
HAL Id: hal-01247155
https://hal.science/hal-01247155

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Tree Modes for Parallel Hash
Functions : A case study
Kevin Atighehchi, Robert Rolland

To cite this version:
Kevin Atighehchi, Robert Rolland. Optimization of Tree Modes for Parallel Hash Functions : A case
study. IEEE Transactions on Computers, 2017, 66 (9), pp.1585-1598. �10.1109/TC.2017.2693185�.
�hal-01247155�

https://hal.science/hal-01247155
https://hal.archives-ouvertes.fr

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH
FUNCTIONS

KEVIN ATIGHEHCHI AND ROBERT ROLLAND

ABSTRACT. This paper focuses on parallel hash functions based on tree modes
of operation for a compression function. We discuss the various forms of opti-
mality that can be obtained when designing such parallel hash functions. The
first result is a scheme which optimizes the tree topology in order to decrease at
best the running time. Then, without affecting the optimal running time we show
that we can slightly change the corresponding tree topology so as to decrease
at best the number of required processors as well. Consequently, the resulting
scheme optimizes in the first place the running time and in the second place the
number of required processors. The present work is of independent interest if we
consider the problem of parallelizing the evaluation of an expression where the
operator used is neither associative nor commutative.

Keywords. Hash functions, Hash tree, Merkle tree, Parallel algorithms

1. INTRODUCTION

A hash function is an algorithm (or a mode of operation in the cryptographic
terminology) iterating (operating) a function having a fixed input size (a compres-
sion function or a block cipher) in order to process messages of arbitrary lengths.
Such a function must satisfy the usual properties of pre-image resistance (given
a digest value, it is hard to find any pre-image producing this digest value), sec-
ond pre-image resistance (given a message m1, it is hard to find a second message
m2 which produces the same digest value), and collision resistance (it is hard to
find two distinct messages which produce the same digest value). A sequential (or
serial) hash function can only use Instruction-Level Parallelism (ILP) and SIMD
instructions [1, 2]. A cryptographic hash function has numerous applications, the
main one is its use in a signature algorithm to compress a message before signing
it.

The most well known sequential hashing mode is the Merkle-Damgård [3, 4]
construction which can only take advantage of the fine-grained parallelism of the
operated compression function. If such a low-level ”primitive” can benefit from the
Instruction-Level Parallelism, by using also SIMD instructions, the outer algorithm
iterating this building block could benefit from a coarse-grained parallelism. This
parallelism can be employed in multithreaded implementations. Let suppose that
we have a collision-free hash (or compression) function taking as input a fixed-size
data, f : {0, 1}2N → {0, 1}N . By using a balanced binary tree structure, Merkle
and Damgård [3, 5] show that we can extend the domain of this function so that the

1

ar
X

iv
:1

51
2.

05
86

4v
1

 [
cs

.D
C

]
 1

8
D

ec
 2

01
5

2 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

new outer function, denoted H : {0, 1}∗ → {0, 1}N , has an arbitrary sized domain
and is still collision-resistant.

A construction using a balanced binary tree allows simultaneous processing of
multiple parts of data at a same level of the tree, reducing the running time to hash
the message fromO

(
n
)

toO
(
log n

)
if we haveO

(
n
)

processors [3, 5]. If we want
to further reduce the amount of resources involved, we can use one of the following
rescheduling techniques:

• Each processor is assigned the processing of a subtree (in the data structure
sense) having log n leaves. There are approximatively n/ log n such sub-
trees. The processing of the remaining ancestor nodes, at each remaining
level of the tree, is distributed as fairly as possible between the processors.
An example is depicted in Figure 1.

O
(
log n

)Phase 1 in time

O
(
log(n/ log n)

)Phase 2 in time

P1 P2 P3 P4

P1

P1

P2

FIGURE 1. Example of the computation of the root node in
O
(
log n

)
time using O

(
n/ log n

)
processors. The message to

hash is of size n = 16. In Phase 1, the computation of each hash
subtree containing 4 = log2 16 leaves is assigned to each proces-
sor. The first subtree is assigned to processor P1, the second one
to processor P2, the third one to processor P3 and the last one to
processor P4. A fine-grained allocation is then performed in Phase
2.

• An alternative solution is, at each level of the tree, to distribute as fairly as
possible the node computations among O

(
n/ log n

)
processors.

The number of processors is then reduced by a factor log n and the asymptotic
running time is conserved (with, nevertheless, a multiplicative factor 2). In this
paper we are not interested in tradeoffs between the amount of used resources
and the running time but instead we study optimal algorithms in finite distance.
More precisely, we determine the hash tree structures which give the best concrete
(parallel) time complexity for finite message lengths.

A tree structure is notably used in parallel hashing modes of Skein [6], Blake2 [7]
or MD6 [8]. To give some examples, Skein uses a tree whose topology is con-
trolled by the user thanks to three parameters: the arity of base level nodes which
is a power of two; the arity of other inner nodes, which is also a power of two, and
a last parameter limiting the height of the tree. MD6 uses a full (but not necessarily

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 3

perfect) quaternary tree, in the sense that an inner node has always four children.
Some fictive leaves or nodes padded with 0 are added so that a rightmost node has
the correct number of children. Like Skein, MD6 offers a parameter which serves
to limit the height of the tree.

Some proposals [9, 10, 11] consider that a tree covering all the message blocks
is not a good thing, because the number of processors should not grow with the size
of the message. For instance, the domain extension parallel algorithm from Sarkar
et al. [9, 10, 11] uses a perfect binary tree of processors, of fixed size. This perfect
binary tree of compression/hash function calls can be seen as a big compression
function, sequentially iterated over large parts of the message. In other words
only the nodes computations performed in the tree can be done in parallel. The
number of usable processors is a system parameter chosen by the issuer of the
cryptographic form when hashing the message. The value of this parameter has to
be reused by the recipients, for instance when verifying a signature. Thus, this one
limits the scalability and the potential speedup. In this paper we consider that the
scalability and the potential speedup should be independent of the characteristics
(configuration) of the transmitting computer.

Bertoni et al. [12, 13] give sufficient conditions for a tree based hash function
to ensure its indifferentiability from a random oracle. They propose several tree
hashing modes for different usages. For example we can make use of a tree of
height 2, defined in the following way: we divide the message in as many parts
(of roughly equal size) as there are processors so that each processor hashes each
part, and then the concatenation of all the results is sequentially hashed by one
processor. To divide the message in parts of roughly equal size, the algorithm
needs to know in advance the size of the message. Bertoni et al. use an idea
from Gueron [14] to propose a variant which still makes use of a tree having two
levels and a fixed number of processors, but this one interleaves the blocks of the
message. This interleaving has several advantages. It allows an efficient parallel
hashing of a streamed message, a roughly equal distribution of the data processed
by each processor in the first level of tree (without prior knowledge of the message
size), and finally a correct alignment of the data in the processors’ registers. This
kind of solution is suitable for multithreaded and SIMD implementations. In this
paper we study theoretically optimal speedups, and, as a consequence, the message
to hash is supposed to be already available.

The aim of this work is to show that we can improve the performance of a
hash tree mode of operation by reworking the tree structured circuit topology. In
particular, we are interested in minimizing the depth (parallel time) of the circuit
and the width (number of processors involved). To the best of our knowledge, it
is the first time that the problem of optimizing hash trees is addressed. The main
interest of this paper is the methodology provided. The results are the followings:

• The first result is an algorithm which optimizes the tree topology in order
to decrease at best the depth. We first show that a node arity greater than
5 is not possible and then we prove that we can construct such an optimal
tree using exclusively levels of arity 2 and 3.

4 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

• Without affecting this depth, we show that we can change the correspond-
ing tree topology in order to decrease at best the width. This width is
optimal for trees having all their leaves at the same level. In particular, we
show that for some message lengths l, the width can be decreased to dl/5e.
• Observations are made about trees having their leaves at different levels,

indicating that if our previous algorithm does not produce optimal solutions
for this kind of trees, it probably produces near-optimal solutions.
• For trees having all their leaves at the same level, we also provide an algo-

rithm which optimizes the number of processors at each step of the hash
computation.

Suppose that the processing of one block of the message by the compression
function costs one unit of time. A binary tree is not necessarily the structure which
gives the best running time. Figure 2 shows two different tree topologies for hash-
ing a 6-block message. The binary tree depicted in (2a) gives a (parallel) running
time of 6 units while the rightmost one with a different arity at each level, de-
picted in (2b), gives a running time of 5 units. Furthermore, one may note that for
messages of length less that 5 blocks, the use of the topology (2a) has no utility
compared to a purely sequential mode (i.e. a completely degenerated binary tree).

(A) Non optimal tree (B) Optimal tree

FIGURE 2. Tree hashing with a 6-block message. The hash tree
on the left requires 2 units of time to process each level, while the
one on the right requires 3 units of time to process the base level
and 2 units of time to process the root node.

In what follows, we suppose the use of a multitude of different compression
functions, namely fx : {0, 1}xN → {0, 1}N for x ≥ 2. For each node, the choice
of the function to use to compress its children depends on their number x (the node
arity). We also assume that a compression function which compresses x blocks of
sizeN bits has a computational cost of x units. In other words, if we consider a tree
of calls of this compression function, the computation of a node having k children
(i.e. k blocks) has a cost of k units. For instance, the UBI compression function,
used in the hash function family Skein [6], performs x calls to the tweakable block
cipher Threefish to compress a data of length x blocks. Assuming a hash tree of
height h and xi the arity of level i (for i = 1 . . . h), we define the parallel running
time to obtain the root node value as being

∑h
i=1 xi.

The paper is organized in the following way. In Section 2 we give background
information and definitions. In Section 3 we describe the approach to reduce at

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 5

best the running time of a hash function. Then, in Section 4, we give an algorithm
to construct a hash tree topology which achieves the same optimal running time
while requiring a near-optimal number of processors. We also show how we can
use this algorithm to optimize the number of processors at each step of the hash
computation. Finally, in Section 5, we conclude the paper and discuss future works.

2. BACKGROUND INFORMATION AND DEFINITIONS

Throughout this paper we use the convention1 that a node is the result of a func-
tion called on a data composed of the node’s children. We call a base level node a
node at level 1 pointing to the leaves representing message data parts. The leaves
(or leaf nodes) are then at level 0. We define the arity of a level in the tree as being
the greatest node arity in this level.

A k-ary tree is a tree where the nodes are of arity at most k. For instance a tree
with only one node of arity k is said to be a k-ary tree. A full k-ary tree is a tree
where all nodes have exactly k children. A perfect k-ary tree is a full k-ary tree
where all leaves have the same depth.

We also define other ”refined” types of tree. We say that a tree is of arities
{k1, k2, . . . , kn} (we can call it a {k1, k2, . . . , kn}-aries tree) if it has n levels (not
counting level 0) whose nodes at the first level are of arity at most k1, nodes at level
2 are of arity at most k2, and so on. We say that such a tree is full if all nodes at the
first level have exactly k1 children, all nodes at level 2 have exactly k2 children,
and so on. As before, we say that such a tree is perfect if it is full and if all the
leaves are at the same depth.

3. OPTIMIZATION OF HASH TREES FOR PARALLEL COMPUTING

3.1. Minimizing the running time. In order to optimize the running time of a tree
mode, we make a certain degree of flexibility on the choices of node arities. We
can note straightaway that allowing different node arities in a same level of the tree
provides no efficiency gains. Worse, the running time may be less interesting since
a tree level processing running time is bounded by the running time to process the
node having the highest arity. This observation suggests that, in order to hope a
reduction of the tree processing running time, node arities at the same level need to
be set to the same value2 while allowing arities to vary from one level to another.
Therefore our strategy allows a different arity at each level of the tree.

Let us denote l the block-length of a message. The problem is to find a tree
height h and integer arities x1, x2, ..., xh such that

∑h
i=1 xi is minimized. Any

solution to the problem must necessarily satisfy the following constraints:

(1)
h∏

i=1

xi ≥ l and

(
h∏

i=1

xi

)
/xj < l ∀ j ∈ J1, hK.

1This corresponds to the convention used to describe Merkle trees. An other convention is to
define a node as being the list of inputs of a function and not its result.

2Except maybe the rightmost node which may be of smaller arity

6 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

A solution to this problem is a multiset of arities. First, we show that, in a non-
asymptotic setting, a perfect ternary tree comes closer to optimality than a perfect
binary tree. Then we examine the case of trees having different arities at each level.

First of all, we can start by considering the h and xi (for i = 1 . . . h) as real
numbers. Thus, we have to minimize the summation of xi subject to the constraint
that their product is l. We know that the minimum is reached when the xi are
equal to the same number, which we will denote x. So we have xh = l, that is
x = l

1
h . We must now determine h so that hl

1
h is minimized. The calculation of a

derivative shows that this minimum is reached for h = ln(l), which implies x = e.
Consequently, we can wonder what is the best solution between a perfect binary
tree and a perfect ternary tree. The comparison of these two cases is done in A and
shows that beyond a certain message size l (l = 228), a perfect ternary tree gives a
better running time than a perfect binary tree. In fact, as the present general study
shows, a tree having different level arities can give better results.

Let us remind that node arities are not allowed to vary in a same level (same
stage) of the tree. A level of the tree is said to be of arity a when all nodes at this
level are of arity at most a. Given an optimal tree (in the sense of the running time)
for hashing, we can ask what the possible arities are for its levels. We have the
following Theorem:

Theorem 1. For a hash tree whose running time is optimal, the followings hold:
• It can be comprised of levels of arity 2, 3, 4, or 5. Higher arities are not

possible.
• It can be constructed using only levels of arity 2 and 3.

Proof. We first show that levels of arity a with a ≥ 7 lead to trees having a subop-
timal running time. Indeed, any node of arity a ≥ 7 can be replaced by a tree of
arity 2 having a better running time. We simply have to note that 2dlog2 ae < a for
all a > 6, meaning that a a-ary tree of height 1 can be advantageously replaced by
a binary tree of height dlog2 ae. In contrast, for all nodes of arity a with a ∈ J3, 6K
and for all i ∈ J2, 5K we have idlogi ae ≥ a. Finally, a node of arity 6 can be re-
placed by a {3, 2}-aries tree, since 2 · 3 = 6, thereby reducing the running time to
2 + 3 = 5 units. As regards the second assertion, a node of arity 5 can be replaced
by a tree of arities {3, 2}, since 2 ·3 = 6 > 5. This transformation does not change
the running time since 2 + 3 = 5. Finally, a node of arity 4 can be replaced by a
binary tree of height 2 for a running time which is still unchanged. �

An optimal tree has not necessarily a single topology. Firstly, a solution satis-
fying constraints (1) can be defined as a multiset of arities since we can permute
them. For instance, suppose a tree has three levels with the first level of arity 3, the
second one of arity 2 and the last one (that is, the root node) of arity 3. We can per-
mute these arities so that the first level is of arity 2 and the latter two levels of arity
3. If this new tree has the same running time, its topology has however changed.
Secondly, we can find examples where different multiset of arities lead to trees of
optimal running time. For instance, if we consider a 7-block message, the multi-
sets of arities {2, 2, 2}, {3, 3} and {4, 2} allow the construction of trees having the

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 7

optimal running time. We can, however, construct optimal trees by restricting the
set of possible arities. We have the following theorem:

Theorem 2. Let a message of length l blocks and let i be the lowest integer such
that 3i ≥ l. Let us note x ∈ J0, 2K the value which minimizes the product 3i−x2x

under the constraint 3i−x2x ≥ l. There exists an optimal tree (in the sense of
optimal running time) which has i−x levels of arity 3 and x levels of arity 2. More
precisely, we can state the followings:

• If l ≤ 3i < 3l
2 then a ternary hash tree is optimal for a running time of 3i.

• If 3l
2 ≤ 3i < 9l

4 then an optimal hash tree has i − 1 levels of arity 3 and
one level of arity 2, for a running time of 2 + 3(i− 1).
• Otherwise 9l

4 ≤ 3i < 3l, and then an optimal hash tree has i− 2 levels of
arity 3 and 2 levels of arity 2, for a running time of 4 + 3(i− 2).

Such an optimal tree maximizes the number of levels of arity 3.

Proof. If we have at least 3 levels of arity 2 then we can replace these 3 levels by 2
levels of arity 3 (32 = 9 > 23 = 8). The running time to process 3 levels of arity 2
or 2 levels of arity 3 is 6. Therefore, it is always possible to construct optimal trees
with at most 2 levels of arity 2. The three assertions follow immediately. �

Remark 1. Let i be such that 3i ≥ l. Its is not difficult to see that the sought
solution corresponds to the highest value x ∈ J0, 2K such that 3i−x2x ≥ l.
Algorithm 1. To determine the levels arities of an optimal tree, we first compute
i = dlog l/ log 3e and then x =

⌊
log(l/3i)/ log(2/3)

⌋
. The i − x first levels are

of arity 3 and the last x levels of arity 2.
Examples. For messages of lengths l = 4, 5 and 10 blocks respectively, Algorithm
1 returns the multisets of arities {2, 2}, {3, 2} and {3, 2, 2} respectively. The num-
ber of processors is not optimized here. This aspect is addressed in the following
section.

Why is it possible to minimize the running time with a tree whose leaves are
at the same depth? Let us suppose that we have, for a given message length, an
optimal tree whose leaves are not at the same depth. Then, for each leaf located at
a level greater than zero, we can create descendants in order to complete the tree
so that all leaves are at level 0. It is possible to perform this while keeping a tree of
same height and respecting the level arities. The result is a tree whose the number
of leaves is greater than the message length (the tree is said to be perfect since, on
the one hand, nodes at a same level are all of same arity, and, on the other hand,
all the leaves are at the same depth). It is possible to prune some right branches to
remove this surplus of leaves. Consequently, there exists necessarily a tree having
the same height, the same multiset of arities and a lower number of leaves corre-
sponding to the message length. In the rest of the paper, we refer to a truncated
(x1, x2, . . . , xh)-aries tree to speak about a tree having a number of leaves equal to
the message length and where the nodes of the base level are of arity at most x1,
nodes at the second level are of arity at most x2 and so on.

8 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

As a last remark, since the hash function must be deterministic, the multiset
of arities must also be chosen deterministically as a function of the message size.
For instance, we can arrange in descending order the elements of the multiset of
arities. The solution to the problem of minimizing the running time is then uniquely
determined as an ordered multiset.
Performance improvements. We have seen that for a message of 6 blocks (see
Figure (2)), the performance gain of an optimal tree compared to a binary tree is
20%. Figure (3a) shows the running times of an optimal tree and a binary tree as
functions of the message size varying from 1 to 105 blocks. Figure (3b) shows the
speed gain obtained with an optimal tree. The gain in time (or speedup gain) is
computed as 100(Tb/To − 1) where Tb is the running time of a binary tree and
To the running time of an optimal tree. As we can see, the gain differs from one
message size to another. The gain can be greater than 30% for very short messages
but decreases quickly, to cap at 10%. As regards the message size, although the
diagram does not cover a sufficiently long range, one can note a slight downward
slope.

(A) Running time of an
optimal tree (shown in
blue) compared to a bi-
nary tree (in black)

(B) Speed gain of an
optimal tree compared
to a binary tree

FIGURE 3. Performance comparison between an optimal tree and
a binary tree

3.2. Minimizing the number of processors. In this section we look into how to
reduce at best the number of required processors to obtain the optimal running
time. We have two cases to study, the trees having all leaves at the same depth and
the others. We fully treat the first case and we make a few observations regarding
the second type of tree, which we intuitively sense to further reduce the number of
required processors.

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 9

At the outset, one may be interested in the maximum possible number of levels
of arity 5 or 4. We have the following Lemma:

Lemma 1. In a tree having an optimal running time there can at most be 1 level
of arity 5 and 6 levels of arity 4.

Proof. Suppose that the tree has 2 levels of arity 5. We replace these 2 levels by
3 levels of arity 3 since 33 = 27 > 52 = 25. The running time is improved since
3 · 3 = 9 < 2 · 5 = 10. We can then state that 2 levels of arity 5 lead to a
tree having a sub-optimal running time. Now, let us look for a pair of minimum
integers (i, j) satisfying 3i > 4j and 3 · i < 4 ·j. The first pair which satisfies these
constraints is i = 9 and j = 7. We can then replace 7 levels of arity 4 by 9 levels
of arity 3 in order to decrease the running time. �

3.2.1. Trees having all leaves at the same level. We have seen that it is possible to
construct a tree optimizing the running time by using only levels of arity 2 and 3.
In what follows, we show how to deduce an optimal tree minimizing the number of
involved processors. Let us suppose that level arities x1, x2 ..., xh are noted in (no
strictly) decreasing order so that x1 is the arity of the base level and xh the arity of
the last level, i.e. the arity of the root node. The trees optimizing the running time,
defined above, are not necessarily full in the sense that a rightmost node at a given
level can be of arity strictly lower than the arity of this level. First, we note that for
the trees constructed with Algorithm 1, the number of required processors is equal
to dl/3e in the best case, and equal to dl/2e when there are only levels of arity 2.
Moreover, according to Theorem 1 we know that a level arity cannot be greater
than 5. This means that in the best case, after optimization, the number of required
processors could be reduced to dl/5e. Thus, we could in the best case decrease the
number of processors by a factor of about 5/2.

Given an optimal tree for the running time, the intent is to increase the arity of
the first level (base level) while decreasing arities of the following levels so that the
sum of the levels arities remains constant and their product remains greater than or
equal to l. To solve this problem we propose in B two solutions (Algorithm 2a or
2b). However, as will be discussed below, we can further optimize hash trees.

According to Theorem 1, a level arity of a tree minimizing the running time
cannot exceed 5. Thus, Algorithm 2a (or Algorithm 2b) of B allows us to sub-
stitute any sub-multiset A for another one, denoted A′, whose the sum of arities
remains the same, and by trying to increase the arity of the base level up to 5. Con-
sider, for instance, a message of size l = 95 blocks. With such a message size,
Algorithm 1 returns the multiset of arities A0 = {3, 3, 3, 2, 2} which defines a tree
structure involving 32 processors. By applying Algorithm 2, we obtain the multi-
set A1 = {4, 3, 3, 3} which reduces the number of involved processors to 24 while
leaving the running time unchanged.

What if the arity of each level is increased? As much as possible? We just
saw that we can increase the arity of the first level. It would also be preferable to
increase the arity of each level of the tree in order to free up the highest number of
processors at each step of the computation. An example is depicted in Figure 4.

10 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

One processor is saved during 2 units of time

FIGURE 4. Two trees compressing a 20-block message, opti-
mized both for the running time and the number of involved pro-
cessors. Nevertheless, we note that the right tree is the best choice.
Indeed, the one on the left needs 4 processors during 5 units of
time, then 2 processors during 2 units of time, and finally one
processor during 2 units of time. The one on the right needs 4
processors during 5 units of time and then one processor during 4
units of time.

While we propose an iterative algorithm in B to construct an optimal tree maxi-
mizing the arity of each level, we also enumerate all possible cases in the following
Theorem:

Theorem 3. For any integer l ≥ 2 there is an unique ordered multiset A of h5
arities 5, h4 arities 4, h3 arities 3 and h2 arities 2 such that the corresponding
tree covers a message size l, has a minimal running time and has first h5 as large
as possible, then h4 as large as possible, and then h3 as large as possible. More
precisely, if i is the lowest integer such that l ≤ 3i < 3l, this ordered multiset is
such that:



|A| = i, h5 = 0, h4 = 0, h3 = i, h2 = 0, if l ≤ 3i < 9l
8 ,

|A| = i, h5 = 0, h4 = 1, h3 = i− 2, h2 = 1, if 9l
8 ≤ 3i < 81l

64 ,

|A| = i− 1, h5 = 0, h4 = 3, h3 = i− 4, h2 = 0, if 81l
64 ≤ 3i < 27l

20 ,

|A| = i− 1, h5 = 1, h4 = 1, h3 = i− 3, h2 = 0, if 27l
20 ≤ 3i < 729l

512 ,

|A| = i− 1, h5 = 0, h4 = 4, h3 = i− 6, h2 = 1, if 729l
512 ≤ 3i < 3l

2 ,

|A| = i, h5 = 0, h4 = 0, h3 = i− 1, h2 = 1, if 3l
2 ≤ 3i < 81l

50 ,

|A| = i− 1, h5 = 1, h4 = 1, h3 = i− 4, h2 = 1, if 81l
50 ≤ 3i < 27l

16 ,

|A| = i− 1, h5 = 0, h4 = 2, h3 = i− 3, h2 = 0, if 27l
16 ≤ 3i < 9l

5 ,

|A| = i− 1, h5 = 1, h4 = 0, h3 = i− 2, h2 = 0, if 9l
5 ≤ 3i < 243l

128 ,

|A| = i− 1, h5 = 0, h4 = 3, h3 = i− 5, h2 = 1, if 243l
128 ≤ 3i < 2187l

1024 ,

|A| = i− 2, h5 = 0, h4 = 5, h3 = i− 7, h2 = 0, if 2187l
1024 ≤ 3i < 9l

4 ,

|A| = i− 1, h5 = 0, h4 = 1, h3 = i− 2, h2 = 0, if 9l
4 ≤ 3i < 81l

32 ,

|A| = i− 1, h5 = 0, h4 = 2, h3 = i− 4, h2 = 1, if 81l
32 ≤ 3i < 27l

10 ,

|A| = i− 1, h5 = 1, h4 = 0, h3 = i− 3, h2 = 1, if 27l
10 ≤ 3i < 729l

256 ,

|A| = i− 2, h5 = 0, h4 = 4, h3 = i− 6, h2 = 0, if 729l
256 ≤ 3i < 3l,

where the number h3 is at least 1 in the first case and can be 0 in the other cases.

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 11

Proof. Let us start from the 3 cases of Theorem 2 which maximize the number
of levels of arity 3. For a given message length l, we consider the corresponding
optimal tree (in the sense of the running time). We denote by a the initial number
of levels of arity 2 and by i − a the initial (maximized) number of levels of arity
3. We want to transform this tree in order to increase the arity of each level as
much as possible, while leaving the running time unchanged. According to Lemma
1, there are at most one level of arity 5 and at most six levels of arity 4. Since
we want to maximize the number of levels of arity 4 after having maximized the
number of levels of arity 5, there cannot be more than one level of arity 2. Thus,
h5 ∈ J0, 1K, h4 ∈ J0, 6K and h2 ∈ J0, 1K, meaning there shall be at most 28 cases.
Note that among these 28 cases, many may not be valid solutions. The aim is to
transform the initial product 2a3i−a into a product 2w3i−a−b4v5u where b is the
number of levels of arity 3 that we have transformed and u, v, w the number of
levels of arity 5, 4, 2 respectively. For each triple (h5 = u, h4 = v, h2 = w)
with u ∈ J0, 1K, v ∈ J0, 6K and w ∈ J0, 1K, we can easily verify that there is
an unique solution (a, b) with a an integer in J0, 2K and b a positive integer such
that 3b + 2a = 5u + 4v + 2w. Indeed, let suppose a second solution (a′, b′).
Since 3b + 2a = 3b′ + 2a′, we have 3(b′ − b) = 2(a′ − a), meaning that 3
divides (a′ − a). This is impossible, unless a′ = a. Such a solution must satisfy
3i−a−b2w4v5u ≥ l, that is 3i ≥ 3a+bl/(2w4v5u). According to Theorem 2, we
have (3/2)al ≤ 3i < min(3l, (3/2)a+1l). Consequently, if we have

3a+bl

2w4v5u
> min

(
3l,

(
3

2

)a+1

l

)
,

where min

(
3l,

(
3

2

)a+1

l

)
=

{
3l if a = 2
(3/2)a+1l if a = 0, 1

,

this solution does not exist. Among the 28 cases, we observe that 13 of them are not
valid solutions. Thus, we have 15 solutions, denoted (u, v, w, a, b), for which we
compute and sort the values 3a+bl/(2w4v5u) so that we can establish their domains
of validity. �

For the purpose of minimizing the number of processors at each step of the
computation, we apply Theorem 3. There are 15 possible cases and we would
like to estimate their distribution. The following theorem helps us to calculate the
proportions:

Theorem 4. Let a message size l drawn uniformly at random from the set J2, LK
where L is a fixed positive integer. Let k = dlog3 Le and α, β two real numbers
such that 1 ≤ α < β ≤ 3. The probability that 3dlog3 le is in the interval [αl, βl[is
equal to

P (E) =
1

L− 1

(
k−1∑

i=1

(⌊
3i

α

⌋
−
⌊
3i

β

⌋)
+ µ

)
,

12 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

where

µ =





0 if L ≤ 3k

β
,

(
min

(
L,
⌊
3k

α

⌋)
−
⌊
3k

β

⌋)
if L >

3k

β
.

Proof. Let E be the event: “l is such that 3dlog3 le ∈ [αl, βl[”. For any i such that
1 ≤ i ≤ k− 1 let Ei be the event: “l is such that 3i−1 < l ≤ 3i” and Ek the event:
“l is such that 3k−1 < l ≤ L”. The conditional probability P (E | Ei) is given by
the following:

(1) Case i ≤ k − 1. The event E is realized if and only if αl ≤ 3i < βl,
namely if and only if

3i

β
< l ≤ 3i

α
.

As l must be an integer, this condition is equivalent to

l ∈
{⌊

3i

β

⌋
,

⌊
3i

α

⌋{
.

Hence

P (E | Ei) =
1

3i − 3i−1
×
(⌊

3i

α

⌋
−
⌊
3i

β

⌋)
.

(2) Case i = k.

(a) If L ≤ 3k

β
then P (E | Ei) = 0.

(b) If L >
3k

β
then

P (E | Ei) =
1

L− 3k−1
×
(
min

(
L,

⌊
3k

α

⌋)
−
⌊
3k

β

⌋)
.

As the Ei are disjoint, we can compute P (E) by the following formula:

P (E) =
k∑

i=1

P (Ei)P (E|Ei),

which gives the expected result. �

Remark 2. In the previous theorem we can write
⌊
3i

α

⌋
−
⌊
3i

β

⌋
= 3i

(
1

α
− 1

β

)
+ ui

where |ui| ≤ 1. Then

(2) P (E) =
1

L− 1

(
3

2

(
1

α
− 1

β

)(
3k−1 − 1

)
+
k−1∑

i=1

ui + µ

)
.

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 13

Let us now consider trees whose the number of leaves is equal to the message
length. Having a multiset of arities arranged in descending order, that we denote
A = {x1, x2, . . . , x|A|}, the number of nodes of level i is dl/(x1x2 . . . xi)e. One
important thing is the number of nodes of the base level. We have the following
Theorem:

Theorem 5. Let the message size be l ≥ 2 and let i be the lowest integer such that
3i ≥ l. The number of processors required to process such a message is:

• dl/3e if 3i ∈ [l, 9l8 [∪[3l2 , 81l50 [,
• dl/4e if 3i ∈ [9l8 ,

27l
20 [∪[729l512 ,

3l
2 [∪[27l16 ,

9l
5 [∪[243l128 ,

27l
10 [∪[729l256 , 3l[,

• dl/5e if 3i ∈ [27l20 ,
729l
512 [∪[81l50 ,

27l
16 [∪[9l5 , 243l128 [∪[27l10 ,

729l
256 [.

Proof. These results follow immediately from Theorem 3. �

The following theorem gives the proportions of messages sizes for which dl/ce
processors (with c = 3, 4, 5) are required:

Theorem 6. Let a message size l ≥ 2 bounded by L = 3j be drawn randomly.
When j tends to infinity, the number of required processors is dl/3ewith probability
approaching 13/54 (≈ 24%), dl/4e with probability approaching 16/27 (≈ 59%),
and dl/5e with probability approaching 1/6 (≈ 17%).

Proof. Remark that if L = 3j , Formula (2) becomes

(3) P (E) =
1

L− 1

(
3

2

(
1

α
− 1

β

)(
3j − 1

)
+

j∑

i=1

ui

)
.

Now we apply Theorem 4 and Remark 2 with α and β given by the intervalls

occuring in Theorem 5. These α and β are of the form
3s

u
where s ≤ 6 and u

integer. Then for i ≥ 6 the numbers
3i

α
and

3i

β
are integers. Thus, for i ≥ 6 we

have ui = 0 and the following formula holds:

P (E) =
1

L− 1

(
3

2

(
1

α
− 1

β

)(
3j − 1

)
+

5∑

i=1

ui

)

=
3

2

(
1

α
− 1

β

)
+

1

L− 1

5∑

i=1

ui.

When j tends to infinity, P (E) has a limit which is

3

2

(
1

α
− 1

β

)
.

This formula applied to the intervalls given in Theorem 5 gives the expected results.
�

Remark 3. When L approaches infinity, the approached proportions for the fifteen
cases of Theorem 3 can be estimated similarly. These proportions are depicted in
Figure 5.

14 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

1 2 10 3 6 12 4 8 5 9 7 13 11 14 15

F
re

qu
en

cy
 (

in
 %

)

0

5

10

15

20

FIGURE 5. Proportions for the fifteen cases of Theorem 3. The
bars are drawn in decreasing order of frequency.

An other important thing is the minimization of the amortized number of pro-
cessors per unit of time (for the processing of a single message). Since we are
interested in hash trees having an optimal running time, we only need to concern
ourselves with the number of inner nodes of the tree. We first apply Theorem 3
which gives, for a message size l, a tree having a minimal running time and using
a minimal number of processors at each step of the computation. For a perfect
(x1, x2, . . . , xh)-aries tree constructed thanks to this theorem, the total number of
inner nodes is:

Nl = 1 + xh + xhxh−1 + xhxh−1xh−2 + · · ·+ xhxh−1 . . . x2.

We notive that dd· · · ddl/x1e/x2e · · · e/xie = dl/(x1x2 · · ·xi)e for (strictly) pos-
itive integer (xj)j=1...i. For a (x1, x2, . . . , xh)-aries truncated tree constructed
thanks to this theorem, the total number of inner nodes is:

Ntr,l = dl/x1e+ dl/(x1x2)e+ · · ·+ dl/(x1x2 . . . xh)e.
For the trees produced by Theorem 2, we denote by N ′tr,l the number of inner

nodes of a truncated tree and by N ′l the number of inner nodes of a perfect tree.

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 15

Considering truncated trees, the expected gain when using Theorem 3 is

G =
N ′tr,l
Ntr,l

.

Let us denote x1, x2, ..., xh the level arities of the optimal tree given by Theo-
rem 3. We want to give a lower bound for the cases of this theorem. To achieve
this, we first need to upperbound Ntr,l by the number of inner nodes of a perfect
{x1, . . . , xh}-aries tree, that we denoteNl. Then, we need a sufficiently tight lower
bound for N ′tr,l. Let us now consider the optimal solution of Theorem 2, denoted
(i, a), where i = dlog3 le is the height of the tree and a is the number of levels of
arity 2. We assume that this is this solution which produces N ′tr,l inner nodes in
the tree. We have to remark that trees produced by this theorem 2 can be arranged
in increasing order of running time:

• if a = 2 then (i′ = i− 1, a′ = 0) is the preceding (non optimal) solution,
• if a = 1 then (i′ = i, a′ = 2) is the preceding (non optimal) solution,
• if a = 0 then (i′ = i, a′ = 1) is the preceding (non optimal) solution.

One can easily verify that for l′ = 3i
′−a′2a

′
, the number Nsub of inner nodes of the

non optimal tree of parameters (i, a) and having exactly l′ leaves is greater than or
equal to N ′l′ . Since l > l′, we necessarily have N ′tr,l ≥ Nsub. Thus, we have:

N ′tr,l ≥ N ′l′ ,
and we can lower bound G as:

G ≥ max

(
N ′l′

Nl
, 1

)
,

where
l′ = 3i−b(a+1)/3c−((a+1) mod 3)2(a+1) mod 3.

3.2.2. Other balanced trees. If we can move up (lift up) some leaves in the tree
so that all leaves are not at the same depth, then we can reduce the number of
processors. Let us suppose that we merely use full binary trees. Whatever the
message length is, it is always possible to construct a full binary tree. This allows
a reduction of the number of processors. Indeed, let us consider a compression
function f taking as input two blocks and returning one block. If l is the number
of blocks of the message, we compute the root node in l − 1 evaluations of the
function f as follows: the blocks of the message are paired consecutively and f is
applied on each pair. The possibly remaining block (if l is odd) is not processed.
We then consider the list of resulting blocks by f with the possibly remaining block
and we repeat the process again and again until there is a single remaining block.
The height of the resulting tree is dlog2(l)e and the number of saved processors is
dlf/2e where lf is the number of leaves located at a level greater than 0. Note that
in the best case lf = lL/4 where lL is the number of leaves of the largest perfect
binary subtree.

Let us consider our variant of the definition of a full tree, when arities differ from
one level to another. The question that arises is: is it always possible to construct
a full tree minimizing the number of processor for an optimal running time ? The

16 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

answer is no. To show that it suffices to exhibit an example in which a tree which
is not full further minimizes the number of processors compared to a full tree. For
the sake of concreteness, let us take the example of a message of length 26 blocks.
The optimal running time for such a message length is 9 and the only multiset of
arities which allows deriving it is {3, 3, 3}. It can be noted that a rightmost node
at the base level is of arity 2, showing that the minimum cannot be obtained with a
full tree.

If we consider trees without any structural constraint, there is still scope for
reducing the number of processors, although marginally. Let us take a message of
56 blocks. An optimal set of arities for a tree with all leaves at the same level is
{5, 4, 3}. We can note that this tree has a rightmost node at the base level having
only one child. This child can take the place of its parent node in order to save one
more processor. We also notice that the resulting tree is full in the sense of our new
definition.

4. CONCLUSION

In this paper, we have shown, for a given message length, how to construct a
hash tree minimizing the running time. For a hash tree having its leaves at the
same depth, we have shown how to decrease at best the number of processors
allowing such a minimized running time. We have also seen that it is possible
to slightly decrease the number of processors by considering other types of trees.
Analysis on few small message sizes have revealed that, in the best case, we can
save one more processor by using a tree which does not have all its leaves at the
same depth. Further work is necessary to adequately specify to what extent the
amount of resources can actually be decreased.

REFERENCES

[1] S. Gueron, V. Krasnov, Parallelizing message schedules to accelerate the computations of hash
functions, J. Cryptographic Engineering 2 (4) (2012) 241–253.

[2] S. Gueron, V. Krasnov, Simultaneous hashing of multiple messages, J. Information Security
3 (4) (2012) 319–325.

[3] I. Damgård, A design principle for hash functions, in: CRYPTO ’89: Proceedings of the 9th An-
nual International Cryptology Conference on Advances in Cryptology, Springer-Verlag, Lon-
don, UK, 1990, pp. 416–427.

[4] R. C. Merkle, Secrecy, authentication, and public key systems., Ph.D. thesis, Stanford, CA,
USA (1979).

[5] R. C. Merkle, Protocols for public key cryptosystems, in: Proceedings of the 1980 IEEE Sym-
posium on Security and Privacy, 1980, pp. 122–134.

[6] N. Ferguson, S. L. Bauhaus, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, J. Walker,
The skein hash function family (version 1.2) (2009).

[7] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein, Blake2: Simpler, smaller, fast
as md5, in: Proceedings of the 11th International Conference on Applied Cryptography and
Network Security, ACNS’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 119–135.

[8] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. Elliott, F. A. Khan, J. Krish-
namurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, Y. L. Yin, The md6
hash function: A proposal to nist for sha-3 (2008).

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 17

[9] P. Sarkar, P. J. Schellenberg, A parallel algorithm for extending cryptographic hash functions,
in: Progress in Cryptology - INDOCRYPT 2001, Second International Conference on Cryptol-
ogy in India, Chennai, India, December 16-20, 2001, Proceedings, 2001, pp. 40–49.

[10] P. Sarkar, P. J. Schellenberg, A parallelizable design principle for cryptographic hash functions,
IACR Cryptology ePrint Archive 2002 (2002) 31.

[11] P. Pal, P. Sarkar, PARSHA-256- - A new parallelizable hash function and a multithreaded im-
plementation, in: Fast Software Encryption, 10th International Workshop, FSE 2003, Lund,
Sweden, February 24-26, 2003, Revised Papers, 2003, pp. 347–361.

[12] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, Sufficient conditions for sound tree and
sequential hashing modes, Cryptology ePrint Archive, Report 2009/210 (2009).

[13] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, Sakura: A flexible coding for tree hashing
8479 (2014) 217–234.

[14] S. Gueron, Parallelized hashing via j-lanes and j-pointers tree modes, with applications to SHA-
256, IACR Cryptology ePrint Archive 2014 (2014) 170.

APPENDIX A. COMPARISON BETWEEN A PERFECT BINARY TREE AND A
PERFECT TERNARY TREE

Let l ≥ 2 an integer. Let h2 the lowest integer such that 2h2 ≥ l and h3 the
lowest integer such that 3h3 ≥ l. We assume that we use a perfect binary (or
ternary) tree as in the original Merkle (and Damgård) hash tree mode, i.e. the
message is padded to obtain a message size which is a power of 2 (or 3). The
problem is to compare 2h2 and 3h3.

Any l can be uniquely written

l = 2k + u,

where u is an integer such that 0 ≤ u < 2k. Then

l = 2k(1 + a) where a =
u

2k
.

If a = 0 then h2 = k else h2 = k + 1.

A.1. The case a = 0. In this case

l = 2k, h2 = k, h3 =

⌈
k log(2)

log(3)

⌉
.

Then

h3 =
k log(2)

log(3)
+ α,

where 0 < α < 1. We must compare 3h3 with 2h2, namely

3
k log(2)

log(3)
+ 3α with 2k,

or

3
log(2)

log(3)
+ 3

α

k
with 2.

As α is bounded by 1 and 3
log(2)

log(3)
< 2, for k sufficiently large we have 3h3 < 2h2.

More precisely if k ≥ 28 then 3h3 < 2h2, meaning that a perfect ternary tree gives

18 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

a better running time than a perfect binary tree. When 2 ≤ k ≤ 27, we compute
the 27 values

T =
3

k

⌈
k log(2)

log(3)

⌉
− 2

and we look at the sign of the result:

• For k = 3s (s = 1, · · · , 9), a perfect binary tree and a perfect ternary tree
give the same result (T = 0).
• For k = 11, 14, 17, 19, 20, 22, 23, 25, 26, a perfect ternary tree is better

(T < 0).
• For k = 2, 4, 5, 7, 8, 10, 13, 16, a perfect binary tree is better (T > 0).

A.2. The case a 6= 0. In this case h2 = k + 1 and

h3 =

⌈
k log(2)

log(3)
+

log(1 + a)

log(3)

⌉
.

We must compare 3h3 to 2h2. But:

3h3
k
≤ 3 log(2)

log(3)
+

3 log(2)

k log(3)
+

3

k

and
2h2
k

= 2 +
2

k
.

As
3 log(2)

log(3)
< 2, for k sufficiently large we have 3h3 < 2h2. More precisely

for k ≥ 27 then 3h3 < 2h2, meaning that a perfect ternary tree gives a better
running time than a perfect binary tree. For any 2 ≤ k ≤ 26 and any u such that
1 ≤ u < 2k we must compute the sign of

R = 3

⌈
k log(2)

log(3)
+

log
(
1 + u

2k

)

log(3)

⌉
− 2k − 2.

As R is an increasing function of u, it is sufficient to determine for any k < 27 the
value of u where the sign changes. This can be done by dichotomy. Results are in
Table 1.

APPENDIX B. ALGORITHMS FOR REDUCING THE NUMBER OF PROCESSORS

B.1. Reducing the number of processors at the base level. We propose two
(different) algorithms to construct an optimal tree (in the sense of the running time)
which covers exactly l blocks (the tree is not necessarily perfect) and increases as
much as possible the arity of the base level. The first solution consists to check if
there exists an optimal tree having a level of arity 5 or 4.

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 19

k = 2 Sign = 0 for any u
k = 3 Sign < 0 for u = 1 and Sign > 0 for u > 1
k = 4 Sign < 0 for u ≤ 11 and Sign > 0 for u > 11
k = 5 Sign = 0 for any u
k = 6 Sign < 0 for u ≤ 17 and Sign > 0 for u > 17
k = 7 Sign < 0 for u ≤ 115 and Sign > 0 for u > 115
k = 8 Sign = 0 for any u
k = 9 Sign < 0 for u ≤ 217 and Sign > 0 for u > 217
k = 10 Sign < 0 for any u
k = 11 Sign < 0 for u ≤ 139 and Sign = 0 for u > 139
k = 12 Sign < 0 for u ≤ 2465 and Sign > 0 for u > 2465
k = 13 Sign < 0 for any u
k = 14 Sign < 0 for u ≤ 3299 and Sign = 0 for u > 3299
k = 15 Sign < 0 for u ≤ 26281 and Sign > 0 for u > 26281
k = 16 Sign < 0 for any u
k = 17 Sign < 0 for u ≤ 46075 and Sign = 0 for u > 46075
k = 18 Sign < 0 for any u
k = 19 Sign < 0 for any u
k = 20 Sign < 0 for u ≤ 545747 and Sign = 0 for u > 545747
k = 21 Sign < 0 for any u
k = 22 Sign < 0 for any u
k = 23 Sign < 0 for u ≤ 5960299 and Sign = 0 for u > 5960299
k = 24 Sign < 0 for any u
k = 25 Sign < 0 for any u
k = 26 Sign < 0 for u ≤ 62031299 and Sign = 0 for u > 62031299

TABLE 1. Comparison between a perfect binary tree and a perfect
ternary tree. If Sign < 0 a perfect ternary tree has a better run-
ning time. If Sign = 0 the two trees give the same running time.
Otherwise a perfect binary tree is better.

Algorithm 2a. This algorithm takes as inputs a message length l, a multiset of
arities (arranged in descending order) minimizing the running time, denoted A =
{x1, x2, ..., x|A|}, and returns a multiset of arities (still sorted in descending order)
minimizing the number of processors while leaving unchanged the running time.
Let tl the optimal running time for a message of size l, i.e. the sum of arities of A.
The algorithm proceeds as follows:

(1) Use Algorithm 1 to construct a tree for a message length l′ = dl/5e and
denote by A′ the corresponding ordered multiset of arities. If tl = tl′ + 5
then return the multiset A′′ = {5, A′}, otherwise go to the following step.

(2) Use Algorithm 1 to construct a tree for a message length l′ = dl/4e and
denote by A′ the corresponding ordered multiset of arities. If tl = tl′ + 4
then return the multiset A′′ = {4, A′}, otherwise go to the following step.

20 KEVIN ATIGHEHCHI AND ROBERT ROLLAND

(3) Return A (which cannot be further optimized).
The second approach uses the following hints:

Hints. Let us note that if k > 0, then a > b ⇐⇒ (a− k)b > a(b− k). Moreover,
if b ≤ a then (b−1)(a+1) ≤ ab. This suggests that a product of several numbers,
whose the sum is constant, is maximized when these numbers are as close together
as possible. In order to decrease the product of arities as slowly as possible we use
the fact that if c ≥ b ≥ a we have (c+ 1)(b− 1)a ≥ (c+ 1)b(a− 1).
Algorithm 2b. This algorithm takes as inputs a message length l, a multiset of
arities (arranged in descending order) minimizing the running time, denoted A =
{x1, x2, ..., x|A|}, and returns a multiset of arities (still sorted in descending order)
minimizing the number of processors while leaving unchanged the running time.
The algorithm proceeds as follows:

• We start by replacing in A each pair of arities 2 by an arity 4 (leaving
possibly only one arity 2 in A). We sort A in descending order.
• We repeat at most two times the following routine to determine the solu-

tion:
– Case |A| = 1: we return A.
– Case |A| = 2:

∗ Case x1 = 5: we return A.
∗ Case x1 ≥ 3, x2 ≥ 3: if (x1 + 1)(x2 − 1) ≥ l then A =
{x1 + 1, x2 − 1}, otherwise we return A.
∗ Case x1 = 4, x2 = 2: we return A.
∗ Case x1 = 3, x2 = 2: if 5 ≥ l then A = {5}. We return A.

– Case |A| ≥ 3:
∗ Case x1 = 5: we return A.
∗ Case x1 ≥ 3, x2 ≥ 3, x3 ≥ 2: if (x1 + 1)(x2 − 1)

∏|A|
i=3 xi ≥ l

then we perform the following operations: (i) we add 1 to x1
and we subtract 1 to x2; (ii) we replace a possible pair of arities
2 by an arity 4; (iii) we reorder A. If either the check fails or
x1 = 5 then we return A.

B.2. Reducing the number of processors at all the levels. The following algo-
rithm uses Algorithm 1 and 2 in order to compute a multiset of arities (sorted in
descending order) minimizing the running time and the required number of proces-
sors at each step of the computation.
Algorithm 3. Let A0 = {x1, x2, ..., x|A0|} be the multiset of arities returned by
Algorithm 1. We then use Algorithm 2 with a message of length l and the multiset
A0 to compute the multiset of arities A1 = {x′1, x′2, ..., x′|A1|}. The rest of the
algorithm proceeds iteratively as follows:

• We apply Algorithm 2 on inputs l′ = dl/x′1e and A′1 = {x′2, ..., x′|A1|} to
compute the multiset A′2 = {x′′2, ..., x′′|A′1|}. We set n = 1.
• As long as one of the following termination conditions is not met,

namely (i) A
(n)
n+1 = A

(n)
n ; (ii) the highest number of levels of ar-

ity 4 has been reached (see Lemma 1); or (iii) A
(n)
n+1 = ∅, we set

OPTIMIZATION OF TREE MODES FOR PARALLEL HASH FUNCTIONS 21

n = n + 1 and apply Algorithm 2 with the inputs l(n) =
⌈
l(n−1)/x

(n)
n

⌉

and A
(n)
n = {x(n)n+1,, x

(n)

|A(n−1)
n |

} to compute the multiset A(n)
n+1 =

{x(n+1)
n+1 , . . . , x

(n+1)

|A(n)
n |
}.

The resulting multiset of arities Ar = {x′1, x′′2, . . . , x
(n)
n , x

(n+1)
n+1 , . . . , x

(n+1)

|A(n)
n |
} min-

imizes the number of required processors at each step of the computation.

AIX-MARSEILLE UNIVERSITÉ, LABORATOIRE D’INFORMATIQUE FONDAMENTALE DE MAR-
SEILLE, CASE 901, F13288 MARSEILLE CEDEX 9, FRANCE

E-mail address: kevin.atighehchi@univ-amu.fr

AIX-MARSEILLE UNIVERSITÉ, INSTITUT DE MATHÉMATIQUES DE MARSEILLE, CASE 907,
F13288 MARSEILLE CEDEX 9, FRANCE

E-mail address: robert.rolland@acrypta.fr

	1. Introduction
	2. Background information and definitions
	3. Optimization of hash trees for parallel computing
	3.1. Minimizing the running time
	3.2. Minimizing the number of processors

	4. Conclusion
	References
	Appendix A. Comparison between a perfect binary tree and a perfect ternary tree
	A.1. The case a=0
	A.2. The case a =0

	Appendix B. Algorithms for reducing the number of processors
	B.1. Reducing the number of processors at the base level
	B.2. Reducing the number of processors at all the levels

