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Abstract

The Takacs–Fiksel method is a general approach to estimate the parameters
of a spatial Gibbs point process. This method embraces standard procedures
such as the pseudolikelihood and is defined via weight functions. In this pa-
per we propose a general procedure to find weight functions which reduce the
Godambe information and thus outperform pseudolikelihood in certain situ-
ations. The new procedure is applied to a standard dataset and to a recent
neuroscience replicated point pattern dataset. Finally, the performance of the
new procedure is investigated in a simulation study.

Keywords: Gibbs point processes; Godambe information; optimal estimation;
pseudolikelihood; spatial point processes.

1 Introduction

Spatial Gibbs point processes are important models for spatial dependence in point
patterns (van Lieshout, 2000) with a broad range of applications (e.g. Stoyan and
Penttinen, 2000; Illian et al., 2008). Such processes are specified by a density with
respect to a Poisson point process or, equivalently, by the Papangelou conditional in-
tensity. When the density or Papangelou conditional intensity has a parametric form,
popular options for parameter estimation include maximum likelihood (e.g. Ogata
and Tanemura, 1984; Penttinen, 1984; Geyer, 1999; Møller and Waagepetersen,
2004), maximum pseudolikelihood (e.g. Besag, 1977; Jensen and Møller, 1991; Goulard
et al., 1996; Baddeley and Turner, 2000; Billiot et al., 2008), maximum logistic re-
gression likelihood (Baddeley et al., 2014) and Takacs-Fiksel estimation (e.g. Fiksel,
1984; Takacs, 1986; Tomppo, 1986; Coeurjolly et al., 2012).
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Maximum likelihood estimation for a Gibbs point process requires computation-
ally intensive estimation of an unknown normalizing constant in the density func-
tion. This explains why alternative estimation methods have been studied. Takacs-
Fiksel estimation is an estimating function method based on the general Georgii-
Nguyen-Zessin integral equation involving the Papangelou conditional intensity and
a user-specified weight function. A particular choice of the weight function recov-
ers the score of the pseudolikelihood. Pseudolikelihood estimation has an intuitively
appealing motivation and is by far the most popular estimation method in prac-
tical applications of Gibbs point processes with a user-friendly implementation in
the spatstat package (Baddeley and Turner, 2005). Logistic regression likelihood
estimation for Gibbs point processes was recently introduced to eliminate a bias
problem coming from the Berman-Turner approximation of the pseudolikelihood
(Berman and Turner, 1992; Baddeley and Turner, 2000). The logistic regression
can be viewed as a computationally efficient approximation of the pseudolikelihood.
Hence in the following, we may not differentiate between the pseudolikelihood and
the logistic regression methods.

There are infinitely many weight functions that can be used to obtain Takacs-
Fiksel estimates and usually weight functions are chosen by ad hoc reasoning pay-
ing attention to ease of implementation or to handle patterns which are sampled
in situ, like in Tomppo (1986). In the small scale simulation study in Coeurjolly
et al. (2012), pseudolikelihood and Takacs-Fiksel methods are compared for the
Strauss model. The weight functions used for the Takacs-Fiksel method resulted in
explicit expressions for the parameter estimates (no optimization required). In this
simulation study, smallest standard errors were obtained with the pseudolikelihood
method. Based on a larger simulation study, Diggle et al. (1994) concluded that
pseudolikelihood provided reasonable and robust estimates for any point process
model and boundary condition considered although significant bias was observed
in cases of point processes models with strong interaction. For the Takacs-Fiksel
method, Diggle et al. (1994) used weight functions leading to an estimation proce-
dure similar to minimum contrast estimation using the empiricalK-function, see e.g.
Waagepetersen and Guan (2009). The authors noted that this type of Takacs-Fiksel
estimation gave poor results relative to pseudolikelihood, in particular for point
process models with weak interaction. Diggle et al. (1994) concluded that the bias
was small for both Takacs-Fiksel and pseudolikelihood in case of small-to-medium
strength of interaction. Based on the existing literature it is not clear whether pseu-
dolikelihood is an optimal Takacs-Fiksel method in terms of minimizing estimation
variance and it is interesting to investigate whether and when the Takacs-Fiksel
method can outperform pseudolikelihood.

In this paper our aim is to develop a systematic approach to construct a weight
function that can lead to more efficient estimation than existing methods. Our ap-
proach is motivated by the one considered in Guan et al. (2015) who considered
estimation of the intensity function of a spatial point process and identified the
optimal estimating function within a class of estimating functions based on the
Campbell formula (e.g. Møller and Waagepetersen, 2004). Their optimal estimating
function was derived from a sufficient condition equating the sensitivity matrix for
the optimal estimating function and the covariance between the optimal estimating
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function and an arbitrary estimating function.
Extending the ideas in Guan et al. (2015) to Gibbs point processes is not straight-

forward. One problem is that covariances of Takacs-Fiksel estimating functions are
not available in closed forms (see Section 2.4 for more details). For this reason our
new weight function only approximately satisfies the aforementioned sufficient con-
dition. Nevertheless, we show in a simulation study that the new weight function
may yield better estimation accuracy and is closer to fulfilling the sufficient con-
dition than pseudolikelihood. Another issue is that the practical implementation
of the new method is more computationally demanding than the pseudolikelihood,
especially for point patterns of high cardinality.

The rest of the paper is organized as follows. Section 2 gives background on Gibbs
point processes and Takacs-Fiksel estimation and presents our new methodology. In
Section 3 we apply the methodology to the Spanish towns dataset as well as a
recent replicated point pattern dataset from neuroscience. Motivated by these two
examples, Section 4 presents a simulation study. Details of implementation are given
in Appendix A.

2 Background and methodology

2.1 Gibbs point processes

A point process X on Rd is a locally finite random subset of Rd, meaning that X∩B
is finite for every bounded B ⊂ Rd. In this paper we assume that X is confined to
and observed on a bounded region W ⊂ Rd so that X becomes a finite point process
taking values in Ω, the set of finite point configurations in W .

The distribution of X is assumed to be specified by a parametric density f(·; θ) :
Ω → [0,∞) with respect to the Poisson process of unit intensity. The density is of
the form

f(y; θ) ∝ H(y)eV (y;θ) (2.1)

where θ ∈ Θ ⊆ Rp is a p-dimensional parameter vector, H : Ω → [0,∞) serves as
a baseline or reference factor, and V : Ω → R is often called the potential. For the
Strauss model, for example, H(y) = 1, θ = (θ1, θ2) and

V (y; θ) = θ1n(y) + θ2sR(y)

where n(y) is the cardinality of y and for R > 0, sR(y) is the number of subsets
{u, v}, u, v ∈ y, of pairs of R-close neighbours in y. Thus values of θ2 < 0 promote
point configurations with few R-close neighbours. The Strauss hard core model is
the modification of the Strauss model where H(y) is one if all interpoint distances
are greater than some hard core distance 0 ≤ δ < R and zero otherwise. Thus for the
Strauss hard core model, all points must be separated by a distance greater than δ.

Assuming that H is hereditary, i.e. H(y ∪ u) > 0 implies H(y) > 0 for any
u ∈ W and y ∈ Ω, the Papangelou conditional intensity of X exists and is defined
by

λ(u,y; θ) =
f(y ∪ u; θ)

f(y; θ)
= H(u,y)eV (u,y;θ)
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where H(u,y) = 1{H(y) > 0}H(y∪u)/H(y) and V (u,y; θ) = V (y∪u; θ)−V (y; θ).
For the Strauss model, H(u,y) = 1 and V (u,y; θ) = θ1 + θ2sR(u,y) where sR(u,y)
is the number of points in y with distance to u less than R. For the Strauss hard core
model, H(u,y) is one if all the points of y∪u are separated by distances greater than
δ and zero otherwise. In this paper we assume finite range, i.e. for some 0 < R <∞
and for any u ∈ W and y ∈ Ω

λ(u,y; θ) = λ{u,y ∩B(u,R); θ} (2.2)

where B(u,R) is the ball with center u and radius R. Thus the conditional intensity
of a point u given y only depends on the R-close neighbours in y. This is obviously
satisfied for the Strauss and Strauss hard core models. Intuitively, λ(u,x; θ) du is
the conditional probability that a point of X occurs in a small neighbourhood Bu

of volume du around the location u, given X outside Bu is equal to x; see Georgii
(1976) for a general presentation and Coeurjolly et al. (2015) for links with Palm
distributions.

Note that λ and f are in one-to-one correspondence. Hence the distribution of
X can equivalently be specified in terms of the Papangelou conditional intensity.
Gibbs point processes can also be characterized through the Georgii-Nguyen-Zessin
formula (see Georgii, 1976; Nguyen and Zessin, 1979), which states that for any
h : W × Ω→ R (such that the following expectations are finite)

E
∑
u∈X

h(u,X \ u) = E

∫
W

h(u,X)λ(u,X; θ) du. (2.3)

Conditions ensuring the existence of Gibbs point processes constitute a full re-
search topic (see e.g. Dereudre et al., 2012, and the references therein). In case of a
finite Gibbs point process existence is equivalent to that the right hand side of (2.1)
can be normalized to be a probability density. We here just note that the Strauss
model exists whenever θ1 ∈ R and θ2 ≤ 0 while the Strauss hard core model ex-
ists for all θ1, θ2 ∈ R when δ > 0. Other examples of point process models can be
found in Møller and Waagepetersen (2004); see also Section 3.2 for an example of
an inhomogeneous model.

2.2 Takacs-Fiksel estimation

Let h = (h1, . . . , hq)
> where hi : W × Ω → R, i = 1, . . . , q are real functions

parameterized by θ where q is greater than or equal to the dimension p of θ. Takacs-
Fiksel estimation (Fiksel, 1984; Takacs, 1986) is based on the Georgii-Nguyen-Zessin
formula (2.3) which implies that

E
∑
u∈X

hi(u,X \ u; θ)− E

∫
W

hi(u,X; θ)λ(u,X; θ) du = 0, i = 1, . . . , q. (2.4)

In the original formulation of Takacs-Fiksel estimation, an estimate of θ was obtained
by minimizing the sum of squares

q∑
i=1

{∑
u∈X

hi(u,X \ u; θ)−
∫
W

hi(u,X; θ)λ(u,X; θ) du

}2

.
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Considering the case p = q, a related approach is to define a p-dimensional estimating
function eh by

eh(θ) =
∑
u∈X

h(u,X \ u; θ)−
∫
W

h(u,X; θ)λ(u,X; θ) du. (2.5)

In the point process literature, the term Takacs-Fiksel estimate is also used for an
estimate obtained by solving the estimating equation eh(θ) = 0 with respect to θ (see
e.g. van Lieshout, 2000; Baddeley et al., 2015)). This is the type of Takacs-Fiksel
estimation considered in this paper. By (2.4) the function eh(θ) is unbiased, i.e.,
E eh(θ) = 0. The asymptotic properties of the Takacs-Fiksel estimate for a general
weight function h have been established by Coeurjolly et al. (2012) including a
derivation of the asymptotic covariance matrix.

With the weight function h(u,y; θ) = d log λ(u,y; θ)/ dθ, (2.5) is the score func-
tion for the log pseudolikelihood function. The corresponding estimate can be ob-
tained using standard statistical software and its statistical properties have been
deeply studied in the literature (e.g. Jensen and Møller, 1991; Mase, 1999; Jensen
and Künsch, 1994; Billiot et al., 2008; Baddeley et al., 2014). However, the pseudo-
likelihood score has not been shown to be optimal within the class of Takacs-Fiksel
estimating functions. In the following section our aim is to construct a competitor
to the pseudolikelihood in terms of statistical efficiency.

2.3 Towards optimality

We begin this section by reviewing key quantities related to estimating functions.
We refer to Heyde (1997) or Guan et al. (2015, Section 2.3) for further details. For an
estimating function eh, the sensitivity matrix Sh is defined as Sh = −E

{
d

dθ>
eh(θ)

}
and the covariance matrix of the estimating function is Σh = Var{eh(θ)}. From these
the Godambe information matrix is obtained as

Gh = S>h Σ−1h Sh.

In applications of estimating functions, the inverse Godambe matrix provides the
approximate covariance matrix of the associated parameter estimate. An estimating
function eφ is said to be Godambe optimal in a class of estimating functions eh
indexed by a set C of functions h, if the difference Gφ −Gh is non-negative definite
for all h ∈ C. Following Guan et al. (2015), a sufficient condition for eφ to be optimal
is that for every estimating function eh, h ∈ C,

Cov{eh(θ), eφ(θ)} = Sh. (2.6)

In the context of Takacs-Fiksel estimating functions (2.5),

d

dθ>
eh(θ) =

∑
u∈X

d

dθ>
h(u,X \ u; θ)−

∫
W

{
d

dθ>
h(u,X; θ)

}
λ(u,X; θ) du

−
∫
W

h(u,X; θ)
d

dθ>
λ(u,X; θ) du.
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So by the Georgii-Nguyen-Zessin formula (2.3),

Sh = E

∫
W

h(u,X; θ)
d

dθ>
λ(u,X; θ) du. (2.7)

The definition of the estimating function eh actually corresponds to the concept
of innovations for spatial point processes (Baddeley et al., 2005). Coeurjolly and
Rubak (2013) investigated the problem of estimating the covariance between two
innovations which, here, corresponds to the covariance between two estimating func-
tions. Assuming the right hand side below is finite, Coeurjolly and Rubak (2013,
Lemma 3.1) established that

Cov{eh(θ), eg(θ)} = E
[ ∫

W

h(u,X; θ)g(u,X; θ)>λ(u,X; θ) du

+

∫
W

∫
W

h(u,X; θ)g(v,X; θ)> {λ(u,X; θ)λ(v,X; θ)− λ({u, v},X; θ)} du dv

+

∫
W

∫
W

∆vh(u,X; θ)∆ug(v,X; θ)>λ({u, v},X; θ) du dv
]

(2.8)

where for any u, v ∈ W and any y ∈ Ω, the second order Papangelou conditional
intensity λ({u, v},y; θ) and the difference operator ∆uh(v,y; θ) are given by

λ({u, v},y; θ) = λ(u,y)λ(v,y ∪ u; θ) = λ(v,y; θ)λ(u,y ∪ v; θ)

∆uh(v,y; θ) = h(v,y ∪ u; θ)− h(v,y; θ).

Returning to the condition (2.6), we introduce for any y ∈ Ω the operator Ty
acting on Rp valued functions g,

Tyg(u) =

∫
W

g(v)t(u, v,y; θ) dv, (2.9)

where
t(u, v,y; θ) = λ(v,y; θ)

{
1− λ(v,y ∪ u; θ)

λ(v,y; θ)

}
. (2.10)

The finite range property of the Papangelou conditional intensity implies that for
any v /∈ B(u,R), t(u, v,y; θ) = 0. So the domain of integration in (2.9) is actually
just W ∩B(u,R). From (2.7)-(2.8), (2.6) is equivalent to E(A) + E(B) = 0 where

A =

∫
W

h(u,X; θ)λ(u,X; θ)

{
φ(u,X; θ)− λ(1)(u,X; θ)

λ(u,X; θ)
+ TXφ(u,X; θ)

}>
du

(2.11)

B =

∫
W

∫
W

∆vh(u,X; θ)∆uφ(v,X; θ)>λ({u, v},X; θ) du dv (2.12)

and λ(1)(u,X; θ) = dλ(u,X; θ)/ dθ.
The expectation E(B) is very difficult to evaluate. Moreover, in the context of

asymptotic covariance matrix estimation for the pseudolikelihood, Coeurjolly and
Rubak (2013) remarked that the contribution of the term (2.12) to the covariance
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Cov{eh(θ), eφ(θ)} was negligible. In the following we will neglect the term (2.12) and
call ‘semi-optimal’ a function φ : W × Ω → Rp (parameterized by θ) such that for
any h : W ×Ω→ Rp, E(A) = 0. We discuss this choice in more detail in Section 2.4.
Considering (2.11), φ is semi-optimal if for any y ∈ Ω, φ(·,y; θ) is the solution to
the Fredholm integral equation (e.g. chapter 3 in Hackbusch, 1995)

φ(·,y; θ) + Tyφ(·,y; θ) =
λ(1)(·,y; θ)

λ(·,y; θ)
. (2.13)

In practice, this equation is solved numerically, see Section 2.5 and Appendix A.
Having solved (2.13), the covariance and sensitivity matrices for the resulting

estimating function

eφ(θ) =
∑
u∈X

φ(u,X \ u; θ)−
∫
W

φ(u,X; θ)λ(u,X; θ) du (2.14)

are given by

S = E

∫
W

φ(u,X; θ)λ(1)(u,X; θ)> du

Σ = S + E

∫
W

∫
W

∆uφ(v,X; θ)∆vφ(u,X; θ)>λ({u, v},X; θ) du dv.

Note that for a truly optimal φ, we would have S = Σ. In the simulation studies
in Section 4.1, we investigate for the Strauss model how close S and Σ are for our
semi-optimal φ.

2.4 A comparison with optimal intensity estimation

In this section we compare our approach with the problem of optimal intensity
estimation for spatial point processes investigated and solved by Guan et al. (2015).
They consider estimating equations of the form

eh(θ) =
∑
u∈X

h(u; θ)−
∫
W

h(u; θ)λ(u; θ) du (2.15)

to estimate a parametric model λ(·; θ) for the intensity function. Using the Campbell
theorem, the sufficient condition (2.6) for eφ to be optimal is equivalent to∫

W

h(u; θ)λ(u; θ)

{
φ(u; θ)− λ(1)(u; θ)

λ(u; θ)
+ Tφ(u; θ)

}
du = 0, (2.16)

where the operator T acting on Rp valued functions g is given by

Tg(u) =

∫
W

g(v)λ(v; θ){pcf(v − u)− 1} dv,

where pcf is the so-called pair correlation function. We now compare (2.16) with the
condition E(A) + E(B) = 0 where A and B are given by (2.11)-(2.12).
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The terms A and (2.16) are similar where the roles played by the first and second
order Papangelou conditional intensities in A correspond to the ones played by the
intensity and pair correlation functions in (2.16). However, solving E(A) = 0 is much
more complex than solving (2.16). This is mainly due to that the function φ is, in the
present paper, a function of both u ∈ W and y ∈ Ω: the estimating function (2.15)
requires the computation of φ(v) for v ∈ W while our estimating function (2.5)
requires the evaluation of φ(u,x \ u) for data points u ∈ x as well as the evaluation
of φ(v,x) for v ∈ W , see Appendix A for details on the numerical implementation.

Further, due to the simpler form of (2.15), there is no term like B appear-
ing in (2.16). In the problem we consider, it is not possible to include B and still
obtain a condition that is manageable in practice. As mentioned in the previous
section, B has been observed to be negligible in certain applications in which case
our approach should lead to an estimating equation able to outperform the pseudo-
likelihood method. As far as we know, our work is the first in this direction.

2.5 Outline of implementation

Let x = {x1, . . . , xn} denote an observation of X. In practice we approximate the
integral in (2.9) by numerical quadrature whereby the integral equation (2.13) be-
comes a matrix equation where for each y = x,x \ x1, . . . ,x \ xn the unknown
quantity is the vector with components φ(uj;y; θ) where uj, j = 1, . . . ,m, denote
the m quadrature points. The detailed description of the implementation which is
quite technical and heavy on notation is given in the Appendix.

Depending on the choice of m the solution of the matrix equation involving a
sparse m×m matrix can be computationally quite costly. Since this has to be done
for each y = x,x\x1, . . . ,x\xn, our method is not recommended for point patterns
of large cardinality. In the data examples we provide some examples of computing
times. In our applications we use quadrature points located on a regular grid covering
W . Thus e.g. for a 50× 50 grid, m = 2500.

The solution of the matrix equation depends on that the matrix involved is posi-
tive definite. For purely repulsive models like the Strauss model and the Strauss hard
core model with θ2 < 0 this was always the case in the data examples and the sim-
ulation studies. However in cases of positive interaction where it is possible for the
integral operator kernel (2.10) to be negative, the condition of positive definiteness
was sometimes violated. This e.g. happened for the multiscale process considered
in Section 3.2 and Section 4.2. In such cases we simple returned the pseudolikeli-
hood estimate or restricted the kernel (2.10) to be non-negative, see Section 3.2 and
Section 4.2 for more details.

3 Data examples

In this section we present two applications. For the first Spanish towns dataset, we
apply a Strauss hard core model. For the second replicated point pattern dataset
from neuroscience, we consider a multiscale hard core model.
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3.1 Spanish towns dataset

Ripley (1988) and subsequently Illian et al. (2008) proposed to model the Spanish
towns dataset (see Figure 1) using a Strauss hard core model. We compare results
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Figure 1: Left: locations of 69 Spanish towns in a 40 miles by 40 miles region. Right:
95% confidence ellipses for the parameters (θ1, θ2) for the pseudolikelihood and the
semi-optimal Takacs-Fiksel methods.

regarding estimation of θ1 and θ2 using respectively the new semi-optimal method
and the pseudolikelihood. For the hard core distance and the interaction range we
use the values δ̂ = 0.83 and R̂ = 3.5 obtained using maximum likelihood by Illian
et al. (2008, p. 170). For the pseudolikelihood we use the unbiased logistic likelihood
implementation introduced in Baddeley et al. (2014) with a stratified quadrature
point process on a 50× 50 grid. The same grid is used for the semi-optimal Takacs-
Fiksel method.

Pseudolikelihood and semi-optimal estimates are presented in Table 1. The com-
puting time for obtaining the semi-optimal estimates is 25 seconds on a Lenovo
W541 laptop. Standard errors of the pseudolikelihood estimates (respectively the

θ1 θ2
SO -1.88 (0.12) -0.87 (0.08)
PL -1.96 (0.15) -0.89 (0.10)
Ratio se 0.79 0.79

Table 1: Results for Strauss hard core model applied to the Spanish towns dataset.
First and second row: semi-optimal (SO) and pseudolikelihood (PL) estimates with
estimated standard errors in parantheses. Last row: ratio of semi-optimal standard
errors to pseudolikelihood standard errors.

semi-optimal Takacs-Fiksel estimates) are estimated from 500 simulations of the
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model fitted using the pseudolikelihood (respectively the semi-optimal procedure).
The standard errors are clearly reduced with the semi-optimal Takacs-Fiksel method.
In addition to these results, we compute the Frobenius norm of the estimated covari-
ance matrices for the pseudolikelihood and optimal Takacs-Fiksel estimates (which
actually correspond to estimates of the inverse Godambe matrices). We obtained the
norm values 0.25 and 0.20 for the pseudolikelihood and the semi-optimal Takacs-
Fiksel methods respectively. Based on the asymptotic normality results established
by Baddeley et al. (2014) and Coeurjolly et al. (2012), we construct 95% confidence
ellipses for the parameter vector (θ1, θ2). The ellipses are depicted in the right plot
of Figure 1. The area of the confidence region for the semi-optimal Takacs-Fiksel
method is 81% of the one for the pseudolikelihood. In line with the simulation study
in Section 4.1, these empirical findings show that more precise parameter estimates
can be obtained with the semi-optimal Takacs-Fiksel method compared to pseudo-
likelihood.

3.2 Application to synaptic vesicles

Synapses are regions in the brain where nerve impulses are transmitted or received.
Inside the synapses, neurotransmitters are carried by small membrane-bound com-
partments called synaptic vesicles. Recently Khanmohammadi et al. (2014) studied
whether stress affects the spatial distribution of vesicles within the synapse. The
data used for the study originated from microscopial images of slices of brains from
respectively a group of 6 control rats and a group of 6 stressed rats. The images were
annotated to identify the boundaries of the synapses and possible mitochondria in
the synapses, the locations of the vesicles, and the extents of the so-called active
zones where the vesicles release their contents of neurotransmitters. Figure 2 shows
annotations of two images. One synapse was annotated for each rat except for one
control rat where two synapses were annotated. Thus in total 7 synapses from the
control rats and 6 synapses from the stressed rats were annotated. For each synapse
several images corresponding to several slices of the synapse were annotated. We
restrict here attention to the middle slice for each synapse. Thus, our data consist of
7 and 6 annotated images for respectively the control and the stressed rats. The side
lengths of enclosing rectangles for the synapses range between 396 and 1009 nm with
a mean of 663 nm. Further details on the dataset can be found in Khanmohammadi
et al. (2014).

3.2.1 Point process models for locations of vesicles

For the ith image of type t = C, S (control or stressed) we consider the centers
of the vesicles as a realization of a finite spatial point process Xti with observation
windowWti defined by the boundary of the synapse excluding areas occupied by mi-
tochondria. We further assume that the pairs (Wti,Xti) of the observation windows
and the spatial point processes for different images are independent, and that pairs
(Wti,Xti) of the same type t are identically distributed. Khanmohammadi et al.
(2014) modelled the locations of the vesicles as an inhomogeneous Strauss hard core
process, but noted some evidence of aggregation of vesicles at a larger scale not
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Figure 2: Plots of vesicle locations for a control (left) and a stressed (right) synapse.
The active zones are shown by the red curves while the green curves show the
boundaries of mitochondria. The yellow curves show the boundaries of the synapses
given by their cell membranes.

accommodated by this model. After considering the Strauss hard core model for ref-
erence, we therefore extend it to a multiscale model with an additional interaction
term. More precisely, for a location u and a configuration x of vesicle locations in a
synapse of type t, the conditional intensity is of the form

λt(u,x; θ) = exp{θ0t+θ1td(u)+θ2tsr(u,x)+θ3tsr,R(u,x)}Hδ(u,x), t = C, S (3.1)

where 0 ≤ δ < r < R, θ0t, θ1t, θ2t, θ3t ∈ R, d(u) is the distance to the active zone,
sr(u,x) is the number of points in x with distance to u smaller than r, sr,R(u,x)
denotes the number of points in x with distance to u in the interval [r, R], and the
hard core term Hδ(u,x) is one if all points in x ∪ u are separated by a distance
greater than δ and zero otherwise. The inhomogeneous Strauss hard core model is
the special case with θ3t = 0. As in Khanmohammadi et al. (2014), the hard core
distance h is set to 17.5nm corresponding to the average diameter of a vesicle and
the interaction distance r is set to 32.5nm. We further choose the value of R = 107.5
nm to maximize a profile pseudolikelihood based on the data for all 13 images. We
finally scale the distances d(·) by a factor 10−3 in order to obtain θlt estimates of
the same order of magnitude.

3.2.2 Inference for replicated point patterns

Let e(ti) denote an estimating function (either the pseudolikelihood score or the
semi-optimal) for the tith image and denote by θt the vector of parameters to be in-
ferred, t = C, S. Then for each type t = C, S we optimally form a pooled estimating
function e(t) as the sum of the e(ti)’s. Following standard asymptotic arguments for
pooled independent estimating functions, the variance of the corresponding param-
eter estimate is approximated as

Var
{√

nt(θ̂t − θt)
}
≈ (St1)−1 Var

{
e(t1)

}
(St1)−1

(the so-called sandwich estimator, Song, 2007) where nt is the number of replicates
of type t and St1 is the sensitivy matrix associated with e(t1). In practice we replace
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θ0C θ1C θ2C
SO -6.74 (0.21) -0.68 (0.20) -2.79 (1.00)
PL -6.80 (0.21) -0.66 (0.22) -2.61 (1.00)
Ratio se 1.01 0.80 1.02

θ0S θ1S θ2S
SO -5.51 (0.23) -1.14 (0.47) -0.61 (0.21)
PL -5.63 (0.24) -1.12 (0.49) -0.45 (0.24)
Ratio se 0.93 0.91 0.78

Table 2: Results for Strauss hard core process. Semi-optimal (SO) and pseudolike-
lihood (PL) estimates with estimated standard errors in parantheses and ratios of
semi-optimal standard errors to pseudolikelihood standard errors. First three rows:
control. Last three rows: stressed. Ratios of standard errors were computed before
rounding standard errors to two digits.

St1 and Var{e(t1)} by their empirical estimates replacing the unknown θt with its
estimate. We conduct the pseudolikelihood estimation for the replicated data using
the user-friendly mppm procedure in the R package spatstat while using our own
code to evaluate the approximate variances of the pseudolikelihood or semi-optimal
estimates.

3.2.3 Results for synapse data

Table 2 shows parameter estimates and associated standard errors obtained for the
Strauss hard core model with either the pseudolikelihood or the semi-optimal ap-
proach. Except for θ2S, the semi-optimal and pseudolikelihood estimates are fairly
similar. The qualitative conclusions based on the two types of estimates are identi-
cal: negative dependence of conditional intensity on distance and repulsion between
vesicles both in the control and the stressed group. The estimated semi-optimal
standard errors are smallest for all parameters in the stressed group and θ1C in the
control groups. For θ0C and θ2C the estimated semi-optimal and pseudolikelihood
standard errors are very similar.

Due to the aforementioned evidence of large scale aggregation we turn to the
multiscale model for a more detailed comparison of the control and the stressed
group. To avoid problems with negative definiteness in the numerical implementation
(see Section 2.5) we restricted θ2t and θ3t, t = C, S, to be less or equal to zero
inside the kernel (2.10). Parameter estimates and associated standard errors for
the multiscale model are shown in Table 3. The qualitative conclusions based on
the pseudolikelihood and the semi-optimal estimates coincide. All parameters are
significantly different from zero (assuming estimate divided by its standard error is
approximately N(0, 1)). In particular the positive estimates of θ3C and θ3S confirm
that there is aggregation at a larger scale. The negative estimates of θ1t, t = C, S
indicate that the conditional intensity is decreasing as a function of distance to the
active zone while, according to the estimates of θ2t, there appears to be a strong
respectively moderate small scale interaction for the control group and the stressed
group.

To test the hypotheses: Hl: θlS = θlC , l = 0, 1, 2, 3, we consider statistics of the
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θ0C θ1C θ2C θ3C
SO -8.87 (0.12) -0.47 (0.11) -3.40 (0.78) 0.45 (0.02)
PL -8.71 (0.13) -0.46 (0.12) -3.35 (0.80) 0.40 (0.02)
Ratio se 0.94 0.93 0.98 1.01

θ0S θ1S θ2S θ3S
SO -7.87 (0.21) -0.48 (0.26) -1.17 (0.18) 0.26 (0.02)
PL -7.84 (0.19) -0.69 (0.27) -1.12 (0.18) 0.24 (0.02)
Ratio se 1.12 0.96 0.97 1.07

Table 3: Results for multiscale process. Semi-optimal (SO) and pseudolikelihood
(PL) estimates with estimated standard errors in parantheses and ratios of semi-
optimal standard errors to pseudolikelihood standard errors. First three rows: con-
trol. Last three rows: stressed. Ratios of standard errors were computed before round-
ing standard errors to two digits.

form (θ̂lS− θ̂lC)/
√

se2lS + se2lC where se2lt denotes the estimated standard error of the
estimate θ̂lt t = S,C and the estimates are obtained either using the semi-optimal
approach or pseudolikelihood. Under the hypothesis this statistic is approximately
N(0, 1). According to these tests, H0 and H2 and H3 are rejected while H1 is not
irrespective of the estimation method (p-values adjusted for multiple testing using
Holm (1979)’s procedure are < 0.001, 0.96, 0.02, < 0.0001 and < 0.001, 0.88, 0.02, <
0.0001 for semi-optimal and pseudolikelihood, respectively). There is thus evidence
that the repulsion between vesicles is stronger for the control rats than for the
stressed rats which means that the vesicles tend to form more regular patterns for
the control rats.

For the control data, the estimated standard errors are smallest with the semi-
optimal approach except for θ3C . For the stressed rats the semi-optimal standard
errors are smallest for θ1S and θ2S but not for θ0S and θ3S. Overall, a clear pat-
tern is not visible. Note also that the ratios of estimated standard errors should be
interpreted with care as they are obviously subject to sampling error. We further
compare semi-optimal and pseudolikelihood for the multiscale model in Section 4.2.

The total computing time for fitting the multiscale model to the control and
stressed rats datasets is respectively 24 and 18 minutes on a Lenovo W541 laptop.
The results shown are obtained using a 80× 80 grid. For comparison we also tried a
60× 60 grid and got very similar results but with computing time reduced to 6 and
5 minutes. The computing time can be further reduced by running computations for
each synapse in parallel.

4 Simulation study

This section investigates by simulation studies the performance of the semi-optimal
approach when applied to the models used in the data examples in Section 3.
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4.1 Strauss model

To study the performance of our semi-optimal estimating function relative to the
pseudolikelihood score, we apply both estimating functions to simulations of a
Strauss process (Section 2.1) on the unit square (equivalent to a Strauss hard core
model with δ = 0). We use the spatstat (Baddeley and Turner, 2005) procedure
rStrauss() to generate exact simulations of the Strauss process for β = exp(θ1) =
100 and all combinations of R = 0.04, 0.08, 0.12 and γ = exp(θ2) = 0.1, 0.2, 0.4, 0.8.
In the following, we specify parameter settings in terms of the parameters (β, γ) due
to their ease of interpretation. We however compare the efficiency of the pseudolike-
lihood and the semi-optimal estimation methods based on the estimates of θ1 and
θ2 which are typically closer to being normal than the estimates of β and γ.

The semi-optimal estimating function is implemented using a 50× 50 or a 75×
75 grid. As in the previous sections, for the pseudolikelihood we use the unbiased
logistic likelihood implementation with a stratified quadrature point process. For
both estimation methods, R is assumed to be known and equal to the value used to
generate the simulations. The biases of the semi-optimal and the pseudolikelihood
estimates are very similar. The bias relative to the true parameter estimate is very
small (−1 to 1%) for θ1 but can be substantial for θ2 (up to 28% in case of γ =
exp(θ2) = 0.8 and R = 0.04). However, in all cases the bias is negligible relative to
the estimation variance. We therefore focus on root mean square error (RMSE) when
comparing the two methods. Due to the small bias relative to estimation variance
we would have obtained essentially the same results by replacing RMSE with the
standard error of the simulated estimates.

For the parameters θ1 and θ2, Table 4 shows for each parameter setting, the
RMSE of the pseudolikelihood estimates minus the RMSE of the semi-optimal esti-
mates relative to the RMSE of the pseudolikelihood estimates. For each parameter
setting, the RMSEs are estimated from a sample of 1000 parameter estimates ob-
tained from 1000 simulations. We omit simulations where all interpoint distances are
larger than R and thus neither the pseudolikelihood nor the semi-optimal estimates
of (θ1, θ2) exist (if one considered instead (β, γ), an alternative would be to let the
estimate of γ be equal to zero when all interpoint distances are greater than R).
The reported relative differences in RMSE are subject to Monte Carlo error. Ta-
ble 4 therefore also shows estimated standard errors for these obtained by applying
a bootstrap to each Monte Carlo sample.
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Interaction parameter γ = exp(θ2)
Range 0.1 0.2 0.4 0.8

and grid θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2
R = 0.04

(50,50) -1 (0.5) 1 (0.3) -1 (0.4) 0 (0.2) -2 (0.3) 0 (0.3) -2 (0.2) 0 (0.3)
(75,75) -1 (0.4) 0 (0.2) -1 (0.3) 0 (0.2) -1 (0.3) 0 (0.2) -1 (0.2) 0 (0.2)

R = 0.08

(50,50) 3 (1) 1 (0.6) 0 (0.9) 0 (0.6) 5 (0.8) 2 (0.7) 4 (0.5) 2 (0.7)
(75,75) 2 (0.8) 2 (0.5) 3 (0.9) 2 (0.6) 2 (0.8) 1 (0.7) 1 (0.5) 1 (0.6)

R = 0.12

(50,50) 3 (1.2) 5 (0.8) 4 (1.1) 3 (1) 6 (1.3) 4 (1.3) 5 (1) 4 (1.2)
(75,75) 3 (1.3) 5 (0.9) 7 (1.2) 4 (1) 7 (1.3) 5 (1.2) 7 (1.1) 6 (1.4)

Table 4: RMSE for pseudolikelihood minus RMSE for semi-optimal relative to RMSE
for pseudolikelihood (in percent) in case of estimation of θ1 and θ2. Grids of 50×50 or
75× 75 quadrature points are considered. Numbers between brackets are bootstrap
standard errors (in percent).

In case of R = 0.04, there is no efficiency improvement by using the semi-optimal
estimating function. In fact the semi-optimal approach appears to be sometimes
slightly worse than pseudolikelihood, even when taking into account the Monte Carlo
error of the estimated relative differences in RMSE. However, for R = 0.08 and
R = 0.12 the semi-optimal approach is always better with decreases up to 5 and
7% in RMSE for semi-optimal relative to RMSE for pseudolikelihood. The results
regarding the performance of semi-optimal relative to pseudolikelihood are quite
similar for the two choices of grids with slightly more favorable results for semi-
optimal in case of the 75×75 grid and R = 0.12. For R = 0.04 the expected number
of points varies from 71 to 92 when γ varies from 0.1 to 0.8. For R = 0.08 and
R = 0.12 the corresponding numbers are 43-75 and 28-61. There does not seem to
be a clear dependence on the expected number of simulated points regarding the
performance of semi-optimal relative to pseudolikelihood.

For an optimal estimating function and at the true parameter value, the co-
variance matrix Σ of the estimating function coincides with the sensitivity matrix
S. Table 5 shows the estimated relative differences (Sij − Σij)/Σij in percent for
the pseudolikelihood and semi-optimal estimating functions. For neither of the es-
timating functions, the covariance and sensitivity agree. However, in general the
relative deviations are larger for pseudolikelihood than for semi-optimal. To inves-
tigate this further, we have computed the Frobenius norms of the matrices with
entries (Sij − Σij)/Σij. The results (not shown) indicate that the Frobenius norms
for the semi-optimal method are smaller than the corresponding ones for the pseu-
dolikelihood for all cases except γ = 0.8 and R = 0.04.

4.2 Multiscale hard core model

For the multiscale hard core process with conditional intensity

λ(u,x; θ) = exp{θ0 + θ1d(u) + θ2sr(u,x) + θ3sr,R(u,x)}Hδ(u,x)
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Interaction parameter γ = exp(θ2)
Interaction range 0.1 0.2 0.4 0.8

SO, R = 0.04 3 -17 -48 5 -5 -49 2 15 -44 3 -4 -46
0.08 -5 -31 -50 -2 -16 -44 3 -7 -40 1 1 -33
012 -10 -38 -45 -10 -36 -49 -7 -23 -41 -5 -10 -26

PL, R = 0.04 41 -4 -46 40 11 -47 27 34 -41 12 4 -43
0.08 87 -4 -46 80 20 -35 71 35 -27 30 27 -20
0.12 119 -3 -37 102 6 -35 87 31 -18 41 32 0

Table 5: Relative difference (in percent) between sensitivity and variance of estimat-
ing function, (Sij − Σij)/Σij, ij = 11, 12, 22. Upper three rows: semi-optimal (SO).
Lower three rows: pseudolikelihood (PL). A grid of 75 × 75 quadrature points is
used.

we consider three settings inspired by the synaptic vesicles data example. The process
is simulated on the unit square and we let d(u) = x be the first coordinate of
u = (x, y) ∈ [0, 1]2 and θ1 = −0.5 to obtain a decreasing trend in the first spatial
coordinate. The terms sr and sr,R and the factor Hδ are defined as below (3.1) with
hard core distance δ = 0.01 and interaction ranges r = 0.08 and R = 0.16. The
values of γ2 = exp(θ2) and γ3 = exp(θ3) are (γ2, γ3) = (0.2, 1), (γ2, γ3) = (0.2, 1.25)
and (γ2, γ3) = (0.2, 1.5). Note that γ3 = 1 corresponds to the null hypothesis of
no large scale interaction. The values of β = exp(θ0) = 100, 60, 40 are adjusted to
produce on average 40 points for each of the three parameter settings.

Following the approach in the previous section, Table 6 shows for each param-
eter setting, the root mean square error (RMSE) of the pseudolikelihood estimates
minus the RMSE of the semi-optimal estimates relative to the RMSE of the pseu-
dolikelihood estimates (estimated using 1000 simulations and using a 60× 60 grid).
As in the previous section we omit cases where neither the semi-optimal nor the
pseudolikelihood estimates of θ = (θ0, θ1, θ2, θ3) exist. For the setting with γ3 = 1.5
(last two rows of Table 6) we often (24% of the simulations) encountered negative
definiteness in the numerical computations. The results in the last row of Table 6
are obtained with θ2 and θ3 restricted to be less than or equal to zero inside the
kernel (2.10) in which case the negative definiteness only occurred for 2% of the sim-
ulations. As mentioned in Section 2.5, we just return the pseudolikelihood estimates
in the cases where the semi-optimal approach fails.

For γ3 = 1 and γ3 = 1.25 the semi-optimal approach performs much better
than pseudolikelihood with decreases in relative RMSE of up to 10%. In case of
γ3 = 1.5 decreases up to 5% are obtained in the last row with the restricted version
of the kernel (2.10). With γ3 = 1.5 and without restriction (third row), only very
moderate decreases are obtained for θ0, θ1 and θ3 while for θ2, the semi-optimal
approach appears to be slightly worse than pseudolikelihood.

5 Discussion

In this paper, we have investigated the scope for outperforming the pseudolikelihood
by tuning weight functions for the Takacs-Fiksel estimator. Due to the complicated
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θ0 θ1 θ2 θ3
(β, γ2, γ3)
(100,0.2,100)

5 (1) 6 (1) 3 (1) 10 (1)
(60,0.2,1.25)

7 (1) 4 (1) 2 (1) 10 (1)
(40,0.2,1.5)

3 (1) 1 (1) -1 (1) 1 (1)
(40,0.2,1.5)

0 (1) 5 (1) 2 (1) 5 (1)

Table 6: RMSE for pseudolikelihood minus RMSE for semi-optimal relative to RMSE
for pseudolikelihood (in percent) in case of estimation of (θ0, θ1, θ2, θ3). Numbers
between brackets are bootstrap standard errors (in percent). In the last row, θ2 and
θ3 are restricted to be non-positive in the kernel (2.10).

nature of moments for Gibbs point processes, the method is less straightforward
than the one proposed by Guan et al. (2015) for estimating the intensity function of
a spatial point process. Therefore our new Takacs-Fiksel method is not guaranteed
to be optimal. It is also computationally more expensive than the approach in Guan
et al. (2015) because the weight function needs to be evaluated for both the observed
point pattern and all patterns obtained by omitting one point at a time.

In the simulation studies we have demonstrated that the new semi-optimal ap-
proach can yield better statistical efficiency both for purely repulsive point processes
and also certain multiscale models with moderate positive interaction. In presence
of stronger positive interactions, the method is, however, susceptible to numerical
problems. These numerical problems can, to some extent, be mitigated by intro-
ducing restrictions in the kernel (2.10). When comparing the methods, the higher
computational complexity of the semi-optimal approach should also be taken into
account. Thus, while we have made a significant step towards optimal Takacs-Fiksel
estimation there is still room for further improvement.
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A Implementation

Let x = {x1, . . . , xn} denote a realization of X. To solve eφ(θ) = 0, we use Newton-
Raphson iterations starting at the pseudolikelihood estimate with the Hessian matrix
estimated by the empirical sensitivity matrix Ŝ =

∫
W
φ(u,x; θ)λ(1)(u,x; θ)> du. To

evaluate eφ and Ŝ we need to solve (2.13) with respect to φ(·;y; θ) for all y =
x,x \ x1, . . . ,x \ xn.

A.1 Symmetrization

To ease the implementation and in particular the use of Cholesky decompositions,
we symmetrize the operator Ty. This is possible if we assume for any u, v ∈ W and
y ∈ Ω, the ratio λ(v,y∪u; θ)/λ(v,y; θ) is symmetric in u and v. This assumption is
valid for instance for all pairwise interaction point processes. Indeed, the Papangelou
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conditional intensity of such processes is given by λ(u,y; θ) = e
∑

w∈y ψ({w,u};θ) where
ψ is a real valued function, whereby λ(v,y ∪ u; θ)/λ(v,y; θ) = eψ({v,u};θ).

We now multiply each term of (2.13) by
√
λ(·,y; θ) and reformulate the problem

to solve

φ̃(·,y; θ) + T̃yφ̃(·,y; θ) =
λ(1)(·,y; θ)√
λ(·,y; θ)

(A.1)

with respect to the function φ̃(·,y; θ) =
√
λ(·,y; θ)φ(·,y; θ) where T̃y is the operator

with kernel

t̃(u, v,y; θ) =
√
λ(u,y; θ)λ(v,y; θ)

{
1− λ(v,y ∪ u; θ)

λ(v,y; θ)

}
.

Once we have obtained the function φ̃, we obtain the semi-optimal function φ by
φ(u,y; θ) = φ̃(u,y; θ)/

√
λ(u,y; θ).

A.2 Numerical solution using Nyström approximation

The equation (A.1) is solved numerically using the Nyström approximation (Nys-
tröm, 1930). We introduce a quadrature scheme with m quadrature points
u1, . . . , um ∈ W and associated weights wj, j = 1, . . . ,m, and approximate the
operator Ty for any Rp valued function g by

Tyg(u) ≈
m∑
j=1

g(uj)t(u, uj,y; θ)wj.

Introducing the quadrature approximation in (A.1) and multiplying each term by√
wi, we obtain

√
wiφ̃(ui,y; θ), i = 1, . . . ,m, as solutions of the linear equations

√
wiφ̃(ui,y; θ) +

m∑
j=1

√
wiwj t̃(ui, uj,y; θ)

√
wjφ̃(uj,y; θ) =

√
wi

λ(1)(ui,y; θ)√
λ(ui,y; θ)

,

for i = 1, . . . ,m. These equations can be reformulated as the matrix equation{
Im + T̃(y; θ)

}√
wφ̃(y; θ) = `(y; θ) (A.2)

where Im is the m × m identity matrix, T̃(y; θ) =
{√

wiwj t̃(ui, uj,y; θ)
}
ij
, i, j =

1, . . . ,m, `(y; θ) is the m × p matrix with rows
√
wiλ

(1)(ui,y; θ)>/
√
λ(ui,y; θ),

i = 1, . . . ,m, and
√
wφ̃(y; θ) is the m × p matrix with rows

√
wiφ̃(ui,y; θ)>. The

symmetric matrix T̃(y; θ) is sparse due to the finite range property. Thus, provided
that Im + T̃(y; θ) is positive definite, the matrix equation can be solved with re-
spect to

√
wφ̃(y; θ) using sparse Cholesky factorization (see Davis, 2006, and the R

package Matrix).
Having solved (A.2) with respect to

√
wφ̃(y; θ), and thus obtaining estimates of√

wiφ̃(ui,y; θ), we obtain estimates φ̂(ui,y; θ) of φ(ui,y; θ) via the relation
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φ̂(ui,y; θ) = φ̃(ui,y; θ)/
√
wiλ(ui,y; θ). Letting φ̂(y; θ) be the m × p matrix with

rows φ̂(uj,y; θ)> the Nyström approximation of φ(u,y; θ) for any u ∈ W is

φ̂(u,y; θ) ≈ λ(1)(u,y; θ)

λ(u,y; θ)
− φ̂(y; θ)>{wjt(u, uj,y; θ)}mj=1.

In particular, we obtain the approximations φ̂(u,x \ u; θ) of φ(u,x \ u; θ), u ∈ x,
which are needed to evaluate the first term in (2.14). Finally, the integral term in
(2.14) and the empirical sensitivity are approximated by

φ̂(x; θ)>{wjλ(uj,x; θ)}mj=1 and φ̂(x; θ)>wλ(1)(x; θ)

where wλ(1)(x; θ) is the m× p matrix with rows wjλ(1)(uj,x; θ)>.

A.3 Some computational considerations

The matrix Im + T̃(y; θ) is not guaranteed to be positive definite. In case of purely
repulsive point processes (Papangelou conditional intensity always decreasing when
neighbouring points are added), all entries in T̃(y; θ) are positive and we did not
experience negative definite Im + T̃(y; θ). However, with models allowing for pos-
itive interaction, we occasionally experienced negative definiteness in which case
a solution for φ(·,y; θ) cannot be obtained. In such case we simply returned the
pseudolikelihood estimate.

In case of a quadrature scheme corresponding to a subdivision of W into square
cells of sidelength s the computational complexity of one Newton-Raphson update
is roughly of the order (n + 1)m(R/s)2. Thus, the semi-optimal approach is less
feasible for data with a high number n of points. Thus we would not recommend
using the method for datasets with thousands of points while it is presently quite
feasible for datasets with a few hundred points.

In case of e.g. the Strauss hard core process we may encounter λ(uj,y; θ) = 0.
In this case, we use the conventions λ(1)(uj,y; θ)/

√
λ(uj,y; θ) = 0 and λ(uj,y ∪

uj; θ)/λ(uj,y; θ) = 0.
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