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Advanced simulations, such as finite element methods, are routinely used to model the behaviour of physical systems and processes. At the same time, awareness is growing on concepts of structural reliability and robust design. This makes efficient quantification and propagation of uncertainties in computation models a key challenge. For this purpose, surrogate models, and especially Polynomial Chaos Expansions (PCE), have been used intensively in the last decade. In this paper we combine PCE and probability-boxes (p-boxes), which describe a mix of aleatory and epistemic uncertainty. In particular, parametric p-boxes allow for separation of the latter uncertainties in the input space. The introduction of an augmented input space in PCE leads to a new uncertainty propagation algorithm for p-boxes. The proposed algorithm is illustrated with two applications: a benchmark analytical function and a realistic truss structure. The results show that the proposed algorithm is capable of predicting the p-box of the response quantity extremely efficiently compared to double-loop Monte Carlo simulation.

INTRODUCTION

In modern engineering sciences, computational simulations, such as finite element modelling, have become wide spread. The goal is to predict the response of a system with respect to a set of parameters, e.g. the deflection of a beam under variable loads. The parameters (e.g. geometries, mechanical properties, loads) are mapped to the quantity of interest through a computational model, e.g. through the governing equations of the process.

It is only in recent times that the traditionally deterministic model parameters have been gradually substituted with probability distributions that account for their uncertainty. In practice though, data available for calibrating such distributions are often too sparse, thus resulting in an extra layer of uncertainty in their parameters. Different frameworks have been proposed to quantify the latter lack of knowledge (epistemic uncertainty) as well as the natural variability of the process (aleatory uncertainty), including probability-boxes [START_REF] Ferson | Different meth-ods are needed to propagate ignorance and variability[END_REF], Bayesian hierarchical models [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)[END_REF] and Dempter-Shafer's evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF]. These frameworks are generally referred to as imprecise probabilities.

After the input uncertainty is characterized, it must be propagated through a computational model. The latter, however, is often an expensiveto-evaluate function, which can be replaced by an approximate model, i.e. a meta-model, to reduce the computational effort needed. Well-known metamodelling techniques include Polynomial Chaos Expansions [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF], Gaussian process modelling (a.k.a. Kriging) [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF] and support vector machines [START_REF] Gunn | Support vector machines for classification and regression[END_REF].

This paper describes one formulation of imprecise probabilities in Section 2 followed by an introduction to Polynomial Chaos expansions in Section 3. Finally these two ingredients are combined 1 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, July 12-15, 2015 in Section 4 and two applications are discussed in Section 5.

INPUT UNCERTAINTY

Probability theory

Traditionally, uncertainty in engineering has been treated with probability theory. Consider a probability space (Ω, F , P), where Ω denotes the event space equipped with σ -algebra F and probability measure P. Random variables are denoted by capital letters X(ω) : Ω → D X ⊂ R where ω ∈ Ω. A realization of variable X is denoted by the corresponding lower case letters, e.g. x. Several random variables compose a random vector X X X = [X 1 , . . . , X M ] T and the corresponding realizations

x x x = [x 1 , . . . , x M ] T .
In this context a random variable X is described by its cumulative distribution function (CDF) F X which expresses the probability that X < x, i.e. F X (x) = P (X < x). The CDF has the properties that it is monotone non-decreasing, that it tends to zero for low values of x (F X (x → -∞) = 0) and that it tends to one for high values of x (F X (x → ∞) = 1). Note that such properties are valid for continuous as well as discrete random variables.

For continuous random variables, the derivative of a CDF is the probability density function f X (x) = dF X (x)/dx. The PDF describes the likelihood that X is in the neighbourhood of x. Due to the fact that the CDF is non-decreasing, the PDF has nonnegative values for all x ∈ X.

As seen in the definitions above, probability theory offers a single measure (i.e. the probability measure) to describe variability in variable X. In other words, we assume that the variability in X is known and quantifiable by the CDF F X and the corresponding PDF f X . This describes the case where variability is treated as the only source of uncertainty.

Probability-box

A more general formulation is given by the framework of probability-boxes (p-boxes) which defines the CDF of a variable X by its lower and upper bound distributions [START_REF] Ferson | Different meth-ods are needed to propagate ignorance and variability[END_REF][START_REF] Ferson | Arithmetic with uncertain numbers: rigorous and (often) best possible answers[END_REF]. The idea is that due a lack of knowledge (epistemic uncertainty), the CDF cannot be given a precise formulation. Thus the probability-box framework accounts for aleatory as well as for epistemic uncertainty in the description of a variable X.

The lower and upper boundaries of the CDF are denoted by [F X , F X ]. The true, but unknown, CDF of X lies within the boundaries for any value of x ∈ X, i.e. F X (x) ≤ F X (x) ≤ F X (x), ∀x ∈ X. The boundaries [F X , F X ] mark the extreme cases of F X and are thus also CDFs by definition.

The two boundaries form an intermediate space in the variable-CDF-graph which resembles a box (see Figure 1), hence the name probability-box. The p-box can be interpreted in the framework of Dempster-Shafer's evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF]. The lower boundary F X describes the minimum amount of probability that must be assigned to F X (x), which corresponds to the belief function Bel(F X (x)) in the vocabulary of evidence theory. Analogously, the upper boundary of the p-box is associated with the maximum amount of probability that might be assigned to F X (x), or the plausibility function Pl(F X (x)).

Note that if F X (x) = F X (x) = F X (x), ∀x ∈ X, then the p-box is called thin and conventional probability theory can be applied.

Parametric p-boxes

In the literature two types of p-boxes are identified, namely the free p-box and the parametric p-box. In this paper, we focus on parametric p-boxes (also called distributional p-boxes).

A parametric p-box requires knowledge about the shape of the true CDF but allows for uncertainty in its parameters. The p-box is represented by a family of distribution functions whose parameters θ θ θ lie within an interval. For a single variable X:

F X (x) = F X (x, θ θ θ ), (1) 
where θ i ∈ [θ i , θ i ], i = 1, . . . , n θ θ θ . This construction resembles a Bayesian hierarchical model [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)[END_REF] in which the distribution of the parameters θ θ θ is replaced by an interval. This framework allows for a clear separation of aleatory and epistemic uncertainty: aleatory uncertainty is represented by the distribution function family and epistemic uncertainty is represented by the interval on parameters θ θ θ . Figure 2 illustrates a parametric p-box generated by a Gaussian random variable with mean value and standard deviation varying within the intervals µ X = [-0.5, 0.5] and σ X = [0.7, 1.0]. Several realizations of the CDF are shown. Note that in the case of parametric p-boxes in general, lower/upper boundaries of the p-box are composed of several realizations of the p-box. 
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META-MODELLING

Computational model

A computational model M is defined as a mapping of the M-dimensional input vector x x x to the output scalar y, i.e. M : x x x ∈ D X ⊂ R M → y ∈ R. Due to uncertainties in the input vector, the latter is represented by the random vector X X X with joint CDF F X X X .

The components of X X X = [X 1 , . . . , X M ] T are assumed independent for the sake of simplicity throughout this paper. The model response is a random variable Y obtained by propagating the input random vector X X X through the computational model M .

Several techniques are available for surrogating the expensive-to-evaluate computational model M . In the following section, Polynomial Chaos Expansions [START_REF] Ghanem | Stochastic Finite Elements : A Spectral Approach[END_REF][START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF] will be briefly introduced.

Polynomial Chaos Expansion

A well-known non-intrusive meta-modelling method is Polynomial Chaos Expansion (PCE) which approximates the computational model M with a finite series of polynomials orthogonal with respect to the distribution of the input variables:

Y ≈ M (PCE) (X X X) = ∑ α α α∈A M,p a α α α ψ α α α (X X X), (2) 
where {a α α α ∈ R} are the polynomial coefficients for the multi-indices α α α = [α 1 , . . . , α M ] in the truncation set A M,p , M is input dimension, p is the maximum polynomial degree and ψ α α α (X X X) are multivariate orthonormal polynomials. Since the components of X X X are assumed independent, the joint PDF is the product of the margins. For each marginal distribution f X i a functional inner product is defined:

φ 1 , φ 2 i = D i φ 1 (x) φ 2 (x) f X i (x) dx. (3) 
For each input variable i = 1, . . . , M a family of orthonormal polynomials can be built that satisfies:

ψ (i) j , ψ (i) k = D i ψ (i) j (x) ψ (i) k (x) f X i (x) dx = δ jk , (4 
) where δ jk is the Kronecker symbol which is δ jk = 1 for j = k and δ jk = 0 otherwise. A compilation of common orthonormal univariate polynomials can be found e.g. in Sudret (2014).

Sparse PCE

One strategy to compute efficiently the coefficients a α α α in Eq. ( 2) is linear regression, as introduced by Berveiller et al. (2006). Consider a set of N samples of the input vector X = {χ (1) , . . . , χ (N) }, known as the experimental design, and the corresponding responses of the exact computational model Y = Y (1) = M (χ (1) ), . . . , Y (N) = M (χ (N) ) . The set of coefficients a α α α can be computed through the solution of the least squares problem:

â a a = arg min a a a∈R |A | 1 N N ∑ i=1 Y (i) -∑ α α α∈A M,p a α α α ψ α α α (χ (i) ) 2 .
(5) The efficiency of meta-modelling algorithms depends greatly on the choice of the set of polynomials A M,p (see Eq. ( 5)). Different strategies for limiting the number of polynomials have been proposed including hyperbolic index sets [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on Least Angle Regression[END_REF] which limit the total degree of polynomials and interactions. In case of high dimensionality (M ↑) this truncation scheme is not efficient enough to accurately estimate the model response Y and at the same time have a small number of elements in A M,p .

For this reason, algorithms have been developed to select out of a candidate set the polynomials that are most influential to the system response Y . Following [START_REF] Efron | Least angle regression[END_REF], [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF] introduced the least angle regression selection (LARS) algorithm for this purpose. LARS determines the sparse set of polynomials (out of a candidate set) that best describes the behaviour of the exact computational model based on the experimental design.

UNCERTAINTY PROPAGATION OF P-BOXES 4.1. Monte-Carlo-based propagation

The distinction of aleatory and epistemic uncertainty in the formulation of the parametric p-box allows one to propagate them separately. A straightforward algorithm is the nested Monte Carlo algorithm [START_REF] Eldred | Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics part I : algorithms and benchmark results[END_REF][START_REF] Chowdhary | Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification[END_REF] shown in Figure 3. In the outer loop, parameters of the CDF are sampled, i.e. θ θ θ (i) ∈ Θ Θ Θ X X X . In the inner loop, a Monte Carlo simulation is conducted for estimating the CDF of the response value Y for a given input distribution F X X X (x x x, θ θ θ ). The set of CDFs resulting from different values of θ θ θ (i) are finally combined into a p-box. The boundaries of the p-box are obtained by:

F Y (y) = min i F Y (y, θ θ θ (i) ) , ∀y ∈ D Y (6) F Y (y) = max i F Y (y, θ θ θ (i) ) , ∀y ∈ D Y . (7) 
The nested Monte Carlo approach requires a large number of model evaluations to accurately predict the p-box of the output variable Y . Thus the algorithm becomes inefficient when the cost for evaluating the computational model M becomes large. Therefore we propose an algorithm to replace the computational model M by its inexpensive-toevaluate PCE surrogate.

PCE-based p-box propagation 4.2.1. Augmented input space

Consider the parametric p-box from Section 2.3, which separates aleatory and epistemic uncertainty. The response of the computational model Y can be interpreted as a function of the augmented input vector Z Z Z def = [X X X, Θ Θ Θ X X X ] T , where Θ Θ Θ X X X describes the space of all parameters of all marginal distributions, e.g. ∏ M i=1 [θ i , θ i ], if the p-box of each X i depends on a single parameter θ i . The augmented input space leads to a PCE of dimension

M Z = M + |Θ Θ Θ X X X | where |Θ Θ Θ X X X | is the number of parameters: Y = M (aug) (X X X, Θ Θ Θ X X X ) = M (aug) (Z Z Z). (8) 
Note that the parameters {θ i , i = 1, . . . , n θ } are given within interval boundaries [θ i , θ i ] and are treated in the PC expansion framework as a uniformly distributed random variable within these boundaries. PCE is defined on independent random variables in the input space of the computational model, which is clearly not the case for parametric pboxes because X X X is depending on the parameters Θ Θ Θ X X X . Thus an isoprobabilistic transform (e.g. Nataf transform) of the augmented input space is required before calibrating the meta-model [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF].

For illustration purposes, the case of a Gaussian distribution is shown in this paper. Consider a parametric p-box of a Gaussian random variable X with unknown mean value µ X and standard deviation 

(i) ∈ [θ, θ] Inner loop sample conditional marginals F X (x|θ (i) ) x j M(x j ) j ← j + 1 i ← i + 1 Output p-box [F Y , F Y ]
Figure 3: Nested Monte Carlo approach -Propagation of imprecise probabilities by sampling the parameters θ θ θ (outer loop) and the input vectors

x x x ∼ F X X X (x x x, θ ) (inner loop) σ X , denoted by X ∼ N ([µ X , µ X ], [σ X , σ X ]).
The isoprobabilistic transform T reads:

X = µ X + ξ • σ X = U 1 +U 2 •U 3 , (9) 
where U 1 = U (µ X , µ X ) and U 2 = U (σ X , σ X ) denote uniform random variables between the two arguments and ξ def = U 3 = N (0, 1) is a standard normal random variable.

The computational model can then be formulated as a function of three independent random variables:

Y = M (X) = M (T (U 1 ,U 2 ,U 3 )) , ( 10 
)
where T is shown in Eq. ( 9). Finally, the nested Monte Carlo algorithm described in Section 4.1 can be applied by substituting the full computational model M (X X X) with its surrogate in the augmented space M (aug)

PCE (Z Z Z).

Phantom points

Eq. ( 9) leads to an interesting feature of the experimental design in the augmented space. The computational model M is a function of |X X X| = M variables whereas the augmented input space has M Z > M input variables. Hence, for a given x ∈ D X there are several combinations of {u 1 , u 2 , u 3 } such that u 1 + u 2 • u 3 = x. This feature can be exploited when generating the experimental design of PC expansion models in the augmented space.

Consider input variable X j and the associated j-th component of the experimental design, i.e. X j = {χ

(1) j , . . . , χ (N) j }. Each χ (k) j ∈ D X j is a realization of the Normal distribution χ (k) j ∼ N u (k) 1, j , u (k)
2, j . It can then be described as a function of the variables in the augmented input space, i.e. χ

(k) j = T u (k) 1, j , u (k) 2, j , u (k)
3, j . Eq. ( 9) indicates that for Gaussian variables it holds:

u (k) 3, j = χ (k) j -u (k) 1, j u (k) 2, j . ( 11 
)
Thus for each sample χ

(k) j , u (k) 
3, j can be computed as a function of {u

(k) 1, j , u (k) 2, j }.
We define phantom points in the augmented input space as points which are obtained by sampling {u

(k) 1, j , u (k) 2, j } and computing u (k)
3, j by Eq. ( 11) resulting in the vector u u u

(k)(i) j = {u (k)(i) 1, j , u (k)(i) 2, j , u (k)(i)
3, j }, where i = 1, . . . n ph . Combining the j = 1, . . . , M dimensions for the sample χ (k) leads to a maximum number N ph = n M ph phantom samples in the augmented input space. The entire experimental design has then a size of N × n M ph samples. The key feature of the phantom points is that they all correspond to the same χ (k) in the original space, with associated model response Y (k) = M (χ (k) ). In other words, a single run of the model M yields up to n M ph points in the augmented space. An infinite number of phantom samples could be 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
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APPLICATION

Rosenbrock function

The Rosenbrock function is a two-dimensional, smooth, polynomial function defined as [START_REF] Rosenbrock | An automatic method for finding the greatest or least value of a function[END_REF]:

M (x 1 , x 2 ) = 100 (x 2 -x 2 1 ) 2 + (1 -x 1 ) 2 . ( 12 
)
The uncertainty associated with the two input variables {x 1 , x 2 } is modelled by Gaussian random variables with interval-valued mean and standard deviation. For both variables, µ X i = [-0.5, 0.5] and σ X i = [0.7, 1.0]. Figure 2 shows the p-box of the input random variables as the region enclosed between solid lines. The p-box of the response Y is obtained by applying the algorithm in Section 4. The p-box is interpreted as a parametric p-box for the nested Monte Carlo algorithm with and without meta-modelling (Section 4.2 and Section 4.1 respectively).

The experimental design consists of N = 30 Latin-hypercube samples generated from the parametric p-box described in Section 2.3. The imprecise parameters Θ Θ Θ X X X are interpreted as uniform random variables in order to cover the interval-valued θ θ θ ∈ Θ Θ Θ X X X evenly. In the augmented space, N ph = 30 phantom samples are used for each vector of the experimental design χ (k) ∈ X , leading to a total number of samples in the experimental design of N tot = N •N ph = 900 to build up the surrogate model in the augmented space of dimension M Z = 6.

The N ph phantom points for χ (k) are obtained as follows:

Assuming that z z z (k) = [u (k) 1,1 , u (k) 2,1 , u (k) 3,1 , u (k) 1,2 , u (k) 2,2 , u (k) 3,2 ] T . Through Latin-hypercube sampling N ph samples are gen- erated in the m-dimensional Θ Θ Θ X X X space, which defines the components {[u (k) 1,i , u (k) 2,i ], i = 1, 2}. Then components [u (k) 3,1 , u (k)
3,2 ] are computed from Eq. ( 11).

The resulting p-boxes are shown in Figure 4 for both algorithms. Solid lines and the grey area represent the exact p-box of the output variable Y (double loop Monte Carlo simulation) whereas diamonds represent the p-box from the surrogate model. Note that despite the small experimental design the exact response p-box and the meta-model based p-box match perfectly. This behaviour was expected since the computational model M and the isoprobabilistic transform T are polynomial functions. [START_REF] Hurtado | Assessment of reliability intervals under input distributions with uncertain parameters[END_REF]. The quantity of interest is the deflection at midspan denoted by u 4 in Figure 5 as a function of the seven loads P i .

An experimental design of N = 100 Latinhypercube samples following a parametric p-box and varying number of phantom points N ph is generated in a similar fashion as in Section 5.1. The total number of samples in the experimental design in the augmented input space is then

N tot = N • N ph = 100 • N ph .
Note that due to the lognormal distributions, Eq. ( 9) transforms into a function of the log-mean 

P = exp [λ (U 1 ,U 2 ) + ζ (U 1 ,U 2 ) •U 3 ] , (13) 
where (13,17) kN and U 3 = N (0, 1). Hence, Eq. ( 11) transforms into:

ζ (U 1 ,U 2 ) = ln (1 + (U 2 /U 1 ) 2 ), λ (U 1 ,U 2 ) = ln (U 1 ) -ζ 2 /2, U 1 = U (95, 105) kN, U 2 = U
u (k) 3, j = ln p (k) j -λ (u (k) 1, j , u (k) 2, j ) ζ (u (k) 1, j , u (k) 2, j ) . ( 14 
)
Respecting the fact that the computational model for the beam deflection is a monotone function of the loads P i , sampling the boundaries of the rectangular area defined by the ranges in {µ P i , σ P i } leads to the boundaries of the p-box of the output variable u 4 .

Figure 6 shows the boundaries of the p-box of the deflection variable u 4 for n MC,1 = 10 3 samples in the outer loop and n MC,2 = 10 5 samples in the inner loop of the nested Monte Carlo algorithm using the PC expansion in the augmented space. Positive values of u 4 correspond to a deflection direction indicated in Figure 5. The different line styles represent the number of phantom points (N ph = {1, 2, 5, 10}). The reference p-box of the response u 4 is marked by diamonds which display a nested MC algorithm using the original finite element model with 10 3 × 10 5 runs.

The influence of the phantom points is clearly visible, since the p-boxes converge to a stable solution for an increasing number of phantom points. In this case stable solutions are obtained with N ph > 4. Note that when conducting a reliability analysis, the failure probability is given within the range provided by lower For instance u 4,adm = 0.028 m leads to a failure probability range of

P f = P u 4 ≥ u 4,adm = [2.3 • 10 -3 , 1.8 • 10 -1 ].
Note that these results are obtained using only 100 finite element runs.

6. CONCLUSIONS This paper deals with the propagation of uncertainty in the input of a computational model simulating a physical process. Due to sparsity of proper calibration data, the input parameters are modelled as imprecise probabilities, i.e. a combination of aleatory and epistemic uncertainties. This is a typical case in practice, where resources for generating data (i.e. measurements) are limited.

One way to capture this lack of knowledge are probability-boxes. Given parametric probabilityboxes in the input variables, we propose an algorithm to propagate input uncertainty with the help of Polynomial Chaos Expansions. The use of parametric p-boxes allows for the separation of aleatory and epistemic uncertainty in the meta-model by introducing an augmented input space. Such separation is preserved in the p-box of the output variable of the system.

An essential part of the algorithm are phantom points which are artificial experimental design points generated in the augmented input space without the need of additional expensive exact model evaluations. They improve the accuracy of the meta-model without affecting computational re-sources. This behaviour is due to the high redundancy of the augmented space formulation introduced to connect the p-boxes with PCE.

The capabilities of the proposed algorithm are shown on two examples: a benchmark analytical function and a more realistic engineering problem. In both cases the proposed algorithm is capable of predicting the response variable accurately with only a small number of exact computational model runs. This is of significance in practice where time, financial and computational resources are typically limited.

Further studies will include modifications of the proposed algorithm to accurately estimate small failure probabilities for which Monte Carlo simulation is not efficient. This will include the use of adaptive sampling algorithms for enriching experimental design continuously.
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 1 Figure 1: P-box -CDF of a Gaussian variable with interval-valued µ X and σ X
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 2 Figure 2: Boundaries of a parametric p-box and some realizations for specific parameter values θ θ θ *
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 4 Figure 4: Rosenbrock function -comparing the resulting p-boxes for the exact model and the meta-model
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 5 Figure 5: Truss structure -sketch of the geometry including the seven imprecise loads P i and the target deflection u 4
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 6 Figure 6: Truss structure -resulting p-boxes
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