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Equational descriptions of languages∗

Jean-Éric Pin1

May 28, 2012

Abstract

This paper is a survey on the equational descriptions of languages.

The first part is devoted to Birkhoff’s and Reiterman’s theorems on equa-

tional descriptions of varieties. Eilenberg’s variety theorem and its suc-

cessive generalizations form the second part. The more recent results on

equational descriptions of lattices of languages are presented in the third

part of the paper.

Equations have been used for a long time in mathematics to provide a concise
description of various mathematical objects. This article roughly follows a his-
torical approach to present such equational descriptions for formal languages,
ranging over a period of 45 years: from Schützenberger’s characterization of
star-free languages [36] to the following recent result of [18]: Every lattice of
languages admits an equational description.

This evolution was made possible by a gradual abstraction of the notion of
equation. The story really starts in 1935 with Birkhoff’s theorem on equational
classes [6]. It holds for any kind of universal algebra, but I will present it only
for monoids.

1 Varieties and identities

A Birkhoff variety of monoids is a class of (possibly infinite) monoids which is
closed under taking submonoids, homomorphic images (also called quotients)
and arbitrary direct products.

Birkhoff’s theorem states that a class of monoids is a Birkhoff variety if
and only if it can be defined by a set of identities. Formally, an identity is an
equality between two words of the free monoid Σ∗ on a countable alphabet Σ.
A monoid M satisfies the identity u = v if and only if ϕ(u) = ϕ(v) for every
morphism ϕ : Σ∗ → M . For instance, the identity xy = yx defines the variety
of commutative monoids and x = x2 defines the variety of idempotent monoids.

It is easy to see that if E is a set of identities, the class of monoids satisfying
all the identities of E is a variety, denoted JEK, and called the Birkhoff variety
defined by E. The difficult part of Birkhoff’s theorem is to prove that the
converse also holds: for each Birkhoff variety V, there exists a set of identities
E such that V = JEK. Note that the set E might be infinite. For instance, if

1LIAFA, CNRS and Univ. Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France.
∗The author acknowledges support from the project ANR 2010 BLAN 0202 02 FREC.
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M = {1, a, b, ab, ba, 0} with aba = a, bab = b and aa = bb = 0, then the Birkhoff
variety generated by M is not finitely based: no finite set of identities suffices
to define it [21].

An important step forward was Reiterman’s customization of Birkhoff’s the-
orem for varieties of finite monoids.

A variety of finite monoids is a class of finite monoids which is closed under
taking submonoids, quotients and finite direct products. For instance, the class
of finite aperiodic1 monoids forms a variety. Similarly, the class of J -trivial2

monoids forms a variety. The class of all finite groups also forms a variety of
finite monoids.

It is a natural question to ask whether varieties of finite monoids can also
be defined by identities. The problem was solved by several authors but the
most satisfactory answer is due to Reiterman [34] (see also [3]). A little bit of
topology is required to state this theorem.

A finite monoid M separates two words u and v of A∗ if there is a monoid
morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
Card(M) | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted
by Â∗. The (concatenation) product on A∗ can be extended by continuity to

Â∗, making Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words. It is not so easy to give examples of
profinite words which are not words, but here is one. In a compact monoid,
the smallest closed subsemigroup containing a given element x has a unique
idempotent, denoted xω . This is true in particular in a finite monoid and in the
free profinite monoid. Thus if x is a (profinite) word, so is xω . In fact, one can
show that xω is the limit of the converging sequence xn!. More details can be
found in [1, 27].

Every finite monoid M can be considered a discrete metric space for the
metric d, defined by d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise. Now, every
morphism ϕ from A∗ into a finite monoid is uniformly continuous and therefore
can be extended (in a unique way) into a uniformly continuous morphism ϕ̂ from

Â∗ toM . It follows for instance that if x is a profinite word, then ϕ̂(xω) = ϕ̂(x)ω .

Let u and v be two profinite words of Â∗. A monoid M satisfies the profinite
identity u = v if, for each monoid morphism ϕ : A∗ → M , one has ϕ̂(u) = ϕ̂(v).

Reiterman’s theorem states that a class of finite monoids is a variety if
and only if it can be defined by a set of profinite identities. Thus the core
of Reiterman’s theorem is a topological extension of Birkhoff’s theorem. For
instance, the variety of aperiodic monoids is defined by the identity xω+1 = xω.
The variety of J -trivial monoids is defined by the identities xω+1 = xω and
(xy)ω = (yx)ω . The variety of finite groups is defined by the identity xω = 1.

1An element x of a monoid is aperiodic if there exists an integer n > 0 such that xn+1 = xn.

A finite monoid is aperiodic if all its elements are aperiodic.
2In a monoid, the 6J preorder is defined by u 6 v if u = xvy for some x, y ∈ M . A monoid

is J -trivial when this preorder is an order.
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2 Eilenberg’s variety theorem

Let us now come back to languages. A regular language is said to satisfy a
profinite identity if its syntactic monoid satisfies this identity. The first example
of profinite identities defining a class of regular languages is a consequence of
Schützenberger’s theorem on star-free languages [36].

Theorem 2.1 Let L be a regular language. The following conditions are equiv-
alent:

(1) L is star-free,

(2) the syntactic monoid of L is aperiodic,

(3) L satisfies the identity xω+1 = xω.

Another famous example is Simon’s theorem on piecewise testable languages.
Let us call simple a language of the form

A∗a1A
∗a2A

∗ · · · akA
∗

where k > 0 and a1, a2, . . . , ak ∈ A. A language is piecewise testable if it is
a Boolean combination of simple languages. Simon proved the following result
[37].

Theorem 2.2 Let L be a regular language. The following conditions are equiv-
alent:

(1) L is piecewise testable,

(2) the syntactic monoid of L is J -trivial,

(3) L satisfies the identities xω+1 = xω and (xy)ω = (yx)ω.

These theorems and similar results led Eilenberg to his celebrated variety the-
orem. Let me first recall some standard definitions.

A lattice of languages is a set L of languages of A∗ containing ∅ and A∗ and
closed under finite unions and finite intersections. It is closed under quotients3

if, for each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L. A
lattice is a Boolean algebra if it is closed under complement.

A class of languages C associates with each finite alphabet A a set C(A∗) of
regular languages of A∗. It is closed under inverses of morphisms if, for each
morphism ϕ : A∗ → B∗, the condition L ∈ C(B∗) implies ϕ−1(L) ∈ C(A∗).

A variety of languages is a class of languages V such that:

(1) for each alphabet A, V(A∗) is a Boolean algebra of languages closed under
quotients,

(2) V is closed under inverses of morphisms.

Eilenberg’s variety theorem [13] gives a bijective correspondence between vari-
eties of finite monoids and varieties of languages.

Theorem 2.3 Let V be a variety of finite monoids. For each alphabet A, let
V(A∗) be the set of all languages of A∗ whose syntactic monoid is in V. Then
V is a variety of languages. Further, the correspondence V → V is a bijection
between varieties of monoids and varieties of languages.

3Recall that u−1L = {x ∈ A∗ | ux ∈ L} and Lu−1 = {x ∈ A∗ | xu ∈ L}.
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The conjunction of Eilenberg’s and Reiterman’s theorems gives the following
result.

Corollary 2.4 Any variety of languages can be defined by a set of profinite
identities.

For instance, the variety of star-free languages is defined by the profinite
identity xω+1 = xω. The variety of piecewise testable languages is defined by
the two identities xω+1 = xω and (xy)ω = (yx)ω .

The Eilenberg-Reiterman theorem is also useful to analyse the expressive
power of various fragments of first order logic interpreted on finite words. One
associates to each nonempty word u = a0a1 . . . a|u|−1 over the alphabet A a
relational structure

Mu = {(0, 1, . . . , |u| − 1), <, (a)a∈A}

where < is the usual order on the domain and a is a predicate giving the
positions i such that ai = a. For instance, if u = abbaaba, then a = {0, 3, 4, 6}
and b = {1, 2, 5}. Given a formula ϕ, the language defined by ϕ is L(ϕ) = {u ∈
A+ | Mu satisfies ϕ}. Since languages may contain the empty word, we make
the convention that a language L of A∗ is defined by ϕ if L(ϕ) = L ∩ A+.

McNaughton and Papert [20] showed that a language is first-order definable
(in the signature {<, (a)a∈A}) if and only if it is star-free. Thomas [40] (see
also [22]) refined this result by showing that the concatenation hierarchy of
star-free languages is, level by level, in correspondence with the Σn-hierarchy of
first order formulas. In particular, he showed that the Boolean closure of Σ1-
formulas, denoted by BΣ1[<], captures exactly the piecewise testable languages.
These results provide an equational description of FO[<] and BΣ1[<] which can
be formulated as follows:

Theorem 2.5 The following formulas hold: FO[<] = Jxω+1 = xωK and BΣ1[<
] = Jxω+1 = xω , (xy)ω = (yx)ωK.

3 Bringing order. . .

Originally motivated by an attempt to give a purely algebraic characterization
of the regular open sets of the pro-group topology [24, 26], the author proposed
an extension to Eilenberg’s variety theorem [25] that covers classes of languages
that are not necessarily closed under complement. The idea is to use ordered
monoids instead of monoids. Let us briefly recall the main definitions.

An ordered monoid is a monoid equipped with an order 6 compatible with
the multiplication: x 6 y implies zx 6 zy and xz 6 yz. Morphisms between
ordered monoids are required to be order preserving. A variety of finite or-
dered monoids is a class of finite ordered monoids closed under taking ordered
submonoids, quotients and finite direct products.

Reiterman’s theorem was adapted to ordered structures in [30]. In particular
a class of finite ordered monoids is a variety if and only if it can be defined by
a set of profinite identities of the form u 6 v.

Before stating the extension of Eilenberg’s theorem, we need to introduce
the syntactic ordered monoid of a language. Let L be a language of A∗. This
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notion was first introduced by Schützenberger in 1956 [35], but thereafter, he
apparently only used the syntactic monoid.

The syntactic preorder of L is the relation 6L defined on A∗ by u 6L v if
and only if, for every x, y ∈ A∗,

xuy ∈ L ⇒ xvy ∈ L

In earlier papers [5, 8, 11, 12, 17, 18, 23, 25, 26, 27, 28], I used the opposite
order, but this one is considered more intuitive by many people. There are also
strong topological arguments, which cannot be detailed in this paper, in favour
of this order.

Note that the syntactic congruence of L is the associated equivalence relation
∼L, defined by u ∼L v if and only if u 6L v and v 6L u.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the
natural morphism η : A∗ → A∗/∼L is called the syntactic morphism of L. The
syntactic preorder 6L induces an order on the quotient monoid M(L). The
resulting ordered monoid is called the syntactic ordered monoid of L.

For instance, let L be the language {a, aba}, its syntactic monoid is the
monoidM = {1, a, b, ab, ba, aba, 0} presented by the relations a2 = b2 = bab = 0.
Its syntactic order is 0 < ab < 1, 0 < ba < 1, 0 < aba < a, 0 < b.

A positive variety of languages is a class of languages V such that,

(1) for each alphabet A, V(A∗) is a lattice of languages closed under quotients,

(2) V is closed under inverses of morphisms.

We can now state the ordered counterpart to Eilenberg’s theorem [25].

Theorem 3.1 Let V be a variety of ordered monoids. For each alphabet A,
let V(A∗) be the set of all languages of A∗ whose syntactic ordered monoid is
in V. Then V is a positive variety of languages. Further, the correspondence
V → V is a bijection between varieties of ordered monoids and positive varieties
of languages.

The conjunction of this theorem and the ordered version of Reiterman’s
theorem gives the following corollary.

Corollary 3.2 Any positive variety of languages can be defined by a set of
profinite identities of the form u 6 v.

For instance, the positive variety of regular open sets of the pro-group topol-
ogy is defined by the identity 1 6 xω [24, 26].

Here is another example from [25]. A shuffle ideal is a finite union of simple
languages. Shuffle ideals form a positive variety, defined by the identity 1 6 x.

Corollary 3.2 also allows one to study new logic fragments. For instance,
shuffle ideals are captured by Σ1[<], and thus Σ1[<] = J1 6 xK.

4 C-varieties

Eilenberg’s variety theorem and its ordered version proved to be a powerful tool
for studying classes of regular languages. However, some important families of
languages arising in language theory do not form positive varieties. To study
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some of these classes of languages, Straubing [39] and independently Ésik [14]
introduced a more general definition.

Let us say that a morphism ϕ : A∗ → B∗ is length-preserving (p) if, for each
u ∈ A∗, the words u and ϕ(u) have the same length, or equivalently, if for each
letter a ∈ A, ϕ(a) is a letter. Similarly, ϕ is length-decreasing (d) if the image of
each letter is either a letter or the empty word, and length-increasing (i) if the
image of each letter is a nonempty word. Finally, it is length-multiplying (m) if
there is an integer k such that the image of any letter is a word of length k.

Let C be a class of morphisms between free monoids, closed under composi-
tion and containing all p-morphisms. Examples include the classes of all [p-, d-,
i-, m-] morphisms.

A [positive] C-variety of languages is a class V of regular languages satisfying
the first condition defining a [positive] variety but only a weaker version of the
second condition of this definition:

(2′) V is closed under inverses of C-morphisms.

When C is the class of p- [d-, i-, m-]morphisms, we use the term p-variety [d-,
i-, m-variety].

To obtain a variety theorem for C-varieties, one needs to consider a new
type of objects, called stamps. A stamp is a surjective morphism from A∗ onto
a finite monoid. In particular, the syntactic stamp of a regular language of A∗

is its syntactic morphism. Then one can define an appropriate notion of variety
of stamps, which corresponds bijectively to C-varieties [39].

Theorem 4.1 Let V be a C-variety of stamps. For each alphabet A, denote by
V(A∗) the set of all languages of A∗ whose syntactic stamp is in V. Then V
is a C-variety of languages. Further, the correspondence V → V is a bijection
between C-varieties of stamps and C-varieties of languages.

Reiterman’s theorem can also be extended to this setting [19, 28]. First
observe that every morphism from A∗ to B∗ is uniformly continuous for the
profinite metric and thus extends uniquely to a continuous morphism f̂ : Â∗ →
B̂∗.

Let u, v be two profinite words of B̂∗. A stamp ϕ : A∗ → M satisfies the
C-identity u = v if, for every C-morphism f : B∗ → A∗, ϕ̂◦ f̂(u) = ϕ̂◦ f̂(v). If M
is ordered, ϕ satisfies the C-identity u 6 v if, for every C-morphism f : B∗ → A∗,
ϕ̂ ◦ f̂(u) 6 ϕ̂ ◦ f̂(v). By extension, we say that a language satisfies an identity
if its syntactic stamp satisfies this identity.

In practice, one may consider a C-identity as an equation in which each letter
represents a variable. If C is the class of l-morphisms, these variables can be
replaced by letters, if it is the class of m-morphisms, they can be replaced by
words of the same fixed length, etc., according to the following table:
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Class of Identity Interpretation

morphisms type of variables

all morphisms identity words

length preserving p-identity words of length 1

length increasing i-identity words of length > 1

length decreasing d-identity words of length 6 1

length multiplying m-identity words of the same length

The difference between these different types of identities is illustrated in the
following example, taken from [5]. Let L be a regular language over A and
let n be its exponent4. Then L satisfies the identity [ p-, d-, i-, m-identity ]
(xωyω)ω+1 = (xωyω)ω if and only if, for every pair of words [ letters, words of
length 6 1, nonempty words, words of the same length ] (u, v) ∈ A∗ × A∗, one
has (unvn)n+1 ∼L (unvn)n.

Again we have the following corollary.

Corollary 4.2 Any [positive ] C-variety of languages can be defined by a set of
profinite C-identities of the form u = v [u 6 v].

Let us give two instances of this theorem. The first example is taken from
[12]. Let us call modular simple a language of the form

(Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(A
d)∗

where d > 0, k > 0 and a1, a2, . . . , ak ∈ A. Finite union of modular simple
languages form a positive m-variety, defined by the m-identities 1 6 xω−1y and
1 6 yxω−1.

The second example is related to Boolean circuits. Recall that AC0 is the set
of unbounded fan-in, polynomial size, constant-depth Boolean circuits. Straub-
ing [4, 39] has shown that the regular languages recognised by a circuit in AC0

form a m-variety defined by the m-identity (xω−1y)ω = (xω−1y)ω+1 [19, 28].
Both examples have a nice interpretation in logic, but we need to enrich

our vocabulary by introducing some new predicate symbols, called the modular
predicate symbols. The unary symbol modd

r assigns to each n the set {i < n |
i ≡ r mod d} and the 0-ary symbol lengthd

r assigns true to n if n ≡ r mod d
and false otherwise. We denote by FO[< + MOD] the logic obtained by
adjoining these modular predicate symbols.

It is known [38] that FO[<+MOD] captures exactly the regular languages
of AC0 and that Σ1[< + MOD] captures the finite unions of modular simple
languages [12]. Therefore these two logic fragments can be defined by the m-
identities above-mentioned.

Let us conclude this section with a famous example. Generalized regular
expressions are defined in the same way as regular expressions, except that
complementation is allowed. The generalized star-height of a language is the
minimal number of nested stars required in an extended regular expression rep-
resenting the language. It is shown in [29] that the languages of generalized

4Recall that the exponent of a regular language L of A∗ is the smallest integer n such that,

for all u ∈ A∗, un ∼L u2n.
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star-height 6 n form a d-variety. Unfortunately, no set of identities defining
these d-varieties is known, except for n = 0 (see Theorem 2.1). But finding a
d-identity satisfied by all languages of generalized star-height 6 1 might be a
way to solve the long-standing open problem of the existence of a language of
generalized star-height 2.

For further developments about C-varieties, we refer the reader to the papers
[15, 16, 10, 11, 28].

5 Equations for lattices of regular languages

Although C-varieties were a big progress, they still did not suffice to study
certain lattices of regular languages. Pippenger [32] proposed to relax another
condition by introducing strains of languages, which share the same properties
as varieties of languages except for the closure under quotients by words, which
is not required. However, he gave no equational theory for these classes of
languages.

In 2008, Gehrke, Grigorieff and the author went a further step in [17]. The
remainder of this section is a survey of the results of this paper.

Let L be a regular language of A∗ and let L be its closure in the free profinite
monoid Â∗. We say that L satisfies the profinite equation u → v if the condition
u ∈ L implies v ∈ L. It is equivalent to state that η̂(u) ∈ η(L) implies η̂(v) ∈
η(L), where η denotes the syntactic morphism of L. The main result of [17] can
be stated as follows.

Theorem 5.1 A set of regular languages of A∗ is a lattice of languages if and
only if it can be defined by a set of equations of the form u → v, where u and v
are profinite words of Â∗.

Writing u ↔ v for (u → v and v → u), we get an equational description of
the Boolean algebras of languages.

Corollary 5.2 A set of regular languages of A∗ is a Boolean algebra of lan-
guages if and only if it can be defined by a set of equations of the form u ↔ v,
where u, v ∈ Â∗.

We say that L satisfies the equation u 6 v if it satisfies the equation xuy →
xvy for all x, y ∈ A∗. We also say that L satisfies the equation u = v if it
satisfies the equations u 6 v and v 6 u. There is an equivalent definition using
the syntactic [ordered] monoid: L satisfies the equation u = v [u 6 v] if and
only if η̂(u) = η̂(v) [η̂(u) 6 η̂(v)]. This type of equations is adapted to lattices
closed under quotients.

Corollary 5.3 A set of regular languages of A∗ is a lattice [Boolean algebra ]
closed under quotients if and only if it can be defined by a set of equations of
the form u 6 v [u = v], where u, v ∈ Â∗.

Note that Theorem 5.1 and Corollary 5.3 subsume the Eilenberg-Reiterman
theorem and its extension to C-varieties. Indeed, a class of languages is closed
under inverses of C-morphisms if and only if its equations are closed under C-
morphisms.
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Let us give some examples taken from [17]. A language with zero is a lan-
guage whose syntactic monoid has a zero. Regular languages with zero are
closed under Boolean operations and residuals, but we need to introduce a new
profinite word to get an explicit equational definition of this class.

Let us fix a total order on the alphabet A. Let u0, u1, . . . be the ordered
sequence of all words of A+ in the induced shortlex order. For instance, if
A = {a, b} with a < b, the first elements of this sequence would be

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

It is proved in [33, 2] that the sequence of words (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)
(n+1)!

converges to an idempotent ρA of the minimal ideal of Â∗. We can now state:

Proposition 5.4 A regular language has a zero if and only if it satisfies the
equation xρA = ρA = ρAx for all x ∈ A∗.

In the sequel, we shall use freely the symbol 0 in equations to mean that a
monoid has a zero.

Here is a second example. A language L of A∗ is nondense if there exists a
word u ∈ A∗ such that L∩A∗uA∗ = ∅. Note that the full language A∗ is dense
and thus nondense languages do not form a lattice. However, regular languages
that are either nondense or full do form a lattice closed under quotients and thus
Corollary 5.3 applies to this class. One can show that a regular language of A∗

is nondense or full if and only if it satisfies the profinite equations 0 6 x for all
x ∈ A∗. According to our convention, this writing is a shortcut which should
be formally replaced by the three equations xρA = ρA = ρAx and ρA 6 x.

Other examples of interest include the regular slender languages (finite union
of languages of the form xu∗y, where x, u, y ∈ A∗) and the regular sparse lan-
guages (finite union of languages of the form u0v

∗
1u1 · · · v∗nun, where u0, v1, . . . ,

vn, un are words) and their complements, the coslender [cosparse] languages.
All these languages have a zero and thus satisfies the profinite equations given
in Proposition 5.4. The other profinite equations characterizing these languages
are given in the next proposition, in which i(u) denotes the first letter (or initial)
of a word u.

Proposition 5.5 Suppose that |A| > 2 and let L be a regular language with
zero of A∗.

(1) L is slender or full if and only if it satisfies the equations 0 6 x for all
x ∈ A∗ and the equation xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that
i(uy) 6= i(x).

(2) L is slender or coslender if and only if it satisfies the equations xωuyω = 0
for each x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

(3) L is sparse or full if and only if it satisfies the equations 0 6 x for all
x ∈ A∗ and the equations (xωyω)ω = 0 for each x, y ∈ A+ such that
i(x) 6= i(y).

(4) L sparse or cosparse if and only if it satisfies the equations (xωyω)ω = 0
for each x, y ∈ A+ such that i(x) 6= i(y).
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Theorem 5.1 also shows that any class of regular languages defined by a fragment
of logic closed under conjunctions and disjunctions (first-order, monadic second-
order, temporal, etc.) admits an equational description. This opens the way to
an algebraic approach to decidability problems in logic, depicted in the following
diagram.

Logical

fragments

Lattices of

languages

Profinite

equations
Decidability

Hopefully

To conclude this section, let us mention a recent result of Branco and the au-
thor [8], which generalizes earlier results of Weil and the author [31]. Let L
be a lattice of regular languages closed under quotients. The polynomial clo-
sure of L is the set of languages that are finite unions of products of the form
L0a1L1 · · · anLn, where a1, . . . , an are letters and L0, . . . , Ln are languages of L.
One can show that it is also a lattice of languages closed under quotient. The
next theorem gives a set of equations defining this lattice, given the equations
of L.

Theorem 5.6 The polynomial closure of L is defined by the set of equations
of the form xω 6 xωyxω, where x, y are profinite words such that the equations
x = x2 and x 6 y are satisfied by L.

It would be interesting to get similar results for other closure operators on
languages.

6 The final touch

All the results of the previous sections deal with regular languages. Yet it is
possible to extend these results to any lattice of languages. The price to pay
is to go from profinite equations to another type of equations, the procompact
equations.

The key space is βA∗, the Stone-Čech compactification of A∗. There are
many equivalent definitions of this object, and we will remind the reader of three
of them. First, one can define βA∗ as the set of ultrafilters on the discrete space
A∗. A second way is to take the closure of the image of A∗ in the product space∏

K where the product runs over all maps from A∗ into a compact Hausdorff
space K whose underlying set is P(P(A∗)). That is the reason why we propose
to call the elements of βA∗ procompact words, by analogy with profinite words.

The third construction is a variation of the second one. Let C be the set of
all continuous functions from A∗ into [0, 1]. Then the set [0, 1]C, equipped with
the product topology, is a compact space. Now, the map from A∗ into [0, 1]C

which maps a word u onto the family (f(u))f∈C is continuous and its image is
a compact space, which happens to be precisely βA∗.

This latter construction is reminiscent of the following construction of the
profinite monoid Â∗. Let χX be the characteristic function of a subset X of
A∗. The set of all functions from A∗ into {0, 1} can be identified with the set
P(A∗). Now, the map from A∗ into {0, 1}P(A∗) which maps a word u onto the

family (χX(u))X∈P(A∗) is continuous and its image is Â∗.

10



Both spaces Â∗ and βA∗ are compact, but only Â∗ is a compact monoid.
However, it is possible to define two continuous maps βA∗ × A∗ → βA∗ and
A∗ × βA∗ → βA∗ which both extend the product on A∗. In other words, right
and left products by an element of A∗ are well defined on βA∗.

Let L be a language of A∗ and let L be its closure in βA∗. Let u and v be
two procompact words of βA∗. We say that L satisfies the equation u → v if
u ∈ L implies v ∈ L. The following characterization was given in [18]. It is very
general since it applies to any lattice of languages.

Theorem 6.1 A set of languages of A∗ is a lattice of languages if and only if
it can be defined by a set of equations of the form u → v, where u and v are
elements of βA∗.

For instance, the lattice of right ideals of A∗ (languages of the form LA∗) is
defined by the set of equations {x → xy | x ∈ βA∗, y ∈ A∗}.

7 Conclusion

Equational descriptions open the way to an algebraic approach to some difficult
problems. These problems arise in language theory, like the decision problem
for a given class of languages, but may also deal with the expressive power of
certain logic fragments. However, there are several difficulties to overcome, even
for regular languages.

First, Theorem 5.1 guarantees the existence of equations, but does not pro-
vide any method for finding them. Second, profinite words might be difficult
to handle, in particular when they are only given as the limit of a sequence of
words. Third, the set of profinite equations is in general infinite, and even if it
is given by some recursive description, one still needs to find an algorithm to
decide whether a given regular language satisfies these equations. Nevertheless,
these problems have been already partially solved for varieties of languages,
where the same difficulties are present, and so one can be reasonably optimistic.

In the nonregular case, Theorem 6.1 shows that one can, in principle, sepa-
rate any two distinct lattices of languages by exhibiting an equation holding in
one and not in the other. The difficulty arises from the problem of getting one’s
hands on such an equation. Again, the existence statement provided by the
theory does not include a means of finding the equations. A further difficulty is
that procompact words cannot be given explicitly.

Finally, the scope of equations is not limited to languages of finite words.
Actually, Eilenberg-Reiterman theory has already been successfully extended to
infinite words and to ω-regular languages [23]. Extensions to words over linear
orders [9] and to finite and infinite trees [7] are on the way.
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[16] Z. Ésik and K. G. Larsen, Regular languages definable by Lindström
quantifiers, Theoret. Informatics Appl. 37,3 (2003), 179–241.

12



[17] M. Gehrke, S. Grigorieff and J.-É. Pin, Duality and equational the-
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