ C δν p δ n H 1 (Ω) +C (16) 
Proof. From the state equation ( 8), we write

σ y δ n , y δ n + β δ y δ n -ϕ δ n-1 -β δ ψ δ n-1 -y δ n , y δ n = f, y δ n .
Then, by the definition of β δ (•), and by the coercivity condition H 2 of the bilinear form σ (•, •) and thanks to the Mean-Value Theorem applied in the interval of sides {0,

y δ n -ϕ δ n-1 } and {0, ψ δ n-1 -y δ n }, we obtain c y δ n 2 H 1 (Ω) ≤ c δ c y δ n H 1 (Ω) + ϕ δ n-1 L 2 (Ω) ϕ δ n-1 L 2 (Ω) + + c δ ψ δ n-1 L 2 (Ω) +c y δ n H 1 (Ω) ψ δ n-1 L 2 (Ω) +c f L 2 (Ω) y δ n H 1 (Ω) (17)
Then from the above inequality ( 17), we deduce that we have four cases:

1. If ϕ δ n-1 L 2 (Ω) ≤ c y δ n H 1 (Ω) and ψ δ n-1 L 2 (Ω) ≤ c y δ n H 1 (Ω) , then y δ n H 1 (Ω) ≤ c δ ϕ δ n-1 L 2 (Ω) + c δ ψ δ n-1 L 2 (Ω) +c f L 2 (Ω) . 2. If ϕ δ n-1 L 2 (Ω) ≤ c y δ n H 1 (Ω) and ψ δ n-1 L 2 (Ω) ≥ c y δ n H 1 (Ω)
, then, we get

y δ n H 1 (Ω) ≤ c δ ϕ δ n-1 L 2 (Ω) +c f L 2 (Ω) + c √ δ ψ δ n-1 L 2 (Ω) . 3. If ϕ δ n-1 L 2 (Ω) ≥ c y δ n H 1 (Ω) and ψ δ n-1 L 2 (Ω) ≥ c y δ n H 1 (Ω) , thus y δ n H 1 (Ω) ≤ c f L 2 (Ω) + c √ δ ϕ δ n-1 L 2 (Ω) + c √ δ ψ δ n-1 L 2 (Ω) . 4. If ϕ δ n-1 L 2 (Ω) ≥ c y δ n H 1 (Ω) and ψ δ n-1 L 2 (Ω) ≤ c y δ n H 1 (Ω) , therefore y δ n H 1 (Ω) ≤ c δ ψ δ n-1 L 2 (Ω) +c f L 2 (Ω) + c √ δ ϕ δ n-1 L 2 (Ω) .
Finally, in any cases we obtain

y δ n H 1 (Ω) ≤ c δ ϕ δ n-1 L 2 (Ω) + c δ ψ δ n-1 L 2 (Ω) +c f L 2 (Ω) .
Now, from the adjoint state equation ( 10), we get

Ap δ n , p δ n + β ′ δ y δ n -ϕ δ n-1 p δ n + β ′ δ ψ δ n-1 -y δ n p δ n , p δ n = y δ n -z, p δ n in Ω.
By the coercivity condition of σ * (•, •) given by H 2 , we obtain that

p δ n H 1 (Ω) ≤ C y δ n H 1 (Ω)
, by using the following equation

λ δ n = ν∆ϕ δ n-1 + β ′ δ y δ n -ϕ δ n-1 p δ n and λ δ n = 0 on ∂Ω we deduce that λ δ n H 1 (Ω) ≤ C δ p δ n H 1 (Ω) +Cν ϕ δ n-1 H 2 (Ω)
. From equation [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF], and by the coercivity condition H 2 of σ (•, •), and the definition of β ′ δ (•), we obtain

ψ δ n H 2 (Ω) ≤ C δν p δ n H 1 (Ω) + C ν λ δ n H 1 (Ω) ≤ C δν p δ n H 1 (Ω) +C ϕ δ n-1 H 2 (Ω)
. Using equation [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF], and by the coercivity condition H 2 of σ (., .), and the definition of β ′ δ (•), we get

ϕ δ n H 2 (Ω) ≤ C δν p δ n H 1 (Ω) + C ν λ δ n H 1 (Ω) ≤ C δν p δ n H 1 (Ω) +C ϕ δ n-1 H 2 (Ω) . Corollary 3.1. Since ϕ δ n-1 and ψ δ n-1 belong to B H 2 (0, ρ1 )∩U , and letting y δ n , ϕ δ n-1 , ψ δ n-1
belong to Ũ to satisfy the conditions (8), ( 11) and [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF] given respectively by F 1 , F 3 and F 4 such that δ ≤ C, then we get

y δ n H 1 (Ω) ≤ ρ2
This means that y δ n belongs to B H 1 (0, ρ2 ) ∩ U , where ρ2 := C + C δ ρ1 .

Proof. By using inequality [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF], we obtain

y δ n H 1 (Ω) ≤ c δ ϕ δ n-1 H 2 (Ω) + c δ ψ δ n-1 H 2 (Ω) +c f L 2 (Ω) (18) 
Therefore

y δ n H 1 (Ω) ≤ ρ2 (19) 
where ρ2 := C + C δ ρ1 .

Corollary 3.2. Since the hypotheses of Corollary 3.1 are fulfilled, and by letting (y δ n , p δ n ) ∈ H 1 (Ω) × H 1 (Ω) to satisfy the conditions (8), [START_REF] Desong | A variational inequality principle in solid mechanics and application in physically non-linear problems[END_REF] given respectively by F 1 , F 2 , we get

p δ n H 1 (Ω) ≤ ρ3 This means that p δ n belongs to B H 1 (0, ρ3 ) ∩ U
, where ρ3 := C ρ2 . Proof. From inequalities ( 14) and [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], we obtain 11) and [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF] given respectively by F 1 , F 3 and F 4 , we get

p δ n H 1 (Ω) ≤ C ρ2 . Then p δ n H 1 (Ω) ≤ ρ3 , where ρ3 = C ρ2 .
ϕ δ n H 2 (Ω) ≤ ρ4 . and ψ δ n H 2 (Ω) ≤ ρ4 .
This means that ϕ δ n and ψ δ n belong respectively to B H 2 (0, ρ4 )∩U , and ρ4 := C δν ρ3 +C ρ1 , where ρ3 , ρ2 are given respectively by corollaries 3.2 and 3.1.

Proof. From inequalities (15), ( 16) and (3.2), we obtain

ϕ δ n H 2 (Ω) ≤ ρ4 and ψ δ n H 2 (Ω) ≤ ρ4 , where ρ4 := C δν ρ3 + C ρ1 .
Let us give the following theorem to show that the mapping F is locally Lipschitz.

Theorem 3.1. If δ ≤ C, then the mapping F is locally Lipschitz from B H 2 (0, ρ1 ) ∩ U ×B H 2 (0, ρ1 ) ∩ U to B H 2 (0, ρ4 ) ∩ U × B H 2 (0, ρ4 ) ∩ U , with the Lipschitz constant l := l 1 (l 3 +l 4 )+l 2 (l 3 +l 4 )+l 1 l 2 (l 3 +l 4 ), where ρ4 = C δν +( C δ 2 ν +C)ρ 1 , l 1 := C δ , l 2 := C + C ρ3 δ , l 3 = l 4 := C δνC -C ρ3
, and ρ3 is given by Corollary 3.2.

To prove the previous theorem, we need the followings Lemmas. Proof. Let

y δ n = F 1 ϕ δ,1 n-1 , ψ δ,1 n-1 and z δ n = F 1 ϕ δ,2 n-1 , ψ δ,2 n-1 , where y δ n , ϕ δ,1 n-1 , ψ δ,1 n-1 and z δ n , ϕ δ,2 n-1 , ψ δ,2 n-1 belong to U × U × U .
By the equation given by ( 8), we get

σ y δ n -z δ n , y δ n -z δ n + ( β δ y δ n -ϕ δ,1 n-1 -β δ z δ n -ϕ δ,2 n-1 -β δ ψ δ,1 n-1 -y δ n -β δ ψ δ,2 n-1 -z δ n , y δ n -z δ n ) = 0.
By the coercivity condition H 2 of σ (•, •) and Lemma 2.2, we get

y δ n -z δ n 2 H 1 (Ω) ≤ C δ y δ n -z δ n L 2 (Ω) + ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) + C δ y δ n -z δ n L 2 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) .
From the above inequalities, we have four cases

1. If y δ n -z δ n L 2 (Ω) ≤ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) and y δ n -z δ n L 2 (Ω) ≤ ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) , then y δ n -z δ n H 1 (Ω) ≤ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) . 2. If y δ n -z δ n L 2 (Ω) ≥ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) and y δ n -z δ n L 2 (Ω) ≥ ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) , we get y δ n -z δ n H 1 (Ω) ≤ C δ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) . 3. If y δ n -z δ n L 2 (Ω) ≥ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) and y δ n -z δ n L 2 (Ω) ≤ ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω)
, then we get

y δ n -z δ n H 1 (Ω) ≤ C δ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) . 4. If y δ n -z δ n L 2 (Ω) ≥ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) and y δ n -z δ n L 2 (Ω) ≤ ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω)
, then we obtain

y δ n -z δ n H 1 (Ω) ≤ C δ ϕ δ,1 n-1 -ϕ δ,2 n-1 L 2 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 L 2 (Ω) .
Lemma 3.2. The function F 2 defined by (9), is locally Lipschitz from

(B H 1 (0, ρ2 ) ∩ U )×(B H 2 (0, ρ1 ) ∩ U )×(B H 2 (0, ρ1 ) ∩ U ) to B H 1 (0, ρ3 )∩U , with the Lipschitz constant l 2 := C + C ρ3 δ
, where ρ3 is given by Corollary 3.2.

Proof. Let p δ,1 n = F 2 y δ,1 n , ϕ δ,1 n-1 , ψ δ,1 n-1 and p δ,2 n = F 2 y δ,2 n , ϕ δ,2 n-1 , ψ δ,2 n-1 where y δ,1 n , ϕ δ,1 n-1 , ψ δ,1 n-1

and y δ,2 n , ϕ δ,2 n-1 , ψ δ,2 n-1 belong to (B H 1 (0, ρ2 ) ∩ U )× (B H 2 (0, ρ1 ) ∩ W) × (B H 2 (0, ρ1 ) ∩ W).
Then by the adjoint state equation [START_REF] Desong | A variational inequality principle in solid mechanics and application in physically non-linear problems[END_REF], we get

C p δ,2 n -p δ,1 n 2 H 1 (Ω) ≤ C δ β ′ y δ,2 n -ϕ δ,2 n-1 -β ′ y δ,1 n -ϕ δ,1 n-1 L 2 (Ω) p δ,2 n L 2 (Ω) p δ,2 n -p δ,1 n H 1 (Ω) + C δ β ′ ψ δ,2 n-1 -y δ,2 n -β ′ ψ δ,1 n-1 -y δ,1 n L 2 (Ω) p δ,2 n L 2 (Ω) p δ,2 n -p δ,1 n H 1 (Ω) + y δ,2 n -y δ,1 n L 2 (Ω) p δ,2 n -p δ,1 n L 2 (Ω) .
By the definition of β (•) and by the Mean-Value Theorem applied in the intervals of sides

{ y δ,2 n -ϕ δ,2 n-1 , y δ,1 n -ϕ δ,1 n-1 } and { ψ δ,2 n-1 -y δ,2 n , ψ δ,1 n-1 -y δ,1 n }, we get p δ,2 n -p δ,1 n H 1 (Ω) ≤ C + C ρ3 δ ( y δ,2 n -y δ,1 n L 2 (Ω) + ψ δ,2 n-1 -ψ δ,1 n-1 L 2 (Ω) + ϕ δ,2 n-1 -ϕ δ,1 n-1 L 2 (Ω) ).
Lemma 3.3. Since the following condition,

ρ3 ≤ δνC, is fulfilled, the function F 3 is locally Lipschitiz from (B H 1 (0, ρ2 ) ∩ U )×(B H 1 (0, ρ3 ) ∩ U )× (B H 1 (0, ρ4 ) ∩ U ) to (B H 2 (0, ρ4 ) ∩ W), with Lipschitz constant l 3 := C δνC -C ρ3 .
Proof. From equation [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF], we obtain

νσ ϕ δ,1 n -ϕ δ,2 n , ϕ δ,1 n -ϕ δ,2 n = β ′ δ (y δ,1 n -ϕ δ,1 n )p δ,1 n -β ′ δ (y δ,2 n -ϕ δ,2 n )p δ,2 n , ϕ δ,1 n -ϕ δ,2 n + + λ δ,1 n -λ δ,2 n , ϕ δ,1 n -ϕ δ,2 n .
By the coercivity condition H 2 of σ (., .), and by Lemma 2.1, we obtain

ϕ δ,1 n -ϕ δ,2 n H 2 (Ω) ≤ C ρ3 νδ (y δ,1 n -y δ,2 n ) -(ϕ δ,1 n -ϕ δ,2 n ) L 2 (Ω) + C νδ p δ,1 n -p δ,2 n L 2 (Ω) + C ν λ δ,1 n -λ δ,2 n L 2 (Ω) (20) 
For the previous inequality to have a meaning, we must have ρ3 ≤ Cνδ.

Then, we get

ϕ δ,1 n -ϕ δ,2 n H 2 (Ω) ≤ C ρ3 νδ -C ρ3 y δ,1 n -y δ,2 n L 2 (Ω) + C νδ -C ρ3 p δ,1 n -p δ,2 n L 2 (Ω) + + δC νδ -C ρ3 λ δ,1 n -λ δ,2 n L 2 (Ω) .
Lemma 3.4. Since the following condition, ρ3 ≤ δνC, is fulfilled, then, the function F 4 given by (3) is locally Lipschitiz from

(B H 1 (0, ρ2 ) ∩ U )×(B H 1 (0, ρ3 ) ∩ U )×(B H 1 (0, ρ4 ) ∩ U ) to (B H 2 (0, ρ4 ) ∩ W), with Lipschitz constant l 4 := C δνC -C ρ3 .
Proof. From equation [START_REF] Ghanem | Controle Optimal De L'obstacle (Motivation Numerique)[END_REF], we obtain

νσ ψ δ,1 n -ψ δ,2 n , ψ δ,1 n -ψ δ,2 n = β ′ δ (ψ δ,1 n -y δ,1 n )p δ,1 n -β ′ δ (ψ δ,2 n -y δ,2 n )p δ,2 n , ψ δ,1 n -ψ δ,2 n + + λ δ,1 n -λ δ,2 n , ψ δ,1 n -ψ δ,2 n .
By the coercivity condition H 2 of σ (•, •) and by Lemma 2.2, we get

ψ δ,1 n -ψ δ,2 n H 2 (Ω) ≤ C ρ3 νδ (y δ,1 n -y δ,2 n ) -(ψ δ,1 n -ψ δ,2 n ) L 2 (Ω) + C νδ p δ,1 n -p δ,2 n L 2 (Ω) + + C ν λ δ,1 n -λ δ,2 n L 2 (Ω) .
For the previous inequality to have a sense, we must have ρ3 ≤ Cνδ.

Then, we get

ψ δ,1 n -ψ δ,2 n H 2 (Ω) ≤ C ρ3 νδ -C ρ3 y δ,1 n -y δ,2 n L 2 (Ω) + C νδ -C ρ3 p δ,1 n -p δ,2 n L 2 (Ω) + + δC νδ -C ρ3 λ δ,1 n -λ δ,2 n L 2 (Ω) .
Now, we give the proof of Theorem 3.1.

Proof. Let (ϕ δ,1 n , ψ δ,1 n ) := (F 3 p δ,1 n , y ).

Then, we get

(ϕ δ,1 n , ψ δ,1 n ) -(ϕ δ,2 n , ψ δ,2 n ) H 2 (Ω) = F 3 p δ,1 n , y δ,1 n -F 3 p δ,2 n , y δ,2 n H 2 (Ω) + + F 4 p δ,1 n , y δ,1 n -F 4 p δ,2 n , y δ,2 n H 2 (Ω) .
Thanks to the Lemmas 3.3 and 3.4, we get

(ϕ δ,1 n , ψ δ,1 n ) -(ϕ δ,2 n , ψ δ,2 n ) H 2 (Ω) ≤ (l 3 + l 4 ) y δ,1 n -y δ,2 n H 1 (Ω) + p δ,1 n -p δ,2 n H 1 (Ω) , where p δ,1 n := F 2 ϕ δ,1 n-1 , y δ,1 n , ψ δ,1 n-1 , p δ,2 n := F 2 ϕ δ,1 n-1 , y δ,2 n , ψ δ,1 n-1 , y δ,1 n := F 1 (ϕ δ,1 n-1 , ψ δ,1 n-1
), and y δ,2 n := F 1 (ϕ δ,2 n-1 , ψ δ,2 n-1 ), and by Lemmas 3.1 and 3.2, we obtain

(ϕ δ,1 n , ψ δ,1 n ) -(ϕ δ,2 n , ψ δ,2 n ) H 2 (Ω) ≤ l ϕ δ,1 n-1 -ϕ δ,2 n-1 H 1 (Ω) + ψ δ,1 n-1 -ψ δ,2 n-1 H 1 (Ω) ,
where l := l 1 l 2 (l 4 + l 3 ) + l 2 (l 4 + l 3 ) + l 1 (l 4 + l 3 ) is the Lipschitz constant of the function F . Remark 3.2. From above, we have proven that the function F is locally Lipschitz, and we can see that it is very difficult to get a sharp estimate of the Lipschitz constant l of F . But we are convinced that appropriate choices of ρ1 and δ (small enough) could make this constant strictly less than 1, so that F is contractive.

In the sequel, we illustrate how the combined direct and dumped Newton method can be used most effectively for solving the optimality system (S δ ). The main idea is to linearize equations given by ( 8), ( 3) and [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF], for the numerical solution of the set equation ( 8), ( 3) and [START_REF] Ghanem | Optimal control of unilateral obstacle problem with a source term[END_REF]. We use the iterative relaxed Newton's method (see [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF]) on each mapping F 1 ,F 3 and F 4 , and prove the convergence of the proposed algorithm. Theorem 3.2. Since ( φδ , ψδ ) belongs to U × U is solution of the following equation

( φδ , ψδ ) -F φδ , ψδ = 0
Then ȳδ , pδ , φδ , ψδ belonging to U × U × W × W satisfies the optimality system (S δ ), where, in the sequel, we put sδ := ȳδ , pδ , φδ , ψδ .

Proof. Since φδ , ψδ belonging to W × W satisfies equation (3.2), where φδ , ψδ is given by φδ , ψδ := (F 3 ȳδ , pδ , F 4 ȳδ , pδ ),

where ȳδ and pδ belong to U can be respectively defined by

ȳδ := F 1 φδ , ψδ , (21) 
and pδ := F 3 ȳδ , φδ , ψδ .

Then, by the definitions of the mappings F 1 , F 2 , F 3 and F 4 , the relations (3), ( 21) and ( 22) are respectively written as Hence, we remark that the set of equations ( 23), ( 24), ( 25) and ( 26) is the same set of the equations of the optimality system (S δ ) when y δ , ϕ δ , ψ δ , p δ is replaced by ȳδ , φδ , ψδ , pδ .

Aȳ δ + β δ ȳδ -φδ -β δ ψδ -ȳδ = f,
The equations ( 8), ( 11) and ( 12) of the optimality system (S δ ) are respectively nonlinear according to y δ , ϕ δ and ψ δ . Therefore for the solution of the system (S δ ), we propose the following iterative algorithm.

Convergence results

In this subsection, we give some conditions on δ and ω to have the convergence of the above algorithm. We denote by ȳδ , pδ , φδ and ψδ the solutions of the equations ( 23), ( 24), ( 25) and ( 26) respectively, and let y δ n , λ δ n , p δ n , ψ δ n and ϕ δ n be given respectively by step 1, step 2, step 3, step 4, step 5 respectively of the latter algorithm.

Remark 3.3. From Lemma 3.2, if we replace y δ,2 n , ϕ δ,2 n-1 , ψ δ,2 n-1 and p δ,2 n respectively by ȳδ , φδ , ψδ and pδ , we get

p δ,1 n -pδ H 1 (Ω) ≤ l 2 y δ,1 n -ȳδ L 2 (Ω) + ϕ δ,1 n-1 -φδ L 2 (Ω) + ψ δ,1 n-1 -ψδ L 2 (Ω) ,
where

l 2 = C + C ρ3 δ .
Lemma 3.5. Let λδ in U be the solution of the following equation

λδ = ν∆ φδ + β ′ δ ȳδ -φδ pδ , since pδ H 1 (Ω) ≤ ρ3 we obtain λ δ n -λδ L 2 (Ω) ≤ k λ y δ n -ȳδ L 2 (Ω) + ϕ δ n-1 -φδ L 2 (Ω) + p δ n -pδ L 2 (Ω)
where k λ := C δ and ρ3 ≤ Cδν.

Proof. From step 3 of the continuous version of the algorithm 2, and by Lemma 2.1, we get

λ δ n -λδ L 2 (Ω) ≤ (ν + C ρ3 δ ) ϕ δ n-1 -φδ H 2 (Ω) + C δ p δ n -pδ H 1 (Ω) + + y δ n -ȳδ L 2 (Ω) ,
then, we get

λ δ n -λδ L 2 (Ω) ≤ k λ ( ϕ δ n-1 -φδ H 2 (Ω) + p δ n -pδ H 1 (Ω) + C ρ3 δ y δ n -ȳδ L 2 (Ω) ),
where

k λ := max{(ν + C ρ3 δ ), C δ , C ρ3 δ } = C δ .
Lemma 3.6. Let φδ in U be the solution of (25), since

pδ H 1 (Ω) ≤ ρ3
, where ω ϕ is strictly positive, such that

δνC + C ρ3 (C + δνC -C ρ3 ) ≤ ω ϕ ≤ 1,
and

ω ϕ < δ 2 νC -Cδ ρ3 Cδ + C ρ3 ,
we obtain

ϕ δ n -φδ H 2 (Ω) ≤ k 3 ( y δ n -ȳδ H 1 (Ω) + ϕ δ n-1 -φδ H 2 (Ω) + + p δ n -pδ H 1 (Ω) + λ δ n -λδ H 1 (Ω) ), ( 27 
)
where

k 3 := ω ϕ C δνC -C ρ3
and ρ3 ≤ Cδν.

Proof. From step 5 of the continuous version of the algorithm 2, we obtain

νσ ϕ δ n -φδ , ϕ δ n -φδ = -β ′′ δ y δ n -ϕ δ n-1 p δ n ϕ δ n -φδ , ϕ δ n -φδ + ν (1 -ω ϕ ) σ ϕ δ n-1 -φδ , ϕ δ n -φδ + + β ′′ δ y δ n -ϕ δ n-1 p δ n ϕ δ n-1 -φδ , ϕ δ n -φδ + + ω ϕ β ′ δ y δ n -ϕ δ n-1 -β ′ δ ȳδ -φδ p δ n + β ′ δ ȳδ -φδ p δ n -pδ , ϕ δ n -φδ + + ω ϕ λ δ n -λδ , ϕ δ n -φδ .
By the continuity and coercivity conditions H 1 and H 2 of σ (•, •), and the Mean-Value Theorem applied in the interval of sides {(y δ nϕ δ n-1 ), (ȳ δ -φδ )}, where

r δ (θ) = θ y δ n -ϕ δ n-1 + (1 -θ) ȳδ -φδ such that 0 ≤ θ ≤ 1, we obtain δνC-C ρ3 δ ϕ δ n -φδ H 2 (Ω) ≤ (1-ωϕ)δνC+(1+ωϕ)C ρ3 δ ϕ δ n-1 -φδ H 2 (Ω) + + ω ϕ C ρ3 δ y δ n -ȳδ H 1 (Ω) +ω ϕ C δ p δ n + pδ H 1 (Ω) + + ω ϕ C λ δ n -λδ H 1 (Ω)
. Finally, we obtain

ϕ δ n -φδ H 2 (Ω) ≤ (1 -ω ϕ ) δνC + (1 + ω ϕ ) C ρ3 δνC -C ρ3 ϕ δ n-1 -φδ H 2 (Ω) + + ω ϕ C ρ3 δνC -C ρ3 y δ n -ȳδ H 1 (Ω) +ω ϕ C δνC -C ρ3 p δ n -pδ H 1 (Ω) + + δωϕC δνC-C ρ3 λ δ n -λδ H 1 (Ω) .
Lemma 3.7. Let ψδ in U be the solution of (26), since pδ H 1 (Ω) ≤ ρ3 where ω ψ is strictly positive, such that

δνC + C ρ3 (C + δνC -C ρ3 ) ≤ ω ψ ≤ 1
and

ω ψ < δ 2 νC -Cδ ρ3 Cδ + C ρ3 .
Then, we obtain

ψ δ n -ψδ H 2 (Ω) ≤ k 2 ( y δ n -ȳδ H 1 (Ω) + ψ δ n-1 -ψδ H 2 (Ω) + p δ n -pδ H 1 (Ω) + + λ δ n -λδ H 1 (Ω) )
where ρ3 ≤ Cδν and

k 2 := ω ψ C δνC -C ρ3 .
Proof. From step 4 of the continuous version of the algorithm 2, we obtain

νσ ψ δ n -ψδ , ψ δ n -ψδ = β ′′ δ ψ δ n-1 -y δ n p δ n ψ δ n -ψδ , ψ δ n -ψδ + + ν (1 -ω ψ ) σ ψ δ n-1 -ψδ , ψ δ n -ψδ + -β ′′ δ ψ δ n-1 -y δ n p δ n ψ δ n-1 -ψδ , ψ δ n -ψδ + + ω ψ β ′ δ ψ δ n-1 -y δ n -β ′ δ ψδ -ȳδ p δ n + β ′ δ ψδ -ȳδ p δ n -pδ , ψ δ n -ψδ + + ω ψ λ δ n -λδ , ψ δ n -ψδ .
By the continuity and coercivity conditions H 1 and H 2 of σ (•, •), and the Mean-Value Theorem applied in the interval of sides

{(ψ δ n-1 -y δ n ), ( ψδ -ȳδ )}, where r δ (θ) = θ ψ δ n-1 -y δ n + (1 -θ) ψδ -ȳδ such that 0 ≤ θ ≤ 1, we get δνC-C ρ3 δ ψ δ n -ψδ H 2 (Ω) ≤ (1-ωψ)δνC+(1+ωψ)C ρ3 δ ψ δ n-1 -ψδ H 2 (Ω) + + ω ψ C ρ3 δ y δ n -ȳδ H 1 (Ω) +ω ψ C δ p δ n -pδ H 1 (Ω) + + ω ψ C λ δ n -λδ H 1 (Ω) .
Finally, we obtain

ψ δ n -ψδ H 2 (Ω) ≤ (1 -ω ψ ) δνC + (1 + ω ψ ) C ρ3 δνC -C ρ3 ψ δ n-1 -ψδ H 2 (Ω) + + ω ψ C ρ3 δνC -C ρ3 y δ n -ȳδ H 1 (Ω) +ω ψ C δνC -C ρ3 p δ n -pδ H 1 (Ω) + + ω ψ Cδ δνC-C ρ3 λ δ n -λδ H 1 (Ω) .
Lemma 3.8. Let y δ n in U be the solution of (23), since the condition (3.7) of previous Lemma 3.7 is fulfilled, where

δC + C -δ δC + C < ω y ≤ (δC + C) (δC + 2C) ≤ 1,
we get

y δ n -ȳδ H 1 (Ω) ≤ k 1 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V
where

k 1 := (1 -ω y ) C + C δ , e δ n-1 := y δ n-1 , ϕ δ n-1 , ψ δ n-1 , ēδ := ȳδ , φδ , ψδ and V := H 1 (Ω) × H 2 (Ω) × H 2 (Ω).
Proof. From step 1 of the algorithm 2, and since

-(β ′ δ y δ n-1 -ϕ δ n-1 + β ′ δ ψ δ n-1 -y δ n-1
) y δ n -ȳδ , y δ n -ȳδ ≤ 0, and by the Mean-Value Theorem applied in the interval of sides {(y δ n-1ϕ δ n-1 ), (ȳ δ -φδ )} and {(ψ δ n-1y δ n-1 ), ( ψδ -ȳδ )}, we get

σ y δ n -ȳδ , y δ n -ȳδ ≤ (1 -ω y ) σ y δ n-1 -ȳδ , y δ n -ȳδ + (β ′ δ y δ n-1 -ϕ δ n-1 + β ′ δ ψ δ n-1 -y δ n-1 ) y δ n-1 -ȳδ , y δ n -ȳδ -ω y β ′ δ r δ 1 (θ) -β ′ δ y δ n-1 -ϕ δ n-1 + β ′ δ y δ n-1 -ϕ δ n-1 y δ n-1 -ȳδ , y δ n -ȳδ + ω y β ′ δ r δ 1 (θ) ϕ δ n-1 -φδ , y δ n -ȳδ -ω y β ′ δ r δ 2 (θ) -β ′ δ ψ δ n-1 -y δ n-1 + β ′ δ ψ δ n-1 -y δ n-1 y δ n-1 -ȳδ , y δ n -ȳδ + ω y β ′ δ r δ 2 (θ) ψ δ n-1 -ψδ , y δ n -ȳδ , where r δ 1 (θ) = θ y δ n-1 -ϕ δ n-1 + (1 -θ) ȳδ -φδ , and 
r δ 2 (θ) = θ ψ δ n-1 -y δ n-1 + (1 -θ) ψδ -ȳδ such that 0 ≤ θ ≤ 1.
Again by the Mean-Value Theorem applied respectively in the interval of sides

{r δ 1 (θ) , y δ n-1 -ϕ δ n-1 } and {r δ 2 (θ) , ψ δ n-1 -y δ n-1 }, we obtain σ y δ n -ȳδ , y δ n -ȳδ ≤ (1 -ω y ) σ y δ n-1 -ȳδ , y δ n -ȳδ + + (1 -ω y ) β ′ δ y δ n-1 -ϕ δ n-1 y δ n-1 -ȳδ , y δ n -ȳδ + + (1 -ω y ) β ′ δ ψ δ n-1 -y δ n-1 y δ n-1 -ȳδ , y δ n -ȳδ + + ω y β ′′ δ s δ 1 (θ) (1 -θ) y δ n-1 -ϕ δ n-1 -(1 -θ) ȳδ -φδ y δ n-1 -ȳδ , y δ n -ȳδ + + ω y β ′ δ r δ 1 (θ) ϕ δ n-1 -φδ , y δ n -ȳδ + + ω y β ′′ δ s δ 2 (θ) (1 -θ) ψ δ n-1 -y δ n-1 -(1 -θ) ψδ -ȳδ y δ n-1 -ȳδ , y δ n -ȳδ + + ω y β ′ δ r δ 2 (θ) ψ δ n-1 -ψδ , y δ n -ȳδ .
where,

s δ 1 (θ) := θ y δ n-1 -ϕ δ n-1 +(1 -θ) r δ 1 (θ) and s δ 2 (θ) := θ ψ δ n-1 -y δ n-1 +(1 -θ) r δ 2 (θ)
. By the coercivity and continuity conditions H 1 and H 2 of σ (•, •), we obtain

C y δ n -ȳδ 2 H 1 (Ω) ≤ (1 -ω y ) C y δ n-1 -ȳδ H 1 (Ω) y δ n -ȳδ H 1 (Ω) + + C (1 -ω y ) δ y δ n-1 -ȳδ H 1 (Ω) y δ n -ȳδ H 1 (Ω) + + Cω y (1 -θ) δ y δ n-1 -ȳδ -ϕ δ n-1 -φδ H 1 (Ω) y δ n-1 -ȳδ H 1 (Ω) y δ n -ȳδ H 1 (Ω) + + Cω y δ ϕ δ n-1 -φδ H 2 (Ω) y δ n -ȳδ H 1 (Ω) + + Cω y (1 -θ) δ y δ n-1 -ȳδ -ψ δ n-1 -ψδ H 1 (Ω) y δ n-1 -ȳδ H 1 (Ω) y δ n -ȳδ H 1 (Ω) + + Cω y δ ψ δ n-1 -ψδ H 2 (Ω) y δ n -ȳδ H 1 (Ω) .
Finally, we have

y δ n -ȳδ H 1 (Ω) ≤ k 1 y δ n-1 -ȳδ 2 H 1 (Ω) + ϕ δ n-1 -φδ 2 H 2 (Ω) + ψ δ n-1 -ψδ 2 H 2 (Ω) + y δ n-1 -ȳδ H 1 (Ω) + ϕ δ n-1 -φδ H 2 (Ω) + ψ δ n-1 -ψδ H 2 (Ω) ,
where

k 1 := max (1 -ω y ) C + 1 δ C , ω y 1 δ C (1 -θ) , ω y 1 δ C = (1 -ω y ) C + 1 δ C . Theorem 3.3. Let e δ n := y δ n , ϕ δ n , ψ δ n , ēδ := ȳδ , φδ , ψδ and V := H 1 (Ω) × H 2 (Ω) × H 2 (Ω), then we get e δ n -ēδ V ≤ k max e δ n-1 -ēδ 2 V , e δ n-1 -ēδ V ,
where

k := 2 k 1 + k3 , k3 := k 3 k 1 + l2 + 1 and l2 = l 2 (Ck 1 + C) .
Proof. From equations (3.8) and (3.3), we get

y δ n -ȳδ V ≤ k 1 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V ,
and

p δ n -pδ H 1 (Ω) ≤ l 2 (C y δ n -ȳδ H 1 (Ω) +C ϕ δ n-1 -φδ H 2 (Ω) + C ψ δ n-1 -ψδ H 2 (Ω) ),
then we obtain

p δ n -pδ H 1 (Ω) ≤ l2 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V , where l2 := l 2 (Ck 1 + C) .
And by equation ( 27), we get

λ δ n -λδ L 2 (Ω) ≤ k λ ( ϕ δ n-1 -φδ H 2 (Ω) + l2 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V + C ρ3 δ k 1 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V ) (28)
then, we obtain

ϕ δ n -φδ H 2 (Ω) ≤ k3 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V where k3 := k 3 k 1 + l2 + 1 + kλ ,
and by equation ( 27), we get

ψ δ n -ψδ H 2 (Ω) ≤ k 2 ( y δ n -ȳδ H 1 (Ω) + ψ δ n-1 -ψδ H 2 (Ω) + p δ n -pδ H 1 (Ω) + + λ δ n -λδ H 1 (Ω) ),
then, we obtain

ψ δ n -ψδ H 2 (Ω) ≤ k2 e δ n-1 -ēδ 2 V + e δ n-1 -ēδ V (29) 
where k2 := k 2 k 1 + l2 + 1 + kλ .

From equations (3.8), (3.1) and (29), we get

e δ n -ēδ V ≤ 2 k 1 + k3 + k2 max e δ n-1 -ēδ 2 V , e δ n-1 -ēδ V .
Finally, we get

e δ n -ēδ V ≤ k max e δ n-1 -ēδ 2 V , e δ n-1 -ēδ V (30) 
where k := 2 k 1 + k3 + k2 .

Remark 3.4. As seen above, it is very difficult to give a sharp estimate of the constant k and to prove that this constant is less than 1 to get the convergence of the latter algorithm. However, we believe that with suitable choices of δ and ω, we can make this constant less than 1.

Remark 3.5. From Theorem 3.3, we deduce that y δ n converges strongly to ȳδ in H 1 0 (Ω) and ϕ δ n converges strongly to φδ in H 2 (Ω) and ψ δ n converges strongly to ψδ in H 2 (Ω).

Corollary 3.4. By the assumptions of Theorem 3.3, we deduce that

| J y δ n , ϕ δ n , ψ δ n -J y δ n-1 , ϕ δ n-1 , ψ δ n-1 | goes to 0.
Proof. From the cost functional defined in (P δ ), we can write

| J y δ n , ϕ δ n , ψ δ n -J y δ n-1 , ϕ δ n-1 , ψ δ n-1 |= 1 2 | Ω y δ n -z 2 dx+ ν Ω ∇ϕ δ n 2 + ∇ψ δ n 2 dx - Ω y δ n-1 -z 2 dx + ν Ω ∇ϕ δ n-1 2 + ∇ψ δ n-1 2 dx | .
From Corollary 3.1, we have

y δ n-1 L 2 (Ω) ≤ ρ2 , ϕ δ n-1 H 2 (Ω) ≤ ρ1 and ψ δ n-1 H 2 (Ω) ≤ ρ1 , then, we deduce that | J y δ n , ϕ δ n , ψ δ n -J y δ n-1 , ϕ δ n-1 , ψ δ n-1 |≤ ≤ 1 2 (( y δ n -y δ n-1 L 2 (Ω) )( y δ n -y δ n-1 L 2 (Ω) +2 u δ n-1 L 2 (Ω) +2 z L 2 (Ω) ) ν ( ∇ϕ δ n -∇ϕ δ n-1 L 2 (Ω) )( ∇ϕ δ n -∇ϕ δ n-1 L 2 (Ω) +2 ∇ϕ δ n-1 L 2 (Ω) ) ν ( ∇ψ δ n -∇ψ δ n-1 L 2 (Ω) )( ∇ψ δ n -∇ψ δ n-1 L 2 (Ω) +2 ∇ψ δ n-1 L 2 (Ω) ) )
and

| J y δ n , ϕ δ n , ψ δ n -J y δ n-1 , ϕ δ n-1 , ψ δ n-1 |≤ 1 2 ( y δ n -y δ n-1 2 
L 2 (Ω) +(2ρ 2 +C) y δ n -y δ n-1 L 2 (Ω) + ν ∇ϕ δ n -∇ϕ δ n-1 2 
L 2 (Ω) +(2ρ 1 ) ∇ϕ δ n -∇ϕ δ n-1 L 2 (Ω) + ν ∇ψ δ n -∇ψ δ n-1 2 
L 2 (Ω) +(2ρ 1 ) ∇ψ δ n -∇ψ δ n-1 L 2 (Ω) ).
where d = 1, 2, f h := (f 0 , f 1 , ..., f N +1 ), z h := (z 0 , z 1 , ..., z N +1 ), and such that for one dimensional problem, A 1 h is (N + 2) × (N + 2) symmetric positive definite matrix, where A 1 h is given in (31) and for two dimensional problem A 2 h is (N + 2) 2 × (N + 2) 2 symmetric matrix, where A 2 h is given in (32). Below, we give the discrete algorithm of the continuous algorithm as Remark 4.1. Theorem 3.3 is given for the continuous problem and it is clear that for the discrete form of the proposed algorithm, we must introduce the discretisation parameter h. But for this discrete form of the algorithm 2, it is very difficult to give a sharp estimate of the Lipschitz constant k given by Theorem 3.3.

Numerical examples in one dimensional space

In this section, we take Ω = [0, 1] and we describe some numerical experiments in one dimensional space based on the previous algorithm. We also give some numerical tests when in each test we vary one of the parameters ω, δ, N and ν, where f (x) = 100xcos(3πx), z(x) = cos(4πx 2 ) and ν > 0 are given. In the sequel, we note by ǫ n the quantity max { y ny n-1 ∞ , ϕ nϕ n-1 ∞ }. Numerical results are displayed in Table 1 according to the variation of ω. In Figure 1, we give the curves corresponding to the controls ϕ and ψ. Curves given in Figure 2 show the contact region I(y) between the state and the control functions. Finally, Figure 3 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Numerical results are displayed in Table 2 according to the variation of N . In Figure 4, curves corresponding to the controls ϕ and ψ are shown. Curves given inFigure 5 show the contact region I(y) between the state and the control functions. Finally, Figure 6 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Numerical results are displayed in Table 3 according to the variation of ν. In Figure 7, curves corresponding to the controls ϕ and ψ are shown. Curves given in Figure 8 show the contact region I(y) between the state and the control functions. Finally, Figure 9 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Numerical results are displayed in Table 4 according to the variation of δ. In Figure 10, curves corresponding to the controls ϕ and ψ are shown. Curves given in Figure 11 show the contact region I(y) between the state and the control functions. Finally, Figure 12 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. 

ω ♯ Iteration J | J n -J n-1 | y -z ∞ ǫ n 0.

N ♯ Iteration

J | J n -J n-1 | y -z ∞ ǫ
ν ♯ Iteration J | J n -J n-1 | y -z ∞ ǫ n 0.
δ ♯ Iteration J | J n -J n-1 | y -z ∞ ǫ n h 2 41 

Numerical examples in two dimensional space

In this section, we describe some numerical experiments in two dimensional space based on the previous algorithm. We also give some numerical tests when in each test we vary one of the parameters ω, δ, N and ν, where Ω = [0, 1]×[0, 1], f (x, y) = x 3 sin(2πx 2 )ycos(2πy 2 ) and z(x, y) = sin(2πx 2 )cos(2πy 2 )) and ω y = ω ϕ = ω ψ = ω. Numerical results are displayed in Table 5 according to the variation of ω. Figure 13 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Curves given in Figure 14 and Figure 15 corresponding to the controls and state functions are shown. Numerical results are displayed in Table 6 according to the variation of N . Figure 16 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Curves given in Figure 17 Figure 18 corresponding to the controls and state functions are shown. Numerical results are displayed in Table 7 according to the variation of ν. Figure 19 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Curves given in Figure 20 and Numerical results are displayed in Table 8 according to the variation of δ. Figure 22 gives graphical variations in a log-log scale of ǫ n and J n for each iteration n. Curves given in Figure 23 and Figure 24 

ω ♯ Iteration

J | J n -J n-1 | y -z ∞ ǫ n 0.

N ♯ Iteration

Conclusion and remarks

We notice that techniques used in the paper of Ghanem et al. [START_REF] Ghanem | On the numerical study of an obstacle optimal Control problem with source term[END_REF] can be easily applied to the numerical resolution of the problem considered in this work. The given numerical results are acceptable although the convergence of the algorithm is not fast. They also consolidate our perception given in Remarks 3.5 and 4.1 about the Lipschitz constants. In order to improve the speed of convergence, we can either apply other algorithms of resolution or should improve the used algorithm by optimizing the choice of the parameter (by the line search method, for example).

Corollary 3 . 3 .

 33 Since the hypotheses of corollary 3.1 are fulfilled, and by letting y δ n , ϕ δ n , ψ δ n in Ũ to satisfy the conditions (8), (

Lemma 3 . 1 .

 31 The function F 1 defined by (3) is Lipschitz continuous from U to U , with a Lipschitz constant l 1 := C δ .

  in Ω, and ȳδ = 0 on ∂Ω (23)Ap δ + β ′ δ ȳδ -φδ pδ + β ′ δ ψδ -ȳδ pδ = ȳδz,in Ω, and pδ = 0 on ∂Ω (24) ν∆ φδ + β ′ δ ȳδ -φδ pδ = -λδ , in Ω, and φδ = 0 on ∂Ω (25) and ν∆ ψδ + β ′ δ ψδ -ȳδ pδ -λδ = 0, in Ω, and ψδ = 0 on ∂Ω (26)
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 11 Test 1: Study of the dependence on the parameter ω with δ = h 2 , ν = 1 and N = 200

Figure 1 : 1 0

 11 Figure 1: Left (obstacle ϕ), right (obstacle ψ) continuous line; ω = 0.25, dash line; ω = 0.75, dash-dot line; ω = 1

Figure 2 :

 2 Figure 2: Left(state and obstacles (ω = 0, 25)), right(state) continuous line; ω = 0.25, dash line; ω = 0.75, dash-dot line; ω = 1

Figure 3 :

 3 Figure 3: Left(error ǫ n ), right(cost functional J n ) continuous line; ω = 0.25, dash line; ω = 0.75, dash-dot line; ω = 1

Figure 4 :

 4 Figure 4: Left(obstacle ϕ), right(obstacle ψ) continuous line; N = 100, dash line; N = 150, dash-dot line; N = 200

Figure 5 :

 5 Figure 5: Left(state and obstacles (N = 100)), right(state) continuous line; N = 100, dash line; N = 150, dash-dot line; N = 200

Figure 6 :

 6 Figure 6: Left(error ǫ n ), right(cost functional J n ), continuous line; N = 100, dash line; N = 150, dash-dot line; N = 200

Figure 7 : 1 0

 71 Figure 7: Left(obstacle ϕ), right(obstacle ψ) continuous line; ν = 0.01, dash line; ν = 0.1, dash-dot line; ν = 1

Figure 8 :

 8 Figure 8: Left(state and obstacles (ν = 0.01)), right(state) continuous line; ν = 0.01, dash line; ν = 0.1, dash-dot line; ν = 1

Figure 9 :

 9 Figure 9: Left(error ǫ n ), right(cost functional J n ), continuous line; ν = 0.01, dash line; ν = 0.1, dash-dot line; ν = 1

Figure 10 : 3 0

 103 Figure 10: Left(obstacle ϕ), right(obstacle ψ), continuous line; δ = h 2 , dash line; δ = h 2.5 , dash-dot line; δ = h 3

Figure 11 :

 11 Figure 11: Left(state and obstacle (δ = h 2 )), right(state) continuous line; δ = h 2 , dash line; δ = h 2.5 , dash-dot line; δ = h 3

Figure 12 :

 12 Figure 12: Left(error ǫ n ), right(cost functional J n ) continuous line; δ = h 2 , dash line; δ = h 2.5 , dash-dot line; δ = h 3
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 21 Test 1: Study of the dependence on the parameter ω with δ = h 4 , ν = 1 and N = 40

  Cost functional J n

Figure 13 :

 13 Figure 13: Left(error ǫ n ), right(cost functional J n ) continuous line; ω = 0.25, dash line; ω = 0.5, dash-dot line; ω = 0.75

Figure 14 :

 14 Figure 14: Left(state function y), right(obstacle function ϕ)

Figure 15 :

 15 Figure 15: Obstacle function ψ

  Cost functional J n

Figure 16 :

 16 Figure 16: Left(error ǫ n ), right(cost functional J n ) continuous line; N = 30, dash line; N = 35, dash-dot line; N = 40

Figure 17 :

 17 Figure 17: Left(state function y), right(obstacle function ϕ)

Figure 18 :

 18 Figure 18: Obstacle function ψ

Figure 21 Table 7 :

 217 corresponding to the controls and state functions are shown. Numerical results for two dimensional space while varying ν Cost functional J n

Figure 19 : 1 0

 191 Figure 19: Left (error ǫ n ), right(cost functional J n ) continuous line ν = 0.1; dash line ν = 0.5; dash-dot line ν = 1

Figure 20 :Figure 21 :

 2021 Figure 20: Left(state function y), right(obstacle function ϕ)

  Cost functional J n

Figure 22 : 4 0

 224 Figure 22: Left(error ǫ n ), right(cost functional J n ) continuous line; δ = h 2 , dash line; δ = h 3 , dash-dot line; δ = h 4

Figure 23 :Figure 24 :

 2324 Figure 23: Left(state function y), right(obstacle function ϕ)

Table 1 :

 1 Numerical results for one dimensional space while varying ω

	25	143			49.039593172814833 9.663381e-013 0.998935 6.954742e-004
	0.5	66			49.039593172804153 9.947598e-013 0.998935 2.859977e-004
	0.75	31			49.039593172799911 9.094947e-013 0.998935 2.096388e-005
	1	6				49.039593172798838 7.815970e-014 0.998935 6.224867e-004
			0	x 10 -3						0.015						obstacle psi		
			-1															
		Obstacle phi	-4 -3 -2							0.005 0.01								
			-5															
			0 -6	0.2	0.4	0.6	0.8	1	0	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
						X												
					(a) Obstacle ϕ					(b) Obstacle ψ

Table 2 :

 2 Numerical results for one dimensional space while varying N

	n

Table 3 :

 3 Numerical results for one dimensional space while varying ν

	0001		28		49.039593172727052 3.907985e-013 0.998935 2.041225e-004
	0.001		28		49.039593172727159 3.055333e-013 0.998935 7.349400e-005
	0.01		36		49.039593172728459 7.389644e-013 0.998935 3.428793e-004
	0.1		41		49.039593172735735 4.334310e-013 0.998935 1.033546e-014
	1	223		49.039593172799911 9.094947e-013 0.998935 2.646852e-015
			0	-3 x 10						0.02		
			-1							0.015		
		Obstacle phi	-4 -3 -2						Obstacle psi	0 0.005 0.01		
			-5							-0.005		
			0 -6	0.2	0.4	0.6	0.8	1	0 -0.01	0.2	0.4	0.6	0.8	1
						X						X
					(a) Obstacle ϕ			(b) Obstacle ψ

Table 4 :

 4 Numerical results for one dimensional space while varying δ

					49.039593172735735 4.334310e-013 0.998935 1.033546e-014
	h 2.5	112		49.039593172742727 6.679101e-013 0.998935 1.389559e-004
	h 3	155		49.039593172736232 9.308109e-013 0.998935 1.243146e-008
	h 3.5	383		49.039593172738968 6.465938e-013 0.998935 9.571397e-010
			1	-3 x 10						0.02		
			0							0.015		
		Obstacle phi	-4 -3 -2 -1						Obstacle psi	0 0.005 0.01		
			-5							-0.005		
			0 -6	0.2	0.4	0.6	0.8	1	0 -0.01	0.2	0.4	0.6	0.8	1
						X						X
					(a) Obstacle ϕ			(b) Obstacle ψ

Table 5 :

 5 Numerical results for two dimensional space while varying ω

	25	62			0.002946055145308 9.601694e-016 0.999991 3.982865e-011
	0.5	28			0.002946055145306 6.392456e-016 0.999991 1.180507e-011
	0.75	15			0.002946055145305 5.212844e-016 0.999991 5.253112e-012
	1	5			0.002946055145305 6.878178e-016 0.999991 9.642406e-010
			-5							
			-10							
		log(error)	-20 -15							
			-25							
			0 -30	0.5	1	1.5	2	2.5	3	3.5	4	4.5
							log(n)		

Table 6 :

 6 Numerical results for two dimensional space while varying N

	30	26	J 0.001632 5.193328e-016 0.999974 7.355250e-012 | J n -J n-1 | ǫ n y -z ∞
	35	27	0.002241 5.165139e-016 0.996074 6.513361e-012
	40	28	0.002946 6.392456e-016 0.999991 1.180507e-011
	45	30	0.003746 7.350890e-016 0.999966 2.389886e-011

Table 8 :

 8 corresponding to the controls and state functions are shown. Numerical results for two dimensional space while varying δ

	δ h 3	♯ Iteration 27	J 0.002946054193747 8.135853e-016 0.999991 8.627484e-012 | J n -J n-1 | ǫ n y -z ∞
	h 3.5	27	0.002946054365294 8.270294e-016 0.999991 8.809409e-012
	h 4	28	0.002946055145306 6.392456e-016 0.999991 1.180507e-011
	h 4.5	33	0.002946056696808 9.358833e-016 0.999991 1.016003e-010

Algorithm 2 Newton dumped-Gauss-Seidel algorithm (Continuous version) 1: Input : y δ 0 , p δ 0 , ϕ δ 0 , λ δ 0 , ψ δ 0 , δ, ν, ω y , ω ϕ , ω ψ , ε choose ϕ δ 0 , ψ δ 0 ∈ W, ε and δ in R * + ; 2: Begin:

Then

12:

19:

21:

Then

24:

26:

Else; n ← n + 1, Go to Begin. 32: End if 33: End algorithm.

Numerical implementation and computational aspects

Numerical experiments are carried out for one and two dimensional problems. We will attempt to compute a grid function consisting of values y δ,h :=

, where y δ,h , ϕ δ,h , ψ δ,h and p δ,h are the vectors values of the discrete solutions of the optimality system (S δ ) such that y δ i := y δ (x i ) , ϕ δ i := ϕ δ (x i ) , ψ δ i := ψ δ (x i ) and p δ i := p δ (x i ) for 0 ≤ i ≤ N +1, finite-differences approximations involving the three, respectively five, point approximation of the Laplacian in one dimensional space, respectively two dimensional space. Here x i = ih for 0 ≤ i ≤ N + 1 and h := 1 N + 1 is the distance between two successive grid points. From the boundary conditions y δ 0 = y δ N +1 = 0, p δ 0 = p δ N +1 = 0, ϕ δ 0 = ϕ δ N +1 = 0, and ψ δ 0 = ψ δ N +1 = 0, so we have 4N unknown values to compute in one dimensional space. Then, for example, if we replace y (2) (x) (respectively ∆y (x)) by the centered difference approximation, we get -y (2) (x) := 1 h 2 (-y i+1 + 2y iy i-1 ), where 0

and respectively

Then, we can write the previous systems under the matrix form, as

Algorithm 3 Newton dumped-Gauss-Seidel algorithm (Discrete version)

Then

) is singular Stop.

10:

15: