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ABSTRACT: Advanced simulations, such as finite element methods, are routinely used to model the be-
haviour of physical systems and processes. At the same time, awareness is growing on concepts of struc-
tural reliability and robust design. This makes efficient quantification and propagation of uncertainties
in computation models a key challenge. For this purpose, surrogate models, and especially Polynomial
Chaos Expansions (PCE), have been used intensively in the last decade. In this paper we combine PCE
and probability-boxes (p-boxes), which describe a mix of aleatory and epistemic uncertainty. In particu-
lar, parametric p-boxes allow for separation of the latter uncertainties in the input space. The introduction
of an augmented input space in PCE leads to a new uncertainty propagation algorithm for p-boxes. The
proposed algorithm is illustrated with two applications: a benchmark analytical function and a realistic
truss structure. The results show that the proposed algorithm is capable of predicting the p-box of the
response quantity extremely efficiently compared to double-loop Monte Carlo simulation.

1. INTRODUCTION
In modern engineering sciences, computational
simulations, such as finite element modelling, have
become wide spread. The goal is to predict the re-
sponse of a system with respect to a set of param-
eters, e.g. the deflection of a beam under variable
loads. The parameters (e.g. geometries, mechanical
properties, loads) are mapped to the quantity of in-
terest through a computational model, e.g. through
the governing equations of the process.

It is only in recent times that the traditionally
deterministic model parameters have been gradu-
ally substituted with probability distributions that
account for their uncertainty. In practice though,
data available for calibrating such distributions are
often too sparse, thus resulting in an extra layer of
uncertainty in their parameters. Different frame-
works have been proposed to quantify the latter
lack of knowledge (epistemic uncertainty) as well
as the natural variability of the process (aleatory

uncertainty), including probability-boxes (Ferson
and Ginzburg, 1996), Bayesian hierarchical mod-
els (Gelman, 2006) and Dempter-Shafer’s evidence
theory (Dempster, 1967; Shafer, 1976). These
frameworks are generally referred to as imprecise
probabilities.

After the input uncertainty is characterized,
it must be propagated through a computational
model. The latter, however, is often an expensive-
to-evaluate function, which can be replaced by an
approximate model, i.e. a meta-model, to reduce
the computational effort needed. Well-known meta-
modelling techniques include Polynomial Chaos
Expansions (Ghanem and Spanos, 2003), Gaussian
process modelling (a.k.a. Kriging) (Santner et al.,
2003) and support vector machines (Gunn, 1998).

This paper describes one formulation of impre-
cise probabilities in Section 2 followed by an in-
troduction to Polynomial Chaos expansions in Sec-
tion 3. Finally these two ingredients are combined

1



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

in Section 4 and two applications are discussed in
Section 5.

2. INPUT UNCERTAINTY
2.1. Probability theory
Traditionally, uncertainty in engineering has been
treated with probability theory.

Consider a probability space (Ω,F ,P), where Ω

denotes the event space equipped with σ -algebra
F and probability measure P. Random variables
are denoted by capital letters X(ω) : Ω→ DX ⊂ R
where ω ∈ Ω. A realization of variable X is de-
noted by the corresponding lower case letters, e.g.
x. Several random variables compose a random
vector XXX = [X1, . . . ,XM]T and the corresponding re-
alizations xxx = [x1, . . . ,xM]T.

In this context a random variable X is described
by its cumulative distribution function (CDF) FX
which expresses the probability that X < x, i.e.
FX(x) =P(X < x). The CDF has the properties that
it is monotone non-decreasing, that it tends to zero
for low values of x (FX(x→ −∞) = 0) and that it
tends to one for high values of x (FX(x→ ∞) = 1).
Note that such properties are valid for continuous
as well as discrete random variables.

For continuous random variables, the derivative
of a CDF is the probability density function fX(x) =
dFX(x)/dx. The PDF describes the likelihood that
X is in the neighbourhood of x. Due to the fact
that the CDF is non-decreasing, the PDF has non-
negative values for all x ∈ X .

As seen in the definitions above, probability the-
ory offers a single measure (i.e. the probability
measure) to describe variability in variable X . In
other words, we assume that the variability in X is
known and quantifiable by the CDF FX and the cor-
responding PDF fX . This describes the case where
variability is treated as the only source of uncer-
tainty.

2.2. Probability-box
A more general formulation is given by the frame-
work of probability-boxes (p-boxes) which defines
the CDF of a variable X by its lower and upper
bound distributions (Ferson and Ginzburg, 1996;
Ferson and Hajagos, 2004). The idea is that due a
lack of knowledge (epistemic uncertainty), the CDF

cannot be given a precise formulation. Thus the
probability-box framework accounts for aleatory as
well as for epistemic uncertainty in the description
of a variable X .

The lower and upper boundaries of the CDF are
denoted by [FX ,FX ]. The true, but unknown, CDF
of X lies within the boundaries for any value of
x ∈ X , i.e. FX(x) ≤ FX(x) ≤ FX(x), ∀x ∈ X . The
boundaries [FX ,FX ] mark the extreme cases of FX
and are thus also CDFs by definition.

The two boundaries form an intermediate space
in the variable-CDF-graph which resembles a box
(see Figure 1), hence the name probability-box.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

F
X

Belief

Plausibility

P−box

Figure 1: P-box – CDF of a Gaussian variable with
interval-valued µX and σX

The p-box can be interpreted in the framework
of Dempster-Shafer’s evidence theory (Dempster,
1967; Shafer, 1976). The lower boundary FX de-
scribes the minimum amount of probability that
must be assigned to FX(x), which corresponds to the
belief function Bel(FX(x)) in the vocabulary of ev-
idence theory. Analogously, the upper boundary of
the p-box is associated with the maximum amount
of probability that might be assigned to FX(x), or
the plausibility function Pl(FX(x)).

Note that if FX(x) = FX(x) = FX(x), ∀x ∈ X ,
then the p-box is called thin and conventional prob-
ability theory can be applied.

2.3. Parametric p-boxes
In the literature two types of p-boxes are identified,
namely the free p-box and the parametric p-box. In
this paper, we focus on parametric p-boxes (also
called distributional p-boxes).
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A parametric p-box requires knowledge about
the shape of the true CDF but allows for uncertainty
in its parameters. The p-box is represented by a
family of distribution functions whose parameters
θθθ lie within an interval. For a single variable X :

FX(x) = FX(x,θθθ), (1)

where θi ∈ [θ i,θ i], i = 1, . . . ,nθθθ . This construction
resembles a Bayesian hierarchical model (Gelman,
2006) in which the distribution of the parameters
θθθ is replaced by an interval. This framework al-
lows for a clear separation of aleatory and epistemic
uncertainty: aleatory uncertainty is represented by
the distribution function family and epistemic un-
certainty is represented by the interval on parame-
ters θθθ .

Figure 2 illustrates a parametric p-box generated
by a Gaussian random variable with mean value
and standard deviation varying within the intervals
µX = [−0.5,0.5] and σX = [0.7,1.0]. Several re-
alizations of the CDF are shown. Note that in the
case of parametric p-boxes in general, lower/upper
boundaries of the p-box are composed of several re-
alizations of the p-box.
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Figure 2: Boundaries of a parametric p-box and some
realizations for specific parameter values θθθ

∗

3. META-MODELLING
3.1. Computational model
A computational model M is defined as a mapping
of the M-dimensional input vector xxx to the output
scalar y, i.e. M : xxx ∈ DX ⊂ RM → y ∈ R. Due to
uncertainties in the input vector, the latter is repre-
sented by the random vector XXX with joint CDF FXXX .

The components of XXX = [X1, . . . ,XM]T are assumed
independent for the sake of simplicity throughout
this paper. The model response is a random vari-
able Y obtained by propagating the input random
vector XXX through the computational model M .

Several techniques are available for surrogating
the expensive-to-evaluate computational model M .
In the following section, Polynomial Chaos Expan-
sions (Ghanem and Spanos, 2003; Sudret, 2007)
will be briefly introduced.

3.2. Polynomial Chaos Expansion
A well-known non-intrusive meta-modelling
method is Polynomial Chaos Expansion (PCE)
which approximates the computational model M
with a finite series of polynomials orthogonal with
respect to the distribution of the input variables:

Y ≈M (PCE)(XXX) = ∑
ααα∈A M,p

aαααψααα(XXX), (2)

where {aααα ∈R} are the polynomial coefficients for
the multi-indices ααα = [α1, . . . ,αM] in the truncation
set A M,p, M is input dimension, p is the maximum
polynomial degree and ψααα(XXX) are multivariate or-
thonormal polynomials. Since the components of XXX
are assumed independent, the joint PDF is the prod-
uct of the margins. For each marginal distribution
fXi a functional inner product is defined:

〈φ1,φ2〉i =
∫
Di

φ1(x)φ2(x) fXi(x)dx. (3)

For each input variable i = 1, . . . ,M a family of or-
thonormal polynomials can be built that satisfies:

〈ψ(i)
j ,ψ

(i)
k 〉=

∫
Di

ψ
(i)
j (x)ψ

(i)
k (x) fXi(x)dx = δ jk,

(4)
where δ jk is the Kronecker symbol which is δ jk = 1
for j = k and δ jk = 0 otherwise. A compilation of
common orthonormal univariate polynomials can
be found e.g. in Sudret (2014).

3.3. Sparse PCE
One strategy to compute efficiently the coefficients
aααα in Eq. (2) is linear regression, as introduced by
Berveiller et al. (2006). Consider a set of N samples
of the input vector X = {χ(1), . . . ,χ(N)}, known
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as the experimental design, and the correspond-
ing responses of the exact computational model
Y =

{
Y (1) = M (χ(1)), . . . ,Y (N) = M (χ(N))

}
.

The set of coefficients aααα can be computed through
the solution of the least squares problem:

âaa = argmin
aaa∈R|A |

1
N

N

∑
i=1

(
Y (i)− ∑

ααα∈A M,p

aααα ψααα(χ
(i))

)2

.

(5)
The efficiency of meta-modelling algorithms de-

pends greatly on the choice of the set of polyno-
mials A M,p (see Eq. (5)). Different strategies for
limiting the number of polynomials have been pro-
posed including hyperbolic index sets (Blatman and
Sudret, 2011) which limit the total degree of poly-
nomials and interactions. In case of high dimen-
sionality (M ↑) this truncation scheme is not effi-
cient enough to accurately estimate the model re-
sponse Y and at the same time have a small number
of elements in A M,p.

For this reason, algorithms have been developed
to select out of a candidate set the polynomials
that are most influential to the system response Y .
Following Efron et al. (2004), Blatman and Sudret
(2010) introduced the least angle regression selec-
tion (LARS) algorithm for this purpose. LARS de-
termines the sparse set of polynomials (out of a
candidate set) that best describes the behaviour of
the exact computational model based on the exper-
imental design.

4. UNCERTAINTY PROPAGATION OF P-
BOXES

4.1. Monte-Carlo-based propagation
The distinction of aleatory and epistemic uncer-
tainty in the formulation of the parametric p-box al-
lows one to propagate them separately. A straight-
forward algorithm is the nested Monte Carlo al-
gorithm (Eldred and Swiler, 2009; Chowdhary and
Dupuis, 2013) shown in Figure 3. In the outer loop,
parameters of the CDF are sampled, i.e. θθθ

(i) ∈ΘΘΘXXX .
In the inner loop, a Monte Carlo simulation is con-
ducted for estimating the CDF of the response value
Y for a given input distribution FXXX(xxx,θθθ). The set of
CDFs resulting from different values of θθθ

(i) are fi-
nally combined into a p-box. The boundaries of the

p-box are obtained by:

FY (y) = min
i

(
FY (y,θθθ (i))

)
, ∀y ∈DY (6)

FY (y) = max
i

(
FY (y,θθθ (i))

)
, ∀y ∈DY . (7)

The nested Monte Carlo approach requires a
large number of model evaluations to accurately
predict the p-box of the output variable Y . Thus
the algorithm becomes inefficient when the cost for
evaluating the computational model M becomes
large. Therefore we propose an algorithm to replace
the computational model M by its inexpensive-to-
evaluate PCE surrogate.

4.2. PCE-based p-box propagation
4.2.1. Augmented input space
Consider the parametric p-box from Section 2.3,
which separates aleatory and epistemic uncertainty.
The response of the computational model Y can
be interpreted as a function of the augmented in-
put vector ZZZ def

= [XXX ,ΘΘΘXXX ]
T, where ΘΘΘXXX describes the

space of all parameters of all marginal distributions,
e.g. ∏

M
i=1[θ i,θ i], if the p-box of each Xi depends on

a single parameter θi. The augmented input space
leads to a PCE of dimension MZ = M+ |ΘΘΘXXX | where
|ΘΘΘXXX | is the number of parameters:

Y= M (aug)(XXX ,ΘΘΘXXX) = M (aug)(ZZZ). (8)

Note that the parameters {θi, i = 1, . . . ,nθ} are
given within interval boundaries [θ i,θ i] and are
treated in the PC expansion framework as a uni-
formly distributed random variable within these
boundaries.

PCE is defined on independent random variables
in the input space of the computational model,
which is clearly not the case for parametric p-
boxes because XXX is depending on the parameters
ΘΘΘXXX . Thus an isoprobabilistic transform (e.g. Nataf
transform) of the augmented input space is required
before calibrating the meta-model (Blatman and
Sudret, 2010).

For illustration purposes, the case of a Gaussian
distribution is shown in this paper. Consider a para-
metric p-box of a Gaussian random variable X with
unknown mean value µX and standard deviation
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Figure 3: Nested Monte Carlo approach – Propagation of imprecise probabilities by sampling the parameters θθθ

(outer loop) and the input vectors xxx∼ FXXX(xxx,θ) (inner loop)

σX , denoted by X ∼ N ([µ
X
,µX ], [σX ,σX ]). The

isoprobabilistic transform T reads:

X = µX +ξ ·σX =U1 +U2 ·U3, (9)

where U1 = U (µ
X
,µX) and U2 = U (σX ,σX) de-

note uniform random variables between the two ar-
guments and ξ

def
= U3 = N (0,1) is a standard nor-

mal random variable.
The computational model can then be formulated

as a function of three independent random vari-
ables:

Y = M (X) = M (T (U1,U2,U3)) , (10)

where T is shown in Eq. (9).
Finally, the nested Monte Carlo algorithm de-

scribed in Section 4.1 can be applied by substituting
the full computational model M (XXX) with its surro-
gate in the augmented space M

(aug)
PCE (ZZZ).

4.2.2. Phantom points
Eq. (9) leads to an interesting feature of the experi-
mental design in the augmented space. The compu-
tational model M is a function of |XXX |=M variables
whereas the augmented input space has MZ > M
input variables. Hence, for a given x ∈ DX there
are several combinations of {u1,u2,u3} such that
u1+u2 ·u3 = x. This feature can be exploited when
generating the experimental design of PC expan-
sion models in the augmented space.

Consider input variable X j and the associ-
ated j-th component of the experimental de-
sign, i.e. X j = {χ(1)

j , . . . ,χ
(N)
j }. Each χ

(k)
j ∈

DX j is a realization of the Normal distribution

χ
(k)
j ∼ N

(
u(k)1, j,u

(k)
2, j

)
. It can then be described as

a function of the variables in the augmented input
space, i.e. χ

(k)
j = T

(
u(k)1, j,u

(k)
2, j,u

(k)
3, j

)
. Eq. (9) indi-

cates that for Gaussian variables it holds:

u(k)3, j =
χ
(k)
j −u(k)1, j

u(k)2, j

. (11)

Thus for each sample χ
(k)
j , u(k)3, j can be computed as

a function of {u(k)1, j,u
(k)
2, j}.

We define phantom points in the augmented in-
put space as points which are obtained by sampling
{u(k)1, j,u

(k)
2, j} and computing u(k)3, j by Eq. (11) resulting

in the vector uuu(k)(i)j = {u(k)(i)1, j ,u(k)(i)2, j ,u(k)(i)3, j }, where
i = 1, . . .nph. Combining the j = 1, . . . ,M dimen-
sions for the sample χ(k) leads to a maximum num-
ber Nph = nM

ph phantom samples in the augmented
input space. The entire experimental design has
then a size of N×nM

ph samples.
The key feature of the phantom points is that they

all correspond to the same χ(k) in the original space,
with associated model response Y (k) = M (χ(k)).
In other words, a single run of the model M yields
up to nM

ph points in the augmented space.
An infinite number of phantom samples could be
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generated in principle. In practice however, only
a limited number is beneficial (see Section 5 and
Figure 6).

5. APPLICATION
5.1. Rosenbrock function
The Rosenbrock function is a two-dimensional,
smooth, polynomial function defined as (Rosen-
brock, 1960):

M (x1,x2) = 100(x2− x2
1)

2 +(1− x1)
2. (12)

The uncertainty associated with the two input vari-
ables {x1,x2} is modelled by Gaussian random
variables with interval-valued mean and standard
deviation. For both variables, µXi = [−0.5,0.5] and
σXi = [0.7,1.0]. Figure 2 shows the p-box of the
input random variables as the region enclosed be-
tween solid lines.

The p-box of the response Y is obtained by apply-
ing the algorithm in Section 4. The p-box is inter-
preted as a parametric p-box for the nested Monte
Carlo algorithm with and without meta-modelling
(Section 4.2 and Section 4.1 respectively).

The experimental design consists of N = 30
Latin-hypercube samples generated from the para-
metric p-box described in Section 2.3. The impre-
cise parameters ΘΘΘXXX are interpreted as uniform ran-
dom variables in order to cover the interval-valued
θθθ ∈ ΘΘΘXXX evenly. In the augmented space, Nph = 30
phantom samples are used for each vector of the
experimental design χ(k) ∈ X , leading to a total
number of samples in the experimental design of
Ntot =N ·Nph = 900 to build up the surrogate model
in the augmented space of dimension MZ = 6.

The Nph phantom points for χ(k) are
obtained as follows: Assuming that
zzz(k) = [u(k)1,1, u(k)2,1, u(k)3,1, u(k)1,2, u(k)2,2, u(k)3,2]

T. Through
Latin-hypercube sampling Nph samples are gen-
erated in the m-dimensional ΘΘΘXXX space, which
defines the components {[u(k)1,i ,u

(k)
2,i ], i = 1,2}.

Then components [u(k)3,1,u
(k)
3,2] are computed from

Eq. (11).
The resulting p-boxes are shown in Figure 4 for

both algorithms. Solid lines and the grey area
represent the exact p-box of the output variable
Y (double loop Monte Carlo simulation) whereas

diamonds represent the p-box from the surrogate
model. Note that despite the small experimental de-
sign the exact response p-box and the meta-model
based p-box match perfectly. This behaviour was
expected since the computational model M and the
isoprobabilistic transform T are polynomial func-
tions.
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Figure 4: Rosenbrock function – comparing the result-
ing p-boxes for the exact model and the meta-model

5.2. Linear elastic truss
Consider the simply supported, linear-elastic truss
presented in Hurtado (2013) and sketched in Fig-
ure 5. The computational model is a finite element
model of a this truss structure. The Young’s mod-
ulus of all bars is E = 200 · 109 Pa whereas
the cross section of the bars varies: 0.00535 m2

for the bars marked by •, 0.0068 m2 for the bars
marked by ◦ and 0.004 m2 for the remaining
bars. The uncertainty in the input originates in
the seven loads {Pi, i = 1, . . . ,7} which are mod-
elled as independent lognormal variables with mean
value µPi = [95,105] kN and standard deviation
σPi = [13,17] kN (Hurtado, 2013). The quantity
of interest is the deflection at midspan denoted by
u4 in Figure 5 as a function of the seven loads Pi.

An experimental design of N = 100 Latin-
hypercube samples following a parametric p-box
and varying number of phantom points Nph is gen-
erated in a similar fashion as in Section 5.1. The to-
tal number of samples in the experimental design in
the augmented input space is then Ntot = N ·Nph =
100 ·Nph.

Note that due to the lognormal distributions,
Eq. (9) transforms into a function of the log-mean
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8 x 2m

 2
m

P1 P2 P3 P4 P5 P6 P7

u4

Figure 5: Truss structure – sketch of the geometry in-
cluding the seven imprecise loads Pi and the target
deflection u4

λ and the log-standard deviation ζ for each load P
(index i = 1, . . . ,7 has been omitted for clarity):

P = exp [λ (U1,U2)+ζ (U1,U2) ·U3] , (13)

where ζ (U1,U2) =
√

ln(1+(U2/U1)2),
λ (U1,U2) = ln(U1)− ζ 2/2, U1 = U (95,105) kN,
U2 = U (13,17) kN and U3 = N (0,1). Hence,
Eq. (11) transforms into:

u(k)3, j =
ln
(

p(k)j

)
−λ (u(k)1, j,u

(k)
2, j)

ζ (u(k)1, j,u
(k)
2, j)

. (14)

Respecting the fact that the computational model
for the beam deflection is a monotone function of
the loads Pi, sampling the boundaries of the rectan-
gular area defined by the ranges in {µPi,σPi} leads
to the boundaries of the p-box of the output variable
u4.

Figure 6 shows the boundaries of the p-box of the
deflection variable u4 for nMC,1 = 103 samples in
the outer loop and nMC,2 = 105 samples in the inner
loop of the nested Monte Carlo algorithm using the
PC expansion in the augmented space. Positive val-
ues of u4 correspond to a deflection direction indi-
cated in Figure 5. The different line styles represent
the number of phantom points (Nph = {1,2,5,10}).
The reference p-box of the response u4 is marked by
diamonds which display a nested MC algorithm us-
ing the original finite element model with 103×105

runs.
The influence of the phantom points is clearly

visible, since the p-boxes converge to a stable solu-
tion for an increasing number of phantom points. In
this case stable solutions are obtained with Nph > 4.
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Figure 6: Truss structure – resulting p-boxes

Note that when conducting a reliability anal-
ysis, the failure probability is given within the
range provided by lower For instance u4,adm =
0.028 m leads to a failure probability range of Pf =
P
(
u4 ≥ u4,adm

)
= [2.3 ·10−3,1.8 ·10−1]. Note that

these results are obtained using only 100 finite ele-
ment runs.

6. CONCLUSIONS
This paper deals with the propagation of uncer-
tainty in the input of a computational model simu-
lating a physical process. Due to sparsity of proper
calibration data, the input parameters are modelled
as imprecise probabilities, i.e. a combination of
aleatory and epistemic uncertainties. This is a typi-
cal case in practice, where resources for generating
data (i.e. measurements) are limited.

One way to capture this lack of knowledge are
probability-boxes. Given parametric probability-
boxes in the input variables, we propose an algo-
rithm to propagate input uncertainty with the help
of Polynomial Chaos Expansions. The use of para-
metric p-boxes allows for the separation of aleatory
and epistemic uncertainty in the meta-model by in-
troducing an augmented input space. Such separa-
tion is preserved in the p-box of the output variable
of the system.

An essential part of the algorithm are phan-
tom points which are artificial experimental design
points generated in the augmented input space with-
out the need of additional expensive exact model
evaluations. They improve the accuracy of the
meta-model without affecting computational re-
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sources. This behaviour is due to the high redun-
dancy of the augmented space formulation intro-
duced to connect the p-boxes with PCE.

The capabilities of the proposed algorithm are
shown on two examples: a benchmark analytical
function and a more realistic engineering problem.
In both cases the proposed algorithm is capable
of predicting the response variable accurately with
only a small number of exact computational model
runs. This is of significance in practice where time,
financial and computational resources are typically
limited.

Further studies will include modifications of the
proposed algorithm to accurately estimate small
failure probabilities for which Monte Carlo simu-
lation is not efficient. This will include the use of
adaptive sampling algorithms for enriching experi-
mental design continuously.
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