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Université de Caen Basse-Normandie, 14032 CAEN,
{firstname.lastname}@unicaen.fr

Abstract—We introduce the notion of Optimal Patterns
(OPs), defined as the best patterns according to a given user
preference, and show that OPs encompass many data mining
problems. Then, we propose a generic method based on a
Dynamic Constraint Satisfaction Problem to mine OPs, and
we show that any OP is characterized by a basic constraint
and a set of constraints to be dynamically added. Finally, we
perform an experimental study comparing our approach vs ad
hoc methods on several types of OPs.
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I. INTRODUCTION

Relationships between constraint programming (CP) and
data mining have recently received considerable atten-
tion [1], [2], [3]. This success likely comes from the declar-
ative and flexible model provided by this new framework.
Hypotheses and patterns that analysts seek to discover are
specified in terms of constraints. Then, powerful CP solvers
ensure to produce the complete set of patterns satisfying
the constraints. Constraints (e.g. must-link and cannot-link
in clustering, coverage in many data mining tasks) and
new constraints defining a problem at hand can easily be
integrated without developing specialized methods. Through
its declarative and flexible nature, this CP-based approach
for data mining clearly helps pattern selection strategies
such as minimizing the redundancy or combining patterns
on the basis of their usefulness in a given context. This
approach falls into the general trend to produce sets of
patterns satisfying properties on the whole set of patterns [4]
which is a promising road to discover useful patterns.

There are several propositions in the literature to extract
sets of patterns defined by constraints based on several pat-
terns such as pattern teams [5], minimum tiling [6], top-k [7],
conceptual clustering [8], redescription mining [2], to name
a few. Even if these methods share the idea of evaluating
the interest of a pattern w.r.t. a set of patterns, there are
only very few attempts to design generic approaches. Even if
these methods share the idea of comparing patterns between
them to obtain more relevant set of patterns, there are only
very few attempts to design generic approaches in this area.
In this line of research, [4] provides a general definition
of a two step procedure to mine constraint-based pattern
sets by exploiting the analogies with local pattern mining.
In the CP-based paradigm, k-pattern sets [3], [2] look for
sets containing a fixed number of patterns satisfying many

constraints that can be expressed in one framework. Other
methods based on CP are devoted to specific sets of patterns
such as top-k [9] or skypatterns [10].

This non-exhaustive list of data mining methods to extract
sets of patterns shows the importance of this research
activity. Many other methods for mining sets of patterns
can be designed. But what kinds of sets of patterns can
be produced? What about these sets of patterns w.r.t. usual
pattern mining methods? This paper addresses these issues.

The key idea is to model sets of patterns thanks to the
notion of preference. Then we define the optimal patterns
(OPs) which are the best patterns w.r.t. the preference (an
OP is a pattern for which there are no preferred patterns).
A major result is that numerous data mining problems can
be modeled in this framework including well-known tasks
(e.g. condensed representations of patterns [11], [12], rele-
vant subgroups [13]) but, more interestingly, the problems
indicated above and many others as we will see in the rest
of the paper. Taken as a whole, we think that the OP notion
provides a better understanding of the different families of
sets of patterns.

Second, we propose a generic method to mine OPs which
is based on a dynamic CSP (Constraint Satisfaction Prob-
lems) framework. The main principle is as follows: when a
solution is found, a constraint is dynamically added to the
current CSP to find a better solution and then successively
reduce the search space. The process stops when no better
solution can be found. Finally, experiments show that our
approach competes well with ad hoc methods despite its
generic modeling.

Section II introduces the notion of OPs, defined as the best
patterns according to a given user preference. Section III
shows that OPs encompass many data mining problems.
Section IV presents our generic approach for mining OPs.
Section V synthesizes the related work. Section VI describes
the experimental study of several OPs and compares the
performance obtained over ad hoc methods.

II. DEFINITIONS

A. Preliminaries

We sketch a few well-known notions from the pattern
mining area. Let I be a set of binary items.
• An itemset x is a non-empty subset of I, i.e. x ∈
LI=2I\∅. A k-itemset is an itemset of cardinality k.



• A dataset T is a multiset of itemsets of LI . An entry
of T is called a transaction. Let d be the 0/1 matrix
where, for each transaction t ∈ T and each item i ∈ I,
(dt,i = 1) iff (i ∈ t).

• The coverage of an itemset x is the set of transactions
covering x: T(x) = {t ∈ T | x ⊆ t}.

• There are usual measures for an itemset x:
– Frequency: freq(x) = |T(x)|.
– Frequency w.r.t. a class ci: Let Ti be the subset

of transactions associated to class ci. freqi(x) =
|{t ∈ Ti | x ⊆ t}|

– size(x) is the number of items that x contains.
– area(x) = freq(x)× size(x).
– max(x.val) (resp. min) is the highest (resp. low-

est) value of the item values of x for attribute val.
– mean(x) = (min(x.val) + max(x.val))/2.

• An itemset x is closed for a measure m iff x has no
superset with the same value for m.

• The growth-rate of an itemset x w.r.t. a class ci is:

gri(x) =


0 if freqi(x) = 0
∞ if freq(x) = freqi(x)

|T \Ti|×freqi(x)
|Ti|×(freq(x)−freqi(x)) otherwise

• An itemset x is emergent for a class ci iff gri(x) ≥ ψgr,
where ψgr is a threshold. An itemset x is a Jumping
Emerging Pattern (JEP) for ci iff freq(x)=freqi(x).

• A pattern set x is a non-empty subset of LI , i.e. x ∈
2LI\∅.

• A k-pattern set x is a k-tuple of itemsets, i.e. x ∈ Lk
I .

B. Search Space and Local Patterns

The search space is a key feature to get a sound under-
standing of the different problems of sets of patterns.
Definition 1 (SEARCH SPACE).
A search space S is the feasible set of all possible solutions
for a given problem.
Example 1. For pattern mining, S=LI . For pattern set
mining, S=2LI\∅. For k-pattern set mining, S=Lk

I .
Definition 2 (CONSTRAINT ON A SEARCH SPACE).
A predicate c : S→ {true, false} is called a constraint on
a search space S.
Definition 3 (THEORY W.R.T. A CONSTRAINT ON A
SEARCH SPACE S [14]).
Given a search space S, a dataset T and a constraint c, the
theory Th(S, T ,c) is the set of elements of S satisfying c
in T : Th(S, T ,c) = {x ∈ S | c(x)}

We call local constraint a constraint which does not
require comparisons between elements of S to be checked.
Definition 4 (LOCAL CONSTRAINT).
Let x be an element of a search space S. A constraint c on
S is a local constraint iff c only requires x to be checked
(comparisons between elements of S are not necessary).

C. Preference and Optimal Patterns

The key idea is to model sets of patterns thanks to the
notion of preference, and to define OPs as the best patterns

w.r.t. this preference. A major result is that numerous data
mining problems can be modeled in this framework (see
Section III).
Definition 5 (PREFERENCE ON A SEARCH SPACE S).
A preference B is a strict (i.e. irreflexive) partial1 order
relation on S. Let x and y be two elements in S, x B y
indicates that x is preferred to y.
Example 2. Let S=LI and x, y ∈ S.
a. Let m : S→ R a measure, xB y iff m(x) > m(y).
b. Let M a set of measures, x (Pareto-)dominates y w.r.t.
M (denoted by x �M y) iff ∀m ∈ M,m(x) ≥ m(y) and
∃m′ ∈M,m′(x) > m′(y). Thus, xB y iff x �M y.
Definition 6 (OPTIMALITY CONSTRAINT).
Let S be a search space, B a preference on S, basic(x)
a basic constraint on S, and E =Th(S, T ,basic). An
optimality constraint on S is defined as:

c(x) ≡ basic(x) ∧ 6∃ y1, . . . , yp ∈ E :
∧

1≤j≤p
yj B x

basic(x) states that x must satisfy a basic property (e.g.
to be frequent, to be closed w.r.t. a measure or a set of
measures). The second part of the definition means there
are no p other distinct elements y1, . . . , yp ∈ E that are
preferred to x w.r.t. B.
Example 3. Let S = LI . A skypattern [15] is a non
(Pareto-)dominated pattern w.r.t. a set of measures M :
c(x) ≡ closedM (x) ∧ 6∃ y ∈ E : y �M x. The basic
constraint closedM (x) states that x is closed w.r.t. M to
avoid redundant skypatterns (see Section III-A2).

In other words, Definition 6 means that OPs are the
best patterns according to a preference. This modeling may
appear simple but it is powerful for a twofold reason. First,
as we will see in the next section, many pattern mining
problems can be modeled in this framework. The mining of
set of patterns falls into this framework due to the multiple
comparisons between x and the yj (see Def. 6). Second, this
modeling is conducive to effective mining methods based on
Dynamic CSP (see section IV). From now on, a pattern x
is called local (resp. optimal) if x is defined w.r.t. a local
(resp. optimality) constraint over S.

III. LOCAL PATTERNS AND OPTIMAL PATTERNS

This section provides a wide range of pattern mining
problems (itemsets, pattern sets and k-pattern sets) and
classifies them as local ones or optimal ones.

A. Itemset Mining

This section reviews different itemset mining problems
(S = LI) and classifies them as local ones or optimal ones.

1) Local Itemsets: We give two well-known examples of
local itemsets (ψfreq and ψarea are thresholds).
a. Frequent Itemsets: c(x) ≡ freq(x) ≥ ψfreq.
b. Large Tile Mining [6]: c(x) ≡ freq(x)× size(x) ≥ ψarea.

1There are possibly two elements x, y ∈ S (x 6= y) such that x 6B y and
y 6B x.



2) Optimal Itemsets: Many itemset mining problems can
be modeled as optimal itemsets even if they are not initially
defined according to an optimization criterion. It illustrates
the broad scope of the OPs. Due to the space limitation,
these problems are only outlined.
a. Closed Itemsets [12], Free Itemsets [11] and Maximal
Itemsets. Closed itemsets are itemsets with no specialization
having the same frequency. Let ψfreq be a frequency thresh-
old. Closed Itemsets are defined by the optimality constraint:
c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ E : y ⊃ x ∧ freq(y) = freq(x)

Free and maximal itemsets are expressed by simple variants
of the previous definition:
- Free ones: c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ E : y ⊂ x∧freq(y) =

freq(x)

- Maximal ones: c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ E : y ⊃ x

b. Peak Itemsets [16]. Let d(x, y)=|x\y| + |y\x| be a
distance, m a measure, ε an integer and δ a real. A peak
itemset has a high value according to m w.r.t. those of its
neighbors:
c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y ∈ E : d(x, y) ≤ δ ∧ ε× m(y) > m(x)

c. top-k itemsets [7]. Let m be a measure and k an integer.
The top-k itemsets is the set of the k best itemsets according
to m:
c(x) ≡ freq(x) ≥ ψfreq ∧ 6∃ y1, . . . , yk ∈ E :

∧
1≤j≤k

m(yj) > m(x)

d. The N-most interesting k-itemsets [17]. Let N be an
integer. The set of the N -most frequent k-itemsets is
defined by the optimality constraint:
c(x) ≡ size(x) = k ∧ 6∃ y1, . . . , yN ∈ E :

∧
1≤j≤N

freq(yj) > freq(x)

e. Relevant Subgroup Discovery [13]. A relevant subgroup
consists of itemsets that discriminate a class T1 against a
class T2, where T1 and T2 form a partition of T :
c(x) ≡ freq1(x) ≥ ψfreq∧ 6∃ y ∈ E : (T1(y) ⊃ T1(x))∧

(T2(y) ⊂ T2(x))∧
(T(y) = T(x)⇒ y ⊂ x)

f. Pattern compression problem [18]. Let d(x, y) = 1 −
|T(x)∩T(y)|
|T(x)∪T(y)| be a distance, and δ a threshold. An itemset x
is representative iff no other itemset y in the neighborhood
of x (d(x, y) ≤ δ) is included in x. The compression problem
consists in finding all representative itemsets:
c(x) ≡ closed(x) ∧ 6∃ y ∈ E : d(x, y) ≤ δ ∧ y 6⊂ x

g. Maximally informative k-itemset [19]. Let x be
a k-itemset. The joint entropy of x is defined by:
H(x)= −

∑
B∈{0,1}k

p(x=B) log p(x=B) where p(x=B) is the

joint probability of (x=B). x is a maximally informative k-
itemset (miki) iff any k-itemset y has a greater joint entropy
(H(y) > H(x)). A miki is an itemset of specified size, which
maximizes the joint entropy:
c(x) ≡ size(x) = k ∧ 6∃ y ∈ E : H(y) > H(x)

h. Essential Jumping Emerging Patterns [20]. Let ψfreq be
a frequency threshold. A JEP is said to be Essential iff any

frequent itemset y ⊂ x is not a JEP:
c(x) ≡ (freq(x) = freq1(x) ∧ freq(x) ≥ ψfreq )∧ 6∃ y ∈ E : y ⊂ x

i. Skypatterns (see Example 3, Section II-C).

B. k-Pattern Set Mining

This section reviews several k-pattern set mining prob-
lems (S=Lk

I) and classifies them as local ones or optimal
ones.

1) Local k-Pattern Sets: We sketch two local k-pattern
sets mining problems, [3], [2] give other problem examples.
a. Exception Rules [21]. An exception rule is defined within
the context of a pair of rules as follows (where i is an item
such as a class value, k=2, x1 and x2 are patterns):

c((x1, x2)) ≡


freq(x1 \ x2 → i) ≥ ψfreq ∧
freq(x1 \ x2)− freq(x1 \ x2 → i) ≤ δ1 ∧
freq(x1 → ¬i) ≤ Ψfreq ∧
freq(x1)− freq(x1 → ¬i) ≤ δ2

Such a pair of rules is composed of a common sense rule
x1\x2→i and an exception rule x1→¬i since usually if x1\x2
then i, isolating unexpected information. This definition
assumes that the common sense rule has a high frequency
and a rather high confidence and the exception rule has a
low frequency and a very high confidence; the confidence
of a rule x1 → x2 is defined as freq(x1 ∪ x2)/freq(x1).
b. Conceptual Clustering [8]. The closed patterns are
well-designed for clustering based on associations because
a closed pattern gathers the maximum amount of similarity
between a set of transactions. The standard conceptual
clustering problem can then be formalized as to find k
closed patterns x1, x2, ..., xk (i.e., clusters) covering all
transactions without any overlap on these transactions.

clus(x) ≡
∧

i∈[1..k]
closed(xi) ∧

⋃
i∈[1..k]

T(xi) = T ∧∧
i,j∈[1..k]

T(xi) ∩ T(xj) = ∅

Finally, for other examples like unexpected rules, classifica-
tion conflicts, synexpression groups, . . . , see [2], [3].

2) Optimal k-Pattern Sets: k-pattern set mining problems
can be modeled as OPs. We briefly present two of them.
Other examples are for instance Redescription Mining, k-
term DNF Learning and Concept Learning [2].
a. Maximum k-Tiling [6]. The task consists of finding k
tiles (i.e., blocks of 1 in a binary matrix) having the largest
possible area, where the area is the total number of 1 which
are part of the tile. We consider tiles associated to closed
patterns.

c(x) ≡
∧

i∈[1..k]
closed(xi)∧ 6∃ y ∈ E,area(y) > area(x)

where area(x) ≡ |
⋃

i∈[1..k]
{(t, j) | t ∈ T(xi) ∧ j ∈ xi}|

b. Conceptual Clustering with optimization [2]. As it may
exist a large number of clusterings x satisfying the constraint
clus(x), preferences can be used to discriminate between
them. For example, the user may prefer clusterings with a
minimum size:
c(x) ≡ clus(x) ∧ 6∃ y ∈ E, min

j∈[1..k]
{freq(yj)} > min

i∈[1..k]
{freq(xi)}

Other preferences (e.g. balanced clusterings) can be ex-
pressed in the same way.



C. Pattern Set Mining

This section reviews several pattern set mining problems
(S=2LI\∅) and classifies them as local ones or optimal ones.

1) Local Pattern Sets: As examples, we give two pattern
set problems presented in [4].
a. Frequent Pattern Sets: c(x) ≡ support(x) ≥ ψsupport
b. Large Pattern Sets: c(x) ≡ size(x) ≥ ψsize

2) Optimal Pattern Sets: The scope of the OPs encom-
passes the pattern set tasks. Here are two examples:
a. Pattern Teams [5]: Let Φ : 2LI → R be a quality measure.
A pattern team is a set of k-itemsets s.t. there is no other
pattern set y of size k having a greater quality w.r.t. Φ:
c(x) ≡ size(x) = k ∧ 6∃ y ∈ E,Φ(y) > Φ(x)

b. Minimum Tiling [6]: It consists of finding a tiling (i.e.,
collection of tiles) of which the area equals to the total
number of ones in the dataset and consists of the minimum
number of tiles:
c(x) ≡ (area(x) =

∑
t∈T

∑
i∈I

dt,i) ∧ 6∃ y ∈ E,size(y) < size(x)

where area(x) = |
⋃

xi∈x
{(t, j) | t ∈ T(xi) ∧ j ∈ xi}|

IV. MINING OPS USING CP

This section shows how mining OPs can be modeled
and solved using DynCSP [22]. The main idea is that at
each step, once a solution is found, a new constraint is
dynamically added to find a better solution (in the sense
of B) and reduce the search space. The process stops when
no better solution can be found. Our approach is generic
as it can be applied to the mining of any kind of OP.
Its completeness is ensured by the completeness of the
constraint solver.

Section IV-A briefly recalls the notion of DynCSP. Sec-
tion IV-B shows how the mining of OPs can be modeled
and solved using a DynCSP. Section IV-C is devoted to
the modeling of OP examples presented in Section II.
Section IV-D provides the boolean encoding of patterns.

A. Dynamic CSP

A CSP P=(X,D,C) is defined by a finite set of variables
X , a set of domains D which maps every variable x ∈ X to
a finite set of values D(x) and a finite set of constraints C.
A DynCSP (Dynamic CSP) [22] is a sequence P1, P2, ..., Pn

of CSPs, where each Pi+1 is the result of provided changes
to the previous Pi. These changes may affect the variables,
domains and constraints. For our approach, changes between
CSP Pi and CSP Pi+1 are only performed by adding new
constraints without any removal of constraints. Additions
are handled in a straightforward way with the help of
filtering. Solving such a DynCSP involves solving a single
CSP with additional constraints posted during search. These
constraints will survive backtracking and state that next
solutions should verify both the current set of constraints
as well as the added ones.

B. Mining OPs using DynCSP

This section shows how mining OPs according to a pref-
erence B can be modeled and solved using a DynCSP. Let
S be a search space. Consider the sequence P1, P2, ..., Pn

of CSPs where each Pi = ({x},S, qi(x)) and
• q1(x) = basic(x)
• qi+1(x) = qi(x)∧φ(si, x) where si is the first solution

of the query qi(x).
Constraints φ(si, x) require successively that all obtained

solutions si are not better (w.r.t. the preference B) than the
unknown element x we are looking for (if si was preferred
to x, x would not be an OP). Thus, at step (i + 1), the
constraint φ(si, x) will be added: φ(si, x) ≡ si 6B x.

Therefore, any obtained solutions s1, s2, . . ., si cannot
be better than x (immediate proof by induction). New
dynamically added constraints φ(si, x) allow to reduce the
search space. The extraction process stops when no better
solution can be obtained, i.e there exists n such that qn+1(x)
has no solution.

However, all mined solutions s1, s2, . . ., sn are not
necessarily OPs according to B. Some of them may be
intermediate solutions that are only useful to improve the
pruning of the search space. The latter (i.e. solutions si
for which there exists sj (1 ≤ i < j ≤ n) such that
sjBsi) are removed in post-processing. Thus, the extraction
is performed in two steps: (1) compute the set of solutions
{s1, s2, . . . , sn} using a DynCSP, and (2) remove all si that
are intermediate solutions (not OPs).

C. Examples

We give four examples of OP mining using DynCSP:
closed itemsets, skypatterns, top-k itemsets and conceptual
clustering. Table I provides a summary of the other examples
of OPs given in Section II. Each example is modeled
using a basic constraint basic(x) and dynamically added
constraints φ(si, x) (see Section II-C). For an OP defined by
a preference B, φ(si, x) ≡ si 6B x states that si cannot be
preferred to the unknown pattern x we are looking for.
1. Closed Itemsets. In this example, the closed itemsets are
defined w.r.t. the measure freq. For closed itemsets w.r.t.
any measure m, just replace freq by m:
- basic(x) ≡ freq(x) ≥ ψfreq
- φ(si, x) ≡ si 6B x ≡ (si 6⊃ x) ∨ (freq(si) 6= freq(x))

2. Skypatterns. Let M be a set of measures. Preference B
is the Pareto-Dominance. To avoid redundant skypatterns,
the basic constraint states that x must be closed w.r.t. M :
- basic(x) ≡ closedM (x)
φ(si, x) ≡ si 6B x ≡ si 6�M x

≡ ¬(∀m ∈M,m(si) ≥ m(x) ∧ ∃m′ ∈M,m(si) > m(x))
≡ ¬(

∧
m∈M m(si) ≥ m(x) ∧

∨
m′∈M m′(si) > m′(x))

≡ (
∨

m∈M m(si) < m(x)) ∨ (
∧

m′∈M m′(si) ≤ m′(x))
≡ (

∨
m∈M

m(si)<m(x)) ∨ (
∧

m′∈M
m′(si)=m′(x))

3. Top-k Itemsets for a measure m. Each solution si is stored
in a list S. While k itemsets are not yet mined (i.e. i<k),



Table I: Basic constraint and dynamically added constraints for each OP

Optimal Problem basic(x) φ(si, x)

LI

Maximal Itemsets freq(x) ≥ ψfreq si 6⊃ x
Free Itemsets freq(x) ≥ ψfreq (si 6⊂ x) ∨ (freq(si) 6= freq(x))

Peak Itemsets freq(x) ≥ ψfreq (d(x, si) > δ) ∨ (ε× m(si) ≤ m(x))

The N-most
interesting k-Itemsets size(x) = k

{
freq(x) ≥ min

sj∈S∪{si}
freq(sj) if i ≥ N

true otherwise
Relevant Subgroup
Discovery freq(x) ≥ ψfreq

T1(x) 6⊂ T1(si) ∨ T2(x) 6⊃ T2(si)∨
(T(si) = T(x) ∧ si 6⊂ x)

Pattern compression prob-
lem

closed(x) (d(x, si) > δ) ∨ (si ⊂ x)

Maximally informative k-
Itemsets

size(x) = k H(si) ≤ H(x)

Essential Jumping
Emerging Patterns

(freq(x) = freq1(x)) ∧
(freq1(x) ≥ ψfreq)

si 6⊂ x

LkI
Maximum k-Tiling

∧
i∈[1..k]

closed(xi) area(si) ≤ area(x)

2LI Pattern Teams size(x) = k Φ(si) ≤ Φ(x)

Minimum Tiling (area(x) =
∑
t∈T

∑
i∈I

di,t) size(si) < size(x)

it’s too early to constrain the search i.e. φ(si, x)≡true. As
soon as the k-th solution s is obtained, we impose φ(si, x)
and remove, from S, the solution with the lowest value.
- basic(x) ≡ freq(x) ≥ ψfreq

- φ(si, x) ≡
{

m(x) ≥ min
sj∈S∪{si}

{m(sj)} if i ≥ k

true otherwise
So, φ(si, x)≡¬(

∧
1≤j≤k

m(yj)>m(x)) ≡ m(x)≥ min
sj∈S∪{si}

{m(sj)}

4. Conceptual Clustering. Each k-pattern set x must verify
the clus(x) constraint (see Section III-B2), and the prefer-
ence enforces a small difference between cluster coverings.
- basic(x) ≡ clus(x)
φ(si, x) ≡ si 6B x

≡ ¬( min
j∈[1..k]

{freq((si)j)} > min
m∈[1..k]

{freq(xm)})

≡ min
j∈[1..k]

{freq((si)j)} ≤ min
m∈[1..k]

{freq(xm)}

D. Pattern encoding

We now introduce the boolean encoding of a local pattern.
Let I be a set of items, T a dataset, and d the 0/1 matrix
associated to T (for each transaction t and each item i,
(dt,i = 1) iff (i ∈ t)). Pattern variables are set variables
represented by their characteristic function with Boolean
variables. [1] models an unknown pattern x and its associated
dataset T by introducing two sets of Boolean variables:
• item variables {Xi | i ∈ I } where (Xi=1) iff (i ∈ x),
• transaction variables {Tt | t ∈ T } where (Tt=1) iff

(x ⊆ t).
Each set of Boolean variables aims to represent the char-
acteristic function of the unknown pattern. The relationship
between x and T is modeled by reified constraints stating
that, for each transaction t, (Tt = 1) iff x is a subset of t:

∀t ∈ T , (Tt = 1)⇔
∑
i∈I

Xi × (1− dt,i) = 0 (1)

Using this Boolean encoding, it is worth noting that some
measures are easy to encode: freq(x) =

∑
t∈T Tt and

size(x) =
∑

i∈I Xi. So, the minimal frequency constraint

freq(x) ≥ θ (where θ is a threshold) is encoded by the
constraint

∑
t∈T Tt ≥ θ. In the same way, the maximal size

constraint size(x) ≤ α (where α is a threshold) is encoded
by the constraint

∑
i∈I Xi ≤ α.

In order to model several pattern variables, it is only
needed to make for each of them a different set of boolean
variables (see [2] and [3]). If we have x1, . . . , xn a set
of pattern variables, we represent the unknown pattern xj
by its set of boolean item variables {Xi,j | i ∈ I} and
{Tt,j | t ∈ T }. Each unknown pattern xj is associated to
the dataset T in the same way as a local pattern is:

∀t ∈ T , (Tt,j = 1)⇔
∑
i∈I

Xi,j × (1− dt,i) = 0 (2)

V. RELATED WORK

As patterns represent “fragmented knowledge” and often
there is no clear view of how these knowledge fragments
interact and can be combined to give a global picture, many
works in the literature propose to discover sets of patterns
defined by constraints based on several patterns [5], [6], [7],
[8]. In the area of pattern sets, [4] exploits the analogies
with local pattern mining to design a general definition of
two step constraint-based pattern set mining, nevertheless
the computational side remains limited. The CP-paradigm
is at the core of generic approaches to deal with k-pattern
set mining [3], [2]. These methods enable to model sets
of patterns in a declarative and flexible way, but they look
for sets containing a fixed number of patterns. Finally, the
authors of [23] have proposed a novel algebra extending
relational algebras towards pattern mining. A key idea is that
many data mining tasks can be more easily described with
combinations of constraints and dominance relations than
only constraints. Many problems of itemsets are addressed
by this algebra, but some problems such as the top-k do not
come under this algebra.



Figure 1: Comparing CPU-times (closed, free, maximal itemsets).

VI. EXPERIMENTS

Our experiments focus on five types of OPs:
closed/free/maximal itemsets, skypatterns, Essential
JEPs, peak itemsets and conceptual clustering. For each of
them, we compare our generic approach KUNTUR with one
or more ad hoc methods on UCI2 datasets. All experiments
were performed under Linux with an Intel Core i3 2.13
GHz RAM 4 GB. KUNTUR was developed in GECODE3.

Section III has provided a wide range of optimal pattern
mining problems over itemsets, pattern sets and k-pattern
sets. Section IV has proposed a generic method for mining
OPs using DynCSP. Obviously, our approach will be less
effective for “simple” patterns whose extraction has been
deeply studied. But, for mining more elaborated patterns,
our approach will be as competitive or more efficient than
existing dedicated methods. The remainder of this section
illustrates these two issues.

A. Closed, free and maximal itemsets

We compare KUNTUR with the top miners ECLAT [24]
and LCM [25] (only for closed itemsets). The experiments
were conducted by varying the frequency threshold ψfreq.
Figure 1 shows that ad hoc methods for these itemsets are
more efficient than our generic approach. This result was
expected because the research community provided 15 years
of efforts on the extraction of condensed representations.

Closedness, freeness and maximality constraints are often
used for modeling. Fortunately, it is possible to directly
model such constraints using the boolean encoding without
any loss of efficiency. In the following, we handle the

2www.ics.uci.edu/∼mlearn/MLRepository.html
3www.gecode.org/

example of the closedness for the freq measure. The
closedness constraint ensures that a pattern has no superset
with the same frequency. If item i belongs to x, it is
obvious that freq(x ∪ {i}) = freq(x). Conversely, if
freq(x ∪ {i}) = freq(x), then i must belong to x (if
not, x would not be maximal for inclusion). freq(x) is
encoded as

∑
t∈T Tt and freq(x ∪ {i}) is encoded as∑

t∈T Tt×dt,i. Finally, the constraint closed(x) is encoded
using Equation (3).

∀i ∈ I, (Xi = 1)⇔
∑
t∈T

Tt × (1− dt,i) = 0 (3)

B. Skypatterns

We compare KUNTUR with AETHERIS [15] which is the
only ad hoc approach for mining skypatterns. AETHERIS
computes a condensed representation made of closed item-
sets w.r.t. a given set of measures, then filter them to get the
skypatterns. [10] reports experiments on 23 UCI datasets
for which we considered the measures M = {freq, max,
area, mean, gr1} (see Section II-A). In this paper, we
only report CPU-times for the 6 datasets requiring more
than 30 seconds, either for KUNTUR or AETHERIS. For the
remaining 17 datasets, CPU-times are very small and quite
similar for both approaches (For more details, see [10]).

The skypatterns are mined for six different sets of mea-
sures: the five subsets of 4 measures from M denoted
M1 . . .M5 and M6 = M . For mean, attribute values
were randomly generated in the interval [0..1]. Figure 2
depicts a scatter plot of CPU-times for KUNTUR and
AETHERIS. Each point represents a skypattern query for
one of the datasets: its x-value (log-scale) is the CPU-
time for KUNTUR, its y-value (log scale) the CPU-time
for AETHERIS. KUNTUR outperforms AETHERIS on many



Figure 2: Comparing CPU-times (skypatterns for Mi, i ∈ [1..6]).

Figure 3: Comparing CPU-times (peak itemsets and Essential JEPs).

datasets (e.g. almost all of the points are in the left part of
the plot field). The only exception is the mushroom dataset.
This dataset, which is the largest one (both in terms of
transactions and items) and with the lowest density (around
18%), leads to the extraction of a relatively small number
of closed patterns. This greatly promotes Aetheris.

C. Essential JEPs
We compare KUNTUR with the ad-hoc approach

AMINJEP [26] which is the only available implementation4

4We have contacted the authors of [20] to get the original code;
unfortunately it is not available.

to extract the Essential JEPs. Experiments were conducted
by varying the frequency threshold ψfreq. Figure 3 (right
side) shows that AMINJEP is slightly better than KUNTUR
(average speed-up value 2.4), but our generic approach
remains competitive.

D. Peak patterns

We compare KUNTUR with [27]. This approach, devel-
oped in QECODE, is the only known approach to extract
the peak itemsets. The experiments were conducted by
varying the frequency threshold ψfreq for different values
of ε. Figure 3 shows that KUNTUR significantly outperforms



Figure 4: Comparing CPU-times (Conceptual clustering).

[27], as the evolution of CPU-times seems quasi-linear for
KUNTUR while it is clearly exponential for [27].

E. Conceptual clustering with Optimisation

We compare KUNTUR with CP4IM [2], which is the only
available approach for conceptual clustering with optimi-
sation. Figure 4 (left) reports CPU-times for maximising
cluster size, while Figure 4 (right) reports CPU-times for
minimising size range. Performances are very close since
both approaches share the same boolean encoding. The only
difference is that [2] uses a branch and bound algorithm
while KUNTUR relies on DynCSPs.

F. Synthesis

Obviously, our generic method is less effective for “sim-
ple” patterns whose extraction has been deeply studied (e.g.
closed, free, maximal itemsets). However, for mining more
elaborated patterns, our approach is as competitive (e.g.
skypatterns, Essential JEPs and conceptual clustering), or
more efficient (e.g. peak itemsets) than existing methods.

VII. CONCLUSION

In this paper, we have introduced the notion of Optimal
Patterns and we have shown that OPs encompass many data
mining problems. A key idea of our framework is to model
patterns thanks to the notion of preference. The solving
step is performed by a generic method based on dynamic
CSPs. Experiments compare the OPs approach with ad hoc
methods and show that our approach competes well despite
its generic side. The declarative and flexible modeling of our
approach paves the way for the definition and discovery of
new sets of patterns.
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