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An explicit formula for the intersection

of two polynomials of regular languages

Jean-Éric Pin1⋆

LIAFA, University Paris-Diderot and CNRS, France.

Abstract. Let L be a set of regular languages of A∗. An L-polynomial
is a finite union of products of the form L0a1L1 · · · anLn, where each ai is
a letter of A and each Li is a language of L. We give an explicit formula
for computing the intersection of two L-polynomials. Contrary to Arfi’s
formula (1991) for the same purpose, our formula does not use comple-
mentation and only requires union, intersection and quotients. Our result
also implies that if L is closed under union, intersection and quotient,
then its polynomial closure, its unambiguous polynomial closure and its
left [right] deterministic polynomial closure are closed under the same
operations.

1 Introduction

Let L be a set of regular languages of A∗. An L-polynomial is a finite union of
products of the form L0a1L1 · · ·anLn, where each ai is a letter of A and each Li

is a language of L. The polynomial closure of L, denoted by Pol(L), is the set of
all L-polynomials.

It was proved by Arfi [1] that if L is closed under Boolean operations and
quotient, then Pol(L) is closed under intersection. This result was obtained by
giving an explicit formula for computing the intersection of two polynomials of
regular languages.

It follows from the main theorem of [6] that Arfi’s result can be extended to
the case where L is only closed under union, intersection and quotient. However,
this stronger statement is obtained as a consequence of a sophisticated result
involving profinite equations and it is natural to ask for a more elementary
proof.

The objective of this paper is to give a new explicit formula for computing
the intersection of two L-polynomials. Contrary to the formula given in [1], our
formula only requires using union, intersection and quotients of languages of L.
Our proof is mainly combinatorial, but relies heavily on the notion of syntactic
ordered monoid, a notion first introduced by Schützenberger [14] (see also [10]).
The main difficulty lies in finding appropriate notation to state the formula, but
then its proof is merely a verification.

Our result also leads to the following result, that appears to be new: if L is
closed under union, intersection and quotient, then its unambiguous polynomial
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closure and its left [right] deterministic polynomial closure are closed under the
same operations.

Let us mention also that our algorithm can be readily extended to the setting
of infinite words by using syntactic ordered ω-semigroups [8].

2 Background and notation

2.1 Syntactic order

The syntactic congruence of a language L of A∗ is the congruence on A∗ defined
by u ∼L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇐⇒ xvy ∈ L

The monoidM = A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M is called the syntactic morphism of L. It is a well-known fact that
a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder1 of a language L is the relation 6L over A∗ defined
by u 6L v if and only if, for every x, y ∈ A∗, xuy ∈ L implies xvy ∈ L.
The associated equivalence relation is the syntactic congruence ∼L. Further, 6L

induces a partial order on the syntactic monoid M of L. This partial order 6 is
compatible with the product and can also be defined directly on M as follows:
given s, t ∈ M , one has s 6 t if and only if, for all x, y ∈ M , xsy ∈ η(L) implies
xty ∈ η(L). The ordered monoid (M,6) is called the syntactic ordered monoid

of L.

Let us remind an elementary but useful fact: if v ∈ L and η(u) 6 η(v), then
u ∈ L. This follows immediately form the definition of the syntactic order by
taking x = y = 1.

2.2 Quotients

Recall that if L is a language of A∗ and x is a word, the left quotient of L by x is
the language x−1L = {z ∈ A∗ | xz ∈ L}. The right quotient Ly−1 is defined in a
symmetrical way. Right and left quotients commute, and thus x−1Ly−1 denotes
either x−1(Ly−1) or (x−1L)y−1. For each word v, let us set

[L]↑v = {u ∈ A∗ | η(v) 6 η(u)}

[L]=v = {u ∈ A∗ | η(u) = η(v)}

1 In earlier papers [6,10,13], I used the opposite preorder, but it seems preferable to
go back to Schützenberger’s original definition.
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Proposition 2.1. The following formulas hold:

[L]↑v =
⋂

{(x,y)∈A∗×A∗| v∈x−1Ly−1}

x−1Ly−1 (1)

[L]=v = [L]↑v −
⋃

η(v)<η(u)

[L]↑u (2)

[L]↑v =
⋃

η(v)6η(u)

[L]=u (3)

Proof. A word u belongs to the right hand side of (1) if and only if the condition
v ∈ x−1Ly−1 implies u ∈ x−1Ly−1, which is equivalent to stating that v 6L u,
or η(v) 6 η(u), or yet u ∈ [L]↑v. This proves (1). Formulas (2) and (3) are
obvious.

Let us make precise a few critical points. First, v always belongs to [L]↑v.
This is the case even if v cannot be completed into a word of L, that is, if v does
not belong to any quotient x−1Ly−1. In this case, the intersection on the right
hand side of (1) is indexed by the empty set and is therefore equal to A∗.

Secondly, the intersection occurring on the right hand side of (1) and the
union occurring on the right hand side of (2) are potentially infinite, but they
are finite if L is a regular language, since a regular language has only finitely
many quotients.

3 Infiltration product and infiltration maps

The definition below is a special case of a more general definition given in [7].
A word c1 · · · cr belongs to the infiltration product of two words a1 · · ·ap and
v = b1 · · · bq, if there are two order preserving maps α : {1, . . . , p} → {1, . . . , r}
and β : {1, . . . , q} → {1, . . . , r} such that

(1) for each i ∈ {1, . . . , p}, ai = cα(i),

(2) for each i ∈ {1, . . . , q}, bi = cβ(i),

(3) the union of the ranges of α and β is {1, . . . , r}.

For instance, the set {ab, aab, abb, aabb, abab} is the infiltration product of ab
and ab and the set {aba, bab, abab, abba, baab, baba} is the infiltration product of
ab and ba.

A pair of maps (α, β) satisfying Conditions (1)–(3) is called a pair of infil-

tration maps. Note that these conditions imply that p+ q 6 r.

In the example pictured in Figure 1, one has p = 4, q = 2 and r = 5. The
infiltration maps α and β are given by α(1) = 1, α(2) = 2, α(3) = 3, α(4) = 4
and β(1) = 3, β(2) = 5.
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a1 a2 a3 a4

b1 b2

c1 c2 c3 c4 c5

α :

β :

Fig. 1. A pair of infiltration maps.

In order to state our main theorem in a precise way, we need to handle the
intervals of the form {α(i)+1, . . . , α(i+1)−1}, but also the two extremal intervals
{1, . . . , α(1)− 1} and {α(p)+1, . . . , r}. As a means to get a uniform notation, it
is convenient to extend α and β to mappings α : {0, . . . , p+ 1} → {0, . . . , r+ 1}
and β : {0, . . . , q+1} → {0, . . . , r+1} by setting α(0) = β(0) = 0 and α(p+1) =
β(q+1) = r+1. The two extremal intervals are now of the standard form {α(i)+
1, . . . , α(i+1)−1}, with i = 0 and i = p, respectively. Further, we introduce the
two maps ᾱ : {0, . . . , r} → {0, . . . , p} and β̄ : {0, . . . , r} → {0, . . . , q} defined by

ᾱ(i) = max{k | α(k) 6 i} and β̄(i) = max{k | β(k) 6 i}.

For instance, one gets for our example:

ᾱ(0) = 0 ᾱ(1) = 1 ᾱ(2) = 2 ᾱ(3) = 3 ᾱ(4) = 4 ᾱ(5) = 4

β̄(0) = 0 β̄(1) = 0 β̄(2) = 0 β̄(3) = 1 β̄(4) = 1 β̄(5) = 2

These two functions are conveniently represented in Figure 2

0 1 2

3

0 1 2 3 4

0

1

2

4

5

ᾱ

β̄

Fig. 2. Graphs of ᾱ and β̄ : for instance, ᾱ(3) = 3 and β̄(3) = 1.
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The next lemmas summarize the connections between α and ᾱ. Of course, similar
properties hold for β and β̄.

Lemma 3.1. The following properties hold:

(1) ᾱ(α(k)) = k, for 0 6 k 6 p.

(2) ᾱ(s+ 1) 6 ᾱ(s) + 1, for 0 6 s 6 r − 1.

(3) k 6 ᾱ(s) if and only if α(k) 6 s, for 0 6 k 6 p and 0 6 s 6 r.

(4) k > ᾱ(s) if and only if α(k+1) > s+1, for 0 6 k 6 p−1 and 0 6 s 6 r−1.

Proof. These properties follow immediately from the definition of ᾱ.

Lemma 3.2. For 0 6 s 6 r − 1, the conditions ᾱ(s + 1) = ᾱ(s) + 1 and

α(ᾱ(s+ 1)) = s+ 1 are equivalent.

Proof. Put k = ᾱ(s) and suppose that ᾱ(s+ 1) = k+ 1. Since k+ 1 6 ᾱ(s+ 1),
Lemma 3.1 (3) shows that α(k + 1) 6 s + 1. Further, since k > ᾱ(s), Lemma
3.1 (4) shows that α(k + 1) > s + 1. Therefore α(k + 1) = s + 1 and finally
α(ᾱ(s+ 1)) = s+ 1.

Conversely, suppose that α(ᾱ(s + 1)) = s + 1. Putting ᾱ(s + 1) = k + 1,
one gets α(k + 1) = s+ 1 and Lemma 3.1 (4) shows that k > ᾱ(s). By Lemma
3.1 (2), one gets ᾱ(s + 1) 6 ᾱ(s) + 1 and hence k 6 ᾱ(s). Thus ᾱ(s) = k and
ᾱ(s+ 1) = ᾱ(s) + 1.

Let us denote by Pα(s) the property ᾱ(s+ 1) = ᾱ(s) + 1.

Lemma 3.3. For 0 6 s 6 r − 1, one of Pα(s) or Pβ(s) holds.

Proof. Since the union of the ranges of α and β is {1, . . . , r}, there is an integer
k > 0 such that either α(k+1) = s+1 or β(k+1) = s+1. In the first case, one
gets ᾱ(s + 1) = ᾱ(α(k + 1)) = k + 1 and Lemma 3.1 (3) shows that ᾱ(s) 6 k.
Since ᾱ(s+ 1) 6 ᾱ(s) + 1 by Lemma 3.1 (2), one also has k 6 ᾱ(s) and finally
ᾱ(s) = k, which proves Pα(s). In the latter case, one gets Pβ(s) by a similar
argument.

4 Main result

Let a1, . . . , ap, b1, . . . , bq be letters of A and let K0, . . . ,Kp, L0, . . . , Lq be lan-
guages of A∗. Let K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq.

A word of K∩L can be factorized as u0a1u1 · · ·apup, with u0 ∈ K0, . . . , up ∈
Kp and as v0b1v1 · · · bqvq, with v0 ∈ L0, . . . , vq ∈ Lq. These two factorizations
can be refined into a single factorization of the form z0c1z1 · · · crzr, where c1 · · · cr
belongs to the infiltration product of a1 · · · ap and b1 · · · bq.

For instance, for p = 4 and q = 2, one could have r = 5, with the relations
c1 = a1, c2 = a2, c3 = a3 = b1, c4 = a4 and c5 = b2, leading to the factorization
z0c1z1c2z2c3z3c4z4c5z5, as pictured in Figure 3.
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u0 a1 u1 a2 u2 a3 u3 a4 u4

v0 b1 v1 b2 v2

z0 c1 z1 c2 z2 c3 z3 c4 z4 c5 z5

Fig. 3. A word of K ∩ L and its factorizations.

The associated pair of infiltration maps (α, β) is given by

α(1) = 1 α(2) = 2 α(3) = 3 α(4) = 4

β(1) = 3 β(2) = 5

Two series of constraints will be imposed on the words zi:

z0 ∈ K0, z1 ∈ K1, z2 ∈ K2, z3 ∈ K3 and z4c5z5 ∈ K4,

z0c1z1c2z2 ∈ L0, z3c4z4 ∈ L1 and z5 ∈ L2.

We are now ready to state our main result. Let us denote by I(p, q) the set of pairs
of infiltration maps (α, β) with domain {1, . . . , p} and {1, . . . , q}, respectively.
Since r 6 p+ q, the set I(p, q) is finite.

Theorem 4.1. Let K = K0a1K1 · · ·apKp and L = L0b1L1 · · · bqLq be two prod-

ucts of languages. Then their intersection is given by the formulas

K ∩ L =
⋃

(α,β)∈I(p,q)

U(α, β) (4)

where

U(α, β) =
⋃

(z0,...,zr)∈C(α,β)

U0c1U1 · · · crUr (5)

and, for 0 6 i 6 r,

Ui = [Kᾱ(i)]↑zi ∩ [Lβ̄(i)]↑zi (6)

and C(α, β) is the set of (r + 1)-tuples (z0, . . . , zr) of words such that

(C1) for 0 6 k 6 p, zα(k)cα(k)+1zα(k)+1 · · · cα(k+1)−1zα(k+1)−1 ∈ Kk,

(C2) for 0 6 k 6 q, zβ(k)cβ(k)+1zβ(k)+1 · · · cβ(k+1)−1zβ(k+1)−1 ∈ Lk.

For instance, if (α, β) is the pair of infiltration maps of our example, one would
have

U(α, β) =
⋃

(z0,...,z5)∈C(α,β)

([K0]↑z0 ∩ [L0]↑z0)a1([K1]↑z1 ∩ [L0]↑z1)a2

([K2]↑z2 ∩ [L0]↑z2)b1([K3]↑z3 ∩ [L1]↑z3)a4([K4]↑z4 ∩ [L1]↑z4)b2([K4]↑z5 ∩ [L2]↑z5)
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and the conditions (C1) and (C2) would be

(C1) z0 ∈ K0, z1 ∈ K1, z2 ∈ K2, z3 ∈ K3, z4c5z5 ∈ K4,

(C2) z0c1z1c2z2 ∈ L0, z3c4z4 ∈ L1 and z5 ∈ L2.

Before proving the theorem, it is important to note that if the languages K0,
. . . , Kp, L0, . . . , Lq are regular, the union indexed by C(α, β) is actually a finite
union. Indeed, Proposition 2.1 shows that, if R is a regular language, there are
only finitely many languages of the form [R]z.

Proof. Let U be the right hand side of (4). We first prove that K ∩L is a subset
of U . Let z be a word of K∩L. Then z can be factorized as u0a1u1 · · ·apup, with
u0 ∈ K0, . . . , up ∈ Kp and as v0b1v1 · · · bqvq, with v0 ∈ L0, . . . , vq ∈ Lq. The
common refinement of these two factorizations leads to a factorization of the form
z0c1z1 · · · crzr, where each letter ck is either equal to some ai or to some bj or
both. This naturally defines a pair of infiltration maps α : {1, . . . , p} → {1, . . . , r}
and β : {1, . . . , q} → {1, . . . , r}. Conditions (C1) and (C2) just say that the
factorization z0c1z1 · · · crzr is a refinement of the two other ones. Now, since, for
0 6 i 6 r, the word zi belongs to [Kᾱ(i)]↑zi ∩ [Lβ̄(i)]↑zi , the word z belongs to
U . Thus K ∩ L ⊆ U .

We now prove the opposite inclusion. Let r 6 p + q be an integer, let α :
{1, . . . , p} → {1, . . . , r} and β : {1, . . . , q} → {1, . . . , r} be two infiltration maps
and let (z0, . . . , zr) ∈ C(α, β) and c1, . . . , cr satisfying (C1) and (C2). It suffices
to prove that U0c1U1 · · · crUr is a subset of K ∩ L. We need a stronger version
of (C1) and (C2).

Lemma 4.2. The following relations hold:

(C3) for 0 6 k 6 p, Uα(k)cα(k)+1Uα(k)+1 · · · cα(k+1)−1Uα(k+1)−1 ⊆ Kk,

(C4) for 0 6 k 6 q, Uβ(k)cβ(k)+1Uβ(k)+1 · · · cβ(k+1)−1Uβ(k+1)−1 ⊆ Lk.

Coming back once again to our main example, these conditions would be

(C3) U0 ⊆ K0, U1 ⊆ K1, U2 ⊆ K2, U3 ⊆ K3, U4c4U5 ⊆ K4,

(C4) U0c1U2c2U2 ⊆ L0, U3c4U4 ⊆ L1, U5 ⊆ L5.

Proof. Let ηk be the syntactic morphism of Kk. To simplify notation, let us set
i = α(k) + 1 and j = α(k + 1)− 1. Since α(k) = i− 1 < i < · · · < j < α(k + 1),
one gets ᾱ(i − 1) = ᾱ(i) = . . . = ᾱ(j) = k. Let ui−1 ∈ Ui−1, ui ∈ Ui, . . . ,
uj ∈ Uj . Then ui−1 ∈ [Uk]↑zi−1

, ui ∈ [Uk]↑zi , . . . , uj ∈ [Uk]↑zj and by definition,
ηk(zi−1) 6 ηk(ui−1), ηk(zi) 6 ηk(ui), . . . , ηk(zj) 6 ηk(uj). Therefore we get

ηk(zi−1cizi · · · cjzj) = ηk(zi−1)ηk(ci)ηk(zi) · · · ηk(cj)ηk(zj)

6 ηk(ui−1)ηk(ci)ηk(ui) · · · ηk(cj)ηk(uj) = ηk(ui−1ciui · · · cjuj)

Now, since zi−1cizi · · · cjzj ∈ Kk by (C1), we also get ui−1ciui · · · cjuj ∈ Kk,
which proves (C3). The proof of (C4) is similar.

Now, since ᾱ and β̄ are surjective, Lemma 4.2 shows that U0c1U1 · · · crUr is a
subset of K ∩ L, which concludes the proof of the theorem.
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Example 4.3. Let K = b∗aA∗ba∗ and L = a∗bA∗ab∗. The algorithm described
in Theorem 4.1 gives for K ∩ L the expression aa∗bA∗ba∗a ∪ bb∗aA∗ba∗a ∪
aa∗bA∗ab∗b ∪ bb∗aA∗ab∗b ∪ aa∗ba∗a ∪ bb∗ab∗b.

Corollary 4.4. Let L be a lattice of regular languages closed under quotient.

Then its polynomial closure is also a lattice closed under quotient.

5 Some variants of the product

We consider in this section two variants of the product introduced by Schützenberger
in [15]: unambiguous and deterministic products. These products were also stud-
ied in [2,3,4,5,9,11,12,13].

5.1 Unambiguous product

The marked product L = L0a1L1 · · ·anLn of n nonempty languages L0, L1, . . . ,
Ln of A∗ is unambiguous if every word u of L admits a unique factorization
of the form u0a1u1 · · · anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln. We require
the languages Li to be nonempty to make sure that subfactorizations remain
unambiguous:

Proposition 5.1. Let L0a1L1 · · ·anLn be an unambiguous product and let i1,
. . . , ik be a sequence of integers satisfying 0 < i1 < . . . < ik < n. Finally,

let R0 = L0a1L1 · · · ai1−1Li1−1, R1 = Li1ai1+1L1 · · · ai2−1Li2−1, . . . , Rk =
Likaik+1Lik+1 · · ·anLn. Then the product R0ai1R1 · · · aikRk is unambiguous.

Proof. Trivial.

The unambiguous polynomial closure of a class of languages L of A∗ is the
set of languages that are finite unions of unambiguous products of the form
L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are elements of L. The
term closure actually requires a short justification.

Proposition 5.2. Any unambiguous product of unambiguous products is unam-

biguous.

Proof. Let

L0 = L0,0a1,0L1,0 · · · ak0,0Lk0,0

L1 = L0,1a1,1L1,1 · · · ak1,1Lk1,1

... (7)

Ln = L0,na1,nL1,n · · · akn,nLkn,n

be unambiguous products and let L = L0b1L1 · · · bnLn be an unambiguous prod-
uct. We claim that the product

L0,0a1,0L1,0 · · ·ak0,0Lk0,0b1L0,1a1,1L1,1 · · · bnL0,na1,nL1,n · · · akn,nLkn,n
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is unambiguous. Let u be a word of L with two factorizations

x0,0a1,0x1,0 · · · ak0,0xk0,0b1x0,1a1,1x1,1 · · · bnx0,na1,nx1,n · · · akn,nxkn,n

and

y0,0a1,0y1,0 · · · ak0,0yk0,0b1y0,1a1,1x1,1 · · · bny0,na1,ny1,n · · ·akn,nykn,n

with x0,0, y0,0 ∈ L0,0, . . . , xkn,n, ykn,n ∈ Lkn,n. Setting

x0 = x0,0a1,0x1,0 · · · ak0,0xk0,0 y0 = y0,0a1,0y1,0 · · · ak,0yk0,0

x1 = x0,1a1,1x1,1 · · · ak1,1xk1,1 y1 = y0,1a1,1y1,1 · · · ak1,1yk1,1

...
... (8)

xn = x0,na1,nx1,n · · ·akn,nxkn,n yn = y0,na1,ny1,n · · · akn,nykn,n

we get two factorizations of u: x0b1x1 · · · bnxn and y0b1y1 · · · bnyn. Since the
product L0b1L1 · · · anLn is unambiguous, we have x0 = y0, . . . , xn = yn. Each
of these words has now two factorizations given by (8) and since the products of
(7) are unambiguous, these factorizations are equal. This proves the claim and
the proposition.

We now consider the intersection of two unambiguous products.

Theorem 5.3. If the products K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq

are unambiguous, the products occurring in Formula (4) are all unambiguous.

Proof. Let (α, β) be a pair of infiltration maps, and let Ui = [Kᾱ(i)]↑zi∩[Lβ̄(i)]↑zi ,
for 0 6 i 6 r. We claim that the product U = U0c1U1 · · · crUr is unambiguous.
Let

u = u0c1u1 · · · crur = u′
0c1u

′
1 · · · cru

′
r (9)

be two factorizations of a word u of U such that, for 0 6 i 6 r, ui, u
′
i ∈ Ui. We

prove by induction on s that us = u′
s.

Case s = 0. By the properties of α and β, we may assume without loss of general-
ity that α(1) = 1, which implies that c1 = a1. It follows from (C3) that U0 ⊆ K0.
Now the product K0a1(K1a2K2 · · · apKp) is unambiguous by Proposition 5.1,
and by (C3), U1c2U2 · · · crUr is contained in K1a1K2 · · · apKp. Therefore, u ad-
mits the two factorizations u0a1(u1c2u2 · · · crur) and u′

0a1(u
′
1c2u

′
2 · · · cru

′
r) in

this product. Thus u0 = u′
0.

Induction step. Let s > 0 and suppose by induction that ui = u′
i for 0 6 i 6 s−1.

If s = r, then necessarily us = u′
s. If s < r, we may assume without loss of

generality that s is in the range of α. Thus α(k) = s for some k and cs = ak.
We now consider two cases separately.

If α(k + 1) = s + 1 (and cs+1 = ak+1), it follows from (C3) that u has two
factorizations

(u0c1u1 · · · cs−1us−1)akusak+1(us+1cs+1us+2 · · · crur) and

(u0c1u1 · · · cs−1us−1)aku
′
sak+1(u

′
s+1cs+1u

′
s+2 · · · cru

′
r)
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over the product (K0a1K1 · · · as−1Ks−1)akKsak+1(Ks+1ak+2Ks+2 · · · apKp). Since
this product is unambiguous by Proposition 5.1, we get us = u′

s.
If α(k+1) 6= s+1, then s+1 = β(t+1) for some t and cs+1 = bt+1. Setting

i = β(t), we get ci = bt and it follows from (C4) that u has two factorizations

(u0c1u1 · · · ci−1ui−1)bt(uici+1ui+1 · · · csus)bt+1(us+1cs+2us+2 · · · crur) and

(u0c1u1 · · · ci−1ui−1)bt(u
′
ici+1u

′
i+1 · · · csu

′
s)bt+1(u

′
s+1cs+2u

′
s+2 · · · cru

′
r)

over the product (L0b1L1 · · · bt−1Lt−1)btLtbt+1(Lt+1bt+1Lt+2 · · · bpLp). This prod-
uct is unambiguous by Proposition 5.1, and thus

uici+1ui+1 · · · csus = u′
ici+1u

′
i+1 · · · csu

′
s

Now the induction hypothesis gives ui = u′
i, . . . , us−1 = u′

s−1 and one finally
gets us = u′

s.

We state separately another interesting property.

Theorem 5.4. Let K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq be two un-

ambiguous products and let (α, β) and (α′, β′) be two pairs of infiltration maps

of I(p, q). If the sets U(α, β) and U(α′, β′) meet, then α = α′ and β = β′.

Proof. Suppose that a word u belongs to U(α, β) and to U(α′, β′). Then u has
two decompositions of the form

u = u0c1u1 · · · crur = u′
0c

′
1u

′
1 · · · c′r′u

′
r′

Condition (C1) [(C2)] and the unambiguity of the product K0a1K1 · · · apKp

[L0b1L1 · · · bqLq] show that, for 0 6 i 6 p and for 0 6 j 6 q,

uα(i)cα(i)+1uα(i)+1 · · · cα(i+1)−1uα(i+1)−1 =

u′
α′(i)c

′
α′(i)+1u

′
α′(i)+1 · · · cα′(i+1)−1uα′(i+1)−1 ∈ Ki

(10)

uβ(j)cβ(j)+1uβ(j)+1 · · · cβ(j+1)−1uβ(j+1)−1 =

u′
β′(j)c

′
β′(j)+1u

′
β′(j)+1 · · · cβ′(j+1)−1uβ′(j+1)−1 ∈ Lj

(11)

We prove by induction on s that, for 1 6 s 6 min(r, r′), the following properties
hold:

E1(s) : us−1 = u′
s−1 and cs = c′s,

E2(s) : ᾱ(s) = ᾱ′(s) and β̄(s) = β̄′(s),

E3(s) : for i 6 ᾱ(s), α(i) = α′(i) and for j 6 β̄(s), β(j) = β′(j).

Case s = 1. We know that either α(1) = 1 or β(1) = 1 and that either α′(1) = 1
or β′(1) = 1. Suppose that α(1) = 1. We claim that α′(1) = 1. Otherwise, one
has β′(1) = 1. Now, Formula (10) applied to i = 0 gives

u0 = u′
0c

′
1u

′
1 · · · cα′(1)−1u

′
α′(1)−1
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and Formula (11) applied to j = 0 gives

u0c1u1 · · · cβ(1)−1uβ(1)−1 = u′
0.

Therefore u0 = u′
0 and α′(1) = 1, which proves the claim. It follows also that

a1 = cα(1) = cα′(1) and thus c1 = c′1. We also have in this case ᾱ(1) = ᾱ′(1) = 1.
A similar argument shows that if α′(1) = 1, then α(1) = 1. Therefore, the
conditions α(1) = 1 and α′(1) = 1 are equivalent and it follows that ᾱ(1) = ᾱ′(1).
A dual argument would prove that the conditions β(1) = 1 and β′(1) = 1 are
equivalent and that β̄(1) = β̄′(1).

Induction step. Let s be such that 1 6 s+1 6 min(r, r′) and suppose by induction
that the properties E1(i), E2(i), E3(i) hold for 1 6 i 6 s.

Lemma 5.5. Suppose that Pα(s) holds and let k = ᾱ(s). Then

s 6 α′(k + 1)− 1 (12)

and

us = u′
sc

′
s+1u

′
s+1 · · · cα′(k+1)−1u

′
α′(k+1)−1 (13)

Proof. Applying (10) with i = k, we get

uα(k)cα(k)+1uα(k)+1 · · · csus =

u′
α′(k)c

′
α′(k)+1u

′
α′(k)+1 · · · cα′(k+1)−1u

′
α′(k+1)−1 (14)

Since ᾱ(s) = ᾱ′(s) by E2(s), one has ᾱ′(s) = k and α′(k + 1) > s + 1 by
Lemma 3.1, which gives (12). Further, since k = ᾱ(s), it follows from E3(s) that
α(k) = α′(k). Now, for i 6 s, E1(i) implies that ui−1 = u′

i−1 and ci = c′i. It
follows that the word uα(k)cα(k)+1uα(k)+1 · · · cs is a prefix of both sides of (14).
Therefore, this prefix can be deleted from both sides of (14), which gives (13).

We now establish E1(s+ 1).

Lemma 5.6. One has us = u′
s and cs+1 = c′s+1. Further, Pα(s) and Pα′(s) are

equivalent and Pβ(s) and Pβ′(s) are equivalent.

Proof. Let us prove that u′
s is a prefix of us. By Lemma 3.3, either Pα(s) or

Pβ(s) holds. Suppose that Pα(s) holds. Then by Lemma 5.5, u′
s is a prefix of us.

If Pβ(s) holds, we arrive to the same conclusion by using (11) in place of (10)
in the proof of Lemma 5.5.

Now, a symmetrical argument using the pair (ᾱ′, β̄′) would show that us is a
prefix of u′

s. Therefore, us = u′
s. Coming back to (13), we obtain α′(k+1) = s+1

and since by E2(s), k = ᾱ(s) = ᾱ′(s), one gets α′(ᾱ′(s) + 1) = s + 1, which,
by Lemma 3.2, is equivalent to Pα′(s). Thus Pα(s) implies Pα′(s) and a dual
argument would prove the opposite implication.

We also have cs+1 = cα(k+1) = ak+1 = c′α′(k+1) = c′s+1 and thus cs+1 = c′s+1.
Finally, a similar argument works for β.
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We now come to the proof of E2(s+1) and E3(s+1). Since Pα(s) and Pα′(s)
are equivalent, the next two lemma cover all cases.

Lemma 5.7. If neither Pα(s) nor Pα′(s) hold, then ᾱ(s + 1) = ᾱ′(s + 1) and

for i 6 ᾱ(s + 1), α(i) = α′(i). Similarly, if neither Pβ(s) nor Pβ′(s) hold, then

β̄(s+ 1) = β̄′(s+ 1) and for i 6 β̄(s+ 1), β(i) = β′(i).

Proof. We just prove the “α part” of the lemma. If neither Pα(s) nor Pα′(s)
hold, then ᾱ(s+ 1) = ᾱ(s) and ᾱ′(s + 1) = ᾱ′(s). Since ᾱ(s) = ᾱ′(s) by E2(s),
one gets ᾱ(s+1) = ᾱ′(s+1). The second property is an immediate consequence
of E3(s).

Lemma 5.8. If both Pα(s) and Pα′(s) hold, then ᾱ(s + 1) = ᾱ′(s + 1) and

for i 6 ᾱ(s + 1), α(i) = α′(i). Similarly, if both Pβ(s) and Pβ′(s) hold, then

β̄(s+ 1) = β̄′(s+ 1) and for i 6 β̄(s+ 1), β(i) = β′(i).

Proof. Again, we just prove the “α part” of the lemma. If both Pα(s) and Pα′(s)
hold, then ᾱ(s+ 1) = ᾱ(s) + 1 and ᾱ′(s+ 1) = ᾱ′(s) + 1. Since ᾱ(s) = ᾱ′(s) by
E2(s), one gets ᾱ(s + 1) = ᾱ′(s + 1). Property E3(s) shows that for i 6 ᾱ(s),
α(i) = α′(i). Since ᾱ(s+ 1) = ᾱ(s) + 1, it just remains to prove that

α(ᾱ(s+ 1)) = α′(ᾱ(s+ 1)) (15)

But Lemma 3.2 shows that α(ᾱ(s+1)) = s+1 and α′(ᾱ′(s+1)) = s+1, which
proves (15) since ᾱ(s+ 1) = ᾱ′(s+ 1).

This concludes the induction step and the proof of Theorem 5.4.

Corollary 5.9. Let L be a lattice of regular languages closed under quotient.

Then its unambiguous polynomial closure is also a lattice closed under quotient.

If L is a Boolean algebra, then one can be more precise.

Corollary 5.10. Let L be a Boolean algebra of regular languages closed under

quotient. Then its unambiguous polynomial closure is also a Boolean algebra

closed under quotient.

Let us conclude with an example which shows that, under the assumptions of
Theorem 5.4, the sets U(α, β) cannot be further decomposed as a disjoint union
of unambiguous products.
Let K = K0aK1 and L = L0aL1 with K0 = L1 = 1+ b+ c+ c2 and L0 = K1 =
a+ ab+ ba+ ac+ ca+ ac2 + bab+ cac+ cac2. Then

K ∩ L = aa+ aab+ aba+ aac+ aca+ aac2 + abab+ acac+ acac2 +

baa+ baab+ baba+ baac+ baac2 + babab+ caa+

caab+ caac+ caca+ caac2 + cacac+ cacac2

One can write for instance K ∩L as (1 + b+ c)aa(1 + b+ c+ c2) + (1 + b)a(1 +
b)a(1+b)+(1+c)a(1+c)a(1+c+c2) but the three components of this language
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are not disjoint, since they all contain aa. Note that the words acab, abac, baca
and caba are not in K ∩ L.

The syntactic ordered monoid of K0 and L1 has 4 elements {1, a, b, c} and
is presented by the relations a = ba = b2 = bc = ca = cb = 0 and c2 = b. Its
syntactic order is defined by a < b < c < 1.

The syntactic ordered monoid of L0 and K1 has 13 elements:

{1, a, b, c, a2, ab, ac, ba, ca, c2, ac2, bab, cac}

and is defined by the relations cac2 = bab and

b2 = bc = cb = a2 = aba = aca = bac = cab = c2a = c3 = 0.

The syntactic order is:

1a

b c

a2

abac baca

c2ac2

bab

cac

There is only one pair of infiltration maps (α, β) of I(1, 1) that defines a nonempty
set U(α, β). This pair is defined as follows: α(1) = 1 and β(1) = 2. The triples
(z0, z1, z2) of C(α, β) are exactly the triples of words such that z0az1az2 ∈ K∩L.
In particular, z0 ∈ {1, b, c}, z1 ∈ {1, b, c} and z2 ∈ {1, b, c, c2}. Now, one has

[K0]↑1 = 1 [K0]↑b = 1 + b+ c+ c2 [K0]↑c = 1 + c

[K1]↑1 = 1 [K1]↑b = 1 + b [K1]↑c = 1 + c [K1]↑c2 = 1 + c+ c2

[L0]↑1 = 1 [L0]↑b = 1 + b [L0]↑c = 1 + c

[L1]↑1 = 1 [L1]↑b = 1 + b+ c+ c2 [L1]↑c = 1 + c [L1]↑c2 = 1 + b+ c+ c2
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which gives the following possibilities for the triples (U0, U1, U2), for the following
triples z = (z0, z1, z2):

z = (1, 1, 1) U0 = 1 U1 = 1 U2 = 1

z = (b, b, b) U0 = 1 + b U1 = 1 + b U2 = 1 + b

z = (c, c, c) U0 = 1 + c U1 = 1 + c U2 = 1 + c

z = (b, c, c2) U0 = 1 + b U1 = 1 + c U2 = 1 + c+ c2

z = (c, c, c2) U0 = 1 + c U1 = 1 + c U2 = 1 + c+ c2

5.2 Deterministic product

The marked product L = L0a1L1 · · · anLn of n nonempty languages L0, L1,
. . . , Ln of A∗ is left deterministic [right deterministic] if, for 1 6 i 6 n, the set
L0a1L1 · · ·Li−1ai [aiLi · · ·anLn] is a prefix [suffix] code. This means that every
word of L has a unique prefix [suffix] in L0a1L1 · · ·Li−1ai [aiLi · · · anLn]. It is
observed in [3, p. 495] that the marked product L0a1L1 · · ·anLn is deterministic
if and only if, for 1 6 i 6 n, the language Li−1ai is a prefix code. Since the
product of two prefix codes is a prefix code, we get the following proposition.

Proposition 5.11. Any left [right ] deterministic product of left [right ] deter-
ministic products is left [right ] deterministic.

Proof. This follows immediately from the fact that the product of two prefix
codes is a prefix code.

Factorizing a deterministic product also gives a deterministic product. More
precisely, one has the following result.

Proposition 5.12. Let L0a1L1 · · · anLn be a left [right ] deterministic product

and let i1, . . . , ik be a sequence of integers satisfying 0 < i1 < . . . < ik < n.
Finally, let R0 = L0a1L1 · · · ai1−1Li1−1, . . . , Rk = Likaik+1Lik+1 · · ·Ln−1anLn.

Then the product R0ai1R1 · · ·aikRk is left [right ] deterministic.

Proof. Trivial.

The left [right ] deterministic polynomial closure of a class of languages L
of A∗ is the set of languages that are finite unions of left [right] deterministic
products of the form L0a1L1 · · ·anLn, where the ai’s are letters and the Li’s are
elements of L.

We can now state the counterpart of Theorem 5.3 for deterministic products.

Theorem 5.13. If the products K = K0a1K1 · · · apKp and L = L0b1L1 · · · bqLq

are deterministic, the products occurring in Formula (4) are all deterministic.

Proof. Let i ∈ {0, . . . , r}. By construction, there exists k > 0 such that i + 1 =
α(k + 1) or i+ 1 = β(k + 1). By Lemma 4.2, there exists j 6 i such that either
Ujcj+1Uj+1 · · ·Ui ⊆ Kk and cα(k+1) = ak+1 or Ujcj+1Uj+1 · · ·Ui ⊆ Lk and
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cα(k+1) = bk+1. Suppose we are in the first case and that Uici+1 is not a prefix
code. Then Ujcj+1Uj+1 · · ·Uici+1 is not a prefix code and thus Kkak+1 is not
a prefix code. This yields a contradiction since the product K0a1K1 · · · apKp is
deterministic.

Corollary 5.14. Let L be a lattice of regular languages closed under quotient.

Then its deterministic polynomial closure is also closed under quotient.
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