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R. Schöbi & B. Sudret
Chair of Risk, Safety and Uncertainty Quantification
ETH Zurich, Zurich, Switzerland

ABSTRACT: In modern engineering, physical processes are modelled using advanced computer simulation
tools (e.g. finite element models) to assess and optimize their performance. Moreover, awareness is growing on
concepts like structural reliability and robust design, hence making the efficient quantification and propagation
of uncertainties a key challenge. A major part of those analyses is the characterization of uncertainty in the input,
which is typically done with probabilistic variables. In the case of sparse data sets, however, probability theory
is often not the optimal choice. Imprecise probabilities provide a more general framework accounting for both
aleatory and epistemic uncertainties. The uncertainty propagation of imprecise probabilities leads to imprecise
responses. In this context, an algorithm for solving imprecise structural reliability problems is presented. The
algorithm transforms the imprecise problem into two precise structural reliability problems, which opens up
possibilities for using traditional structural reliability analyses techniques. An adaptive experimental design
algorithm based on Polynomial-Chaos-Kriging is used to efficiently estimate imprecise failure probabilities.
The capabilities of the framework are illustrated through an application using an analytical function and a
realistic engineering problem setting.

1 INTRODUCTION

In modern engineering, computational simulations,
such as finite element models, have become a popular
tool for predicting the behaviour of mechanical sys-
tems or engineering structures. The increasing knowl-
edge in science leads to more and more complex com-
putational models which require increasing computa-
tional power.

At the same time, the awareness on (quantita-
tive) reliability, robustness and design optimization is
growing (Rasmussen and Williams 2006). Engineers
are more and more concerned with the quantification
of uncertainties, which involves defining a computa-
tional model, determining a model for the uncertain
input parameters, propagating the uncertainty and fi-
nally analysing the uncertainty in the quantity of in-
terest (Sudret 2015).

After defining a proper computational model, the
task is to characterize uncertainty in its input. It is
common practice to model uncertain parameters with
probability distributions, i.e. using concepts of prob-
ability theory. In many practical cases though, the
knowledge and data to model such parameters are not
sufficient. Thus, a more general framework is needed
to capture both the natural variability (aleatory uncer-
tainty) as well as the lack of knowledge (epistemic
uncertainty). A wide variety of approaches have been

proposed in the literature, such as Dempster-Shafer’s
theory (Dempster 1967, Shafer 1976), probability-
boxes (Ferson and Ginzburg 1996) and Bayesian hi-
erarchical models (Gelman 2006). These frameworks
are generally referred to as imprecise probabilities.

The propagation of imprecise probabilities through
a computational model generally results in an impre-
cise quantity of interest. The analysis of this impre-
cise quantity requires different tools than those used
in the context of a probabilistic input. Several algo-
rithms have been developed for structural reliability
analysis with probabilistic input, such as first-order
reliability method (FORM), subset simulation, impor-
tance sampling and meta-modelling-based algorithms
(Echard et al. 2011, Echard et al. 2013, Schöbi and
Sudret 2014), which allow efficient (i.e. accurate and
inexpensive) estimation of failure probabilities. How-
ever, it is not straightforward to apply these traditional
algorithms in the context of imprecise structural relia-
bility analysis (Alvarez et al. 2014, Zhang et al. 2015).
In this paper, we elaborate a solution which combines
imprecise structural reliability analysis with adaptive
experimental design algorithms.

This paper is organized as follows. In a first step,
the concept of imprecise probability is presented as a
generalization of probability theory (Section 2). Then,
the problem of imprecise structural reliability is dis-
cussed and a solution is proposed in Section 3. The



proposed algorithm is illustrated in Section 4 in ap-
plications involving an analytical function as well as
a realistic engineering problem.

2 IMPRECISE PROBABILITY

2.1 Probability theory

Traditionally, uncertainty in engineering has been
treated with probability theory. Probability theory
considers a probability space (Ω,F ,P), where Ω de-
notes an event space equipped with the σ-algebra F
and a probability measure P. In this context, ran-
dom variables, denoted by capital letters, represent
the mapping X(ω) : Ω→DX ⊂ R, where ω ∈ Ω is
an elementary event. A realization of X is denoted by
the corresponding lower case letter x. When consid-
ering several random variables, we obtain a random
vector X = [X1, . . . ,XM ] and the corresponding re-
alizations x = [x1, . . . , xM ].

Typically, a random variable X is described
by its cumulative distribution function (CDF) FX ,
which describes the probability that X < x, i.e.
FX(x) = P (X < x). Any CDF has the following
properties: it is monotonically non-decreasing, tends
to zero for low values of x and tends to one for large
values of x.

As seen in the definition above, probability theory
provides a single measure to describe the variability in
X . In other words, it is assumed that the variability in
X is known and quantifiable through its CDF. Thus,
variability is treated as the only source of uncertainty.

2.2 Probability-boxes

When the sources of uncertainty include natural vari-
ability (aleatory uncertainty) as well as lack of knowl-
edge (epistemic uncertainty), a more general formula-
tion is required to describe a random variable X . The
basic idea of probability-boxes (p-boxes) is that the
CDF cannot be given a precise formulation due to lack
of knowledge. Hence, the uncertainty in X is quanti-
fied by an upper- and a lower-bound CDF (Ferson and
Ginzburg 1996, Ferson and Hajagos 2004), which are
denoted by FX and FX , respectively. For any value
x ∈ X , the true but unknown CDF lies within these
boundaries, i.e. FX(x) ≤ FX(x) ≤ FX(x), ∀x ∈ X .
The boundaries of the p-box [FX , FX ] mark the ex-
treme cases of the real CDF and are thus themselves
CDFs by definition.

An intermediate space is formed between these
boundaries in the variable-CDF-graph which resem-
bles a box (see Figure 1), hence the name probability-
box. The particular case FX(x) = FX(x),∀x ∈ X ,
corresponds to the probability-boxes degenerating
into a single CDF. Then, conventional probability the-
ory can be applied.

In the context of Dempster-Shafer’s evidence the-
ory (Shafer 1976) the boundary CDFs FX and FX
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Figure 1: Free p-box – Sketch of FX = [FX , FX ]

can be interpreted as the belief and plausibility mea-
sures for the probability P (X ≤ x). The belief de-
scribes the minimum amount of probability that must
be associated to the event X≤ x, whereas the plausi-
bility describes the maximum amount of probability
that might be associated to the event X ≤ x .

In the literature, two types of p-boxes are distin-
guished: free and parametric p-boxes. Free p-boxes
are defined solely by [FX , FX ]. This implies that the
true CDF FX can have an arbitrary shape as long as
it follows the general properties of a CDF and it lies
within the boundaries defined by FX and FX . A vari-
ety of CDFs can be imagined of which Figure 1 illus-
trates a few realizations. In particular, it is possible to
imagine a continuous function (CDF #1 and #3 in Fig-
ure 1) as well as CDFs of discrete random variables
which allow only a set of values for X (CDF #2).

The second type of p-boxes are parametric p-boxes,
which are defined by a family of distribution func-
tions FX(x|θ) whose parameters lie within an inter-
val, i.e. θi ∈ [θi, θi]. The definition of a parametric p-
box structure thus requires knowledge about the shape
of the true CDF, which poses an additional constraint
compared to the free p-box.

In this paper, we focus on the analysis of free p-
boxes as they describe a more general case of impre-
cise probabilities than parametric p-boxes.

3 IMPRECISE STRUCTURAL RELIABILITY
ANALYSIS

3.1 Computational model

A computational modelM is defined as a mapping of
theM -dimensional input vector x to the output scalar
y:

M : x ∈ DX ⊂ RM → y =M(x) ∈ R. (1)

Due to uncertainties in the input vector x, the lat-
ter is represented by an imprecise random vector
X whose components (X1, . . . ,XM) are assumed
statistically independent throughout this paper for
the sake of simplicity. Each component Xi is mod-
elled by a free p-box [FXi

, FXi
]. Hence, the joint



probability-box [FX , FX ] can be obtained in terms
of its marginal distributions, i.e. FX =

∏
i=1,...,M FXi

and FX =
∏

i=1,...,M FXi
. Finally, the imprecise ran-

dom response Y is obtained by propagating X
through the computational model, i.e. Y = M(X).
The corresponding free p-box of the response is de-
noted by [F Y , F Y ].

3.2 Failure probability estimation

In structural reliability analysis, the failure probability
is defined as the probability that a response quantity
of interest Y is smaller than a given threshold value
y0:

Pf = P (Y ≤ y0) = P (M(X) ≤ y0) . (2)

Due to the fact that the input is modelled by p-boxes,
different realizations of FX ∈ [FX , FX ] lead to dif-
ferent failure probabilities. Thus the imprecise fail-
ure probability consists of an interval [P f , P f ] rather
than a single value. Figure 2 illustrates the p-box of
Y and the minimum and maximum failure probabili-
ties. The minimum failure probability is obtained by
P f = F Y (y0) whereas the maximum failure proba-
bility is obtained by P f = F Y (y0). This implies that
the imprecise failure probability [P f , P f ] can be es-
timated when the boundary CDFs of the response p-
box are known. However, in a general case it is non-
trivial to obtain [F Y , F Y ] efficiently.
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Figure 2: Response p-box and minimum/maximum failure prob-
ability

Note that for engineering applications, only the up-
per bound to the failure probability P f is of interest
(conservative estimate). Nevertheless the theory is de-
veloped for both bounds in the sequel.

3.3 Problem conversion

In order to be able to use standard reliability analy-
sis tools available in the context of probability the-
ory, we transform the imprecise reliability problem.
Consider the random vector C with length M which
is uniformly distributed in the unit-hypercube domain

DC = [0,1]M . Let the random variableCi describe the
CDF value of Xi. Each ci ∈ [0,1] can be transformed
into an interval inDXi

through the inverse CDF of the
p-box boundaries:

xi(ci) = F
−1
Xi

(ci), xi(ci) = F−1Xi
(ci). (3)

Further, for each c ∈ C, we define a computational
model for the minimum and maximum response in
[x(c),x(c)] (Alvarez et al. 2014):

M(c) = min
x∈[x(c),x(c)]

M(x), (4)

M(c) = max
x∈[x(c),x(c)]

M(x). (5)

We then define the probabilistic response variables for
the two computational models as:

Y =M(C), Y =M(C), (6)

where Y has the CDF F Y and Y has the CDF
F Y . Consequently, P f = P (Y ≤ y0) ≡ F Y (y0) and
P f = P

(
Y ≤ y0

)
≡ F Y (y0).

The definition of the two computational modelsM
and M splits the estimation of the imprecise fail-
ure probability into two independent problems within
the context of probability theory. The extreme failure
probabilities are then defined as:

P f = P
(
M(C) ≤ y0

)
, (7)

P f = P (M(C) ≤ y0) , (8)

where the function argument C is a uniform ran-
dom variable over [0,1]M . This implies that the failure
probability can be estimated based on the probabilis-
tic input model C.

3.4 Solution algorithms

Eq. (7) and Eq. (8) define two structural reliability
problems. Each of them can be solved by traditional
structural reliability analyses, typically sampling-
based methods, such as Monte Carlo simulation, im-
portance sampling, subset simulation, and the first-
order-reliability method (FORM). For a specific prob-
lem, either of them may be preferable.

It should be noted that the evaluation of the com-
putational modelsM andM involves optimizations
in the M -dimensional domain as seen in Eq. (4) and
Eq. (5). Different optimization algorithms are avail-
able, amongst which are gradient-based algorithms,
genetic algorithms and combinations of the two (so-
called hybrid algorithms). The optimal choice for the
optimization algorithm is problem-dependent.

The complexity of the computational model in
Eq. (4) and Eq. (5) is higher than the one in Eq. (1)
due to the required optimization. This makes the prop-
agation of an M -dimensional input vector c more ex-
pensive. One approach to reduce the computational



costs is to use meta-models, which approximate the
behaviour of the expensive-to-evaluate computational
model with an inexpensive-to-evaluate function. A
Kriging-based algorithm is discussed in the follow-
ing.

3.5 Imprecise-Adaptive-PC-Kriging

The framework of Imprecise-Adaptive-Polynomial-
Chaos-Kriging Monte Carlo simulation (Imprecise
A-PCK-MCS) is summarized in Figure 3. It com-
prises two independent main blocks for M and M,
which are marked by grey boxes. The algorithm for
two blocks is identical except for the target compu-
tational model. For this reason, we use the notation
M(C) in the following to represent bothM andM.

3.5.1 Polynomial-Chaos-Kriging
Kriging (a.k.a Gaussian process modelling) is a meta-
modelling technique which interprets the computa-
tional model as a realization of a Gaussian process
(Santner et al. 2003):

M(c) ≈M(K)(c) = βT · f(c) + σ2Z(c, ω), (9)

where βT · f(c) is the mean value of the Gaussian
process (so-called trend), σ2 is the process variance
and Z(c, ω) is a zero-mean, unit-variance stationary
Gaussian process. The Gaussian process is character-
ized by an autocorrelation functionR=R(|c−c′|;θ)
and its hyper-parameters θ.

A special case of Kriging is Polynomial-Chaos-
Kriging (PC-Kriging) which uses a finite set of multi-
variate orthogonal polynomials as trend of a Kriging
meta-model (Schöbi et al. 2015, Schöbi and Sudret
2014):

M(c) ≈M(PCK)(c) =
∑

τ∈T

tτψτ (c) + σ2Z(c, ω),

(10)

where
∑
τ∈T tτψτ (c) is a trend defined by a set of |T |

multivariate orthogonal polynomials ψτ (c) indexed
by the multi-index τ = {τ1, . . . , τM} and tτ are the
corresponding coefficients. Due to the independence
of the input variables, the multivariate polynomials
can be constructed as tensor products of univariate
polynomials:

ψτ (c) =
M∏

i=1

ψ(i)
τi

(ci), (11)

where ψ(i)
τi (ci) is a univariate polynomial of degree τi

in the i-th variable. The orthogonality with respect to
the input marginals is satisfied when:

〈ψ(i)
j , ψ

(i)
k 〉 =

∫

Di

ψ
(i)
j (c)ψ

(i)
k (c)fCi

(c) dc = δjk, (12)

where fCi
is the marginal PDF of Ci, δjk = 1 for j =

k and δjk = 0 otherwise. A compilation of common
orthonormal univariate polynomials can be found in
e.g. Sudret (2015).

Finally, the training of the PC-
Kriging meta-model is achieved through
a set of realizations of the input vector
C = {c(1), . . . , c(N)} and the corresponding responses
Y = {Y(1) =M(c(1)), . . . ,Y(N) =M(c(N))}. The
optimal sparse set of polynomials T is obtained by
least-angle regression as described in Schöbi et al.
(2015). The Kriging parameters {t, σ2} are estimated
through the generalized least-squares solution for a
given set of polynomials (Santner et al. 2003):

t(θ) =
(
FTR−1F

)−1 F R−1Y , (13)

σ2
y(θ) =

1

N
(Y − F t)T R−1 (Y − F t) , (14)

where Rij = R(|c(i) − c(j)|;θ) is the correlation ma-
trix and Fij = ψj(c

(i)) is the information matrix. In
cases where the correlation parameters θ are unknown
a-priori, their optimal value can be obtained through
maximum-likelihood estimation.

The prediction of the response value y of an arbi-
trary input sample c is a Gaussian random variable
characterized by its mean value and standard devia-
tion (Santner et al. 2003):

µŶ (c) = ψ(c)Tt+ r(c)TR−1 (Y − Ft) , (15)

σ2
Ŷ

(c) =

σ2
y

(
1− 〈ψ(c)Tr(c)T〉

[
0 FT

F R

]−1 [
ψ(c)
r(c)

])
,

(16)

where µŶ (c) and σ2
Ŷ

(c) are the prediction mean value
and variance, and ri(c) = R(|c− c(i)|;θ) is the corre-
lation between the new sample c and the experimental
design point c(i) ∈ C.

3.5.2 Adaptive experimental design
The PC-Kriging model generally approximates the
behaviour of M most accurately close to the points
of the experimental design C. However, these points
are not always optimal for estimating the failure prob-
ability Pf . It is of interest to meta-model the region
close to the limit state surface (M ≈ y0), which is
usually unknown a-priori. In this context, an adaptive
experimental design algorithm, which iteratively adds
samples to the experimental design in a guided way,
can improve the accuracy of the estimation of Pf .

In this paper, we refer to the algorithms proposed
by Echard et al. (2011) and applied to PC-Kriging in
Schöbi and Sudret (2014) and Schöbi et al. (2015).
The main steps are summarized here briefly:
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Figure 3: Imprecise A-PCK-MCS – Framework for obtaining the imprecise failure probability [P f , P f ].

1. Generate a small experimental design C and
compute the corresponding exact response Y ,
where Y(i) =M(c(i)), i = 1, . . . ,N .

2. Train a meta-modelM(PCK) based on {C,Y}.
3. Generate a large set of candidate samples
S = {c1, . . . ,cn} from C and predict its re-
sponse values withM(PCK).

4. Estimate the failure probability:

P̂ 0
f = P

(
µŶ (c) ≤ y0

)
.

5. Compute the probability of misclassification

Pm(ci) = Φ

( |µŶ (ci)− y0|
σŶ (ci)

)
,

for each ci ∈ S, where Φ(·) is the CDF of the
standard Gaussian distribution (µ = 0, σ = 1).
Select the next best sample to be added to the
experimental design as c∗ = arg max

i
Pm(ci).

6. Add the selected sample c∗ to the experimental
design, C←{C,c∗}, compute the corresponding
response Y∗ =M(c∗) and Y ← {Y ,Y∗}.

7. Go back to step 2 to train the meta-model with
the enhanced experimental design unless the fol-
lowing convergence criterion is fulfilled:

P̂+
f − P̂−f
P̂ 0
f

≤ 5%,

where P̂±f
def
= P

(
µŶ (c)∓ 2σŶ (c) ≤ y0

)
.

The estimate of the failure probability is finally ob-
tained with the last meta-model M(PCK). For further
details, the reader is referred to Schöbi and Sudret
(2014) and Schöbi et al. (2015). Note that the entire
adaptive experimental design algorithm is conducted
twice, forM andM.

3.5.3 Meta-model domain
The use of domainDCi

for meta-modelling is suitable
in cases where the p-box for variable Xi is bounded.
Then, the isoprobabilistic transform from DCi

to DXi

tends to be only slightly non-linear. When the p-box
in Xi is unbounded, however, the transform (Eq. (3))
is highly non-linear and may lead to convergence is-
sues in the meta-modelling process. The explanation
lies in the shape of the failure domain. When Xi is
unbounded and the failure probability is small, the
size of the failure domain Df,C ⊂ DC is proportional
to the failure probability, i.e. Df,C � 1. In contrast,
in the domain DX , the corresponding failure domain
Df,X is usually not compact and the corresponding
limit state surface (M = y0) can be meta-modelled
more efficiently.

Thus, in the case of unbounded input p-boxes inXi,
we propose to apply imprecise A-PCK-MCS on an
auxiliary space DX̃i

and the corresponding auxiliary
variables X̃i, which is characterized by the following
so-called mean CDF:

F̃Xi
(xi) =

FXi
(xi) + FXi

(xi)

2
. (17)

F̃Xi
describes an average CDF curve of all pos-

sible CDFs of the input free p-box in Xi. X̃i

can then be transformed into Ci by the isoproba-
bilistic transform Ci = F̃Xi

(Xi). Consider the in-
dex sets of bounded variables B(b) and of un-
bounded variables B(u), such that B(b) ∩B(u) = ∅ and
{B(b) ∪B(u)} = {i, i = 1, . . . ,M}. Then, a new input
vector C(X̃) is defined:

C
(X̃)
i =

{
Ci if i ∈ B(b)

X̃i if i ∈ B(u) . (18)

The corresponding computational model can then be
written as a function ofM as:

M(X̃)
(C(X̃)) ≡M(C). (19)



The adaptive experimental design algorithm can be

implemented forM(X̃)
, which promises a better con-

vergence thanM, due to the separate treatment of the
unbounded variables.

4 APPLICATION

4.1 Analytical function

We define the following analytical model of varying
dimension M :

g1(x) =
M∑

i=1

xi, (20)

where the components xi ∈ x are modelled by inde-
pendent free p-boxes. The boundary CDFs are mod-
elled by Gaussian distributions:

FXi
(xi) = FN (xi|µ = 1.5, σ = 1).

FXi
(xi) = FN (xi|µ = 0.5, σ = 1),

where FN (xi|µ,σ) describes the CDF of a Gaussian
distribution with mean value µ and standard deviation
σ.

Failure is defined as g1 ≤ 0 and the corresponding
failure probability reads Pf = P (g1(X) ≤ 0). Due to
the monotonicity of g1 and the shape of [FXi

, FXi
],

the extreme failure probabilities can be estimated by:

P f (M) = Φ

( −M · µ√
M · σ2

)
= Φ

(
−
√
M · µ

)
,

P f (M) = Φ

( −M · µ√
M · σ2

)
= Φ

(
−
√
M · µ

)
.

The values µ = 1.5, µ = 0.5 are used in the numer-
ical experiments. The Imprecise A-PCK-MCS algo-
rithm is initialized with an initial experimental design
of N0 = 5 ·M Latin-hypercube samples and a Monte
Carlo population S of n = 106 samples.

The results are summarized in Table 1 and Table 2,
which list the estimates of the failure probability P̂f
and the number of model runs, i.e. the initial size of
the experimental design N0 and the number of added
samples N1. We denote Ntot = N0 +N1.

The results show that the imprecise failure prob-
ability [P f , P f ] is estimated accurately for the pre-
sented dimensions M . For growing dimensionality
M , the total number of model runs increases. Over-
all though, the results are obtained with a small num-
ber of runs of the computational model M. For all
cases, the adaptive algorithm is stopped according to
the criterion in Section 3.5.2. An exception is the case
{M = 5, DC}, where the estimate of the failure prob-
ability is stable after N1 = 200 iterations but the con-
vergence criterion is not fulfilled.

The difference in the meta-model domains DC and
DX̃ (and the correspondingM andM(X̃)

) is visible
in the comparison of Table 1 and Table 2. For M = 2
and M = 5, meta-modelling in DX̃ leads to faster
convergence of the estimate of the failure probability
as seen by the lower total number of model evalua-
tions Ntot. This is due to the fact that the computa-
tional modelM behaves linearly in X and thus also
linearly in X̃ . PC-Kriging is capable of capturing the
linear trend easily and thus predicting accurately any
other x̃ ∈ X̃ .

Table 1: Analytical function – summary of the imprecise relia-
bility analysis using imprecise A-PCK-MCS in the DC domain.

P f P f

M = 2 Pf 1.69 · 10−2 2.40 · 10−1

P̂f 1.70 · 10−2 2.40 · 10−1

Ntot 10 + 127 = 137 10 + 105 = 115
M = 5 Pf 3.98 · 10−4 1.32 · 10−1

P̂f 3.91 · 10−4 1.31 · 10−1

Ntot > 225 > 225

Table 2: Analytical function – summary of the imprecise relia-
bility analysis using imprecise A-PCK-MCS in the DX̃ domain

and the correspondingM(X̃)
.

P f P f

M = 2 Pf 1.69 · 10−2 2.40 · 10−1

P̂f 1.71 · 10−2 2.40 · 10−1

Ntot 10 + 3 = 13 10 + 3 = 13
M = 5 Pf 3.98 · 10−4 1.32 · 10−1

P̂f 4.09 · 10−4 1.32 · 10−1

Ntot 25 + 3 = 28 25 + 3 = 28

In order to visualize the behaviour of the adaptive
algorithm, the experimental design of the meta-model
is analysed. Figure 4 shows distinct experimental de-
signs for the case of M = 2. The blue rectangles rep-
resent the optimization domains of the initial exper-
imental design samples in the input domain DX , i.e.
[x(c(i)),x(c(i))] for i = 1, . . . ,N0. The red and green
rectangles represent the corresponding domains of the
first N1 = 50 added samples for M and M respec-
tively. The black line marks the limit state surface
g1(x) = 0. Figure 4 visualizes nicely the behaviour
of the Imprecise A-PCK-MCS algorithm as the added
samples approach the limit state surface from the left
and right side for M and M, respectively. This im-
plies that the meta-model M models accurately the
limit state surface with each added sample (i.e. rect-
angle).

4.2 Simply supported truss

Consider the simply supported, linear-elastic truss
presented in Hurtado (2013) and sketched in Fig-
ure 5. The computational model M consists of
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Figure 4: Analytical function – experimental design inDX . (The
initial samples are blue, the added samples forM are red and the
added samples forM are green)

a finite element model of this truss structure. All
bars are modelled with a constant Young’s modu-
lus E = 200 · 109 Pa. The cross sectional area of the
bars varies: A = 0.00535 m2 for the bars marked
by •, A = 0.0068 m2 for the bars marked by ◦ and
A= 0.004 m2 for the remaining bars. The uncertainty
in the seven independent loads Pi is modelled by free
p-boxes whose boundary CDFs are:

F Pi
(pi) = min

[
FLN (pi|µ = 105 kN, σ = 13 kN)
FLN (pi|µ = 105 kN, σ = 17 kN)

]
,

F Pi
(pi) = max

[
FLN (pi|µ = 95 kN, σ = 13 kN)
FLN (pi|µ = 95 kN, σ = 17 kN)

]
,

where FLN (pi|µ,σ) describes the CDF of a lognor-
mal distribution with mean value µ and standard de-
viation σ. Note that these bounds are identical to

those of a parametric p-box with lognormal distri-
butions, in which parameters µ and σ vary in ranges
µ ∈ [95, 105] kN and σ ∈ [13, 17] kN. This parametric
p-box was used in Hurtado (2013) whereas we con-
sider a free p-box here. The resulting free p-box is
illustrated in Figure 6. The quantity of interest is the
deflection at midspan, denoted by u4 (see Figure 5),
as a function of the seven imprecise loads. In the con-
text of structural reliability analysis, we define failure
as u4 ≥ 0.029 m and the corresponding failure proba-
bility Pf = P (0.029 m− u4(P ) ≤ 0).

8 x 2m

 2
m

P1 P2 P3 P4 P5 P6 P7

u4

Figure 5: Truss structure – sketch of the geometry including the
seven imprecise loads Pi and the target deflection u4
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Figure 6: Truss structure – input free p-box for each of the seven
imprecise loads Pi

The imprecise A-PCK-MCS algorithm is initial-
ized with an experimental design of N0 = 10 Latin-
hypercube samples and a Monte Carlo population
S of n = 106 samples. Due to the assumption that
the failure probabilities are small, the meta-model

for M(X̃)
is trained in the auxiliary space DX̃ (see

Eq. (17)) rather than in the space DC . This ensures a
more efficient estimation of the failure probabilities
because the input variables are unbounded and the
failure domain (where M(PCK) ≤ 0) in DX̃ is larger
than in DC (see also Section 3.5.3).

The results are summarized in Table 3, in which the
estimates of the failure probability are compared for a
preset Ntot = 110. The estimates of the failure prob-
ability are accurate despite the small number of com-
putational model runs. This illustrates the efficiency
of the proposed approach. In particular, it is possible
to estimate the bounds of the failure probability with

a total of 220 runs ofM(X̃)
.



Table 3: Truss structures – summary of the imprecise reliability
analysis using imprecise A-PCK-MCS

P f P f

MC P̂f 2.10 · 10−4 9.20 · 10−2

n 106 106

APCK P̂f 2.25 · 10−4 9.21 · 10−2

Ntot 10 + 100 = 110 10 + 100 = 110

It is interesting to note that the imprecision in the
description of the seven loads leads to a significant
uncertainty in the failure probability. A variation of
10% in the mean value and 20% in the standard devi-
ation of the distribution function of Pi leads to a factor
P f/P f ≈ 200 in the estimate of the failure probabil-
ity. The failure probability is highly sensitive to the
definition of the input parameters due to its large de-
pendency on the tail of the input distributions.

5 CONCLUSIONS

This paper deals with the propagation of uncertainty
in the input of a computational model. In engineering
practice a typical scenario is the case where data gen-
eration is costly and thus limited. Due to the sparsity
of proper calibration data, the input parameters are
modelled as imprecise probabilities accounting for
both aleatory and epistemic uncertainties. One way to
capture this lack of knowledge is to use probability-
boxes which provide an upper and lower bound for
the cumulative distribution function of variables.

In the context of imprecise probabilities, the es-
timation of bounds on the failure probability is not
straightforward. In this paper, we propose a transfor-
mation of the imprecise structural reliability problem
into two traditional structural reliability problems. We
define two computational models as functions of an
auxiliary variable set, so that the lower and upper
boundary of the imprecise failure probability can be
estimated independently.

The transformation allows one to use advanced
structural reliability methods, such as the Adaptive-
PC-Kriging algorithm which is adopted in this paper.
Adaptive-PC-Kriging is an adaptive experimental de-
sign algorithm which efficiently (accurately and inex-
pensively) estimates failure probabilities.

The capabilities of the proposed algorithm are il-
lustrated by an analytical function and a realistic en-
gineering problem. In both cases, the proposed algo-
rithm is capable of estimating the bounds to the failure
probability accurately with only a small number of
runs of the exact computational model. This is of ma-
jor significance in practice where computational re-
sources are typically limited.

Further studies will include modifications of the
proposed algorithm to accurately estimate rare event
probabilities for which crude Monte Carlo simulation
is not efficient.
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