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Abstract

In this work we consider the numerical resolution of the bilateral obstacle
optimal control problem given in Bergounioux et al. Where the main feature
of this problem is that the control and the obstacle are the same.
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1 Introduction

Variational inequalities and related optimal control problems have been recognized as
suitable mathematical models for dealing with many problems arising in different fields,
such as shape optimization theory, image processing and mechanics, (see for example [4],
[5], [10], [18], [22]).

Optimal control problem governed by variational inequalities has been studied exten-
sively during the last years by many authors, such as [2], [20], [21]. These authors have
studied optimal control problems for obstacle problems (or variational inequalities) where
the obstacle is a known function, and the control variables appear as variational inequali-
ties. In other words, controls do not change the obstacle and, on the other hand , in [1],
[7], [11] the authors have studied another class of problems where the obstacle functions
are unknowns and are considered as control functions.

In this paper, we investigate optimal control problems governed by variational inequal-
ities of obstacle type. This kind of problem is very important and it can lead to the shape
optimization problem governed by variational inequality, it may concern the optimal shape
of dam [9], for which the obstacle gives the shape to be designed such that the pressure of
the fluid inside the dam is close to a desired value. Besides, if we want to design a mem-
brane having an expected shape, we need to choose a suitable obstacle. In this case, the
obstacle can be considered as a control, and the membrane as the state (see for example

[15]).



It should be pointed out that, in the optimal control problem of a variational inequality,
the main difficulty comes from the fact that the mapping 7 between the control and the
state (control-to-state operator) is not Gateaux differentiable as pointed it out in [21], [20]
where one can only define a conical derivative for 7 but only Lipschitz-continuous and so
it is not easy to get optimality conditions that can be numerically exploitable.

To overcome this difficulty, different authors (see for example, Kunisch et al.[17] V.
Barbu [2] and the references therein) consider a Moreau-Yosida approximation technique
to reformulate the governing variational inequality problem into a problem governed by
a variational equation. Our approach is based on the penalty method and Barbu’s treat-
ment as a penalty parameter approaching zero. We then obtain a system of optimality
for suitable approximations of the original problem which can be easily used from the
numerical point of view.

Nevertheless, the optimal control of variational inequalities of obstacle type is still a
very active field of research especially for their numerical treatment which are given in the
recent publication [13].

The problem that we are going to study can be set in a wider class of problems, which
can be formally described as follows

min {J (y,x),y =T (X) ;X € Uaa CU}

where 7 is an operator which associates y to y, when y is a solution to

Yy € K(y,x), (A(y,x),y —v) >0, (obs)

where K is a multiplication from y x U to 2X when x is a Banach space and A is a
differential operator from Y to the dual Y’. Let h be an application from R x R to R,
then the variational inequality that relates the control x to the state y can be written as

<A(y7X)7y_U>Y7Y’+h(X7U) _h(X7y) Z (Xav_y)7vy€y7

where this formulation gives the obstacle problems where the obstacle is the control.

Following the previous ideas, we may apply a smoothed penalization approach to our
problem. More precisely, the idea is to approximates the obstacle problem by introducing
an approximating parameter §, where the approximating method is based on the penal-
ization method and it consists in replacing the obstacle problem ((0bs) by a family of
semilinear equations. In [7], Bergounioux et al. considered the following bilateral optimal
control obstacle problem

win7 (p.0) = 5 [ (T (o) =2 do + /Q ((20) + (A)?) da,
(@7¢) € Ugg X uad} (1)

where v is a given positive constant and z belongs to L? (Q) as a target profile,
such that y = T () is a solution of the bilateral obstacle problem given by

<Ay,'U —?J> 2 (fuv _y)7 for all v in IC((,D,’[/}),
where IC (¢, 1) is given by



K (o) ={y € Hy(Q),v>y>e},

and the set of admissible controls U, is defined as follows

Uag = {(p, ) €U xU | o <Y},

where U = H? (Q) x H} (Q). As we need H?—priori estimate, we could assume that
U,q is H? bounded. For example, we can suppose that g is B2 (0, R) i.e. a ball of center
0 and radius R, where R is a large enough positive real number, but according to [13],
this choice can lead to technical difficulties to get a numerical solution of the optimality
system.

In [13], Ghanem et al., have solved numerically the unilateral optimal control of ob-
stacle problem given by

min{J(go):%/Q(T(go)—z)2dx+g/Q(A<p)2d:n,<pGL{} 2)

instead of the one defined by

min{J(cp):%/Q(’T(go)—z)2dx+%/Q(ch)2da:,cp€L{ad}

where

Z/[ad:{QDGHQ (Q)7¢68H2 (07R)} (3)
such that y = T (¢) is a solution of the unilateral obstacle problem given by

<Ay,?] _y> Z (fav _y)7 for all v in ]C((,D)
where IC (¢) is defined by

K(p)={yeHy(Q),y>e}.

According to the result given in [12] the authors point out that, in spite of the elimi-
nation of the inequality constraint given by (3), we still get a local convergence property
implied by the constraint ||, || m2(q) < B. Hence, we are again confronted to the inequality
constraint (3).

So we note that it is not necessary to suppress the constraint (3), because it is going to
appear again to get the local convergence of the algorithm used for the numerical solution
of the problem give by (2).

For the numerical solution of optimal control problem, it is usual to use two kinds of
numerical approaches: direct and indirect methods. Direct methods consist in discretizing
the cost function, the state and the control and thus reduce the problem to a nonlinear
optimization problem with constraints. Indirect methods consist of solving numerically
the optimality system given by the state, the adjoint and the projection equations.

The aim of this paper is the numerical solution of the optimal control problem given
in [7] by using the indirect approach (after optimisation) based on the same idea and
techniques given in [13], where the optimality system is characterized by



Ayd + (Bs(y® — ©°) — Bs(¥® —y?)) = f in Q and y® = 0 on IN
A*p5+u‘f+ug:y5—zinQandp5:0onE?Q

(11 +¢° =90 = ¢°) + (n2 +9° — ¢, —9°) +
+v (Agp‘;, A ((p — gp‘s)) +v (A¢5, A (1/) — 1/)6)) =0, for all ¢ in Uyg

For the numerical solution, we first begin by discretizing the optimality system by using
finite differences schemes and then by proposing an iterative algorithm based on Gauss-
Seidel method that is a combination of damped-Newton-Raphson and a direct method.

The main difficulties of this work compared to the one considered in [13], is to get an
optimality system numerically exploitable by the proposed algorithm.

In the sequel, we denote by By (0,7) the V-ball around o of radius r and by C' generic
positive constants.

The rest of paper is organized as follows: in section 2 we give precise assumptions
and some well-known results. In section 3, we introduce the iterative algorithm and give
convergence results to solve the optimality system. Section 4 is devoted to numerical
examples that illustrate the theoretical findings and in section 5 we present some remarks
and a conclusion.

2 Preliminaries and known results

We consider the bilinear form o(-,-) defined in H'(Q) x H'(9), where we assume that the
following conditions are fulfilled

H;. Continuity

3C > 0,Vu,0 € H'(Q), lo(u,v)| < Cllull g2 gy 10]] g1 (53

H,. Coercivity
Je>0,Yu e HY(Q), o(u,u) > c|lullfn g

We call Ain L(H(Q), H~(Q)) the linear self-adjoint elliptic operator (see [19]) asso-
ciated to o such that (Au,v) = o(u,v), and assume that the adjoint form o*(-,-) satisfies

the conditions H; and Hs.
For any ¢ and v in H{ (), we define

Klp.¥)={ye Hy(Q) |v 2y >y in Q}, (4)

and consider the following variational inequality

J(Z/) U_y) 2 (f)v_y)v for all v in ’C(90771Z))7 (5)

where f belongs to L? () is a source term. From now on, we define the operator T~
(control-to-state operator) from U x U to U, such that y = T (¢, 1)) is the unique solution



to the obstacle problem given by (4) and (5) (see [18]), where U = H%(Q) N HE(Q).
Let U,q be the set of admissible controls which is assumed to be H?(Q)-bounded subset
of H?(2) N H}(£2), convex and closed in H%(2). We may choose, for example,

Uaa = Bp2(0, R) = {v in H*(Q) N Hy(Q)||v] s < R} (6)

where R is a large enough positive real number. This boundedness assumption for U, is
crucial: it gives a priori H? - estimates on the control functions and leads to the existence
of a solution. Now, we consider the optimal control problem (P) defined as follows

min{(e.) = 4 [ (o) = Pdo s g ([ (0 + (V) o).
for all ¢,v € Uyq}, (P)

where v is a strictly given positive constant, z in L? (). We seek the obstacles
(optimals controls) (95,1[_)) in Z/{(fd, such that the corresponding state is close to a target
profile z.

To derive necessary conditions for an optimal control, we would like to differentiate
the map (p,%) — T (¢,%). Since the map (¢, %) — T (p,) is not directly differentiable
(see [21]), the idea here consists in approximating the map T (¢,%) by a family of maps
77 (p,1) and replacing the obstacle problem (5) and (4) by the following smooth semilinear
equation (see [20], [8]):

Ay+ Bs(y—¢) = Bs(W—y))=f in Q andy=0 on 9Q.
Then, the approximation map (¢, ) — T° (p,1) will then be differentiable and ap-

proximate necessary conditions will be derived, such that

0 itr>0
Bs(r) =3 —r2 ifre [-1,0]
r+% ifrg—%

where ((-) is negative and belongs to ¢! (R), such that ¢ is strictly positive and goes
to 0. Then Jj(-) is given by

0 ifr>0
B5(r) = % —2r ifre [—%,0]
1 ifr<—3

As Bs(- — ¢) — Bs(1p — ) is nondecreasing, it is well known (see [14]), that boundary
value problem (2) admits a unique solution y° in H2(Q) N H}(Q) for a fixed ¢ and ¢ in
H2(Q)N H(Q) and f in L2 (Q). In the sequel, we set y° = T° (¢, 1) and in addition, ¢ or
C denotes a general positive constant independent of any approximation parameter. So
for any § > 0, we define

Is(o) =4[ (T o) =2) dotv [ (V0400 aa). (P)



Then, the approximate optimal control problem is given by

mm{Jé ((107 ¢) y P 1)[) in Uyg X Z/[ad}' (7)

and by using the same techniques given in [2] and [7], the problem (7) has, at least,
one solution denoted by (y5, 0,0, w5) and characterized by the following Theorem

Theorem 2.1. Since (cp5, 1/15) is an optimal solution to (775) ,andy® =T° ((,05, 1/15) . Then
there exist p° in U, p§ = B5(y° — ©*)p® and p§ = B5(¥° — y?)p® in L2 (Q) such that the
following optimality system (S‘S) is satisfied

Ay’ + (Bs5(y° — ¢°) = Bs(¢° —y°)) = f in Q

AP+l + pd =y° — 2 in Q

vAQ® + VA + G5 (y° — ¢ )p’ + B’ (v — 1 )p’ =0

L y° =p° = =4° =0 on 09
Now, we give some important results relevant for the sequel of this paper.

Lemma 2.1. From the definition of B(-) and since p belongs to BHé(Q)(O,p})), where f3

is a positive constant, and for (y?,¢9,p?) in U where U=H{ () x HZ (Q) x HE (Q) and
1 =1,2, we get

C

5 5\ .8 5 5\ .8 s s

I B (?Jz - 902) P — B <?J1 - 901> b1 HLZ(Q < =< ” ps—nN ”Hl(ﬂ) +
CP3 B Cp3 5 5

(R 220 +—5 I 02 =1 2@

Proof. By the definition of 8’ (-) we get
(85 (yg — 905) p5 — 55 (y‘f — so‘f) p}) = Bj (yg — 903) (5 — p)+
(B} (yg —~ w‘%) — B} (y‘f - w‘f))p‘f-

Then, by Cauchy-Schwarz inequality and since pl belongs to Byi(q)(0, p3) and by the
Mean-Value Theorem applied in the interval of sides {(y2 ©3), (y9 ¢ — ¢3)}, we can deduce

| 85 (yg - ) — Bs < 901> P llz2@)< H Py — 18 lmo) +

B (- 9) ~ (- &2 Nz

O



Lemma 2.2. Let (y?, cpf,pf) belong to U where i = 1,2 and by the properties of Bs(-), we
get

I (B5(y3 — 8) — Bs(y? — 1)) — (Bs(¥3 — y3) — Bs(¥ —v0)) [l 2 <
C C C
5 1 v3 — v 220y +5 (R +5 I8 — 98 |2 -
Proof. It is easy to see that
I (Bs(y — ) — Bs () — ) — (Bs(v — w3) — Bs(vd — y))) |2y <
I Bs (¥ — ©3) — Bs(wh — &) Iz
+ | B — 3) — Bs(¥ — ) N2y -

By the Mean-Value Theorem applied in the interval of sides {(y3 — ¢3), (v — )} and
{(W8 —w3), (V] — ¥}, we get

I (Bs(5 — ) — Bs() — &3) — (Bs(v — u3) — Bs(v — ) llp2() <
C C C
5 1 y3 — v 220y +5 (R +5 (R P
O

Theorem 2.2. For any triplet (y?, gof,¢?) in U that satisfies the optimality system (55)
where i = 1,2, and since 6 < C, we get

s — 98 N ey< Ll 05 — & 2 + | 93 — ¥8 llz2q))-

C
where 1 := 5 This means that the mapping y° := T (906,1/)5), 1s Lipschitizian, with

a Lipschitz constant 1.

Proof. From the state equation of the optimality system (55) and by subtraction of the
two previous equations and, if we take v = yg — y‘f, we get

o(y5 — 1y, 15 —yd) + (Bs (3 — 3) — Bs(yh — 1) — (Bs(Wd — ) — Bs(] — u9)), ¥ —3) = .

By the proprieties of 35(-), we deduce

o —ulud o) < —(Bs(h—¥d) - Bl — o), (-4
(85 — ) — B (vl — ), (] - vd)).
Then, by using the Mean-Value Theorem and the coercivity condition Hy of o(-,-), we
get
cllys =) 1@< g(c 195 = ey + 198 — @8 lr2) |68 — 8 2@
+§(C 193 =99 i) + 1193 =48 llz2) |98 — 93 N2y -

From above, and since



el 8 =) @ <Nl @3 — @8 ez and ¢ || ¥8 — 43 o)<l ¥ — ¢3 |12
then

(SN

193 =99 2@ = (1 03 — @ llzeo) + 1 91 =93 lr2())-

el 8 =) @)=l @8 — @8 ez and ¢ || ¥8 = ud) [l )=l 8 — ¥4 N1z
we get

c
192 = w1 @< 50105 = 1 [z + | 97 = 98 llz2@).

el 8 =) @)=l @3 — 8 ez and ¢ || v8 — 48 o) <l ¥ — ¢8 [l L2,
we get

C
93— 98 o< 5 (168 = o llzagy + 195 = 08 ll2gey ) -

el yd =) @ <Nl @3 — 8 ez and ¢ || ¥8 — 4 i) =l ¥ — ¢8 [l 12,
we get

5 5 c 5 5 c 5 5 5 5
cllyy—yi ”%5{1(9)S 5 | 5 — Y H%Z(Q) +5 | v5 — v ”Hl(Q)” Py — g HLZ(Q)7

and since the hypothesis of the Theorem are satisfied, we deduce that in all the previous
cases we have

5 =l i@ = 5 (I8 — 8 oy + 1] — 08 llzagey) -

ST

O

Lemma 2.3. For any triplet (y5,g05,1/15) in U, satisfying the optimality system (55), we
have
19° |l i1 () < max <C I ¢° 1), C I ¥° HHl(Q)> :

and moreover when ©° and ¥° belong to Bz (q) (0, p1) N W, we deduce that
[¥% 1)< p2-
This means that y° belongs to By (0,p2) NU, where py == Cp;.

Proof. Let v in K(¢°,4°), where K(¢?,4°) is given by
K@ 00 = {ye B | 2y= ¢ in Qf.

o If y? — ¢ > 0 and ¥ — y° > 0, we get B(y° — ¢°) = B(¢? —y°) = 0.
o If y° — % > 0 and 9 — y° < 0, then

B =)@ —¢°) > 0 and B(y° — ¢°) = 0.
For all v in IC(cp5,¢5), we have v — y° < v — ¥° < 0, then

B =) (v —y°) <0.



Then, by the following equation

a(y’sv—9°) + (Bs(y° — ¢°) = Bs (1 —3°), v —y°) =
= (f,v — y6> , for all v in K(¢°,¥?),

and, if we take v = ¥%, we get

o(y°,1°) < o(y°,¢°) + (f, Y’ — 1/1‘5> )

By the coercivity and continuity conditions of o(-,-) given respectively by H; and Ha,
we get

cll’ 13 @) < ClY L@ 190 i @) + 11 £ 12 <C”y6HH1(Q) + H”L/J(SHLZ(Q)) :
From the above inequality, we can deduce that we have two cases

a. If |90l 120y < Cllv°ll i (o)
Then, we get

19° () < CllY [l (-
b. If C||y6HH1(Q) < ||7/)6||L2(Q), then we obtain

1W< ClYllmo)-
o If y° — % < 0 and ¢° — y° > 0, we deduce
By =)y’ —¢°) 2 0 and B4 —y°) =0.
For all v in IC(cp5,1/15), we have v — y® > v — ® > 0, then
By’ —¢")(w—y’) <0.
The following equation
oy’ v =) + (Bs(y’ —¢") = (0" —y")v —y) = (fov—y’) , for all v in K, 7).

gives
oy’ y’ —v) < (f, Y’ — v) , for all v in K(¢°,¢°).

If we take v = ¢°, and by the coercivity and continuity conditions of o(-,-) given respec-
tively by H; and Ho, we get

elly’ @) < Clly N @l ) + 12 (ClW i) + 16 2e)

From the above inequality, we can deduce the following two cases



a. If @[l 2 (@) < CllY° [l () we get
15° ) < ClIE i q)-
b. If Clly’ g () < I€°]|12(), we have
19° ) < ClIE i q)-
Therefore, in all cases we get
10l < Cle® -
e The case when y® — ¢® < 0 and 9° — y° < 0, is similar to case 3.

O

Lemma 2.4. For any pair (p‘;,y‘g) in U x (UN By (0,p2)), satisfying the optimality
system (S?), we have
o 1
| 2° | < C N y° [l o)

and when y° belongs to By (0, p2) NU, we deduce that
I p° 1)< p3-
This means that p° belongs to By (0, p3) NU, where p3 := Cps.

Proof. From the adjoint equation of optimality system (S°), we have
o (p‘;,v) + (u‘f + ,u‘%,v) = <y6 - z,v) , for all v in H} (Q)
if we take v = p?, and by the coercivity condition Hy of o* (+,+), we obtain

12’ 1@< C Iy o) -

3 Convergence study of an iterative algorithm

In this section, we give an algorithm to solve problem (P?). Roughly speaking, we pro-
pose an implicit algorithm to solve the necessary optimality system (55 ). The proposed
algorithm is based on the Gauss-Seidel method and is given below.

This algorithm can be seen as a successive approximation method to compute the five
points of the function F' that we are going to define. From the different steps of the above
algorithm, we define the following functions F;, for i =1, 2, 3, 4 as

10



Algorithm 1 Gauss-Seidel algorithm (Continuous version)

W N =

W~

5
6

: Input : {yg,pg,<p8,¢8,)\g,5, V,&?} choose 5,13 in U, e and § in R
: Begin:

: Solve Ay) + 5 (B () — 0 1) =B (W1 —w))) = fony)

: Solve (A + (85 (v — 1) + 55 (W51 —3))) P5 = v — 2 on pj.
. Calculate X = vA@)_| + 85 (yd — ©d_1) P

. Solve wAYE -+ B (45— ) ph = —N;, on 05,

7: Solve —XJ + vARS + 85 (y2 — ) pS, =0 on ¢,

8
9

11
12

: If the stop criteria is fulfilled Stop.

: Ensure : s := (45, 5,45, p)) is a solution
10:
: End if

: End algorithm.

Else; n <+ n+ 1, Go to Begin.

e From step 1, we define F} : U4 x U — U, such that

vhi=Fi (¢hon i)

we see that F; depends on gpfl_l, ¢,‘i_1, and gives 10 as the solution of the following
state equation

Ayl + Bs (ny - gofl_l) — Bs (¢fz_1 — yi) =fin€Q, and 5 =0on Q.  (8)
From step 2, we define Fs : U x U x U — U, such that

ng = F2 (yzaﬁﬁi—17¢z—1> ) (9)

we see that Fy depends on ¢? ;,4° | and 39, and gives pS as the solution of the
following adjoint state equation

Apd + 5 (yi - 902_1> Pl + Bj (wi_l - yi) Pl =y) —2inQ, and pd =0on 9.
(10)

From step 3, we define F5 : U x U — U, such that

= Fy (y,‘i,pi) ,

we see that F3 depends on p® and y?, and gives 92 as the solution of the following
equation

—X:L = VAl/JZ + B5 (1/1,‘2 — yz) pfl in 2, and 1/1,‘2 =0 on 0N. (11)

11



e From step 4, we define Fy : U x U — U, such that

¢ =Fy (yi,pi) :

we see that Fy depends on pi, and yfw and gives cpfl as the solution of the optimality
condition equation

X 4+ VAP + B (y,‘i - wi) P =0in Q, and ¢ = 0 on 9Q. (12)

Remark 3.1. We note that the equation given by (11) is only used to solve the equation
given by (12).

Then according the above definitions of F;, where i = 1, 2, 3, 4, let us define the map
F:UxU—-UXU, as

<¢§Lv¢g) =F <90§L—1771Z)§L—1) 9
where
902 = Fl <¢2—17¢g—1) = Fy (Fl <902—1,7/)§L—1> , Fo (Fl <90§L—1,7/)§L—1> ,902_1,1#2_1)) )

and

V)= (902_1,1/12_1) = F3 (Fl <¢g_17¢2_1> By (Fl (wi_l,wi_l> 7902—171/12—1))
such that
F <902—1,7/)z—1> = (Fl <¢2—17¢2—1> 2 (@g—lv¢i—l))

Proposition 3.1. Let 902_1 and zﬁ,‘i_lbelong toU and (y,‘i,gpfl,zbfb,p‘;) satisfies equations
(8), (10), (11) and (12) given respectively by Fy, Fa, F3 and Fy such that 6 < C, then we

get

12 D@ < 5 11 iz +5 1t ey +e |l F iz (13)
195 @< C+C ol i a) (14)
1% a2y < £ 1l P ey +C (15)
and
190 2@ < £ 1 95 e ) +C (16)

12



Proof. From the state equation (8), we write

o (zﬁi;zﬁi) + (Ba (yfi - wi_l) — Bs (wi_l - yi) ,yi> = (f, yi) :

Then, by the definition of S; (), and by the coercivity condition Hs of the bilinear
form o (-,-) and thanks to the Mean-Value Theorem applied in the interval of sides

{0,(y% — ©_1)} and {0, (¥5_, — 3)}, we obtain

C
e = 5 (ol e + Il ooy ez Il ehos llzage) +
C
+ = (1981 ez +e 0 ey ) 981 ez +e I F leyll w8 ey (17)
Then from the above inequality (17), we deduce that we have four cases:
SIS 2 e WS ey and | 45y 2@ < |l 9) Il (), then
& &
0 o)< 3 151 2 +3 190 1 ez +ell f llreo
CIE | d 2@ <cl Yo |71 () and || Yo, lz2(0)> c || Yo, | 71(q2), then, we get
C
12 @)= (5 16 iz +e Il lize)) + 7 sl -
SIS @)= el WS e and || 45—y 2> |l 93 g (), thus
C &
| yfz ||H1(Q)§ cl|lf ||L2(Q) +7 | 902—1 HL2(Q) +7 | 71’2-1 ||L2(Q) .
I ey 2> e 1 9h e @) and || 99—y 2@y < ¢ | vh a1 (q), therefore
& &
45 111 (o) < 5 I8 1 2y +e |l f 2y +% | 902_1 z2(0) -

Finally, in any cases we obtain

$ ¢ ) ¢
92 @)= (5 1 a5 198y oz +e £ ez -
Now, from the adjoint state equation (10), we get
(Aph, o) + (85 (vs — @i ) b+ B5 (Vi — ) phowl) = (vh — 2,00) in Q.
By the coercivity condition of o* (+,-) given by Hs, we obtain that

125 )< C 1Ly o

by using the following equation

Xo = vAGh_y -+ 55 (vh = ¢1) ph and ) =0 on 90

we deduce that

13



I @)= § T on @) +Cv Il on1 N2 -

From equation (11), and by the coercivity condltlon Hs of o (+,+), and the definition of
5 (+), we obtain

5 B 5
190 a2y < 5 105 L) +5 1129 1o
<£\p () +C [ HH2(Q

Using equation (12), and by the coercivity condition Hs of o (.,.), and the definition
of 85 (+), we get

) ) )
o Iz < £ | Pn @) +S 1A 11 @
<SP lme +C 1l oy Hmm

O

Corollary 3.1. Since gpfl_l and 1/12_1 belong to Bg2 (0, p1)NU, and letting (yfl, gpfl_l, 1/12_1)
belong to U to satisfy the conditions (8), (11) and (12) given respectively by Fy, F3 and
Fy such that 6 < C, then we get

195 11 ()< B2
: 5 - N C .
This means that y2 belongs to B (0, p2) NU, where py := | C + 5P

Proof. By using inequality (13) we obtain

c
o @< = H @1 2 +5 I lmze) +e |l F 2@ (18)
Therefore
195 i) < 2 (19)
where po := (C’ + %,61> U

Corollary 3.2. Since the hypotheses of Corollary 3.1 are fulfilled, and by letting (y2,pl)
€ HY(Q) x HY(Q) to satisfy the conditions (8), (10) given respectively by Fy, Fy, we get

”pn ”H1 <,03

This means that p belongs to By (0, p3) NU, where p3 == Cpy.
Proof. From inequalities (14) and (19), we obtain

95 || ey < Cpa
Then

25, Nl (@) < s,
where p3 = Cpo. O
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Corollary 3.3. Since the hypotheses of corollary 3.1 are fulfilled, and by letting (yfl, o2, 1/12)
in U to satisfy the conditions (8), (11) and (12) given respectively by Fy, F3 and Fy, we
get

5 -
| & 2@ < pa-
and

|99 N2 < Aa-

C
This means that ©° and 1?2 belong respectively to Bz (0, pa) U, and py := 5—ﬁ3+C’ﬁl,
v

where p3, pa are given respectively by corollaries 3.2 and 3.1.

Proof. From inequalities (15), (16) and (3.2), we obtain

|65 2oy < pa and || ¥4 a2 < fa,
- C .
where py := 5,03 +Cpr. 0

Let us give the following theorem to show that the mapping F' is locally Lipschitz.

Theorem 3.1. If 6 < C, then the mapping F is locally Lipschitz from By (0,p1) NU
XBpz (0,p1) NU to Brz (0,p4) NU X B2 (0, p4) N U, with the Lipschitz constant | =

o o C C'is
ll(l3—|—l4)—|—l2(l3—|—l4)—|—l112(l3—|—l4), where pg = 5—}/—1—(52—V—|—0)p1, l1:= g, = <C—|— T) ,
I3 =14: ¢

= m, and p3 is given by Corollary 3.2.

To prove the previous theorem, we need the followings Lemmas.

Lemma 3.1. The function Fy defined by (3) is Lipschitz continuous from U to U, with a

Lipschitz constant 1 := 5

PT’OOf. Let yg = Fl <¢f{i17¢z’i1> and Zi - Fl ((piﬁlflpz’El)a where <y§w (piﬁlawiﬁl) and
<sz, cpfil, wz’zl) belong to U x U x U. By the equation given by (8), we get
5 5,
a (yg - szyg - Zfl,) + (<5(5 (yg - (pnil) — Bs (Zz - (-Pn31>>
5.1 5,2
— (B (uity —wh) = 8 (002, = 20) ) v — 2) =0,

By the coercivity condition Hg of o (+,-) and Lemma 2.2, we get

C 6,1 6,2 6,1 6,2
58— 28 2oy § (w8 = 28 ey + 1 @Bt = 602 ey ) | 63ty = 9921 ey
5,1 5,2 5,1 5,2
+5& (H Yo — 20 ez + Il sy — vy ||L2(Q)> | ¥n—1 — ¥ 1 2 -

From the above inequalities, we have four cases

15



4,1 3,2 5,1 5,2
CIE [yl = 20 e <N ety — 00t Nz and || 9 — 25 (2@ <Il ¥hly —¥n=y llz2(), then
5.5 5,1 5,2 5,1 5,2
|y = 20 1 (@) < (H Oy — Py 2@ + 1 2 — 2y HLZ(Q)) .

9,1 4,2 5,1 5,2
CTE Ly = 2 e >l enty — a2y and [l yh = 20 2@ >l ¥nsy — 02 2, we
get
5.8 ¢ 5.1 5.2 51 52
H Yn — Z%n HHI(Q)— g || Pn—1 " Pn-1 ||L2(Q) + || Q)Z)n—l - ¢n—1 ||L2(Q) .

9,1 4,2 5,1 5,2
I ) =2 2>l ey — ey lrz) and || yd — 25 12 <Il ¥noy — Y2y llz2(o), then
we get

C
5 5 5,1 5,2 5,1 5,2
198 =22 o< 5 (I ehh = 02 e + 190l =002 iz )

4,1 4,2 5,1 5,2
I yi —22 HLZ(Q)Z” Prn—1"Fn-1 ”L2(Q) and | yi - Zg ”L2(Q)§H (U ] HLZ(Q)y then
we obtain

2

C 5 5 5 5
5 <|| ool — oty lz2() + | oty — Y02, ||L2(Q)> -

5 — 25 1 ()<
O

Lemma 3.2. The function Fy defined by (9), is locally Lipschitz from
(B (0, p2) NU)X (B2 (0, p1) NU) X (B2 (0, p1) NU) to By (0, p3) U, with the Lipschitz

constant ly .= | C + % , where ps is given by Corollary 3.2.

Proof. Let py' = Fy <y§i’1, w‘f{il,%‘i’il) and p° = F (yff, w‘fﬁlwi’fl) where (yi’l, w‘f{il,%‘iﬁl)
and (2, )21, 6372, ) belong to By (0, /2) NU) x (Byz (0, 51) O W) x (Byga (0, ) N W).
Then by the adjoint state equation (10), we get

4,2 5,1 112
C |l pn” = o)<

Coial s2 82 r (61 51 5.2 52 61

=18 (52 = 321) = 8 (w3 = o0 s) e 1P 2o P32 = P s o)+
C 5.2 5 51 5 5 5 5

<018 (2, =) = 8 (v0s = ") Dz 1032 2o 152 = P s o)+

4. 1 4. 4.
e = o 2o llp%? = %l 2 (q)-

By the definition of 5 (-) and by the Mean-Value Theorem applied in the intervals of
SideS {(y%z - @%El)) <y1(’sl71 - (;Di’il)} and {(Tﬂfil - yfl’2> ) <¢Zg1 - yfl’1>}7 we get

C p3
I 932 = p0* [l ) < (C + T) (o =yl 2o+

52 51 52 51
lnZ1 — Ynallzz) + len=1 — Pn-1llze@)-

O
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Lemma 3.3. Since the following condition,
ﬁ3 < 61/07

is fulfilled, the function F3 is locally Lipschitiz from (Bg (0, p2) NU) X (Bg (0, p3) NU) X
(B (0, p4) NU) to (B2 (0, p4) N W), with Lipschitz constant

C
l3 =
ovC — C,Og
Proof. From equation (11), we obtain
o (81— 2l = o) = (Bl — WS = Bha® — A ol - ) +

+ (Afﬂ - X%l - o).
By the coercivity condition Hs of o (.,.), and by Lemma 2.1, we obtain
C ps 5 5 5 C 51 s
| o0t — 02 | g2y < 5 ot =) — (5 = 0%%) |l a () +s o0 =102 Nl ra@) +
C d. [
SN N D) (20)

For the previous inequality to have a meaning, we must have

p3 < Cvé.
Then, we get
Cps C
| 902’1 - 902’2 ||H2( 570 | Z/ yff ||L2(Q) +m [ pfil — )’ | Q) +
oC
+ V5 — Chs | A5 — %2 o) -
O

Lemma 3.4. Since the following condition,
ﬁ3 < 61/07
is fulfilled, then, the function Fy given by (3) is locally Lipschitiz from

(B (0, p2) NU) x By (0, p3) VU x (Bya (0, ) NU) to (Byz (0, p1) N W), with Lipschitz
constant o

= e

Proof. From equation (11), we obtain

vor (! — 32,03t = 03) = (Bh(T — oSt — B3 — e 0l — i) +
+<>\f;1—>\§;2,¢§;1— 2.

17



By the coercivity condition Hg of o (-, -) and by Lemma 2.2, we get

Cp
1) 1) 3 g, 1) 1) 1)
|| Q/Jn’l _¢n72 ||H2(Q)§ I/—5 H (ynl yn’2)_(¢n’1 ) ||L2 +_ || p _pn’2 HLQ(Q) +

5 5
+ ; 1A =207 o) -

For the previous inequality to have a sense, we must have

p3 < Cvo.
Then, we get
Cps C
| ¢f{1 - ¢§L’2 | £2(02) W | y yg,z 2o (2) +m [ Pfil —Pig 2200 +
oC 5 s
+ 75— s AT =A% (| 1y ) -

Now, we give the proof of Theorem 3.1.

Proof. Let

(o0t ut) = (Fy (pil,yn )F (pilyyn )),
and

(0%, 00?) o= (F3 (pff,yff),F (pizyyn ))-

Then, we get

| (et uih) = (82002 o=l B (B0l ) - Py (piz,yQZ) 2oy +

Thanks to the Lemmas 3.3 and 3.4, we get

9, 9, 1 1 0 (9
(50 ) = (% 08 D= (s + 1) (18" = 6 ey + 1 23 = 82 ey )

6.1 51 81 61 6,2 61 82 61 51 51 61
where p;, 1= Fp (tpn 1> Yn 7¢n_1> o =By <90n 1) Yn ﬂ/’n_l) yYn = Fl(‘Pn_lﬂbn_l)y
and yff = Fl(gpfﬁl, ¢n’_1), and by Lemmas 3.1 and 3.2, we obtain

(et wih) = (82082 Iy < L (I 9oks = 020 ey + 1052, = 0021 ey )

where [ := l1lo(l4 +13) + l2(l4 +13) + 11(l4 + I3) is the Lipschitz constant of the function
F. O
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Remark 3.2. From above, we have proven that the function F is locally Lipschitz, and
we can see that it is very difficult to get a sharp estimate of the Lipschitz constant | of F'.
But we are convinced that appropriate choices of p1 and § (small enough) could make this
constant strictly less than 1, so that F' is contractive.

In the sequel, we illustrate how the combined direct and dumped Newton method
can be used most effectively for solving the optimality system (Ss). The main idea is
to linearize equations given by (8), (3) and (12), for the numerical solution of the set
equation (8), (3) and (12). We use the iterative relaxed Newton’s method (see [13]) on
each mapping Fi,Fs5 and Fy, and prove the convergence of the proposed algorithm.

Theorem 3.2. Since (#°,¢°) belongs to U x U is solution of the following equation,
(", 9°) — F (#°,9°) =0

Then (gé,ﬁ‘;, @0, 1/;5) belonging to U x U x W x W satisfies the optimality system (S9),
where, in the sequel, we put §° := (375,155,@5,1/)5).

Proof. Since (@5, @5) belonging to W x W satisfies equation (3.2), where (@5, @5) is given
by

(¢°,0°) = (B (°,0°) . (5.°)),
where §° and 5° belong to U can be respectively defined by
:'Ts = (@57&5) 3 (21)
and
=B (5,6°,00). (22)

Then, by the definitions of the mappings F, F», F3 and Fy, the relations (3), (21) and
(22) are respectively written as

A’ + Bs <g75 — @5) — Bs (1/75 — g‘5> — f,in Q, and 7° = 0 on N (23)

AP+ 35 (5 =) 0+ B (80 =) P =3 — 2 i and B =0on 00 (24)

vAG + 85 (5 = &) 5" = =X, in Q, and ¢ =0 on 90 (25)
and
vAG + 85 (67 = 5°) B~ 3 =0, in ©, and ¢ =0 on 99 (26)

Hence, we remark that the set of equations (23), (24), (25) and (26) is the same
set of the equations of the optimality system (Ss) when (y‘s,gp‘s,ip‘;,p‘s) is replaced by

(7°,@°,4°,7°). O
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The equations (8), (11) and (12) of the optimality system (S°) are respectively nonlin-
ear according to y°, ¢® and v°. Therefore for the solution of the system (S?), we propose
the following iterative algorithm.

20



Algorithm 2 Newton dumped-Gauss-Seidel algorithm (Continuous version)

1: Input :{yé,pé,gpg, Ao, 8,0, v, wy,ww,ww,s} choose 5,13 € W, e and § in R ;
2: Begin:
3: Calculate J,_1 < Ju_1 (y)_1, 95—, ¥)_1)
4: Step 1
50 If (A+ B85 (vo_y — &%) + B5 (W21 —y5_,)) is singular Stop.
6: Else
7. Solve (A+ 55 (yn_1 — ¥h_1) + 55 (Yn_1 — ¥n-1)) 15 =
—wy (Ayp_1 + Bs (Yn—1 — ©5—1) — Bs (V—1 —yh—1) — f) on 7,
8: Then y° =y’ ,+ rl.
9: End if
10: Step 2
11: If (A+ 85 (v) — ¢5_1) + 85 (¥5_, — v3)) is singular Stop.
12: Else

13: Solve (A+ B35 (v — ¢5_1) + B5 (Vh_y — v3)) P}, = yh — z on p,.
14: End if

15: Step 3

16: Calculate \) = vA@® | + B35 (v) — ¢5_1) P

17: Step 4

18: If (VA + 8§ (¥3_, — y3) p3) is not invertible Stop.

19: Else

20: Solve (vA -+ B (U5, — y8) p8) - 78 = —wy (VATUE_, + B (V5. — 2) 5 + A9
on rl.

21: Then ) =2 _+ rd

22: Step 5

23: If (VA — B (yd — % _1) pY) is not invertible Stop.

24: Else

25: Solve (A — 3 (4 — 1) 1) - 5 = s (v ALy + 8% (4 — ) o — )
on rl.

26: Then ¢ = @)+ 1)

27: Calculate J, < J,_1 (2, 05, 47)

28: End if

29: If |J, — J,_1| < e Stop.

30: Ensure : 0 := (y5, 02, ¢?,p%) is a solution
31: Else; n <+ n+ 1, Go to Begin.

32: End if

33: End algorithm.
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3.1 Convergence results

In this subsection, we give some conditions on ¢ and w to have the convergence of the
above algorithm. We denote by 7°, p°, @° and +° the solutions of the equations (23), (24),
(25) and (26) respectively, and let y2, Ao, p°, 10 and ¢ be given respectively by step 1,
step 2, step 3, step 4, step 5 respectively of the latter algorithm.

2

Remark 3.3. From Lemma 3.2, if we replace yf{ ,gpfﬁl,zbg’zl and pf{2 respectively by

7,8, and p°, we get

51 6 51 5 5,1 ) 5,1 5
I pyt =D 1)< l2 <|| yt =9 22 + | 1 = @° ez + [ ¥ — ¢ HL2(Q)) )

where ly = C+%.

Lemma 3.5. Let X in U be the solution of the following equation
5\5 = I/AQZ?(S + ,8(/5 <§5 - (,55) ﬁéy
since

I17° o< A

we obtain

128 =X 2@ < b (1l 98 =7 llzzgey + I oy = 8 ez + 1128 =7 )

where ky = % and p3 < Cov.

Proof. From step 3 of the continuous version of the algorithm 2, and by Lemma 2.1, we
get

_ Cp _ C _
A =X e (v + Tg) I oh_1— @ 2@ +5 95— P° o) +
+ 19 =7 2.

then, we get

1A =N 2@y < Ealll 01 — @° i) + 105 — 7 ey +
Cps _
5 H ny - y6 |’L2(Q))7

where

ky := maz{(v + %)

¢ Cps
5 78’

C
RS
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Lemma 3.6. Let @° in U be the solution of (25), since

10 ()< B3,

where w,, is strictly positive, such that

ovC + Cps

(CHovC = Cpg) =W =h
and
" 52vC — Cép3
v Cé+Cps '
we obtain

10— & lm2e)< ksl vo — 7° Loy + | €5-1 — @° iz +
+ 1185 =2 lay + 11 A = X lagy),  (27)

where k3 1= WSDW?C%;; and p3 < Céov.

Proof. From step 5 of the continuous version of the algorithm 2, we obtain

vo (¢h =& eh — @) = — (85 (vh - who) 2 (W5 = &°) . (0 - &)
+v(l-w)o (b — ¢ el — ) +
+ (/33’ (y,‘i - wi_l) s, <¢2_1 - ¢5> : (wi - @5)) +
o (85 (va =) = B (77 =) ) b+ 85 (7 = &) (v - 2°) (&0 - 7)) +
T+ (X=X, (4l - ).

By the continuity and coercivity conditions H; and Hs of o (+,:), and the Mean-
Value Theorem applied in the interval of sides {(y3 — ¢° ), (7% — @)}, where r? (§) =
0 (yi - 902—1) +(1-0) (37‘5 - 956) such that 0 < 0 < 1, we obtain

ISy —@° 202y +

<5u0—053 ((l—ww)cgl/C—l-(l—l-ww)Cﬁg)
5 5

) 16— & Ny <

Cp 5 _ =5 C .0 =D

+ w5 | Yo = 7° a1 (@) twes | Pn +0° (1) +
536

+weC [ Ay = A° ) -

Finally, we obtain

(1 —wy) ovC + (1 4+w,) Cps
ovC — Cps

|wﬁwwm@§< wW%r@Wm@+

Cps 5 -5 ¢ 5 _ 50
T s | Un 8 et 10— 8 iy +

dwy,C ey
+ (W) [ A;?L — X HHl(Q) .
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Lemma 3.7. Let ¢° in U be the solution of (26), since

I17° o< A

where wy, 1s strictly positive, such that

SvC + Cps
< <1
(C+ovC —Cpg) — ¥ =
and
32vC — Céps3

YOS TS5+ O

Then, we obtain

[REET |20y < K] v -7 1@ + |l W = 20y + |l Py -1 1) +
1A =X Nl g)

where p3 < Cov and kg := wwﬁ.
—Cps

Proof. From step 4 of the continuous version of the algorithm 2, we obtain

vor (v =, =07 ) = (85 (oo —ud) ol (wh =) (vi = 97)) +
v (1—wy)o (v — vl — ) +
— (6 (vios —wd) o (s = 9°)  (wh = 0°) ) +
oy (85 (V3o —w0) = 85 (90 = 7)) w4 35 (80 = 7°) (0 —7°) (w3 — %)) +
oy (M =X, (v - 47)).

By the continuity and coercivity conditions H; and Hy of o (), and the Mean-
Value Theorem applied in the interval of sides {(¢?_; — ), (¥° — %)}, where r? (§) =

n

0 (WS_I - yfl) +(1-0) (1[_)5 - 375) such that 0 < 0 <1, we get

n

vO—Cp - 1—wy JovC+ (14w, )Cp -
<%) (K7 m2(0) < <( 0) 5( o) p3> v —3° 20y +

Cp § 6 5§
+ w52 N yn — 7° () +Ww% I pn —2° o) +
5§ y6
FwyC [ Ay = A g -
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Finally, we obtain

I8 = 0 iy < (220 4

— 0 | 202y +
TR/ Sy B L R — -
ww&/c C~ Yn — y HY(Q w1/15 C— C~ Pn — p HY(Q
wy, Co F) )
+ <5,,cwf053) | A% = A% (o)
O

Lemma 3.8. Let y° in U be the solution of (23), since the condition (3.7) of previous
Lemma 3.7 is fulfilled, where

5C+C -6 (6C +C)
P — < — <
< 5C+C ><“’ =60 +20) =
we get
I =3 @<k {l e =& I} + 1l by =& v}
C _
where ki = (1 —wy) <C+ g), eg_l = (yfl_l,cpi_l,wz_l), & = (55,¢5,w5) and
Vi=H'(Q) x H?>(Q) x H ().

Proof. From step 1 of the algorithm 2, and since
— (85 (Wn—1 = 1) + B85 (Y1 —vn_1)) (4p = 7°) , (w — 7°)) < 0, and by the Mean-Value
Theorem applied in the interval of sides {We =% 1), (7 — @)} and {(¥C_| — S ),
(¥° = 7°)}, we get
o (v =7 =) < (1 =w)o (vh, —70h — )

+ <(5</5 <ny L — b 1) + 55 <¢g—1 - yi_l)) (Z/n 1 375) <ny - 375))

(8 (1) = 85 (vhor = hs) + 85 (vhos = 201) ) (v = 7°) (B = 7))

r) (0) =0 (yi_l - %’Z—l) +(1-90) (?35 - 955) )

and

Tg 0) =120 (wi_l - yi_1> +(1-9) (1/;5 — §5) such that 0 <6 <1.
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gain by the Mean-Value Theorem applied respectively in the interval of sides
Again by the M Value Th li d ively in the i 1 of sid
{r2(0), (yp—1 — ¥n—1)} and {r§ (8), (¥5_1 — yp_1)}, We obtain

0<yi—§5 vh =) < —w)o (vhoy - wh—5°) +

wy) (85 (V31 = o) (vhor = 9°) s (w3 — 9

(1 =wy) (85 (00 —va) (v = 7) (i - 7
o ([ (A0) [0-0) (10— ) — 0
+uy (8 (110) (dhr =) (vh - 7)) +

+%({%§w)k >@%rﬁzg (-

ra (5 (40) (vh0 =) (12 -7°)).

where, 5§ (0) := 0 (yp_y — ¢5_1)+(1 = 0) 79 (0) and 53 (0) := 0 (v5_y — yp_1)+(1 — 0) 75 (6).
By the coercivity and continuity conditions H; and Hg of o (-, -), we obtain

[=2)

_|_
+
9)

- o)) () o - )+
0 (5 )]) (o) o))+

) - 1 - 1 —0
Cllyn =9 TS (L—wy) Clyny = 7 @l Yo — 7 lae) +

C(l—-w _ _
) s el 7 i +

+ ol (i 5) — (e~ &) Nl vhos — 7 iyl o~ 7 ey +
+ 9 8 a4~ 7 ey +
+gﬂ%;QH@Lrﬂ)—@WrW%WﬂMWirWWmmNﬁ—mem+

+ g~ iyl o~ 7 ey

Finally, we have

lyp = o)< b {H o1 =9 i) + | o1 — @ 2 + | ¥0—1 —¥° 20
1y =7 ey + 1 o = & ey + 1 051 = 9 )
where
ki = max{(l — wy) <C+ %C’) ,wy%C’(l —0) ,wy%C’} =(1—-wy) (C’—I— %C’) .
U

Theorem 3.3. Leted := (y,¢5,1%), & = (5°,¢°,¢°) and V := H' (Q) x H?(Q) x H* (),
then we get
I b =& v kmax {Jl eh_y =& 3,1l ehoy =& v}
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where
k‘::2</€1+];‘3), /;33 = k3 (k1+l~2—|—1> and[2212(0k1+C).

Proof. From equations (3.8) and (3.3), we get

5§ =6 ) _5 P _5
I =5 s ka {lleh =& I3+l ehy =2 v},

and

s
+C || 051 — @ ey

<LC Y =7 lua
+C Y51 — 9 (),

”pn p ”H1

then we obtain

S ) 7 é =0 § =0
16— o< B {Il ey =& I+l ehy — & IIv ]

where 3
log =19 (Clﬁ + C) .

And by equation (27), we get
| A =X 22 < ka(ll - | m2(0) +l {|| e -y +le -2 ||v} +
Cpg _ —
L {lleh =@ I+ b= Iv}) (28)

then, we obtain
5 -

6l = & lrragey< Fs {l €y =& 13+ 1l ey & v
where 3 3 3

Ry = by (ki + B+ 1+ R)),
and by equation (27), we get

5 76 5 _ =6
o) + | o1 —¥° a2 + | o5 — P° lan (o) +

I8 — 9 2 < kol 9 — 7°
F X, =X ),

then, we obtain
(29)

& S
<k {leha—e I+l oy~ I}

4 = 0 |2y
where } . 3
ko := ko <k’1—|—lg—|—1—|—k’)\) .

From equations (3.8), (3.1) and (29), we get
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g =& v 2 (4 ks + b ) max { | ey =& [, ey — & Iy}
Finally, we get
é =0 é ~d 12 é =0
I eh =& v kmax {Jl eh_y =& 3,1l ey — & v} (30)

where

/<;:z2</<;1+/?;3+/%2).
O

Remark 3.4. As seen above, it is very difficult to give a sharp estimate of the constant k
and to prove that this constant is less than 1 to get the convergence of the latter algorithm.
However, we believe that with suitable choices of § and w, we can make this constant less
than 1.

Remark 3.5. From Theorem 3 3, we deduce that yn converges strongly to i° in H} (Q)
and @S converges strongly to @ in H? (Q) and ¢S converges strongly to ¢° in H? (Q).

Corollary 3.4. By the assumptions of Theorem 3.3, we deduce that

| J (yi,wi,w,‘i> —J <yg_1,wi_1,wi_1> | goes to 0.

Proof. From the cost functional defined in (P?), we can write
7 (ehwt) =7 (shorehawia) 1= 5| [ (s =) ot
v </Q (wi)Q + (vwz)z dx) -
</Q (vs—2) dwt v (/Q (Vi) + (wi_l)de» .

From Corollary 3.1, we have || y3_, [lz2(0)< f2, || %y g0y < o1 and | 98, [lpr2(oy<
p1, then, we deduce that

‘ J (y;i?(:pfzawg) —J <yg—17¢2—17w2—1> ’S
1
< S (1w = vy )l w8 = v ez +2 1wy oz +2 1 % llpzqy)
v (1 98 = Vb D) (I Vil = Vet iz +2 1| VO llia@))

v (1 Ve = Vo ) V9 = Vi ey +2 1| Vs i) )

and
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1 -
| J (yi,soiﬂbi)—J <yi_17¢2_1,¢2_1) 1< 5l n=vn-1 [20) +2P2+C) || Ya—vns Il
v (I Veh = Vehy 320y +(261) || Vb = Vb )

v (I V05 = Vb oo +261) | I8 = V3 Do ).

Finally, we deduce that | J (yfl, gpfl,wfl) -J (yfl_l, cpfl_l,wz_l) | strongly converges to
0. O

4 Numerical implementation and computational
aspects

Numerical experiments are carried out for one and two dimensional problems. We will

attempt to compute a grid function consisting of values y%" := (yg , y‘f s yf\, +1) ,

g06h (@079017 . '7(10(];\[4-1) Y 1/}57h = (w87w(1$7 "'7¢§V+1) a‘nd p&h = (pg7p({7 "’7p(]$\[+1) 9 Where

yoh, oo % and p®P are the vectors values of the discrete solutions of the optimality
system (S°) such that 3 1= 90 (x;), 00 = ©° (x;),9? := ¢° (z;) and p¢ := p° (2;) for
0 <i < N+1, finite-differences approximations involving the three, respectively five, point
approximation of the Laplacian in one dimensional space, respectively two dimensional

space. Here x; = ith for 0 < i < N+ 1 and h := is the distance between two

N+1
successive grid points. From the boundary conditions y§ = 35 41 = 0,p) = pY 41 =0,

cpg = gp‘]sv +1 =0, and 1/18 = 1/1?\, +1 = 0, so we have 4N unknown values to compute in one
dimensional space. Then, for example, if we replace ¥ (z) (respectively Ay (x)) by the
centered difference approximation, we get

—y? (z) = Elg(—yi_i_l +2y; —yi—1), where 0 <i < N 41, (31)
and respectively
—(Ay)y; = 5 (~Yir1y +4Wij — Yi-1, — Yij+1 — Yij—1), where 0 <i,j <N +1. (32)

Then, we can write the previous systems under the matrix form, as

( 5,h 5,h 5,h 6h
Azyn "‘Bé(yn _Spn—l)_/@cS(w yn )—fha

5,h 5,h\y 8,k 5,h
(A4 + B4y — &%) + B — g e =y — 2",
5,h 5,h
N = v ALt + B (v - o 1)pn ,

VALY + 85 (03" — ") i = A,

v+ 85 (48" — ) i~ X =,
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where d = 1,2, f" := (fo, f1, .., fv+1), 2" := (20,21, ..., 2v+1), and such that for one
dimensional problem, A} is (N +2) x (N + 2) symmetric positive definite matrix, where
A} is given in (31) and for two dimensional problem A? is (N +2)? x (N +2)? symmetric
matrix, where A2 is given in (32). Below, we give the discrete algorithm of the continuous
algorithm as
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Algorithm 3 Newton dumped-Gauss-Seidel algorithm (Discrete version)

1:

10:
11:

12:
13:

14:

15:
16:

17:
18:

19:
20:

21:
22:
23:
24:
25:
26:
27:
28:

Input {yo ,p0 ,gpo ,AS",¢§”,5 V, Wy, We, Wy, € } choose gpg’h,wg’h € W,e and
0 in R ;
Begin:

Calculate J,_; + J,_; <ygh1, @ihl,wg’fl)

If (Aﬁf + diag(5; <yfjﬁ1 — g0n’_1>) + diag(5; <¢2’f1 — ng))) is singular Stop.
Else
Solve (Aﬁf + diag(5; (yf{fl - @f{h1>) + diag(5; (WM — yz’h1>>).rfL =

—Wy (A%yi’fl + diag(8s <yf{f1 - @iﬁ1>) diag(5; (10 yn 1)) f) on Tfm
Then yi' = yp" + 1),

End if

If (AZ + diag( S5 <yi’h — gpi’z)) + diag( 55 <1/) -y ))) is singular Stop.
Else

Solve (Az + diag(3; <y2’h — wf{fl)) + diag(5; <¢ — ))) poh = yoh — 2

on poh.

End if
Calculate )\f;h = VA%QOZhl + diag(5; (yg - <Pn 1)) o
If (VAZ + diag(S§ <1/)2h —yo >)pf;h) is not invertible Stop.
Else
Solve (VAd + (dlag ( <¢gh1 — ))) pi’h> 70 =
—wy (vAful", + diag(3; (wn L= ) M) on v,
Then " = wn 1+ ro
If (VAd diag(5; (yn — oo 1)) ‘”’) is not invertible Stop.
Else
Solve (uAd diag(3} (yn — ¢f{h1>)pfgh> o=
—Wyp (VA%(,O”’_l + diag(ﬂ:; ( - Spn 1)) )\6 h) on Tz'
Then 0 = 2" + r
Calculate J, < J,_; (y:ih, % ’@bé h)
End if

If |J, —J,_1| < Stop.

Ensure : s° := (yg,gpfw g,pg) is a solution
Else; n <+ n+ 1, Go to Begin.
End if

End algorithm.
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Remark 4.1. Theorem 3.3 is given for the continuous problem and it is clear that for the
discrete form of the proposed algorithm, we must introduce the discretisation parameter h.
But for this discrete form of the algorithm 2, it is very difficult to give a sharp estimate
of the Lipschitz constant k given by Theorem 3.3.

4.1 Numerical examples in one dimensional space

In this section, we take 2 = [0, 1] and we describe some numerical experiments in one di-
mensional space based on the previous algorithm. We also give some numerical tests when
in each test we vary one of the parameters w, 4, N and v, where f(x) = 100xcos(3nx),
2(x) = cos(4wz?) and v > 0 are given. In the sequel, we note by ¢, the quantity

max{” Yn — Yn—1 ”007 ” Pn — Pn-1 Hoo}

4.1.1 Test 1: Study of the dependence on the parameter w with § = h?,
v=1and N = 200

Numerical results are displayed in Table 1 according to the variation of w. In Figure 1, we
give the curves corresponding to the controls ¢ and 1. Curves given in Figure 2 show the
contact region I(y) between the state and the control functions. Finally, Figure 3 gives
graphical variations in a log-log scale of €, and J,, for each iteration n.

w  f Iteration J | Jo— T |y — 2|0 €n
0.25 143 49.039593172814833  9.663381e-013  0.998935  6.954742e-004
0.5 66 49.039593172804153 9.947598e-013  0.998935  2.859977e-004
0.75 31 49.039593172799911  9.094947e-013  0.998935  2.096388e-005
1 6 49.039593172798838  7.815970e-014  0.998935  6.224867e-004

Table 1: Numerical results for one dimensional space while varying w

x10 " obstacke psi
0 T

-2 2 Lt

0 O‘Z 0‘4 D.‘G 0.‘8 1 0 0‘1 u‘z 0‘3 0‘4 u‘s D‘ﬁ 0‘7 u‘x n‘g 1
(A) Obstacle ¢ (B) Obstacle ¢

Figure 1: Left (obstacle @), right (obstacle 1) continuous line; w = 0.25, dash line;
w = 0.75, dash-dot line; w =1

32



o 02 04 0.6 08 1 o 02 04 0.6 08 1

(A) State and obstacles (w = (B) State
0,25)

Figure 2: Left(state and obstacles (w = 0,25)), right(state) continuous line; w =
0.25, dash line; w = 0.75, dash-dot line; w =1

! !
5 6 7

3
log(n)

(A) Error €, (B) Cost functional J,

Figure 3: Left(error €,), right(cost functional J,,) continuous line; w = 0.25, dash
line; w = 0.75, dash-dot line; w =1

4.1.2 Test 2: Study of the dependence on the parameter N with § = h2,
w=0,7and v =1

Numerical results are displayed in Table 2 according to the variation of N. In Figure 4,
curves corresponding to the controls ¢ and v are shown. Curves given inFigure 5 show the
contact region I(y) between the state and the control functions. Finally, Figure 6 gives
graphical variations in a log-log scale of €, and J,, for each iteration n.

N Iteration J | Jn— 1 | |y — 2|0 €n

100 26 24.392851 9.627854e-013  0.995719  2.621471e-005
150 27 36.716242  9.023892e-013  0.998098  8.192995e-005
200 31 49.039593  9.094947e-013  0.998935  2.096388e-005

250 30 61.362928 9.023892¢-013  0.999322  6.492990e-005

Table 2: Numerical results for one dimensional space while varying N
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(A) Obstacle ¢

Figure 4: Left(obstacle ¢), right(obstacle 1))
N = 150, dash-dot line; N = 200

0.02

0.015

State

State and obstacles

-0.01

L
0 0.2

(A) State and obstacles (N
100)

Figure 5: Left(state and obstacles (N = 100)),
dash line; N = 150, dash-dot line; N = 200

39
38
37
36
235
E 34
33
32
31

3
log(n)

(A) Error €,

Figure 6: Left(error €,), right(cost functional .J,,), continuous line; N = 100, dash

line; N = 150, dash-dot line; N = 200

4.1.3 Test 3: Study of the dependence
w=20,75 and N = 200

Numerical results are displayed in Table 3 according to the variation of v. In Figure 7,
curves corresponding to the controls ¢ and i are shown. Curves given in Figure 8 show

34

02

(B) Obstacle v

continuous line; N = 100, dash line;

L
0.2

(B) State

right(state) continuous line; N = 100,

(B) Cost functional J,,

on the parameter v with § = h?,



the contact region I(y) between the state and the control functions. Finally, Figure 9 gives
graphical variations in a log-log scale of €, and J,, for each iteration n.

v # Iteration J | Jo— Jn1 | Ny — 2|0 €n
0.0001 28 49.039593172727052  3.907985e-013  0.998935  2.041225e-004
0.001 28 49.039593172727159 3.055333e-013  0.998935  7.349400e-005

0.01 36 49.039593172728459  7.389644e-013  0.998935  3.428793e-004
0.1 41 49.039593172735735 4.334310e-013  0.998935  1.033546e-014
1 223 49.039593172799911  9.094947e-013  0.998935  2.646852e-015

Table 3: Numerical results for one dimensional space while varying v

Obstacle phi
' ' ' ! ! |
& & IS & Ny N

L L L L _ L L L L
0 0.2 04 0.6 08 1 o 0.2 04 0.6 08 1
X X

(A) Obstacle ¢ (B) Obstacle

Figure 7: Left(obstacle ¢), right(obstacle 1) continuous line; v = 0.01, dash line;
v = 0.1, dash-dot line; v =1

0.02 T T T T T T T T T 0.02

-0.01 -0.01

L L L L L L L L L L L L L
0 0.1 02 03 04 05 06 0.7 08 09 1 0 02 04 0.6 08 1
X

(A) State and obstacles (v = (B) State
0.01)

Figure 8: Left(state and obstacles (v = 0.01)), right(state) continuous line; v = 0.01,
dash line; v = 0.1, dash-dot line; v =1
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(A) Error ¢,

3897

38965
3896 NG,
38955
3895

338945

]

2 3804
38935
3893
38925
3892

0

(B) Cost functional J,

Figure 9: Left(error €,), right(cost functional .J,,), continuous line; v = 0.01, dash
line; v = 0.1, dash-dot line; v = 1

4.1.4 Test 4: Study of the dependence on the parameter § with N = 200,

w=20,75and v =0.1

Numerical results are displayed in Table 4 according to the variation of §. In Figure 10,
curves corresponding to the controls ¢ and 1) are shown. Curves given in Figure 11 show
the contact region I(y) between the state and the control functions. Finally, Figure 12
gives graphical variations in a log-log scale of ¢, and J, for each iteration n.

0  f Iteration J | Jn—Jn1 | |y — 2leo €n

h? 41 49.039593172735735 4.334310e-013  0.998935  1.033546e-014
h2® 112 49.039593172742727 6.679101e-013  0.998935  1.389559e-004
h3 155 49.039593172736232  9.308109e-013  0.998935  1.243146e-008
h3-® 383 49.039593172738968  6.465938e-013  0.998935  9.571397e-010

Table 4: Numerical results for one dimensional space while varying

(A) Obstacle ¢

(B) Obstacle

Figure 10: Left(obstacle ¢), right(obstacle 1), continuous line; § = h?, dash line;
§ = h*?, dash-dot line; 6 = h?
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State and obstacles
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~0.01 L L L L ~0.01 L L L L
0 02 04 0.6 08 1 0 02 04 0.6 08 1
X X

(A) State and obstacles (§ = h?) (B) State

Figure 11: Left(state and obstacle (§ = h?)), right(state) continuous line; § = h?,
dash line; 6 = h??, dash-dot line; § = A3

07 : : ; ; ; 3897
28965
389 [
28955
3895
338945
3

2 3804

log(error)

3.8935
3893
3.8925

A L . 3892 . . . . .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
log(n) log(n)

(A) Error €, (B) Cost functional J,,

Figure 12: Left(error ¢,), right(cost functional J,) continuous line; § = h?, dash
line; § = h*?, dash-dot line; 6 = h?

4.2 Numerical examples in two dimensional space

In this section, we describe some numerical experiments in two dimensional space based on
the previous algorithm. We also give some numerical tests when in each test we vary one
of the parameters w, §, N and v, where Q = [0,1] x [0, 1], f(x,y) = 23sin(272?)ycos(27y?)
and z(z,y) = sin(2r2?)cos(2my?)) and wy = wy, = Wy = w.

4.2.1 Test 1: Study of the dependence on the parameter w with § = h*,
v=1and N =40

Numerical results are displayed in Table 5 according to the variation of w. Figure 13 gives
graphical variations in a log-log scale of ¢, and J, for each iteration n. Curves given in
Figure 14 and Figure 15 corresponding to the controls and state functions are shown.
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w  f Iteration J | Jo—Jn1 | 1y — 2]l €n

0.25 62 0.002946055145308  9.601694e-016  0.999991  3.982865e-011
0.5 28 0.002946055145306  6.392456e-016  0.999991  1.180507e-011
0.75 15 0.002946055145305  5.212844e-016  0.999991  5.253112e-012

1 3 0.002946055145305 6.878178e-016  0.999991  9.642406e-010

Table 5: Numerical results for two dimensional space while varying w
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Figure 13: Left(error €,), right(cost functional .J,,) continuous line; w = 0.25, dash
line; w = 0.5, dash-dot line; w = 0.75
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4.2.2 Test 2: Study of the dependence on the parameter N with § = h%,
w=0,5and v=1
Numerical results are displayed in Table 6 according to the variation of N. Figure 16 gives

graphical variations in a log-log scale of ¢, and J, for each iteration n. Curves given in
Figure 17 Figure 18 corresponding to the controls and state functions are shown.

N { Iteration J | Jon—dn1 | 1y — 2]l €n
30 26 0.001632 5.193328e-016 0.999974  7.355250e-012
35 27 0.002241 5.165139e-016  0.996074 6.513361e-012

40 28 0.002946  6.392456e-016  0.999991 1.180507e-011
45 30 0.003746 7.350890e-016  0.999966 2.389886e-011

Table 6: Numerical results for two dimensional space while varying N
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(A) Error €, (B) Cost functional J,,

Figure 16: Left(error ¢,), right(cost functional .J,,) continuous line; N = 30, dash
line; N = 35, dash-dot line; N = 40
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Figure 18: Obstacle function v

4.2.3 Test 3: Study of the dependence on the parameter v with § = h%,

w=20,5and N =40

Numerical results are displayed in Table 7 according to the variation of v. Figure 19 gives
graphical variations in a log-log scale of ¢, and J,, for each iteration n. Curves given in
Figure 20 and Figure 21 corresponding to the controls and state functions are shown.

v f Iteration J | Jo— T |y — 2|0 €n
0.001 300 0.002946054157953 1.227802e-013  0.999991  3.695397e-005
0.01 29 0.002946054121818 5.676882e-016  0.999991  5.966039e-011
0.1 29 0.002946054416021 5.676882e-016  0.999991  5.966039e-011
0.5 28 0.002946054948036 7.650130e-016  0.999991  2.529592e-011
1 28 0.002946055145306 6.392456e-016  0.999991 1.180507e-011

Table 7: Numerical results for two dimensional space while varying v
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4.2.4 Test 4: Study of the dependence on the parameter § with N = 40,
w=0,5and v=1

Numerical results are displayed in Table 8 according to the variation of §. Figure 22 gives
graphical variations in a log-log scale of ¢, and J, for each iteration n. Curves given in
Figure 23 and Figure 24 corresponding to the controls and state functions are shown.

d 4 Iteration J | Jon—dn1 | v — 2]l €n

h3 27 0.002946054193747 8.135853e-016  0.999991 8.627484e-012
h3-® 27 0.002946054365294 8.270294e-016  0.999991  8.809409e-012
ht 28 0.002946055145306 6.392456e-016  0.999991 1.180507e-011
h1-® 33 0.002946056696808  9.358833e-016  0.999991 1.016003e-010

Table 8: Numerical results for two dimensional space while varying ¢
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Figure 22: Left(error €,), right(cost functional J,) continuous line; § = h?  dash
line; § = h3, dash-dot line; § = h?
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Conclusion and remarks

We notice that techniques used in the paper of Ghanem et al. [13] can be easily applied
to the numerical resolution of the problem considered in this work. The given numerical
results are acceptable although the convergence of the algorithm is not fast. They also
consolidate our perception given in Remarks 3.5 and 4.1 about the Lipschitz constants.
In order to improve the speed of convergence, we can either apply other algorithms of
resolution or should improve the used algorithm by optimizing the choice of the parameter
(by the line search method, for example).
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