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On Weight-Prioritized Multi-Task Control of
Humanoid Robots

Karim Bouyarmane and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—We propose a formal analysis with some theoretical
properties of weight-prioritized multi-task inverse-dynamics-like
control of humanoid robots, being a case of redundant “ma-
nipulators” with a non-actuated free-floating base and multiple
unilateral frictional contacts with the environment. The controller
builds on a weighted sum scalarization of a multiobjective
optimization problem under equality and inequality constraints,
which appears as a straightforward solution to account for
state and control input viability constraints characteristic of
humanoid systems, such as Coulomb friction cone and sustained
unilateral contact constraints, torque saturation... that were
usually absent from early existing pseudo-inverse and null-space
projection-based prioritized multi-task approaches. We argue
that our formulation is indeed well founded and justified from a
theoretical standpoint and propose an analysis of some stability
properties of the resulting closed-loop dynamical system based
on the Lyapunov linearization method.

Index Terms—Multiobjective optimization, weighted sum
scalarization, multi-task control, matrix differentiation, Lya-
punov linearization method, quadratic-program stability

I. INTRODUCTION

APPLYING early control methods developed for (indus-
trial) manipulators [1]–[3] to humanoid robots, e.g. in-

verse dynamics control, operational or task function space
control... raises a number of challenging problems [4]–[9].
Typical such problems include simultaneous resolution of
redundancy and underactuation, or actuation through friction-
cone-constrained unilateral contact forces. Although each of
these problems has already been extensively studied in the
context of industrial manipulators or various general cases (see
examples of treatments of redundancy in [10], [11], underac-
tuation in [12], [13], constraints though contacts in [14]–[17],
bounds on control inputs in [18], and references therein), the
specificity of the humanoid robot case is that it features and
interleaves them all at once, and thus renders the solutions that
were proposed for each of these problems taken in a separate
setting largely inapplicable in a unified control framework.

We propose to tackle these combined structural problems
in a simple formulation in which we make the non-equivocal
distinction between the two notions of constraints and tasks,
a distinction that we believe should be made by/in any
humanoid control law design at large. Constraints are in-
herent to the well-posedness of the problem, as failing to
satisfy them results in a physically or mathematically ill-posed
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problem. These are the physics laws (Newton-Euler equations
or Lagrange equations, Coulomb laws) and the safety and
structural limits (torque saturation, joint angle and velocity
limits, collision and obstacle avoidance). Tasks, on the other
hand, allow for more tolerance in their non-fulfillment and
necessitate a certain degree of “compliance” in their execution.
Failing to realize them does not result in a mathematical or
physical law violation. Since tasks come one way or another
from planning (off-line or real-time), then it should be the role
of the planner, not the controller, to ensure that the tasks are
consistent and realizable [19].

Another important aspect in which humanoids differ es-
sentially from industrial manipulators is their novel context
of applications. An industrial manipulator is confined to a
structured, known, and uncertainty-free environment. It is thus
conceivable that in that setting tasks are seen as constraints that
should be realized perfectly, moreso if the manipulator had
been specifically designed for the task at hand. Humanoids,
even when targeted to manufacturing1, are neither customized
to achieve a particular task nor do they evolve in a structured
environment that was exclusively designed for their operations.
As such, tasks shall have the flexibility to be set as constraints
or as objectives to be realized at best given their actual struc-
tural constraints and the uncertain state of their environment.

In this paper we have taken a step back from what we al-
ready extensively achieve in experimental humanoid robotics.
Firstly, we adapt in an original way, different from the re-
cursive null space projection approach, the inverse dynamics
control principles to general multi-task systems and to the
“humanoid type of manipulator” in particular accounting for
its redundant, underactuated, and constrained nature (e.g.
walking stability). Secondly, and this constitutes our novel
contribution with respect to existing work, we assess the
foundations from a control theoretical perspective of such
control schemes. In Section II we introduce concepts from
the area of multiobjective optimization and show that they are
suitable to treat the multi-task control problem (Section II-A),
we then establish the completeness of the retained solution
method to deal with the problem (Section II-B). In Section III
we present results on the Lyapunov stability of the solution
scheme (Section III-B) based on the matrix differentiation
tools that we recall beforehand in Section III-A. Finally in
Section IV we cast the problem as a linearly constrained
quadratic program in the case of the humanoid robot and study
its theoretical stability properties.
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II. MULTI-TASK CONTROL AS A MULTIOBJECTIVE
OPTIMIZATION PROBLEM

A. General Concepts

Let us recall some concepts of multiobjective optimization
(also known as multicriteria optimization, multiple criteria de-
cision making, vector optimisation [20], [21]) and demonstrate
some useful properties in our context of multi-task control.

Multiobjective optimisation studies the problem

“ min
x∈X

”f(x) = (f1(x), . . . , fp(x)) , (1)

where the min operator is put between quotation marks to
emphasize that it is dependent on some specific optimality
notion for vector values to be defined. The fk functions are
scalar functions and X is the feasible space (e.g. as defined
by a set of constraints on x). A solution x∗ ∈ X of (1)
is called an efficient (or Pareto-optimal) solution if there is
no x ∈ X such that f(x) ≤ f(x∗). The notation y1 ≤ y2

denotes the componentwise order: ∀k ∈ {1, . . . , p} y1k ≤ y2k
and y1 6= y2, i.e. at least one inequality holds strictly
∃i ∈ {1, . . . , p} y1i < y2i . This notion of componentwise order
is to be clearly distinguished from the weak componentwise
order defined as y1 5 y2 if ∀k ∈ {1, . . . , p} y1k ≤ y2k
and the strict componentwise order defined as y1 < y2 if
∀k ∈ {1, . . . , p} y1k < y2k. Let Y = f(X ) ⊂ Rp denote
the image of the feasible set. If x∗ is an efficient solution
of (1) then y∗ = f(x∗) is called a nondominated point of
Y . A point y1 is said to dominate y2 if y1 ≤ y2. The set of
all efficient solutions of (1) is denoted XE and the set of all
nondominated points of Y is denoted YN (sometimes referred
to as the Pareto-optimal front). We denote

yI = (min
x∈X

f1(x), . . . ,min
x∈X

fp(x)) , (2)

the so-called ideal point. In general the ideal point is not
realizable yI 6∈ Y (note that if yI ∈ Y then YN = {yI}),
in that case any point in YN can be seen as a non improvable
compromise solution of (1).

In a context of multi-task control with p tasks, each
task τk is defined through a forward kinematics function
gk : Rn → Rnk , mapping the n-dimensional generalized
coordinates of the system q to the nk-dimensional value of the
task τk = gk(q) (n ≥ nk). A task is associated with a planned
reference trajectory t 7→ τ rk (t) and an objective attractor
behaviour to realize exponential tracking of the reference
trajectory, denoting ek = τk − τ rk , the attractor behavior takes
the form

ëk +Dkėk + Pkek = 0 , (3)

where the matrices (Pk, Dk) are so that Ak =

(
0 Ink

−Pk −Dk

)
is stable (i.e. has all its eigenvalues with negative real parts).
More generally, denoting the task error state space variable

ηk =

(
ek
ėk

)
, the reference behavior is of the form η̇k = Akηk

where Ak ∈ R2nk×2nk is stable. However, some results of
the paper will be stated under the assumption of the negative
definiteness of Ak + ATk , we recall the following relation
between the two properties:

Theorem 1. Ak+ATk negative definite is a sufficient condition
for Ak stable.

Proof. If Ak + ATk is negative definite, then The pair Q =
−(Ak+ATk ), P = Ink

satisfies the Lyapunov equation ATk P+
PAk = −Q with P and Q positive definite, therefore Ak is
stable.

For convenience of notation the behavior (3) can also be
written in the form

τ̈k − τ̈dk = 0 , (4)

with the desired task acceleration τ̈dk = τ̈ rk − Dkėk − Pkek.
If the constraints of the robot make it impossible to achieve
perfect realization of τ̈dk , then one might want to realize this
behavior “at best” in the following sense

min
x∈X
||τ̈k − τ̈dk ||2 , (5)

where x denotes a control decision variable and x ∈ X its
constraints. As we will see later (Section IV), the particular
choice of the square norm ||.||2 allows us to formulate the
problem as a linearly constrained quadratic program (QP) and
use algorithms that are dedicated to this class of optimization
problems. Let Jk = ∂gk/∂q ∈ Rnk×n denote the Jacobian
matrix of the task τk = gk(q). Here and henceforth we suppose
that gk is continuously differentiable so that Jk exists and
is continuous (which is always the case for a large class of
robotic systems in practice). In the simplest case where x = q̈
and X = Rn we can easily show that:

Proposition 1. If Jk is full row rank then (5) ⇔ (4).

Proof. Noting that τ̇k = Jkq̇ and τ̈k = Jkq̈ + J̇kq̇, the first
order optimality condition for (5) is

∂||τ̈k − τ̈dk ||2

∂q̈
= 2 JTk (τ̈k − τ̈dk ) = 0 . (6)

By the rank-nullity theorem, dim ker JTk = nk − rank JTk =
nk − rank Jk; since rank Jk = nk then dim ker Jk

T = 0,
which means ker JTk = {0}, the desired equivalence thus
follows from (6).

In the more general case we can state the following, (based
on the terminology used in, e.g., [22], [23], [24, Definition 4.6
p. 169]):

Definition 1. The solutions of a system χ̇ = ϕ(χ, t) are said
to be uniformly ultimately bounded (UUB) if there exists b >
0 and c > 0 such that, for every 0 < a < c, there exists
T (a, b) > 0 such that

||χ(0)|| < a ⇒ ∀t ≥ T (a, b), ||χ(t)|| < b . (7)

b is called an ultimate bound of the solutions. If a can be
arbitrarily large, i.e. if c = +∞, the solutions are said to be
globally uniformly ultimately bounded.

Proposition 2. If Ak + ATk is negative definite then, for any
ε > 0, the differential inequality:

||τ̈k − τ̈dk ||2 < ε , (8)
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results in ηk(t) globally uniformly ultimately bounded. More-
over, for any t 7→ ε(t) > 0 such that lim supt→+∞ ε(t) = 0,
the differential inequality:

||τ̈k − τ̈dk ||2 < ε(t) , (9)

implies, for every initial condition ηk(0),

ηk(t) −−−−→
t→+∞

0 . (10)

Proof. The inequality (8) can be rewritten as

||η̇k −Akηk|| =
∣∣∣∣∣∣∣∣( 0

τ̈k − τ̈dk

)∣∣∣∣∣∣∣∣ = ||τ̈k − τ̈dk || <
√
ε , (11)

which is equivalent to

η̇k = Akηk + ζ(t) , (12)

with ||ζ(t)|| <
√
ε. Denoting µ(Ak) the logarithmic norm of

Ak associated with the vector norm ||.||, it can be shown [25]
that (12) implies

||ηk(t)|| ≤ etµ(Ak)||ηk(0)||+
∫ t

0

e(t−θ)µ(Ak)||ζ(θ)||dθ ,

(13)

≤ etµ(Ak)||ηk(0)||+
∫ t

0

e(t−θ)µ(Ak)
√
εdθ , (14)

=

(
||ηk(0)||+

√
ε

µ(Ak)

)
etµ(Ak) −

√
ε

µ(Ak)
. (15)

Let δ > 0. We show that ηk(t) is globally UUB with ultimate
bound −

√
ε

µ(Ak)
+ δ. So let a > 0. From (15), ||ηk(0)|| < a

implies that

||ηk(t)|| <
(
a+

√
ε

µ(Ak)

)
etµ(Ak) −

√
ε

µ(Ak)
. (16)

We also have µ(Ak) = λmax

[
1
2 (Ak +ATk )

]
the maximum

eigenvalue of 1
2 (Ak + ATk ) [26]. Since Ak + ATk is negative

definite, µ(Ak) < 0, and hence the right-hand side of (16) goes
to −

√
ε

µ(Ak)
as t goes to +∞. Therefore there exists T (a, δ)

such that ∀t ≥ T (a, δ) : ||ηk(t)|| < −
√
ε

µ(Ak)
+ δ, and we

can conclude that ηk(t) is globally UUB with ultimate bound
−
√
ε

µ(Ak)
+ δ.

In the case of (9), we have similarly, denoting σ(t) =
sup0<θ<t ε(θ),

||ηk(t)|| ≤

(
||ηk(0)||+

√
σ(t)

µ(Ak)

)
etµ(Ak) −

√
σ(t)

µ(Ak)
. (17)

Since σ(t) −−−−→
t→+∞

0 and µ(Ak) < 0 the right-hand
side of (17) goes to 0 as t goes to +∞ and therefore
limt→+∞ ηk(t) = 0.

Following this train of thought, it appears now that the
multi-task problem can indeed be written as a multiobjective
optimization problem as introduced earlier in this section

“ min
x∈X

”f(x) = (||τ̈1 − τ̈d1 ||2, . . . , ||τ̈p − τ̈dp ||2). (18)

We thus provide in the following a complete characterization
of all the efficient solutions of this problem.

B. Characterization of the Efficient Solutions

It can be shown that, to a certain extent that is precisely de-
fined hereafter, all the efficient solutions of the multiobjective
optimisation problem (1) can be obtained by solving single
objective problems of the form

min
x∈X

p∑
k=1

wkfk(x) . (19)

The problem (19) is called a weighted sum scalarization of
the problem (1). Different results on the completeness of the
characterization of the solutions of (1) can be obtained de-
pending on whether we consider the non-identically null scalar
weights wk of (19) as only nonnegative or as (strictly) positive
(i.e. whether 0 ≤ w or 0 < w using the componentwise order
notations of Section II-A). Let us denote the set of optimal
points in Y that are spanned by the problems (19) in these
two cases respectively as

S0(Y) =

{
y∗ ∈ Y |

p∑
k=1

wky
∗
k = min

y∈Y

p∑
k=1

wkyk, 0 ≤ w

}
,

(20)

S(Y) =

{
y∗ ∈ Y |

p∑
k=1

wky
∗
k = min

y∈Y

p∑
k=1

wkyk, 0 < w

}
.

(21)

We need a few more definitions to complete those already
introduced in Section II-A. A solution x∗ ∈ X is said
to be a weakly efficient solution of (1) if f(x∗) is weakly
nondominated in Y , that is, if there is no x ∈ X such that
f(x) < f(x∗). The set of all weakly nondominated points in
Y is then denoted YwN .

Theorem 2. S0(Y) ⊂ YwN .

Proof. let y∗ ∈ S0(Y). Then there exits 0 ≤ w such that y∗

minimizes
∑p
k=0 wkyk. Suppose that y∗ 6∈ YwN , then there

exists y0 such that y0k < y∗k for all k in {1, . . . , p}. Hence∑p
k=0 wky

0 <
∑p
k=0 wky

∗ since at least one of the weights
is positive, which contradicts the optimality of y∗.

For the converse inclusion we need the following definition:

Definition 2. A set Y is said to be Rp=-convex if Y + Rp= is
convex. Rp= = {y ∈ Rp | 0 5 y} is the nonnegative orthant.

Theorem 3. If Y is Rp=-convex then S0(Y) = YwN .

Proof. See e.g. [20, Theorem 3.5 p. 69].

Thus we can see that under the conditions of Theorem 3 all
weakly nondominated solutions of a multiobjective optimiza-
tion problem can be obtained by weighted sum scalarizations
with nonnegative weights. In our coming formulation of multi-
task control we need the weights to be positive for the sake of
stability. Thus we need stronger results, characterizing S(Y)
rather than S0(Y).

Theorem 4. S(Y) ⊂ YN .

Proof. Similarly to the proof of Theorem 2, let y∗ ∈ S(Y).
Then there exists 0 < w such that y∗ minimizes

∑p
k=0 wkyk.
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Suppose that y∗ 6∈ YN , then there exists y0 such that y0k ≤ y∗k
for all k in {1, . . . , p}, with a strict inequality for at least
one k0. All the weights being positive we have wk0y

0
k0

<
wk0y

∗
k0

. Hence
∑p
k=0 wky

0 <
∑p
k=0 wky

∗, which contradicts
the optimality of y∗.

Unfortunately, the inclusion in Theorem 4 is too large, and
the converse inclusion does not hold in general. In fact, it can
be shown that the positive weights will only yield a set of
so-called properly efficient solutions.

Definition 3. A solution x∗ ∈ X is called properly efficient
if it is efficient and ∃M > 0 s.t. ∀x ∈ X , ∀i ∈ {1, . . . , p} :
fi(x) < fi(x

∗) ⇒ ∃j ∈ {1, . . . , p} \ {i} s.t. fj(x∗) < fj(x)
and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M .

In that case the point f(x∗) is said to be properly nondomi-
nated in Y and the set of all properly nondominated points of
Y is denoted YpN .

Using Definition 3, a tighter inclusion than that of Theo-
rem 4 can be obtained:

Theorem 5 (Geoffrion (1968)). S(Y) ⊂ YpN .

Proof. See e.g. [20, Theorem 3.11 p. 72]. See also the original
work of Geoffrion in [27, Theorem 1].

The converse inclusion of Theorem 9 holds:

Theorem 6. If Y is Rp=-convex then S(Y) = YpN .

Proof. See e.g. [20, Theorem 3.13 p. 74].

Theorem 6 shows that only the properly efficient solutions
of (1) can be attained with positive weights, and that this is the
best we can achieve exactly. However, the following theorem,
due to Hartley (1978), allows us to approximate any efficient
solution with positive weight scalarization which will prove
useful in our application.

Definition 4. A set Y is said to be Rp=-closed if Y + Rp= is
closed.

Theorem 7 (Hartley (1978)). If Y is nonempty, Rp=-convex
and Rp=-closed then YN ⊂ cl (S(Y)).

Proof. See e.g. [20, Theorem 3.17 p. 77]. See also the original
work of Hartley in [28, Theorem 5.5].

Theorem 7 is a powerful tool that allows us to perform our
desired approximation. Before applying it we will need the
following lemma:

Lemma 1. There is always at least one efficient solution of
problem (1) that exactly realizes a given component of the
ideal point yI (2), i.e. ∀k ∈ {1, . . . , p} ∃y ∈ YN s.t. yk = yIk.

Proof. Let k be a given index in {1, . . . , p}. Let X ′ denote
the set X ′ = {x ∈ X | fk(x) = yIk} , let f ′ : X ′ → Rp−1
such that f ′(x) = (f1(x), . . . , fk−1(x), fk+1(x), . . . , fp(x))
and let y′ be any nondominated point of Y ′ = f ′(X ′). Then
it is clear that y such that yk = yIk and yi = y′i for i 6= k
satisfies the desired result.

Now, we state the following corollary, supposing in the
remainder of this section that the conditions of Theorem 7
are satisfied:

Corollary 1. For any ε > 0 and any index k, there exists a set
of positive weights 0 < w such that fk(x∗) − yIk < ε, where
x∗ denotes a solution of problem (19).

Proof. From Lemma 1 there exists y ∈ YN such that yk = yIk.
From Theorem 7 we then have y ∈ cl(S(Y)) Since Y is finite-
dimensional all norms are topologically equivalent and thus
we can consider the `∞-norm ||.||∞ for the closure definition
cl(.). Therefore, there exists a sequence of elements (yl)l∈N ∈
YN
N such that ||yl − y||∞ −−−−→

l→+∞
0, and as such there exists

l0 ∈ N such that ||yl0−y||∞ < ε. Finally we have yl0k − yIk =
yl0k − yk ≤ ||yl0 − y||∞ < ε which shows the desired result.

Applying Corollary 1 to problem (18) gives us:

Corollary 2. If a given task τk is realizable exactly, i.e.
∃x ∈ X s.t. τ̈k = τ̈dk , then it can be reached with weighted-
sum scalarization of (18) with positive weights at any given
precision, i.e. for any ε > 0 there exists 0 < w such that

||τ̈k(x∗)− τ̈dk ||2 < ε , (22)

where x∗ is the solution of the w-weighted sum scalarization
of (18):

min
x∈X

p∑
l=1

wl ||τ̈l(x)− τ̈dl ||2 . (23)

Proof. Immediate from Corollary 1.

In redundant manipulator control, one popular optimality
notion is what is usually referred to as the strict priority
ordering of the tasks (or sometimes strict hierarchy), which
is de facto imposed by the nature of the method itself, i.e.
the recursive pseudo-inversion of the task “constraint” and the
projection in the null space of higher priority constrains [29],
[30]. In the context of multiobjective optimization a similar
notion is labelled under the term lexicographic optimisation

lexmin
x∈X

(f1(x), . . . , fp(x)) , (24)

which consists in finding a point yL ∈ Y called the lexico-
graphic optimum such that ∀y ∈ Y yL ≤lex y where ≤lex
denotes the lexicographic order (a total order) in Rp.

Lemma 2. The lexicographic optimum is one particular
efficient solution of (1), i.e. yL ∈ YN .

Proof. Suppose that yL 6∈ YN , then there exists y ∈ Y such
that y ≤ yL, and thus the set

{
k ∈ {1, . . . , p} | yk < yLk

}
is

nonempty. Let then k0 = min
{
k ∈ {1, . . . , p} | yk < yLk

}
,

since y ≤ yL we have yk = yLk for k ∈ {1, . . . , k0 − 1}
and yk0 < yLk0 and therefore y <lex y

L, which contradicts the
lexicographic optimality of yL.

Applying again Theorem 7 we get:

Corollary 3. The lexicographic (strict priority) optimum can
be approached at any given precision by positive weighted sum



BOUYARMANE AND KHEDDAR: ON WEIGHT-PRIORITIZED MULTI-TASK CONTROL OF HUMANOID ROBOTS 5

scalarization, i.e., for any ε > 0 there exists a set of positive
weights 0 < w such that ||f(x∗)− yL|| < ε, where x∗ is the
solution of (23).

Proof. Similar to the proof of Corollary 1 from Lemma 2.

We have now characterized the efficient solutions of (18)
and justified the use of (23) for solving it. Propositions 1 and 2
give us some stability results in the state-space of the tasks
(τk, τ̇k), we study in the following the behavior of the system
in the state-space of the generalized coordinates of the robot
(q, q̇).

III. STABILITY IN THE STATE SPACE OF THE
GENERALIZED COORDINATES

In this section we restrict ourselves to the case in which
x = q̈ and X = Rp. This would provide us with some insight
on the general case that is more complex to study analytically
and is out of the scope of this paper. We also consider task
function regulation problems in which t 7→ τ rk (t) are constant
in time, and for ease of notation we denote their constant
regulation values τ rk .

Our aim here is to study the behavior of the system of
ordinary differential equations (ODEs) defined by

q̈ = argmin

p∑
k=1

wk ||τ̈k − τ̈dk ||2 , (25)

in the state space of (q, q̇), where the weights are positive 0 <
w following our analysis in Section II-B. As for related work
concerning this section, see for example [31], [32] that study
the stability of the strict priority inverse kinematics control
approach, [10], [30] for the stability of strict priority inverse
dynamics, [33], [34] for the stability of the weighted approach
of a multi-task controller based on control Lyapunov functions
(CLF).

We will base our argumentation below on the Lyapunov
linearization method, so we propose to first introduce some
general matrix differentiation concepts that we extensively use
in the course of its application. This also allows us to introduce
along the way the concept of the second derivative of the
forward kinematics mapping (the “Jacobian of the Jacobian”).

A. Matrix Differentiation Tools for the Lyapunov Linearization
Method

Let us consider the nonlinear system:

χ̇ = ϕ(χ) , (26)

with ϕ(χ0) = 0 and ϕ continuously differentiable at χ0. Let
Φ = ∂ϕ

∂χ

∣∣∣
χ0

denote the Jacobian matrix of ϕ at χ0. We have

the following Lyapunov linearization theorem:

Theorem 8 (Lyapunov (1892)). The nonlinear system (26) is
asymptotically stable at χ0 if the linear system

ż = Φz , (27)

is asymptotically stable at 0.

Proof. See e.g. [24, Theorem 4.7 p. 139], [35, Corollary 26
p. 213], [36, Theorem 3.1 p. 55]. See also the theorem in
the original work of Lyapunov translated to English in [37,
Theorem I p. 556].

Theorem 8 gives a sufficient condition for the asymptotic
stability of the equilibrium of (26), but it can also be extended
to give a necessary and sufficient condition for the exponential
stability of this equilibrium as follows:

Theorem 9. The nonlinear system (26) is exponentially stable
at χ0 if and only if the linear system (27) is exponentially
stable at 0.

Proof. See, e.g. [35, Theorem 1 p. 246], [24, Corollary 4.3 p.
166]

Finally we recall the following characterization of the
asymptotic and exponential stability of autonomous linear
systems:

Theorem 10. The following statements are equivalent:
(i) the linear system (27) is asymptotically stable at 0,

(ii) the linear system (27) is exponentially stable at 0,
(iii) the matrix Φ is stable.

Proof. See, e.g. [24, Theorem 4.5 p. 134] for (i)⇔ (iii), [35,
Theorem 29 p. 197] for (ii)⇔ (iii).

Hence, by Theorem 10, applying Theorems 8 or 9 amounts
to studying the stability of the Jacobian matrix of ϕ. In our
coming application in Section III-B the mapping ϕ includes in
its expression the Jacobian matrices of the tasks Jk. Thus we
need a tool to efficiently differentiate Jk(q) with respect to q,
that can somewhat be termed the “Jacobian of the Jacobian”
(which is not to be confused with the notion of a Hessian
matrix that is only defined for scalar functions). Unfortunately
the expression

“
∂Jk(q)

∂q
” , (28)

does not make sense and is not properly defined, since it
involves the differentiation of a matrix with respect to a vector.
Magnus and Neudecker (1985) proposed to use the following
quantity that is thoroughly consistent with all the properties
of the classical differentiation frameworks (in particular with
the chain rule, the notion of the Jacobian, and Cauchy’s rule
of invariance) [38]:

Gk = DJk(q) =
∂ vec Jk(q)

∂q
. (29)

The vec operator denotes the vectorization operator that con-
sists for a matrix in stacking its columns as a vector, i.e.

vec

a11 · · · a1m
...

. . .
...

an1 · · · anm

 =



a11
...
an1

...

...
a1m

...
anm


. (30)
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Gk in (29) appears thus as a regular “Jacobian” matrix of size
n · nk × n. We will make use of following definitions and
properties

Theorem 11. There exists a so-called commutation matrix
Knm, that is the nm × nm permutation matrix which trans-
forms vecAT into vecA for any n × m matrix A, i.e.
∀A ∈ Rn×m vecAT = Kmn vecA.

Proof. See e.g. [39, Proposition 7.1.13 p. 402], [40, p. 54].

Denoting ⊗ the Kronecker product:

Theorem 12. For any vector X and matrices A, B and C
such that ABC is defined we have

X = vecX , (31)
vec(ABC) = (CT ⊗A) vecB , (32)

vec(AB) = (I ⊗A) vecB , (33)
vec(AB) = (BT ⊗ I) vecA . (34)

Proof. See e.g. [39, Proposition 7.1.9 p. 401 and Fact 7.4.6 p.
405].

Definition 5. A vector function f : S ⊂ Rn → Rm is
differentiable at c ∈ int(S) if there exists a matrix A(c) such
that, for u in a neighborhood of 0 in Rn, we have

f(c+ u) = f(c) +A(c)u+ o(||u||) . (35)

If A(c) exists it is unique and in that case the vector

df(c;u) = A(c)u , (36)

is called the differential of f at c with increment u.

Theorem 13. If f is differentiable at c then A(c) defined in
Definition 5 is the Jacobian matrix of f with respect to x (the
variable of f ) at c:

A(c) = Df(c) =
∂f

∂x

∣∣∣∣
c

. (37)

Proof. See e.g. [40, Theorem 6 p. 98].

Magnus and Neudecker extended this definition of differen-
tials to matrix functions:

Definition 6. A matrix function F : S ⊂ Rn×m → Rp×q is
differentiable at C ∈ int(S) if there exists a matrix A(C) ∈
Rmn×pq such that, for U in a neighborhood of 0 in Rn×m,
we have

vecF (C + U) = vecF (c) +A(C) vecU + o(||U ||) . (38)

If A(C) exists it is unique and the p × q matrix dF (C;U)
defined by

vec dF (C;U) = A(C) vecU , (39)

is called the differential of F at C with increment U .

Theorem 14. If F is differentiable at C then A(C) defined in
Definition 6 is the Jacobian of vecF with respect to vecX (X
denoting the variable of F ) that we will also call the Jacobian
of F at X

A(C) = DF (C) =
∂ vecF

∂ vecX

∣∣∣∣
C

. (40)

Proof. See e.g. [40, Theorem 11 p. 108].

Definition 6 is consistent with Definition 5 and reduces to it
when performing the conventional identification of vector and
matrix spaces Rn ≡ Rn×1. The following theorem is called
Cauchy’s rule of invariance and is valid for either Definitions 5
and 6 of the differentials, in particular we state it here for the
matrix differentials:

Theorem 15 (Cauchy’s rule of invariance). If F is differ-
entiable at C and G is differentiable at B = F (C) then
H = G ◦ F is differentiable at C and

dH(C;U) = dG(B; dF (C;U)) . (41)

Proof. See e.g. [40, Theorem 13 p. 108].

Theorem 15 allows us to use the symbol dy to denote the
differential of a vector or matrix function y = g(t) as dy =
dg(t; dt) where dt is an arbitrary vector, since, if we change
the variable t = f(x) and denoting h(x) = g(f(x)) = y, we
get following Cauchy’s rule of invariance dy = dh(x; dx) =
dg(f(x); df(x; dx)) = dg(t; dt). Hence we shall even also use
the notation dg = dg(t; dt) without ambiguity. The following
example of application of this rule that we use later illustrates
this point:

Example 1. The differentials of the mappings GLn(R)→ Rn
X 7→ X−1; Rn×m → Rm×n, X 7→ XT ; and Rn×m →
Rn×n, X 7→ XTX can be derived respectively as:

d(X−1) = −X−1dXX−1 , (42)
d(XT ) = KnmdX , (43)

d(XTX) = (Kmm + Im2)
(
Im ⊗XT

)
dX . (44)

Hence by Cauchy’s rule of invariance we can write for Jk(q)
seen as a function of q:

dJk(q)−1 = −J−1k dJk(q)J−1k (J(q) nonsingular) ,
(45)

d(Jk(q)T ) = KnkndJk(q) , (46)

d(Jk(q)TJk(q)) =
(
Knknk

+ In2
k

) (
Ink
⊗ JTk

)
dJk(q) .

(47)

Proof. See e.g. [40, Theorem 3 p. 71 and Chapter 9 Section
13 pp. 205-208].

We shall make use of these three formulas shortly hereafter.
By now, we introduced all the tools that we need for the

coming developments in Section III-B.

B. Stability Analysis

We start with a single task case to illustrate our method in
a simple setting, we then generalize the approach to multiple
tasks. Note that some of the notations that will be used
throughout the rest of the paper are introduced inside the
proofs of this section.

Proposition 3. Suppose nk = n. The system:

q̈ = argmin ||τ̈k − τ̈dk ||2 , (48)
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has an equilibrium if and only if there exists q0 such that
gk(q0) = τ rk and, in that case, if Jk(q0) is nonsingular then
the equilibrium is exponentially stable in the state-space of
(q, q̇). More generally, the system:

q̈ = argmin ||η̇k −Akηk||2 , (49)

where Ak is stable, has an equilibrium if and only if there
exists q0 such that gk(q0) = τ rk and, in that case, if Jk(q0)
is nonsingular then the equilibrium is exponentially stable in
the state space of (q, q̇).

Proof. Let us denote ξ = (q, q̇) the state of the system (49).
The variable ξ is related to ηk through the nonlinear “forward
kinematics” mapping

γk : ξ 7→ ηk = γk(ξ) =

(
gk(q)− τ rk
Jk(q)q̇

)
. (50)

Let Jk(ξ) denote the Jacobian matrix of that mapping at ξ.
From (50) it appears that Jk(ξ) is related to Jk(q) through
the following relation:

Jk(ξ) =

(
Jk(q) 0
∂[J(q)q̇]
∂q Jk(q)

)
. (51)

From Proposition 1, the system (49) is equivalent to

η̇k = Akηk , (52)

which has an equilibrium if and only if there exists q0 such
that ηk = 0, i.e. such that gk(q0) = τ rk . In terms of ξ, (52)
translates into the nonlinear descriptor system

Jk(ξ)ξ̇ = Akγk(ξ) . (53)

Let ξ0 = (q0, 0). Since n = nk and Jk(q0) is nonsingular, we
can see from (51) that Jk(ξ0) is a square 2n×2n lower block
triangular matrix with rank rankJk(ξ0) = rank Jk(q0) +
rank Jk(q0) = 2n, therefore Jk(ξ0) is also nonsingular.
Supposing now that the forward kinematics mapping is con-
tinuously differentiable, then the mapping J : ξ 7→ Jk(ξ)
is continuous, and as such the inverse image of any open
set of R2n×2n under J is open. Since the GL2n(R) group
is an open subset of R2n×2n, J−1

(
GL2n(R)

)
is an open

set containing ξ0, therefore there exists a neighborhood V
of ξ0 included in J−1

(
GL2n(R)

)
. Finally, for any ξ ∈ V ,

Jk(ξ) = J(ξ) ∈ GL2n(R), and hence, in that neighborhood
V , the descriptor system (53) takes the form of the nonlinear
dynamical system:

ξ̇ = Jk(ξ)−1Akγk(ξ) , (54)

or, denoting φk the mapping φk : ξ 7→ Jk(ξ)−1Akγk(ξ),

ξ̇ = φk(ξ) . (55)

Before calculating the Jacobian of φk at ξ0 in order to apply
Theorem 8, we introduce the following matrix:

Γk = DJk(ξ) =
∂ vecJk
∂ξ

. (56)

We have (we drop the dependencies on ξ when there is no
ambiguity):

dφk = d[Jk(ξ)−1Akγk(ξ)] , (57)
= dJk(ξ)−1Akγk + J−1k Akdγk(ξ) . (58)

Then

dJk(ξ)−1Akγk = vec
[
dJk(ξ)−1Akγk

]
, (59)

=
(
γTk A

T
k ⊗ I2nk

)
vec dJk(ξ)−1 ,(60)

and by (42)

vec dJk(ξ)−1 = vec
[
−J−1k dJk(ξ)J−1k

]
, (61)

= −
(
J−Tk ⊗ J−1k

)
vec dJk(ξ) , (62)

= −
(
J−Tk ⊗ J−1k

)
Γkdξ . (63)

We also have
dγk(ξ) = Jkdξ. (64)

Plugging (60), (63) and (64) into (58) yields

dφk =
[
−
(
γTk A

T
k ⊗ I2nk

) (
J−Tk ⊗ J−1k

)
Γk

+ J−1k AkJk
]
dξ , (65)

and, therefore, we get the expression of the Jacobian of φk:

∂φk
∂ξ

= −
(
γTk A

T
k ⊗ I2nk

) (
J−Tk ⊗ J−1k

)
Γk + J−1k AkJk .

(66)
At ξ0 we have γk(ξ0) = 0, and (66) simplifies into

∂φk
∂ξ

∣∣∣∣
ξ0

= Jk(ξ0)−1AkJk(ξ0) , (67)

which has the same eigenvalues as Ak. From Theorems 9
and 10 we conclude that (55) is exponentially stable.

In the multi-task case we also propose to analytically
linearize the system in the (q, q̇) state space. We will always
suppose in the following that at least one of the tasks k0 is
a full-configuration task τk0(q) = q, no matter how infinites-
imally small its weight wk0 is, as long as it remains positive
wk0 > 0. This is a non-restrictive assumption following the
analysis in Section II-B.

Lemma 3. If one of the tasks is a full-configuration task then
for all ξ the matrix

B(ξ) =

p∑
k=1

wkJk(ξ)TJk(ξ) , (68)

is nonsingular.

Proof. B(ξ) is clearly a symmetric positive matrix. Since one
of the tasks τk0 is a full-configuration task τk0(q) = q, we
have Jk0(q) = In and from (51) Jk0(ξ) = I2n, therefore

B(ξ) = wk0I2n +

p∑
k=1
k 6=k0

wkJk(ξ)TJk(ξ) . (69)

Since wk0 > 0, B(ξ) is positive definite and thus nonsingular.
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Proposition 4. The system

ξ̇ = argmin

p∑
k=1

wk||η̇k −Akηk||2 , (70)

has an equilibrium if and only if there exists ξ0 such that

p∑
k=1

wkJk(ξ0)TAkγk(ξ0) = 0 . (71)

In that case, the equilibrium is exponentially stable if and only
if the matrix

B−1
p∑
k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk2nΓk +J Tk AkJk

)
, (72)

evaluated at ξ0 is stable.

Proof. The first order optimality condition for (70) is:

∂

∂ξ̇

[
p∑
k=1

wk||η̇k −Akηk||2
]

= 0 , (73)

⇔
p∑
k=1

2wkJ Tk (η̇k −Akηk) = 0 , (74)

⇔

[
p∑
k=1

wkJ Tk Jk

]
ξ̇ =

p∑
k=1

wkJ Tk Akηk . (75)

B(ξ) being nonsingular from Lemma 3, (75) takes the form
of the nonlinear system:

ξ̇ = B(ξ)−1
p∑
k=1

wkJk(ξ)TAkγk(ξ) , (76)

which admits an equilibrium if and only if there exists ξ0 such
that:

p∑
k=1

wkJk(ξ0)TAkγk(ξ0) = 0 . (77)

Let us linearize (76) around such an equilibrium. To do
this we calculate the Jacobian of the mapping ψ : ξ 7→
B(ξ)−1

∑p
k=1 wkJk(ξ)TAkγk(ξ) using the differential-based

treatment introduced in Section III-A. We have (dropping
again the dependencies on ξ when appropriate):

dψ = dB(ξ)−1
p∑
k=1

wkJ Tk Akγk

+B−1
p∑
k=1

wk
[
dJk(ξ)TAkγk + J Tk Akdγk(ξ)

]
. (78)

Let us calculate each term of the right-hand side of (78)
separately. To shorten the expressions let C denote the vector
C(ξ) =

∑p
k=1 wkJk(ξ)TAkγk(ξ). We have, by (42),

dB(ξ)−1C = −B−1dB(ξ)B−1C , (79)
= vec

[
−B−1dB(ξ)B−1C

]
, (80)

= −
(
CTB−T ⊗B−1

)
vec dB(ξ) , (81)

where

vec dB(ξ) = d vecB(ξ) , (82)

=

p∑
k=1

wkd vecJk(ξ)TJk(ξ) , (83)

and by (44)

d vecJ Tk Jk =
(
I4n2

k
+K2nk2nk

)
(Jk ⊗ I2nk

) d vecJk ,
(84)

with
d vecJk(ξ) = Γkdξ . (85)

This gives us the first term in (78) as

dB(ξ)−1C = −
(
CTB−T ⊗B−1

) p∑
k=1

wk

(
I4n2

k

+K2nk2nk

)
(Jk ⊗ I2nk

) Γkdξ . (86)

As for the other two terms we write, applying (43) for (89):

dJk(ξ)TAkγk = vec
[
dJk(ξ)TAkγk

]
, (87)

=
(
γTk A

T
k ⊗ I2nk

)
vec dJk(ξ)T , (88)

=
(
γTk A

T
k ⊗ I2nk

)
K2nk2n vec dJk(ξ) , (89)

=
(
γTk A

T
k ⊗ I2nk

)
K2nk2nΓkdξ , (90)

and finally the last term

J Tk Akdγk(ξ) = J Tk AkJkdξ . (91)

Plugging (86), (90) and (91) into (78) gives us

dψ =[
−
(
CTB−T ⊗B−1

) p∑
k=1

wk

(
I4n2

k
+K2nk2nk

)
(Jk ⊗ I2nk

) Γk

+B−1
p∑
k=1

wk

((
γTk A

T
k⊗I2nk

)
K2nk2nΓk+J Tk AkJk

)]
dξ ,

(92)

from which we get the desired analytic expression of the
Jacobian of the mapping ψ:

∂ψ

∂ξ
=

−
(
CTB−T ⊗B−1

) p∑
k=1

wk

(
I4n2

k
+K2nk2nk

)
(Jk ⊗ I2nk

) Γk

+B−1
p∑
k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk2nΓk + J Tk AkJk

)
.

(93)

At the equilibrium ξ0 we have from (77) C(ξ0) = 0,
hence (93) simplifies into

∂ψ

∂ξ

∣∣∣∣
ξ0

= B−1
p∑
k=1

wk

((
γTk A

T
k⊗I2nk

)
K2nk2nΓk+J Tk AkJk

)
.

(94)
Thus, the equilibrium ξ0 is exponentially stable if and only if
this latter matrix is stable.
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Corollary 4. If the tasks τk are ultimately realizable simul-
taneously, i.e. if there exists ξ0 such that ∀k ∈ {1, . . . , p}
γk(ξ0) = 0, then ξ0 is an equilibrium of (70). In that case,
a sufficient condition for ξ0 to be exponentially stable is that
the matrices Ak +ATk are negative definite.

Proof. If ∀k ∈ {1, . . . , p} γk(ξ0) = 0 then (71) holds, and by
Proposition 4, ξ0 is an equilibrium point of (70). Moreover,
in that case, (72) simplifies into[

p∑
k=1

wkJ Tk Jk

]−1 p∑
k=1

wkJ Tk AkJk = B−1A , (95)

where we denoted

A =

p∑
k=1

wkJ Tk AkJk . (96)

If we additionally suppose that Ak + ATk are negative
definite, then A+AT is also negative definite since

A+AT = wk0
(
Ak0 +ATk0

)
+

p∑
k=1
k 6=k0

wkJ Tk
(
Ak +ATk

)
Jk ,

(97)
with wk0

(
Ak0 +ATk0

)
negative definite (since wk0 > 0) and

∀k 6= k0 wkJ Tk
(
Ak +ATk

)
Jk negative.

Furthermore, B being positive definite, B = B−1 is also
symmetric positive definite. Any matrix congruent to a nega-
tive definite matrix is also a negative definite matrix and hence
B
(
AT +A

)
BT is negative definite. And given that

B
(
AT +A

)
BT = B

(
AT +A

)
B , (B symmetric) , (98)

= BATB + BAB , (99)

= B (BA)
T

+ (BA)B , (100)

then the pair of positive definite matrices Q =
−B

(
AT +A

)
BT and P = B satisfy the Lyapunov equation

P(BA)T + (BA)P = −Q. Therefore, BA = B−1A is
stable. By Proposition 4 we conclude that ξ0 is exponentially
stable.

We conclude this section on analytical stability analysis
of the multiobjective optimization-based multi-task controls
scheme and continue with the humanoid control case-study.

IV. APPLICATION TO HUMANOID MULTI-TASK CONTROL

In this section we determine the nature of the control
decision variable x and characterize the constraint set X in
the humanoid control application case. We also cast the prob-
lem (23) as a linearly constrained QP inspired by approaches
in the literature [41]–[44] and show some of its stability
properties.

A. Physical and Mathematical Constraints

Constraints of the humanoid robot motion include its equa-
tion of motion, the non-slipping contact constraints (e.g.
at the feet surfaces), the corresponding Couloumb friction

constraints, and various bounds on the applicable torques, ad-
missible ranges of joint angles, joint velocities, and collision-
avoidance.

The equation of motion of a humanoid robot in a given
contact phase is usually written:

M(q)q̈ +N(q, q̇) = Su+ Jc(q)Tλ , (101)

Jc(q)q̈ + J̇c(q)q̇ = 0 . (102)

In direct comparison with the standard industrial manipulator’s
EOM:

M(q)q̈ +N(q, q̇) = u , (103)

the humanoid system is characterized as being
1) underactuated: with a non-actuated free-floating base

expressed in the fact the matrix S mapping the actuation
to the DoFs is not square and in particular noninvertible ,

2) constrained: from the non-slipping contact constraint
equation (102) and the corresponding Lagrange multipli-
ers λ in (101) ,

3) redundant: the number of DoFs of the robot is in general
strictly greater than the number of DoFs of an individual
task, which allow for multi-task control.

One additional constraint however has to be appended to the
system (101)-(102) and yet is often omitted in many existing
treatments of the problem, that is the Coulomb friction cone
constraint which gives rise to the following system:

M(q)q̈ +N(q, q̇) = Su+ Jc(q)Tλ , (104)

Jc(q)q̈ + J̇c(q)q̇ = 0 , (105)
λ ∈ C , (106)

C denoting a “Coulomb friction cone”. We have used the latter
quotation marks, to draw one’s attention regarding the choice
of the particular formulation of the constraint (105) which
cannot be derived from any arbitrary holonomic constraint
h(q) = 0 that expresses the fixation of the contact (with
∂h
∂q = Jc) . For example, for any such constraint h(q) = 0,
the constraint ||h(q)||2 = 0 would mathematically express the
exact same constraint but would result in a different Jacobian
and thus in Lagrange multipliers that would not satisfy the
same mathematical relations.

In order for the constraint (106) to physically make sense,
λ has to be the actual physical contact forces, not arbitrary
constraint forces. For a point contact at a point a belonging to
a planar surface S of the robot with normal νS, the physical
contact force λ is associated with the constraint Jaq̇ = 0
where Ja is the Jacobian such that ȧ = Jaq̇. In that case the
Coulomb friction cone takes the following form:

CS =
{
λ ∈ R3 | 〈λ, νS〉 > 0 , ||λ− 〈λ, νS〉νS|| ≤ µ〈λ, νS〉

}
.

(107)
For distributed surface contact on a surface S we would have
a continuum of forces and likewise constraints in a system of
the form:

M(q)q̈ +N(q, q̇) = Su+

∫∫
a∈S

Ja(q)Tλ(a)dS(a) , (108)

∀a ∈ S Ja(q)q̈ + J̇a(q)q̇ = 0 , (109)
∀a ∈ S λ(a) ∈ CS , (110)
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This system can however be simplified according to the
following theorem

Theorem 16. If S is a convex polygon

S =

{
s∑
i=1

αiai |
s∑
i=1

αi = 1

}
, (111)

then we have the following equivalence

∀F ∈ Rn :

∃λ : S→ CS s.t. F =

∫∫
a∈S

Ja(q)Tλ(a)dS(a)

⇔

∃(λ1, . . . , λs) ∈ [CS]
s s.t. F =

s∑
i=1

Jai(q)Tλi . (112)

Proof. See e.g. [45, Proposition 1].

Additionally, if we stay under the conditions of Theorem 16,
it is clear that

(109)⇔ ∀i ∈ {1, . . . , s} Jai(q)q̈ + J̇ai(q)q̇ = 0 , (113)

⇔ JS(q)q̈ + J̇Sq̇ = 0 , (114)

where JS denotes the rotational and translational Jacobian of
any frame rigidly attached to S. This latter remark together
with Theorem 16 allows us to rewrite the continuum system
of equations (108) to (110) in the following equivalent finite
system form:

M(q)q̈ +N(q, q̇) = Su+

s∑
i=1

Jai(q)Tλi , (115)

JS(q)q̈ + J̇Sq̇ = 0 (116)
∀i ∈ {1, . . . , s} λi ∈ CS . (117)

B. Structural Constraints

We write here the structural constraints using the weak com-
ponentwise order notation for vector inequalities as follows

umin 5 u 5 umax , (118)
qmin 5 q 5 qmax , (119)
q̇min 5 q̇ 5 q̇max , (120)

and the collision avoidance between two bodies based on a
velocity damper formulation

ḋ ≥ −κ d− δs
δi − δs

, (121)

where d denotes the distance between the two bodies and δi,
δs, κ, respectively, an influence distance, a security distance,
and a damping constant (see [46], [47] for details on this
particular formulation).

C. Casting the problem as a QP

In order to cast the problem as a QP we conservatively
approximate the friction cone CS with an inscribed polyhedral
cone ĈS [48]. Let C denote the matrix of the set of the
polyhedral cone generators’ coordinates in the world frame,
and let c denote the number of generators, C ∈ R3×c, then
we have λ ∈ ĈS if and only if ∃λ̂ ∈ Rc≥ s.t. λ = Cλ̂. The
system (115) to (117) becomes:

M(q)q̈ +N(q, q̇) = Su+

s∑
i=1

Jai(q)TCλ̂i , (122)

JS(q)q̈ + J̇Sq̇ = 0 , (123)

∀i ∈ {1, . . . , s} 0 5 λ̂i . (124)

We also rewrite the constraints (118) to (121) respectively as
follows:

umin 5 u 5 umax , (125)
q̇min − q̇

∆t
5 q̈ 5

q̇max − q̇
∆t

, (126)

qmin − q − q̇∆t
1
2∆t2

5 q̈ 5
qmax − q − q̇∆t

1
2∆t2

, (127)

d̈ ≥ 1

∆t

(
−ξ d− δs

δi − δs
− ḋ
)
. (128)

where ∆t is a fixed parameter (e.g. control time-step). Finally
we enforce the compactness of the feasible set by setting an
arbitrarily large bound on λ̂

λ̂ 5 λ̂max . (129)

It can now be seen that setting the control decision variable as
x = (q̈, u, λ̂) ∈ R2n−6+s·c, the set of equations and inequal-
ities (122) to (129) defining the feasible set X ⊂ R2n−6+s·c

are linear in x, i.e. X is a an intersection of closed halfspaces.
Let Hex = be denote the set of equations (122) and (123) and
Hix 5 bi denote the set of inequalities (124) to (129).

X =
{
x = (q̈, u, λ̂) ∈ R2n−6+s·c | (122) to (129)

}
, (130)

=
{
x ∈ R2n−6+s·c | Hex = be, Hix 5 bi

}
. (131)

Denoting the matrix

K(q) =
(
Ja1(q)TC · · · Jas(q)TC

)
∈ Rn×s·c , (132)

we have, in particular,

He =

(
M(q) K(q) S
JS(q) 0 0

)
. (133)

To the set of tasks τ1, . . . , τp, of which we recall that the
task τk0 is a full-configuration task τk0 = gk0(q) = q, we
append two additional components in the vector optimization
problem (18):

“ min
x∈X

”f(x) = (||τ̈1 − τ̈d1 ||2, . . . , ||τ̈p − τ̈dp ||2, ||u||2, ||λ̂||2) .

(134)
We show now that the conditions of Theorem 7 hold. We shall
invoke the following two theorems, reusing the notations of
Section II:
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Theorem 17. A sufficient condition for the Rp=-convexity of
Y = f(X ) is that X is convex and the functions f1, . . . , fp
are convex.

Proof. See e.g. [21, Proposition 2.1.22 p. 15].

Theorem 18. Let Y + denote the extended recession cone of
a set Y , defined as

Y + =
{
y′ | ∃(βk) ∈ RN, ∃(yk) ∈ Y N, βk > 0,

s.t. βk −−−−−→
k→+∞

0, βkyk −−−−−→
k→+∞

y′
}
. (135)

Let Y1 and Y2 be two nonempty closed sets. If

Y +
1 ∩ (−Y +

2 ) = {0} , (136)

then Y1 + Y2 is closed.

Proof. See e.g. [21, Lemma 3.2.3 p. 52].

We can now prove the following:

Proposition 5. if X is nonempty then the conditions of
Theorem 7 hold for the problem (134).

Proof. We recall that in finite dimension compactness is
equivalent to simultaneous closedness and boundedness.
Since X is closed as the intersection of a finite num-
ber of closed halfspaces, and X is bounded by the con-
straints (124), (125), (126), (129), X is compact. f in (134)
being continuous, Y = f(X ) is therefore compact, which
implies that it is closed and bounded.

The extended recession cone of a bounded set is {0}
by [21, Lemma 3.2.1 p. 52], thus Y+ = {0}, and hence
Y+ ∩ (−Rp+= ) = {0}. Since Y and Rp= are closed, by
Theorem 18 Y + Rp= is closed, i.e. Y is Rp=-closed.

Moreover, X is convex as the intersection of a finite number
of closed halfspaces which are convex sets, and the functions
f1, . . . , fp+2 in (134) are convex, then by Theorem 17 Y is
Rp=-convex.

With Proposition 5 we can now safely consider the
weighted-sum scalarization of (134) with strictly positive
weights 0 < w without sacrificing the completeness of all
the achievable task behaviours:

min
x∈X

p∑
k=1

wk||τ̈1 − τ̈dp ||2 + wp+1||u||2 + wp+2||λ̂||2 . (137)

Problem (137) is a quadratic program of the form:

min
x

xTQx+ lTx,

subject to Hex = be, Hix 5 bi ,
(138)

where, in particular:

Q =

∑p
k=1 wkJ

T
k Jk 0 0

0 wp+1In−6 0
0 0 wp+2Is·c

 . (139)

D. Stability of the QP

To conclude this section we study some stability properties
of the QP (138). Related work for a different control approach
can be found for example in [34]. We are interested in
the questions of existence, uniqueness and continuity of the
solution, as well as robustness to perturbations and modeling
uncertainties. We will take as a first assumption the nonempti-
ness of X (i.e. the feasibility of the problem) at a given initial
state ξ0. Other assumptions we will make is the full row rank
condition of the matrix He in (133), i.e. rankHe = n + 6,
and the regularity of the system

Hex = be, Hix 5 bi . (140)

Definition 7. The system of equations and inequalities (140)
is said to be regular if He has full row rank and there exists
x such that Hex = be and Hix < bi.

Lemma 4. Q is symmetric positive definite. Moreover, for any
perturbation resulting from the updating of the state (q, q̇) or
from uncertainty in the model, the perturbed matrix Q + δQ
remains positive definite.

Proof. Isolating the configuration task τk0 in (139) we get:

Q =

wk0In 0 0
0 wp+1In−6 0
0 0 wp+2Is·c


+

p∑
k=1
k 6=k0

wkJTk Jk 0 0
0 0 0
0 0 0

 . (141)

Since 0 < w, we have in particular wk0 , wp+1, wp+2 > 0 and
therefore Q is symmetric positive definite. The perturbations
of the state and the model would affect only Jk for k 6= k0
in the right-hand side of (141), with (Jk + δJk)T (Jk + δJk)
remaining positive, and therefore Q + δQ remains positive
definite.

Proposition 6. If X is nonempty then (138) reaches a mini-
mum at a unique point, i.e. the solution exists and is unique.

Proof. The set X being compact and the mapping F : x 7→
xTQx + lTx being continuous, from the extreme value the-
orem (138) has a minimum. F being strictly convex from Q
positive definite by Lemma 4, the minimizer is unique.

Proposition 7. A sufficient condition for the full row rank
condition of He is that rank

(
K(q) S

)
= n (i.e. the contact

forces completely make up for the underactuation).

Proof. Let L(q) =
(
K(q) S

)
. We have

n+ 6 ≥ rankHe = rank

(
M(q) L(q)
JS(q) 0

)
, (142)

≥ rankL(q) + rank JS(q) , (143)
= rankL(q) + 6 . (144)

Therefore rankHe = n+ 6 if rankL(q) = n.

Proposition 8. Let x0 denote the solution of (138) at an
initial point ξ0. If the system (140) is regular, then there exists
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ε1 > 0 and K1 > 0 such that, for any update of the state ξ
or modelling error (in particular, in M(q), N(q, q̇), and the
various Jacobians of the robot) the perturbed system

(He + δHe)x = be + δbe, (Hi + δHi)x 5 bi + δbi , (145)

remains solvable and regular for those perturbations
(δHe, δHi, δbe, δbi) such that∣∣∣∣∣∣∣∣(δHe

δHi

)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣(δbeδbi
)∣∣∣∣∣∣∣∣ ≤ ε1 , (146)

and, denoting x any solution of (145) with δx = x − x0, we
have

||δx|| ≤

K1

(∣∣∣∣∣∣∣∣(δHe

δHi

)∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣(δbeδbi
)∣∣∣∣∣∣∣∣)max{1, ||x0||}(1 + ||x0||) .

(147)

Proof. This is a direct application of [49, Corollary 7] since
the conditions of the latter Corollary are all satisfied in the
present case. [49, Corollary 7] is itself a direct consequence
of the original work of Robinson [50, Theorem 1]. See also
the discussion in [51] and in [52].

Proposition 9. Let p = (δQ, δl, δHe, δHi, δbe, δbi) denote a
perturbation of the QP (138). We suppose that He and He +
δHe are both full row rank and that the system (140) is regular
at the initial state ξ0. Then there exists ε2 > 0 and K2 > 0
such that the solution x∗ = x0 + δx of the perturbed QP

min
x

xT (Q+ δQ)x+ (l + δl)Tx,

subject to (He + δHe)x = be + δbe, (Hi + δHi)x 5 bi + δbi ,
(148)

exists and is unique and satisfies, whenever ||p||∞ < ε2

||x∗ − x0|| < K2||p||∞ . (149)

Proof. Our aim here is to apply [53, Theorem 4.4]. We thus
shall show that the hypotheses [53, Equations (3.1) to (3.4)]
hold. First, we know that the conditions of Proposition 8 hold,
thus the first conclusion we can draw from that Proposition
is that there exists ε1 > 0 such that the system (145)
is regular and solvable whenever (146) hold. Hence both
feasible sets of (138) and (148) are nonempty under (146),
which constitutes the first of the needed hypotheses. The
other hypotheses are already satisfied by our assumptions and
therefore we can apply [53, Theorem 4.4], from which we
deduce that, under (146), there exist ε′1 > 0 and K2 such that
if ||p||∞ < ε′1 and x′ is any solution that minimizes (148) we
have ||x0 − x′|| < ||p||∞. From Lemma 4 Q+ δQ is positive
definite and thus x′ is unique and we denote it x∗. Take now

ε2 = min
{ε1

4
, ε′1

}
. (150)

We have

||p||∞ < ε2 ⇒ (146) and ||p||∞ < ε′1 . (151)

We finally conclude that if ||p||∞ < ε2 then ||x∗ − x0|| <
K2||p||∞.

Corollary 5. In the context and with the notations of Proposi-
tion 9 the mapping p 7→ x∗ is well defined on a neighborhood
of 0 and continuous at 0.

Proof. Immediate from Proposition 9.

V. CONCLUSION

We have demonstrated that the essence of the multi-task
control problem can be effectively captured by the multi-
objective optimization formal framework. We discussed the
pertinence of scalarizing the vector optimization problem
as a weighted sum with positive weights and proved that
the positive-weight scalarization does indeed satisfy a com-
pleteness property with respect to all the efficient solutions,
the popular lexicographic solution being one of them. We
studied the Lyapunov stability of the feedback system resulting
from such a weighted-sum scalarization scheme and proposed
some necessary and/or sufficient conditions for the exponential
stability of the equilibrium points of the systems. Finally
we applied the study to the particular case of the humanoid
robot. We demonstrated that in that case the positive weighted-
sum scalarization leads to a linearly-constrained positive def-
inite quadratic problem that is stable and well-behaved under
the stated regularity conditions. Future work is dedicated to
translating some of the non-constructive pure existence proofs
of this paper, proposed essentially as theoretical foundation
layers, into practical weight tuning algorithms, which still
constitutes an open problem and an active research topic.
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