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An explicit formula for the intersection of two polynomials of regular languages

Let L be a set of regular languages of A * . An L-polynomial is a finite union of products of the form L0a1L1 • • • anLn, where each ai is a letter of A and each Li is a language of L. We give an explicit formula for computing the intersection of two L-polynomials. Contrary to Arfi's formula (1991) for the same purpose, our formula does not use complementation and only requires union, intersection and quotients. Our result also implies that if L is closed under union, intersection and quotient, then its polynomial closure, its unambiguous polynomial closure and its left [right] deterministic polynomial closure are closed under the same operations.

Introduction

Let L be a set of regular languages of A * . An L-polynomial is a finite union of products of the form L 0 a 1 L 1 • • • a n L n , where each a i is a letter of A and each L i is a language of L. The polynomial closure of L, denoted by Pol(L), is the set of all L-polynomials.

It was proved by Arfi [START_REF] Arfi | Opérations polynomiales et hiérarchies de concaténation[END_REF] that if L is closed under Boolean operations and quotient, then Pol(L) is closed under intersection. This result was obtained by giving an explicit formula for computing the intersection of two polynomials of regular languages.

It follows from the main theorem of [START_REF] Branco | Equations for the polynomial closure[END_REF] that Arfi's result can be extended to the case where L is only closed under union, intersection and quotient. However, this stronger statement is obtained as a consequence of a sophisticated result involving profinite equations and it is natural to ask for a more elementary proof.

The objective of this paper is to give a new explicit formula for computing the intersection of two L-polynomials. Contrary to the formula given in [START_REF] Arfi | Opérations polynomiales et hiérarchies de concaténation[END_REF], our formula only requires using union, intersection and quotients of languages of L. Our proof is mainly combinatorial, but relies heavily on the notion of syntactic ordered monoid, a notion first introduced by Schützenberger [START_REF] Schützenberger | Une théorie algébrique du codage[END_REF] (see also [START_REF] Pin | A variety theorem without complementation[END_REF]). The main difficulty lies in finding appropriate notation to state the formula, but then its proof is merely a verification.

Our result also leads to the following result, that appears to be new: if L is closed under union, intersection and quotient, then its unambiguous polynomial ⋆ Work supported by the project ANR 2010 BLAN 0202 02 FREC.

closure and its left [right] deterministic polynomial closure are closed under the same operations.

Let us mention also that our algorithm can be readily extended to the setting of infinite words by using syntactic ordered ω-semigroups [START_REF] Perrin | Infinite Words[END_REF].

2 Background and notation

Syntactic order

The syntactic congruence of a language L of A * is the congruence on A * defined by u ∼ L v if and only if, for every x, y ∈ A * , xuy ∈ L ⇐⇒ xvy ∈ L

The monoid M = A * /∼ L is the syntactic monoid of L and the natural morphism η : A * → M is called the syntactic morphism of L. It is a well-known fact that a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder1 of a language L is the relation L over A * defined by u L v if and only if, for every x, y ∈ A * , xuy ∈ L implies xvy ∈ L. The associated equivalence relation is the syntactic congruence ∼ L . Further, L induces a partial order on the syntactic monoid M of L. This partial order is compatible with the product and can also be defined directly on M as follows: given s, t ∈ M , one has s t if and only if, for all x, y ∈ M , xsy ∈ η(L) implies xty ∈ η(L). The ordered monoid (M, ) is called the syntactic ordered monoid of L.

Let us remind an elementary but useful fact: if v ∈ L and η(u) η(v), then u ∈ L. This follows immediately form the definition of the syntactic order by taking x = y = 1.

Quotients

Recall that if L is a language of A * and x is a word, the left quotient of L by x is the language x -1 L = {z ∈ A * | xz ∈ L}. The right quotient Ly -1 is defined in a symmetrical way. Right and left quotients commute, and thus x -1 Ly -1 denotes either x -1 (Ly -1 ) or (x -1 L)y -1 . For each word v, let us set

[L] ↑v = {u ∈ A * | η(v) η(u)} [L] =v = {u ∈ A * | η(u) = η(v)} Proposition 2.1.
The following formulas hold:

[L] ↑v = {(x,y)∈A * ×A * | v∈x -1 Ly -1 } x -1 Ly -1 (1) [L] =v = [L] ↑v - η(v)<η(u) [L] ↑u (2) [L] ↑v = η(v) η(u) [L] =u (3) 
Proof. A word u belongs to the right hand side of (1) if and only if the condition

v ∈ x -1 Ly -1 implies u ∈ x -1 Ly -1 , which is equivalent to stating that v L u, or η(v) η(u)
, or yet u ∈ [L] ↑v . This proves [START_REF] Arfi | Opérations polynomiales et hiérarchies de concaténation[END_REF]. Formulas ( 2) and (3) are obvious.

Let us make precise a few critical points. First, v always belongs to [L] ↑v . This is the case even if v cannot be completed into a word of L, that is, if v does not belong to any quotient x -1 Ly -1 . In this case, the intersection on the right hand side of ( 1) is indexed by the empty set and is therefore equal to A * .

Secondly, the intersection occurring on the right hand side of ( 1) and the union occurring on the right hand side of (2) are potentially infinite, but they are finite if L is a regular language, since a regular language has only finitely many quotients.

Infiltration product and infiltration maps

The definition below is a special case of a more general definition given in [START_REF] Lothaire | Combinatorics on words[END_REF].

A word c 1 • • • c r belongs to the infiltration product of two words a 1 • • • a p and v = b 1 • • • b q , if
there are two order preserving maps α : {1, . . . , p} → {1, . . . , r} and β : {1, . . . , q} → {1, . . . , r} such that (1) for each i ∈ {1, . . . , p}, a i = c α(i) , (2) for each i ∈ {1, . . . , q}, b i = c β(i) , (3) the union of the ranges of α and β is {1, . . . , r}.

For instance, the set {ab, aab, abb, aabb, abab} is the infiltration product of ab and ab and the set {aba, bab, abab, abba, baab, baba} is the infiltration product of ab and ba.

A pair of maps (α, β) satisfying Conditions (1)-( 3) is called a pair of infiltration maps. Note that these conditions imply that p + q r.

In the example pictured in Figure 1, one has p = 4, q = 2 and r = 5. The infiltration maps α and β are given by α In order to state our main theorem in a precise way, we need to handle the intervals of the form {α(i)+1, . . . , α(i+1)-1}, but also the two extremal intervals {1, . . . , α(1) -1} and {α(p) + 1, . . . , r}. As a means to get a uniform notation, it is convenient to extend α and β to mappings α : {0, . . . , p + 1} → {0, . . . , r + 1} and β : {0, . . . , q + 1} → {0, . . . , r + 1} by setting α(0) = β(0) = 0 and α(p + 1) = β(q +1) = r +1. The two extremal intervals are now of the standard form {α(i)+ 1, . . . , α(i + 1) -1}, with i = 0 and i = p, respectively. Further, we introduce the two maps ᾱ : {0, . . . , r} → {0, . . . , p} and β : {0, . . . , r} → {0, . . . , q} defined by

(1) = 1, α(2) = 2, α(3) = 3, α(4) = 4 and β(1) = 3, β(2) = 5.
ᾱ(i) = max{k | α(k) i} and β(i) = max{k | β(k) i}.
For instance, one gets for our example:

ᾱ(0) = 0 ᾱ(1) = 1 ᾱ(2) = 2 ᾱ(3) = 3 ᾱ(4) = 4 ᾱ(5) = 4 β(0) = 0 β(1) = 0 β(2) = 0 β(3) = 1 β(4) = 1 β(5) = 2
These two functions are conveniently represented in Figure 2 The next lemmas summarize the connections between α and ᾱ. Of course, similar properties hold for β and β.

Lemma 3.1. The following properties hold:

(1) ᾱ(α(k)) = k, for 0 k p.

(2) ᾱ(s + 1) ᾱ(s) + 1, for 0 s r -1.

(3) k ᾱ(s) if and only if α(k) s, for 0 k p and 0 s r.

(4) k ᾱ(s) if and only if α(k+1) s+1, for 0 k p-1 and 0 s r-1.

Proof. These properties follow immediately from the definition of ᾱ.

Lemma 3.2. For 0 s r -1, the conditions ᾱ(s + 1) = ᾱ(s) + 1 and α(ᾱ(s + 1)) = s + 1 are equivalent.

Proof. Put k = ᾱ(s) and suppose that ᾱ(s + 1) = k + 1. Since k + 1 ᾱ(s + 1), Lemma 3.1 (3) shows that α(k + 1) s + 1. Further, since k ᾱ(s), Lemma 3.1 (4) shows that α(k + 1) s + 1. Therefore α(k + 1) = s + 1 and finally α(ᾱ(s + 1)) = s + 1.
Conversely, suppose that α(ᾱ(s + 1)) = s + 1. Putting ᾱ(s + 1) = k + 1, one gets α(k + 1) = s + 1 and Lemma 3.1 [START_REF] Branco | Two algebraic approaches to variants of the concatenation product[END_REF] shows that k ᾱ(s). By Lemma 3.1 (2), one gets ᾱ(s + 1) ᾱ(s) + 1 and hence k ᾱ(s). Thus ᾱ(s) = k and ᾱ(s + 1) = ᾱ(s) + 1.

Let us denote by P α (s) the property ᾱ(s + 1) = ᾱ(s) + 1. Lemma 3.3. For 0 s r -1, one of P α (s) or P β (s) holds.

Proof. Since the union of the ranges of α and β is {1, . . . , r}, there is an integer k 0 such that either α(k + 1) = s + 1 or β(k + 1) = s + 1. In the first case, one gets ᾱ(s + 1) = ᾱ(α(k + 1)) = k + 1 and Lemma 3.1 [START_REF] Branco | The kernel category and variants of the concatenation product[END_REF] shows that ᾱ(s) k. Since ᾱ(s + 1) ᾱ(s) + 1 by Lemma 3.1 [START_REF] Branco | On the Pin-Thérien expansion of idempotent monoids[END_REF], one also has k ᾱ(s) and finally ᾱ(s) = k, which proves P α (s). In the latter case, one gets P β (s) by a similar argument.

Main result

Let a 1 , . . . , a p , b 1 , . . . , b q be letters of A and let K 0 , . . . , K p , L 0 , . . . , L q be languages of

A * . Let K = K 0 a 1 K 1 • • • a p K p and L = L 0 b 1 L 1 • • • b q L q .
A word of K ∩L can be factorized as

u 0 a 1 u 1 • • • a p u p , with u 0 ∈ K 0 , . . . , u p ∈ K p and as v 0 b 1 v 1 • • • b q v q
, with v 0 ∈ L 0 , . . . , v q ∈ L q . These two factorizations can be refined into a single factorization of the form

z 0 c 1 z 1 • • • c r z r , where c 1 • • • c r belongs to the infiltration product of a 1 • • • a p and b 1 • • • b q .
For instance, for p = 4 and q = 2, one could have r = 5, with the relations The associated pair of infiltration maps (α, β) is given by

c 1 = a 1 , c 2 = a 2 , c 3 = a 3 = b 1 , c 4 = a
α(1) = 1 α(2) = 2 α(3) = 3 α(4) = 4 β(1) = 3 β(2) = 5
Two series of constraints will be imposed on the words z i :

z 0 ∈ K 0 , z 1 ∈ K 1 , z 2 ∈ K 2 , z 3 ∈ K 3 and z 4 c 5 z 5 ∈ K 4 , z 0 c 1 z 1 c 2 z 2 ∈ L 0 , z 3 c 4 z 4 ∈ L 1 and z 5 ∈ L 2 .
We are now ready to state our main result. Let us denote by I(p, q) the set of pairs of infiltration maps (α, β) with domain {1, . . . , p} and {1, . . . , q}, respectively. Since r p + q, the set I(p, q) is finite.

Theorem 4.1. Let K = K 0 a 1 K 1 • • • a p K p and L = L 0 b 1 L 1 • • • b q L q
be two products of languages. Then their intersection is given by the formulas

K ∩ L = (α,β)∈I(p,q) U (α, β) (4) 
where U (α, β) = (z0,...,zr)∈C(α,β)

U 0 c 1 U 1 • • • c r U r (5) 
and, for 0 i r,

U i = [K ᾱ(i) ] ↑zi ∩ [L β(i) ] ↑zi (6) 
and C(α, β) is the set of (r + 1)-tuples (z 0 , . . . , z r ) of words such that

(C 1 ) for 0 k p, z α(k) c α(k)+1 z α(k)+1 • • • c α(k+1)-1 z α(k+1)-1 ∈ K k , (C 2 ) for 0 k q, z β(k) c β(k)+1 z β(k)+1 • • • c β(k+1)-1 z β(k+1)-1 ∈ L k .
For instance, if (α, β) is the pair of infiltration maps of our example, one would have

U (α, β) = (z0,...,z5)∈C(α,β) ([K 0 ] ↑z0 ∩ [L 0 ] ↑z0 )a 1 ([K 1 ] ↑z1 ∩ [L 0 ] ↑z1 )a 2 ([K 2 ] ↑z2 ∩ [L 0 ] ↑z2 )b 1 ([K 3 ] ↑z3 ∩ [L 1 ] ↑z3 )a 4 ([K 4 ] ↑z4 ∩ [L 1 ] ↑z4 )b 2 ([K 4 ] ↑z5 ∩ [L 2 ] ↑z5 )
and the conditions (C 1 ) and (C 2 ) would be

(C 1 ) z 0 ∈ K 0 , z 1 ∈ K 1 , z 2 ∈ K 2 , z 3 ∈ K 3 , z 4 c 5 z 5 ∈ K 4 , (C 2 ) z 0 c 1 z 1 c 2 z 2 ∈ L 0 , z 3 c 4 z 4 ∈ L 1 and z 5 ∈ L 2 .
Before proving the theorem, it is important to note that if the languages K 0 , . . . , K p , L 0 , . . . , L q are regular, the union indexed by C(α, β) is actually a finite union. Indeed, Proposition 2.1 shows that, if R is a regular language, there are only finitely many languages of the form [R] z .

Proof. Let U be the right hand side of (4). We first prove that K ∩ L is a subset of U . Let z be a word of K ∩ L. Then z can be factorized as

u 0 a 1 u 1 • • • a p u p , with u 0 ∈ K 0 , . . . , u p ∈ K p and as v 0 b 1 v 1 • • • b q v q , with v 0 ∈ L 0 , . . . , v q ∈ L q .
The common refinement of these two factorizations leads to a factorization of the form

z 0 c 1 z 1 • • • c r z r ,
where each letter c k is either equal to some a i or to some b j or both. This naturally defines a pair of infiltration maps α : {1, . . . , p} → {1, . . . , r} and β : {1, . . . , q} → {1, . . . , r}. Conditions (C 1 ) and (C 2 ) just say that the factorization z 0 c 1 z 1 • • • c r z r is a refinement of the two other ones. Now, since, for 0 i r, the word

z i belongs to [K ᾱ(i) ] ↑zi ∩ [L β(i) ] ↑zi , the word z belongs to U . Thus K ∩ L ⊆ U .
We now prove the opposite inclusion. Let r p + q be an integer, let α : {1, . . . , p} → {1, . . . , r} and β : {1, . . . , q} → {1, . . . , r} be two infiltration maps and let (z 0 , . . . , z r ) ∈ C(α, β) and c 1 , . . . , c r satisfying (C 1 ) and (C 2 ). It suffices to prove that

U 0 c 1 U 1 • • • c r U r is a subset of K ∩ L.
We need a stronger version of (C 1 ) and (C 2 ). Lemma 4.2. The following relations hold:

(C 3 ) for 0 k p, U α(k) c α(k)+1 U α(k)+1 • • • c α(k+1)-1 U α(k+1)-1 ⊆ K k , (C 4 ) for 0 k q, U β(k) c β(k)+1 U β(k)+1 • • • c β(k+1)-1 U β(k+1)-1 ⊆ L k .
Coming back once again to our main example, these conditions would be

(C 3 ) U 0 ⊆ K 0 , U 1 ⊆ K 1 , U 2 ⊆ K 2 , U 3 ⊆ K 3 , U 4 c 4 U 5 ⊆ K 4 , (C 4 ) U 0 c 1 U 2 c 2 U 2 ⊆ L 0 , U 3 c 4 U 4 ⊆ L 1 , U 5 ⊆ L 5 .
Proof. Let η k be the syntactic morphism of K k . To simplify notation, let us set i = α(k) + 1 and

j = α(k + 1) -1. Since α(k) = i -1 < i < • • • < j < α(k + 1), one gets ᾱ(i -1) = ᾱ(i) = . . . = ᾱ(j) = k. Let u i-1 ∈ U i-1 , u i ∈ U i , . . . , u j ∈ U j . Then u i-1 ∈ [U k ] ↑zi-1 , u i ∈ [U k ] ↑zi , . . . , u j ∈ [U k ] ↑zj and by definition, η k (z i-1 ) η k (u i-1 ), η k (z i ) η k (u i ), . . . , η k (z j ) η k (u j ). Therefore we get η k (z i-1 c i z i • • • c j z j ) = η k (z i-1 )η k (c i )η k (z i ) • • • η k (c j )η k (z j ) η k (u i-1 )η k (c i )η k (u i ) • • • η k (c j )η k (u j ) = η k (u i-1 c i u i • • • c j u j ) Now, since z i-1 c i z i • • • c j z j ∈ K k by (C 1 ), we also get u i-1 c i u i • • • c j u j ∈ K k , which proves (C 3
). The proof of (C 4 ) is similar. Now, since ᾱ and β are surjective, Lemma 4.2 shows that U Then its polynomial closure is also a lattice closed under quotient.

0 c 1 U 1 • • • c r U r is a subset of K ∩ L,

Some variants of the product

We consider in this section two variants of the product introduced by Schützenberger in [START_REF] Schützenberger | Sur le produit de concaténation non ambigu[END_REF]: unambiguous and deterministic products. These products were also studied in [START_REF] Branco | On the Pin-Thérien expansion of idempotent monoids[END_REF][START_REF] Branco | The kernel category and variants of the concatenation product[END_REF][START_REF] Branco | Two algebraic approaches to variants of the concatenation product[END_REF][START_REF] Branco | Deterministic concatenation product of languages recognized by finite idempotent monoids[END_REF][START_REF] Pin | Propriétés syntactiques du produit non ambigu[END_REF][START_REF] Pin | Locally trivial categories and unambiguous concatenation[END_REF][START_REF] Pin | The bideterministic concatenation product[END_REF][START_REF] Pin | Polynomial closure and unambiguous product[END_REF].

Unambiguous product

The marked product

L = L 0 a 1 L 1 • • • a n L n of n nonempty languages L 0 , L 1 , . . . , L n of A * is unambiguous if every word u of L admits a unique factorization of the form u 0 a 1 u 1 • • • a n u n with u 0 ∈ L 0 , u 1 ∈ L 1 , . . . , u n ∈ L n .
We require the languages L i to be nonempty to make sure that subfactorizations remain unambiguous:

Proposition 5.1. Let L 0 a 1 L 1 • • • a n L n be an unambiguous product and let i 1 , . . . , i k be a sequence of integers satisfying 0 < i 1 < . . . < i k < n. Finally, let R 0 = L 0 a 1 L 1 • • • a i1-1 L i1-1 , R 1 = L i1 a i1+1 L 1 • • • a i2-1 L i2-1 , . . . , R k = L i k a i k +1 L i k +1 • • • a n L n . Then the product R 0 a i1 R 1 • • • a i k R k is unambiguous. Proof. Trivial.
The unambiguous polynomial closure of a class of languages L of A * is the set of languages that are finite unions of unambiguous products of the form

L 0 a 1 L 1 • • • a n L n ,
where the a i 's are letters and the L i 's are elements of L. The term closure actually requires a short justification.

Proposition 5.2. Any unambiguous product of unambiguous products is unambiguous.

Proof. Let

L 0 = L 0,0 a 1,0 L 1,0 • • • a k0,0 L k0,0 L 1 = L 0,1 a 1,1 L 1,1 • • • a k1,1 L k1,1 . . . (7) 
L n = L 0,n a 1,n L 1,n • • • a kn,n L kn,n
be unambiguous products and let L = L 0 b 1 L 1 • • • b n L n be an unambiguous product. We claim that the product

L 0,0 a 1,0 L 1,0 • • • a k0,0 L k0,0 b 1 L 0,1 a 1,1 L 1,1 • • • b n L 0,n a 1,n L 1,n • • • a kn,n L kn,n
is unambiguous. Let u be a word of L with two factorizations

x 0,0 a 1,0 x 1,0 • • • a k0,0 x k0,0 b 1 x 0,1 a 1,1 x 1,1 • • • b n x 0,n a 1,n x 1,n • • • a kn,n x kn,n and y 0,0 a 1,0 y 1,0 • • • a k0,0 y k0,0 b 1 y 0,1 a 1,1 x 1,1 • • • b n y 0,n a 1,n y 1,n • • • a kn,n y kn,n
with x 0,0 , y 0,0 ∈ L 0,0 , . . . , x kn,n , y kn,n ∈ L kn,n . Setting

x 0 = x 0,0 a 1,0 x 1,0 • • • a k0,0 x k0,0 y 0 = y 0,0 a 1,0 y 1,0 • • • a k,0 y k0,0 x 1 = x 0,1 a 1,1 x 1,1 • • • a k1,1 x k1,1 y 1 = y 0,1 a 1,1 y 1,1 • • • a k1,1 y k1,1 . . . . . . ( 8 
) x n = x 0,n a 1,n x 1,n • • • a kn,n x kn,n y n = y 0,n a 1,n y 1,n • • • a kn,n y kn,n
we get two factorizations of u:

x 0 b 1 x 1 • • • b n x n and y 0 b 1 y 1 • • • b n y n . Since the product L 0 b 1 L 1 • • • a n L n
is unambiguous, we have x 0 = y 0 , . . . , x n = y n . Each of these words has now two factorizations given by ( 8) and since the products of ( 7) are unambiguous, these factorizations are equal. This proves the claim and the proposition.

We now consider the intersection of two unambiguous products.

Theorem 5.3. If the products K = K 0 a 1 K 1 • • • a p K p and L = L 0 b 1 L 1 • • • b q L q
are unambiguous, the products occurring in Formula (4) are all unambiguous.

Proof. Let (α, β) be a pair of infiltration maps, and let

U i = [K ᾱ(i) ] ↑zi ∩[L β(i) ] ↑zi , for 0 i r. We claim that the product U = U 0 c 1 U 1 • • • c r U r is unambiguous. Let u = u 0 c 1 u 1 • • • c r u r = u ′ 0 c 1 u ′ 1 • • • c r u ′ r ( 9 
)
be two factorizations of a word u of U such that, for 0 i r, u i , u ′ i ∈ U i . We prove by induction on s that u s = u ′ s . Case s = 0. By the properties of α and β, we may assume without loss of generality that α(1) = 1, which implies that

c 1 = a 1 . It follows from (C 3 ) that U 0 ⊆ K 0 . Now the product K 0 a 1 (K 1 a 2 K 2 • • • a p K p ) is unambiguous by Proposition 5.1, and by (C 3 ), U 1 c 2 U 2 • • • c r U r is contained in K 1 a 1 K 2 • • • a p K p . Therefore, u ad- mits the two factorizations u 0 a 1 (u 1 c 2 u 2 • • • c r u r ) and u ′ 0 a 1 (u ′ 1 c 2 u ′ 2 • • • c r u ′ r ) in this product. Thus u 0 = u ′ 0 . Induction step. Let s > 0 and suppose by induction that u i = u ′ i for 0 i s-1. If s = r, then necessarily u s = u ′ s .
If s < r, we may assume without loss of generality that s is in the range of α. Thus α(k) = s for some k and c s = a k . We now consider two cases separately.

If α(k + 1) = s + 1 (and c s+1 = a k+1 ), it follows from (C 3 ) that u has two factorizations

(u 0 c 1 u 1 • • • c s-1 u s-1 )a k u s a k+1 (u s+1 c s+1 u s+2 • • • c r u r ) and (u 0 c 1 u 1 • • • c s-1 u s-1 )a k u ′ s a k+1 (u ′ s+1 c s+1 u ′ s+2 • • • c r u ′ r ) over the product (K 0 a 1 K 1 • • • a s-1 K s-1 )a k K s a k+1 (K s+1 a k+2 K s+2 • • • a p K p )
. Since this product is unambiguous by Proposition 5.1, we get u s = u ′ s . If α(k + 1) = s + 1, then s + 1 = β(t + 1) for some t and c s+1 = b t+1 . Setting i = β(t), we get c i = b t and it follows from (C 4 ) that u has two factorizations

(u 0 c 1 u 1 • • • c i-1 u i-1 )b t (u i c i+1 u i+1 • • • c s u s )b t+1 (u s+1 c s+2 u s+2 • • • c r u r ) and (u 0 c 1 u 1 • • • c i-1 u i-1 )b t (u ′ i c i+1 u ′ i+1 • • • c s u ′ s )b t+1 (u ′ s+1 c s+2 u ′ s+2 • • • c r u ′ r ) over the product (L 0 b 1 L 1 • • • b t-1 L t-1 )b t L t b t+1 (L t+1 b t+1 L t+2 • • • b p L p ).
This product is unambiguous by Proposition 5.1, and thus

u i c i+1 u i+1 • • • c s u s = u ′ i c i+1 u ′ i+1 • • • c s u ′ s
Now the induction hypothesis gives u i = u ′ i , . . . , u s-1 = u ′ s-1 and one finally gets u s = u ′ s .

We state separately another interesting property.

Theorem 5.4.

Let K = K 0 a 1 K 1 • • • a p K p and L = L 0 b 1 L 1 • • • b q L q
be two unambiguous products and let (α, β) and (α ′ , β ′ ) be two pairs of infiltration maps of I(p, q). If the sets U (α, β) and

U (α ′ , β ′ ) meet, then α = α ′ and β = β ′ .
Proof. Suppose that a word u belongs to U (α, β) and to U (α ′ , β ′ ). Then u has two decompositions of the form

u = u 0 c 1 u 1 • • • c r u r = u ′ 0 c ′ 1 u ′ 1 • • • c ′ r ′ u ′ r ′ Condition (C 1 ) [(C 2 )
] and the unambiguity of the product

K 0 a 1 K 1 • • • a p K p [L 0 b 1 L 1 • • • b q L q ]
show that, for 0 i p and for 0 j q,

u α(i) c α(i)+1 u α(i)+1 • • • c α(i+1)-1 u α(i+1)-1 = u ′ α ′ (i) c ′ α ′ (i)+1 u ′ α ′ (i)+1 • • • c α ′ (i+1)-1 u α ′ (i+1)-1 ∈ K i (10) 
u β(j) c β(j)+1 u β(j)+1 • • • c β(j+1)-1 u β(j+1)-1 = u ′ β ′ (j) c ′ β ′ (j)+1 u ′ β ′ (j)+1 • • • c β ′ (j+1)-1 u β ′ (j+1)-1 ∈ L j (11) 
We prove by induction on s that, for 1 s min(r, r ′ ), the following properties hold:

E 1 (s) : u s-1 = u ′ s-1 and c s = c ′ s , E 2 (s) : ᾱ(s) = ᾱ′ (s) and β(s) = β′ (s), E 3 (s) : for i ᾱ(s), α(i) = α ′ (i) and for j β(s), β(j) = β ′ (j).
Case s = 1. We know that either α(1) = 1 or β(1) = 1 and that either α ′ (1) = 1 or β ′ (1) = 1. Suppose that α(1) = 1. We claim that α ′ (1) = 1. Otherwise, one has β ′ (1) = 1. Now, Formula (10) applied to i = 0 gives

u 0 = u ′ 0 c ′ 1 u ′ 1 • • • c α ′ (1)-1 u ′ α ′ (1)-1
and Formula (11) applied to j = 0 gives

u 0 c 1 u 1 • • • c β(1)-1 u β(1)-1 = u ′ 0 .
Therefore u 0 = u ′ 0 and α ′ (1) = 1, which proves the claim. It follows also that a 1 = c α(1) = c α ′ (1) and thus c 1 = c ′ 1 . We also have in this case ᾱ(1) = ᾱ′ (1) = 1. A similar argument shows that if α ′ (1) = 1, then α(1) = 1. Therefore, the conditions α(1) = 1 and α ′ (1) = 1 are equivalent and it follows that ᾱ(1) = ᾱ′ [START_REF] Arfi | Opérations polynomiales et hiérarchies de concaténation[END_REF]. A dual argument would prove that the conditions β(1) = 1 and β ′ (1) = 1 are equivalent and that β(1) = β′ (1).

Induction step. Let s be such that 1 s+1 min(r, r ′ ) and suppose by induction that the properties E 1 (i), E 2 (i), E 3 (i) hold for 1 i s.

Lemma 5.5. Suppose that P α (s) holds and let k = ᾱ(s). Then

s α ′ (k + 1) -1 ( 12 
)
and

u s = u ′ s c ′ s+1 u ′ s+1 • • • c α ′ (k+1)-1 u ′ α ′ (k+1)-1 (13) 
Proof. Applying [START_REF] Pin | A variety theorem without complementation[END_REF] with i = k, we get

u α(k) c α(k)+1 u α(k)+1 • • • c s u s = u ′ α ′ (k) c ′ α ′ (k)+1 u ′ α ′ (k)+1 • • • c α ′ (k+1)-1 u ′ α ′ (k+1)-1 (14) 
Since ᾱ(s) = ᾱ′ (s) by E 2 (s), one has ᾱ′ (s) = k and α ′ (k + 1) s + 1 by Lemma 3.1, which gives [START_REF] Pin | The bideterministic concatenation product[END_REF]. Further, since k = ᾱ(s), it follows from E 3 (s) that α(k) = α ′ (k). Now, for i s, E 1 (i) implies that u i-1 = u ′ i-1 and c i = c ′ i . It follows that the word u α(k) c α(k)+1 u α(k)+1 • • • c s is a prefix of both sides of [START_REF] Schützenberger | Une théorie algébrique du codage[END_REF]. Therefore, this prefix can be deleted from both sides of [START_REF] Schützenberger | Une théorie algébrique du codage[END_REF], which gives [START_REF] Pin | Polynomial closure and unambiguous product[END_REF].

We now establish E 1 (s + 1). Lemma 5.6. One has u s = u ′ s and c s+1 = c ′ s+1 . Further, P α (s) and P α ′ (s) are equivalent and P β (s) and P β ′ (s) are equivalent.

Proof. Let us prove that u ′ s is a prefix of u s . By Lemma 3.3, either P α (s) or P β (s) holds. Suppose that P α (s) holds. Then by Lemma 5.5, u ′ s is a prefix of u s . If P β (s) holds, we arrive to the same conclusion by using [START_REF] Pin | Locally trivial categories and unambiguous concatenation[END_REF] in place of [START_REF] Pin | A variety theorem without complementation[END_REF] in the proof of Lemma 5.5. Now, a symmetrical argument using the pair (ᾱ ′ , β′ ) would show that u s is a prefix of u ′ s . Therefore, u s = u ′ s . Coming back to (13), we obtain α ′ (k +1) = s+1 and since by E 2 (s), k = ᾱ(s) = ᾱ′ (s), one gets α ′ (ᾱ ′ (s) + 1) = s + 1, which, by Lemma 3.2, is equivalent to P α ′ (s). Thus P α (s) implies P α ′ (s) and a dual argument would prove the opposite implication.

We also have c s+1 = c α(k+1) = a k+1 = c ′ α ′ (k+1) = c ′ s+1 and thus c s+1 = c ′ s+1 . Finally, a similar argument works for β.

We now come to the proof of E 2 (s + 1) and E 3 (s + 1). Since P α (s) and P α ′ (s) are equivalent, the next two lemma cover all cases. Lemma 5.7. If neither P α (s) nor P α ′ (s) hold, then ᾱ(s + 1) = ᾱ′ (s + 1) and for i ᾱ(s + 1), α(i) = α ′ (i). Similarly, if neither P β (s) nor P β ′ (s) hold, then β(s + 1) = β′ (s + 1) and for i β(s + 1), β(i) = β ′ (i).

Proof. We just prove the "α part" of the lemma. If neither P α (s) nor P α ′ (s) hold, then ᾱ(s + 1) = ᾱ(s) and ᾱ′ (s + 1) = ᾱ′ (s). Since ᾱ(s) = ᾱ′ (s) by E 2 (s), one gets ᾱ(s + 1) = ᾱ′ (s + 1). The second property is an immediate consequence of E 3 (s).

Lemma 5.8. If both P α (s) and P α ′ (s) hold, then ᾱ(s + 1) = ᾱ′ (s + 1) and for i ᾱ(s + 1), α(i) = α ′ (i). Similarly, if both P β (s) and P β ′ (s) hold, then β(s + 1) = β′ (s + 1) and for i β(s + 1), β(i) = β ′ (i).

Proof. Again, we just prove the "α part" of the lemma. If both P α (s) and P α ′ (s) hold, then ᾱ(s + 1) = ᾱ(s) + 1 and ᾱ′ (s + 1) = ᾱ′ (s) + 1. Since ᾱ(s) = ᾱ′ (s) by E 2 (s), one gets ᾱ(s + 1) = ᾱ′ (s + 1). Property E 3 (s) shows that for i ᾱ(s),

α(i) = α ′ (i). Since ᾱ(s + 1) = ᾱ(s) + 1, it just remains to prove that α(ᾱ(s + 1)) = α ′ (ᾱ(s + 1)) (15) 
But Lemma 3.2 shows that α(ᾱ(s + 1)) = s + 1 and α ′ (ᾱ ′ (s + 1)) = s + 1, which proves (15) since ᾱ(s + 1) = ᾱ′ (s + 1).

This concludes the induction step and the proof of Theorem 5.4.

Corollary 5.9. Let L be a lattice of regular languages closed under quotient. Then its unambiguous polynomial closure is also a lattice closed under quotient.

If L is a Boolean algebra, then one can be more precise.

Corollary 5.10. Let L be a Boolean algebra of regular languages closed under quotient. Then its unambiguous polynomial closure is also a Boolean algebra closed under quotient.

Let us conclude with an example which shows that, under the assumptions of Theorem 5.4, the sets U (α, β) cannot be further decomposed as a disjoint union of unambiguous products. There is only one pair of infiltration maps (α, β) of I(1, 1) that defines a nonempty set U (α, β). This pair is defined as follows: α(1) = 1 and β(1) = 2. The triples (z 0 , z 1 , z 2 ) of C(α, β) are exactly the triples of words such that z 0 az 1 az 2 ∈ K ∩L. In particular, z 0 ∈ {1, b, c}, z 1 ∈ {1, b, c} and z 2 ∈ {1, b, c, c 2 }. Now, one has

[K 0 ] ↑1 = 1 [K 0 ] ↑b = 1 + b + c + c 2 [K 0 ] ↑c = 1 + c [K 1 ] ↑1 = 1 [K 1 ] ↑b = 1 + b [K 1 ] ↑c = 1 + c [K 1 ] ↑c 2 = 1 + c + c 2 [L 0 ] ↑1 = 1 [L 0 ] ↑b = 1 + b [L 0 ] ↑c = 1 + c [L 1 ] ↑1 = 1 [L 1 ] ↑b = 1 + b + c + c 2 [L 1 ] ↑c = 1 + c [L 1 ] ↑c 2 = 1 + b + c + c 2
c α(k+1) = b k+1 . Suppose we are in the first case and that U i c i+1 is not a prefix code. Then U j c j+1 U j+1 • • • U i c i+1 is not a prefix code and thus K k a k+1 is not a prefix code. This yields a contradiction since the product K 0 a 1 K 1 • • • a p K p is deterministic.

Corollary 5.14. Let L be a lattice of regular languages closed under quotient. Then its deterministic polynomial closure is also closed under quotient.

Fig. 1 .

 1 Fig. 1. A pair of infiltration maps.

Fig. 2 .

 2 Fig. 2. Graphs of ᾱ and β : for instance, ᾱ(3) = 3 and β(3) = 1.
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 4 and c 5 = b 2 , leading to the factorization z 0 c 1 z 1 c 2 z 2 c 3 z 3 c 4 z 4 c 5 z 5 , as pictured in Figure 3.

Fig. 3 .

 3 Fig. 3. A word of K ∩ L and its factorizations.

  which concludes the proof of the theorem. Example 4.3. Let K = b * aA * ba * and L = a * bA * ab * . The algorithm described in Theorem 4.1 gives for K ∩ L the expression aa * bA * ba * a ∪ bb * aA * ba * a ∪ aa * bA * ab * b ∪ bb * aA * ab * b ∪ aa * ba * a ∪ bb * ab * b.

Corollary 4 . 4 .

 44 Let L be a lattice of regular languages closed under quotient.

  Let K = K 0 aK 1 and L = L 0 aL 1 with K 0 = L 1 = 1 + b + c + c 2 and L 0 = K 1 = a + ab + ba + ac + ca + ac 2 + bab + cac + cac 2 . Then K ∩ L = aa + aab + aba + aac + aca + aac 2 + abab + acac + acac 2 + baa + baab + baba + baac + baac 2 + babab + caa + caab + caac + caca + caac 2 + cacac + cacac 2 One can write for instance K ∩ L as (1 + b + c)aa(1 + b + c + c 2 ) + (1 + b)a(1 + b)a(1 + b) + (1 + c)a(1 + c)a(1 + c + c 2 )but the three components of this language are not disjoint, since they all contain aa. Note that the words acab, abac, baca and caba are not in K ∩ L. The syntactic ordered monoid of K 0 and L 1 has 4 elements {1, a, b, c} and is presented by the relations a = ba = b 2 = bc = ca = cb = 0 and c 2 = b. Its syntactic order is defined by a < b < c < 1. The syntactic ordered monoid of L 0 and K 1 has 13 elements: {1, a, b, c, a 2 , ab, ac, ba, ca, c 2 , ac 2 , bab, cac} and is defined by the relations cac 2 = bab and b 2 = bc = cb = a 2 = aba = aca = bac = cab = c 2 a = c 3 = 0.The syntactic order is:

In earlier papers[START_REF] Branco | Equations for the polynomial closure[END_REF][START_REF] Pin | A variety theorem without complementation[END_REF][START_REF] Pin | Polynomial closure and unambiguous product[END_REF], I used the opposite preorder, but it seems preferable to go back to Schützenberger's original definition.
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which gives the following possibilities for the triples (U 0 , U 1 , U 2 ), for the following triples z = (z 0 , z 1 , z 2 ):

Deterministic product

The marked product

Since the product of two prefix codes is a prefix code, we get the following proposition. Proof. This follows immediately from the fact that the product of two prefix codes is a prefix code.

Factorizing a deterministic product also gives a deterministic product. More precisely, one has the following result. Proposition 5.12. Let L 0 a 1 L 1 • • • a n L n be a left [right ] deterministic product and let i 1 , . . . , i k be a sequence of integers satisfying

The left [right ] deterministic polynomial closure of a class of languages L of A * is the set of languages that are finite unions of left [right] deterministic products of the form L 0 a 1 L 1 • • • a n L n , where the a i 's are letters and the L i 's are elements of L.

We can now state the counterpart of Theorem 5.3 for deterministic products.

Theorem 5.13.

are deterministic, the products occurring in Formula (4) are all deterministic.

Proof. Let i ∈ {0, . . . , r}. By construction, there exists k 0 such that i + 1 = α(k + 1) or i + 1 = β(k + 1). By Lemma 4.2, there exists j i such that either