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Varieties and identities

A Birkhoff variety of monoids is a class of (possibly infinite) monoids which is closed under taking submonoids, homomorphic images (also called quotients) and arbitrary direct products.

Birkhoff's theorem states that a class of monoids is a Birkhoff variety if and only if it can be defined by a set of identities. Formally, an identity is an equality between two words of the free monoid Σ * on a countable alphabet Σ. A monoid M satisfies the identity u = v if and only if ϕ(u) = ϕ(v) for every morphism ϕ : Σ * → M . For instance, the identity xy = yx defines the variety of commutative monoids and x = x 2 defines the variety of idempotent monoids.

It is easy to see that if E is a set of identities, the class of monoids satisfying all the identities of E is a variety, denoted E , and called the Birkhoff variety defined by E. The difficult part of Birkhoff's theorem is to prove that the converse also holds: for each Birkhoff variety V, there exists a set of identities E such that V = E . Note that the set E might be infinite. For instance, if M = {1, a, b, ab, ba, 0} with aba = a, bab = b and aa = bb = 0, then the Birkhoff variety generated by M is not finitely based: no finite set of identities suffices to define it [START_REF] Perkins | Bases for equational theories of semigroups[END_REF].

An important step forward was Reiterman's customization of Birkhoff's theorem for varieties of finite monoids.

A variety of finite monoids is a class of finite monoids which is closed under taking submonoids, quotients and finite direct products. For instance, the class of finite aperiodic1 monoids forms a variety. Similarly, the class of J -trivial2 monoids forms a variety. The class of all finite groups also forms a variety of finite monoids.

It is a natural question to ask whether varieties of finite monoids can also be defined by identities. The problem was solved by several authors but the most satisfactory answer is due to Reiterman [START_REF] Reiterman | The Birkhoff theorem for finite algebras[END_REF] (see also [START_REF] Banaschewski | The Birkhoff theorem for varieties of finite algebras[END_REF]). A little bit of topology is required to state this theorem.

A finite monoid M separates two words u and v of A * if there is a monoid morphism ϕ : A * → M such that ϕ(u) = ϕ(v). We set r(u, v) = min Card(M ) | M is a finite monoid that separates u and v } and d(u, v) = 2 -r(u,v) , with the usual conventions min ∅ = +∞ and 2 -∞ = 0. Then d is a metric on A * and the completion of A * for this metric is denoted by A * . The (concatenation) product on A * can be extended by continuity to A * , making A * a compact topological monoid, called the free profinite monoid. Its elements are called profinite words. It is not so easy to give examples of profinite words which are not words, but here is one. In a compact monoid, the smallest closed subsemigroup containing a given element x has a unique idempotent, denoted x ω . This is true in particular in a finite monoid and in the free profinite monoid. Thus if x is a (profinite) word, so is x ω . In fact, one can show that x ω is the limit of the converging sequence x n! . More details can be found in [START_REF] Almeida | Finite semigroups and universal algebra[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF].

Every finite monoid M can be considered a discrete metric space for the metric d, defined by d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise. Now, every morphism ϕ from A * into a finite monoid is uniformly continuous and therefore can be extended (in a unique way) into a uniformly continuous morphism ϕ from A * to M . It follows for instance that if x is a profinite word, then ϕ(x ω ) = ϕ(x) ω .

Let u and v be two profinite words of A * . A monoid M satisfies the profinite identity u = v if, for each monoid morphism ϕ :

A * → M , one has ϕ(u) = ϕ(v).
Reiterman's theorem states that a class of finite monoids is a variety if and only if it can be defined by a set of profinite identities. Thus the core of Reiterman's theorem is a topological extension of Birkhoff's theorem. For instance, the variety of aperiodic monoids is defined by the identity x ω+1 = x ω . The variety of J -trivial monoids is defined by the identities x ω+1 = x ω and (xy) ω = (yx) ω . The variety of finite groups is defined by the identity x ω = 1.

Eilenberg's variety theorem

Let us now come back to languages. A regular language is said to satisfy a profinite identity if its syntactic monoid satisfies this identity. The first example of profinite identities defining a class of regular languages is a consequence of Schützenberger's theorem on star-free languages [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF].

Theorem 2.1 Let L be a regular language. The following conditions are equivalent:

(1) L is star-free, (2) the syntactic monoid of L is aperiodic, (3) L satisfies the identity x ω+1 = x ω .

Another famous example is Simon's theorem on piecewise testable languages. Let us call simple a language of the form

A * a 1 A * a 2 A * • • • a k A *
where k 0 and a 1 , a 2 , . . . , a k ∈ A. A language is piecewise testable if it is a Boolean combination of simple languages. Simon proved the following result [START_REF] Simon | Piecewise testable events[END_REF].

Theorem 2.2 Let L be a regular language. The following conditions are equivalent:

(1) L is piecewise testable, (2) the syntactic monoid of L is J -trivial, (3) L satisfies the identities x ω+1 = x ω and (xy) ω = (yx) ω .

These theorems and similar results led Eilenberg to his celebrated variety theorem. Let me first recall some standard definitions.

A lattice of languages is a set L of languages of A * containing ∅ and A * and closed under finite unions and finite intersections. It is closed under quotients3 if, for each L ∈ L and u ∈ A * , the languages u -1 L and Lu -1 are also in L. A lattice is a Boolean algebra if it is closed under complement.

A class of languages C associates with each finite alphabet A a set C(A * ) of regular languages of A * . It is closed under inverses of morphisms if, for each morphism ϕ :

A * → B * , the condition L ∈ C(B * ) implies ϕ -1 (L) ∈ C(A * ).
A variety of languages is a class of languages V such that: (1) for each alphabet A, V(A * ) is a Boolean algebra of languages closed under quotients, (2) V is closed under inverses of morphisms. Eilenberg's variety theorem [START_REF] Eilenberg | Automata, Languages and Machines[END_REF] gives a bijective correspondence between varieties of finite monoids and varieties of languages.

Theorem 2.3 Let V be a variety of finite monoids. For each alphabet A, let V(A * ) be the set of all languages of A * whose syntactic monoid is in V. Then V is a variety of languages. Further, the correspondence V → V is a bijection between varieties of monoids and varieties of languages.

The conjunction of Eilenberg's and Reiterman's theorems gives the following result.

Corollary 2.4 Any variety of languages can be defined by a set of profinite identities.

For instance, the variety of star-free languages is defined by the profinite identity x ω+1 = x ω . The variety of piecewise testable languages is defined by the two identities x ω+1 = x ω and (xy) ω = (yx) ω .

The Eilenberg-Reiterman theorem is also useful to analyse the expressive power of various fragments of first order logic interpreted on finite words. One associates to each nonempty word u = a 0 a 1 . . . a |u|-1 over the alphabet A a relational structure

M u = {(0, 1, . . . , |u| -1), <, (a) a∈A }
where < is the usual order on the domain and a is a predicate giving the positions i such that a i = a. For instance, if u = abbaaba, then a = {0, 3, 4, 6} and b = {1, 2, 5}. Given a formula ϕ, the language defined by ϕ is L(ϕ) = {u ∈ A + | M u satisfies ϕ}. Since languages may contain the empty word, we make the convention that a language L of A * is defined by

ϕ if L(ϕ) = L ∩ A + .
McNaughton and Papert [START_REF] Mcnaughton | Counter-free automata[END_REF] showed that a language is first-order definable (in the signature {<, (a) a∈A }) if and only if it is star-free. Thomas [START_REF] Thomas | Classifying regular events in symbolic logic[END_REF] (see also [START_REF] Perrin | First order logic and star-free sets[END_REF]) refined this result by showing that the concatenation hierarchy of star-free languages is, level by level, in correspondence with the Σ n -hierarchy of first order formulas. In particular, he showed that the Boolean closure of Σ 1formulas, denoted by BΣ 1 [<], captures exactly the piecewise testable languages. These results provide an equational description of FO[<] and BΣ 1 [<] which can be formulated as follows:

Theorem 2.5 The following formulas hold:

FO[<] = x ω+1 = x ω and BΣ 1 [< ] = x ω+1 = x ω , (xy) ω = (yx) ω .
3 Bringing order. . .

Originally motivated by an attempt to give a purely algebraic characterization

of the regular open sets of the pro-group topology [START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF][START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF], the author proposed an extension to Eilenberg's variety theorem [START_REF] Pin | A variety theorem without complementation, Russian Mathematics[END_REF] that covers classes of languages that are not necessarily closed under complement. The idea is to use ordered monoids instead of monoids. Let us briefly recall the main definitions.

An ordered monoid is a monoid equipped with an order compatible with the multiplication: x y implies zx zy and xz yz. Morphisms between ordered monoids are required to be order preserving. A variety of finite ordered monoids is a class of finite ordered monoids closed under taking ordered submonoids, quotients and finite direct products.

Reiterman's theorem was adapted to ordered structures in [START_REF] Pin | A Reiterman theorem for pseudovarieties of finite first-order structures[END_REF]. In particular a class of finite ordered monoids is a variety if and only if it can be defined by a set of profinite identities of the form u v.

Before stating the extension of Eilenberg's theorem, we need to introduce the syntactic ordered monoid of a language. Let L be a language of A * . This notion was first introduced by Schützenberger in 1956 [START_REF] Schützenberger | Une théorie algébrique du codage[END_REF], but thereafter, he apparently only used the syntactic monoid.

The syntactic preorder of L is the relation L defined on A * by u L v if and only if, for every x, y ∈ A * ,

xuy ∈ L ⇒ xvy ∈ L
In earlier papers [START_REF] Berstel | The expressive power of the shuffle product[END_REF][START_REF] Branco | Equations for the polynomial closure[END_REF][START_REF] Chaubard | Actions, Wreath Products of C-varieties and Concatenation Product[END_REF][START_REF] Chaubard | First order formulas with modular predicates[END_REF][START_REF] Gehrke | Duality and equational theory of regular languages[END_REF][START_REF] Gehrke | Duality and equational theory of regular languages[END_REF][START_REF] Perrin | Infinite Words[END_REF][START_REF] Pin | A variety theorem without complementation, Russian Mathematics[END_REF][START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF][START_REF] Pin | Profinite methods in automata theory[END_REF][START_REF] Pin | Some results on C-varieties[END_REF], I used the opposite order, but this one is considered more intuitive by many people. There are also strong topological arguments, which cannot be detailed in this paper, in favour of this order.

Note that the syntactic congruence of L is the associated equivalence relation

∼ L , defined by u ∼ L v if and only if u L v and v L u.
The syntactic monoid of L is the quotient M (L) of A * by ∼ L and the natural morphism η : A * → A * /∼ L is called the syntactic morphism of L. The syntactic preorder L induces an order on the quotient monoid M (L). The resulting ordered monoid is called the syntactic ordered monoid of L.

For instance, let L be the language {a, aba}, its syntactic monoid is the monoid M = {1, a, b, ab, ba, aba, 0} presented by the relations

a 2 = b 2 = bab = 0. Its syntactic order is 0 < ab < 1, 0 < ba < 1, 0 < aba < a, 0 < b.
A positive variety of languages is a class of languages V such that, (1) for each alphabet A, V(A * ) is a lattice of languages closed under quotients, (2) V is closed under inverses of morphisms. We can now state the ordered counterpart to Eilenberg's theorem [START_REF] Pin | A variety theorem without complementation, Russian Mathematics[END_REF]. Theorem 3.1 Let V be a variety of ordered monoids. For each alphabet A, let V(A * ) be the set of all languages of A * whose syntactic ordered monoid is in V. Then V is a positive variety of languages. Further, the correspondence V → V is a bijection between varieties of ordered monoids and positive varieties of languages.

The conjunction of this theorem and the ordered version of Reiterman's theorem gives the following corollary. Corollary 3.2 Any positive variety of languages can be defined by a set of profinite identities of the form u v.

For instance, the positive variety of regular open sets of the pro-group topology is defined by the identity 1 x ω [START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF][START_REF] Pin | Polynomial closure of group languages and open sets of the Hall topology[END_REF].

Here is another example from [START_REF] Pin | A variety theorem without complementation, Russian Mathematics[END_REF]. A shuffle ideal is a finite union of simple languages. Shuffle ideals form a positive variety, defined by the identity 1 x.

Corollary 3.2 also allows one to study new logic fragments. For instance, shuffle ideals are captured by Σ 1 [<], and thus Σ 1 [<] = 1 x .

C-varieties

Eilenberg's variety theorem and its ordered version proved to be a powerful tool for studying classes of regular languages. However, some important families of languages arising in language theory do not form positive varieties. To study some of these classes of languages, Straubing [START_REF] Straubing | On logical descriptions of regular languages[END_REF] and independently Ésik [START_REF] Ésik | Extended temporal logic on finite words and wreath products of monoids with distinguished generators[END_REF] introduced a more general definition.

Let us say that a morphism ϕ : A * → B * is length-preserving (p) if, for each u ∈ A * , the words u and ϕ(u) have the same length, or equivalently, if for each letter a ∈ A, ϕ(a) is a letter. Similarly, ϕ is length-decreasing (d) if the image of each letter is either a letter or the empty word, and length-increasing (i) if the image of each letter is a nonempty word. Finally, it is length-multiplying (m) if there is an integer k such that the image of any letter is a word of length k.

Let C be a class of morphisms between free monoids, closed under composition and containing all p-morphisms. To obtain a variety theorem for C-varieties, one needs to consider a new type of objects, called stamps. A stamp is a surjective morphism from A * onto a finite monoid. In particular, the syntactic stamp of a regular language of A * is its syntactic morphism. Then one can define an appropriate notion of variety of stamps, which corresponds bijectively to C-varieties [START_REF] Straubing | On logical descriptions of regular languages[END_REF].

Theorem 4.1 Let V be a C-variety of stamps. For each alphabet A, denote by V(A * ) the set of all languages of A * whose syntactic stamp is in V. Then V is a C-variety of languages. Further, the correspondence V → V is a bijection between C-varieties of stamps and C-varieties of languages.

Reiterman's theorem can also be extended to this setting [START_REF] Kunc | Equational description of pseudovarieties of homomorphisms[END_REF][START_REF] Pin | Some results on C-varieties[END_REF]. First observe that every morphism from A * to B * is uniformly continuous for the profinite metric and thus extends uniquely to a continuous morphism f :

A * → B * .
Let u, v be two profinite words of B * . A stamp ϕ :

A * → M satisfies the C-identity u = v if, for every C-morphism f : B * → A * , ϕ• f (u) = ϕ• f (v). If M is ordered, ϕ satisfies the C-identity u v if, for every C-morphism f : B * → A * , ϕ • f (u) ϕ • f (v)
. By extension, we say that a language satisfies an identity if its syntactic stamp satisfies this identity.

In practice, one may consider a C-identity as an equation in which each letter represents a variable. If C is the class of l-morphisms, these variables can be replaced by letters, if it is the class of m-morphisms, they can be replaced by words of the same fixed length, etc., according to the following table: The difference between these different types of identities is illustrated in the following example, taken from [START_REF] Berstel | The expressive power of the shuffle product[END_REF]. Let L be a regular language over A and let n be its exponent 4 . Then L satisfies the identity [ p-, d-, i-, m-identity ] (x ω y ω ) ω+1 = (x ω y ω ) ω if and only if, for every pair of words [ letters, words of length 1, nonempty words, words of the same length ] (u, v)

∈ A * × A * , one has (u n v n ) n+1 ∼ L (u n v n ) n .
Again we have the following corollary. Let us give two instances of this theorem. The first example is taken from [START_REF] Chaubard | First order formulas with modular predicates[END_REF]. Let us call modular simple a language of the form

(A d ) * a 1 (A d ) * a 2 (A d ) * • • • a k (A d ) *
where d > 0, k 0 and a 1 , a 2 , . . . , a k ∈ A. Finite union of modular simple languages form a positive m-variety, defined by the m-identities 1 x ω-1 y and 1 yx ω-1 .

The second example is related to Boolean circuits. Recall that AC 0 is the set of unbounded fan-in, polynomial size, constant-depth Boolean circuits. Straubing [START_REF] Barrington | Regular languages in NC 1[END_REF][START_REF] Straubing | On logical descriptions of regular languages[END_REF] has shown that the regular languages recognised by a circuit in AC 0 form a m-variety defined by the m-identity (x ω-1 y) ω = (x ω-1 y) ω+1 [START_REF] Kunc | Equational description of pseudovarieties of homomorphisms[END_REF][START_REF] Pin | Some results on C-varieties[END_REF].

Both examples have a nice interpretation in logic, but we need to enrich our vocabulary by introducing some new predicate symbols, called the modular predicate symbols. The unary symbol mod d r assigns to each n the set {i < n | i ≡ r mod d} and the 0-ary symbol length d r assigns true to n if n ≡ r mod d and false otherwise. We denote by FO[< + MOD] the logic obtained by adjoining these modular predicate symbols.

It is known [START_REF] Straubing | Finite automata, formal logic, and circuit complexity[END_REF] that FO[< + MOD] captures exactly the regular languages of AC 0 and that Σ 1 [< + MOD] captures the finite unions of modular simple languages [START_REF] Chaubard | First order formulas with modular predicates[END_REF]. Therefore these two logic fragments can be defined by the midentities above-mentioned.

Let us conclude this section with a famous example. Generalized regular expressions are defined in the same way as regular expressions, except that complementation is allowed. The generalized star-height of a language is the minimal number of nested stars required in an extended regular expression representing the language. It is shown in [START_REF] Pin | Some results on the generalized star-height problem[END_REF] that the languages of generalized star-height n form a d-variety. Unfortunately, no set of identities defining these d-varieties is known, except for n = 0 (see Theorem 2.1). But finding a d-identity satisfied by all languages of generalized star-height 1 might be a way to solve the long-standing open problem of the existence of a language of generalized star-height 2.

For further developments about C-varieties, we refer the reader to the papers [START_REF] Ésik | Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata[END_REF][START_REF] Ésik | Regular languages definable by Lindström quantifiers[END_REF][START_REF] Chaubard | Actions and wreath products of C-varieties[END_REF][START_REF] Chaubard | Actions, Wreath Products of C-varieties and Concatenation Product[END_REF][START_REF] Pin | Some results on C-varieties[END_REF].

Equations for lattices of regular languages

Although C-varieties were a big progress, they still did not suffice to study certain lattices of regular languages. Pippenger [START_REF] Pippenger | Regular languages and Stone duality[END_REF] proposed to relax another condition by introducing strains of languages, which share the same properties as varieties of languages except for the closure under quotients by words, which is not required. However, he gave no equational theory for these classes of languages.

In 2008, Gehrke, Grigorieff and the author went a further step in [START_REF] Gehrke | Duality and equational theory of regular languages[END_REF]. The remainder of this section is a survey of the results of this paper.

Let L be a regular language of A * and let L be its closure in the free profinite monoid A * . We say that L satisfies the profinite equation

u → v if the condition u ∈ L implies v ∈ L. It is equivalent to state that η(u) ∈ η(L) implies η(v) ∈ η(L)
, where η denotes the syntactic morphism of L. The main result of [START_REF] Gehrke | Duality and equational theory of regular languages[END_REF] can be stated as follows.

Theorem 5.1 A set of regular languages of A * is a lattice of languages if and only if it can be defined by a set of equations of the form u → v, where u and v are profinite words of A * .

Writing u ↔ v for (u → v and v → u), we get an equational description of the Boolean algebras of languages.

Corollary 5.2 A set of regular languages of A * is a Boolean algebra of languages if and only if it can be defined by a set of equations of the form u ↔ v, where u, v ∈ A * .

We say that L satisfies the equation u v if it satisfies the equation xuy → xvy for all x, y ∈ A * . We also say that L satisfies the equation u = v if it satisfies the equations u v and v u. There is an equivalent definition using the syntactic [ordered] monoid:

L satisfies the equation u = v [u v] if and only if η(u) = η(v) [ η(u) η(v)].
This type of equations is adapted to lattices closed under quotients. Let us give some examples taken from [START_REF] Gehrke | Duality and equational theory of regular languages[END_REF]. A language with zero is a language whose syntactic monoid has a zero. Regular languages with zero are closed under Boolean operations and residuals, but we need to introduce a new profinite word to get an explicit equational definition of this class.

Let us fix a total order on the alphabet A. Let u 0 , u 1 , . . . be the ordered sequence of all words of A + in the induced shortlex order. For instance, if A = {a, b} with a < b, the first elements of this sequence would be 1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . . It is proved in [START_REF] Reilly | Decomposition of the lattice of pseudovarieties of finite semigroups induced by bands[END_REF][START_REF] Almeida | Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety[END_REF] that the sequence of words (v n ) n 0 defined by

v 0 = u 0 , v n+1 = (v n u n+1 v n ) (n+1)!
converges to an idempotent ρ A of the minimal ideal of A * . We can now state:

Proposition 5.4 A regular language has a zero if and only if it satisfies the equation xρ

A = ρ A = ρ A x for all x ∈ A * .
In the sequel, we shall use freely the symbol 0 in equations to mean that a monoid has a zero.

Here is a second example. A language L of A * is nondense if there exists a word u ∈ A * such that L ∩ A * uA * = ∅. Note that the full language A * is dense and thus nondense languages do not form a lattice. However, regular languages that are either nondense or full do form a lattice closed under quotients and thus Corollary 5.3 applies to this class. One can show that a regular language of A * is nondense or full if and only if it satisfies the profinite equations 0 x for all x ∈ A * . According to our convention, this writing is a shortcut which should be formally replaced by the three equations xρ A = ρ A = ρ A x and ρ A x.

Other examples of interest include the regular slender languages (finite union of languages of the form xu * y, where x, u, y ∈ A * ) and the regular sparse languages (finite union of languages of the form

u 0 v * 1 u 1 • • • v * n u n
, where u 0 , v 1 , . . . , v n , u n are words) and their complements, the coslender [cosparse] languages. All these languages have a zero and thus satisfies the profinite equations given in Proposition 5.4. The other profinite equations characterizing these languages are given in the next proposition, in which i(u) denotes the first letter (or initial ) of a word u. Proposition 5.5 Suppose that |A| 2 and let L be a regular language with zero of A * .

(1) L is slender or full if and only if it satisfies the equations 0 x for all x ∈ A * and the equation x ω uy ω = 0 for each x, y ∈ A + , u ∈ A * such that i(uy) = i(x).

(2) L is slender or coslender if and only if it satisfies the equations x ω uy ω = 0 for each x, y ∈ A + , u ∈ A * such that i(uy) = i(x).

(3) L is sparse or full if and only if it satisfies the equations 0

x for all x ∈ A * and the equations (x ω y ω ) ω = 0 for each x, y ∈ A + such that i(x) = i(y). (4) L sparse or cosparse if and only if it satisfies the equations (x ω y ω ) ω = 0 for each x, y ∈ A + such that i(x) = i(y).

Theorem 5.1 also shows that any class of regular languages defined by a fragment of logic closed under conjunctions and disjunctions (first-order, monadic secondorder, temporal, etc.) admits an equational description. This opens the way to an algebraic approach to decidability problems in logic, depicted in the following diagram.

Logical fragments

Lattices of languages

Profinite equations Decidability Hopefully

To conclude this section, let us mention a recent result of Branco and the author [START_REF] Branco | Equations for the polynomial closure[END_REF], which generalizes earlier results of Weil and the author [START_REF] Pin | Polynomial closure and unambiguous product[END_REF]. Let L be a lattice of regular languages closed under quotients. The polynomial closure of L is the set of languages that are finite unions of products of the form

L 0 a 1 L 1 • • • a n L n ,
where a 1 , . . . , a n are letters and L 0 , . . . , L n are languages of L. One can show that it is also a lattice of languages closed under quotient. The next theorem gives a set of equations defining this lattice, given the equations of L.

Theorem 5.6 The polynomial closure of L is defined by the set of equations of the form x ω x ω yx ω , where x, y are profinite words such that the equations x = x 2 and x y are satisfied by L.

It would be interesting to get similar results for other closure operators on languages.

The final touch

All the results of the previous sections deal with regular languages. Yet it is possible to extend these results to any lattice of languages. The price to pay is to go from profinite equations to another type of equations, the procompact equations.

The key space is βA * , the Stone-Čech compactification of A * . There are many equivalent definitions of this object, and we will remind the reader of three of them. First, one can define βA * as the set of ultrafilters on the discrete space A * . A second way is to take the closure of the image of A * in the product space K where the product runs over all maps from A * into a compact Hausdorff space K whose underlying set is P(P(A * )). That is the reason why we propose to call the elements of βA * procompact words, by analogy with profinite words.

The third construction is a variation of the second one. Let C be the set of all continuous functions from A * into [0, 1]. Then the set [0, 1] C , equipped with the product topology, is a compact space. Now, the map from A * into [0, 1] C which maps a word u onto the family (f (u)) f ∈C is continuous and its image is a compact space, which happens to be precisely βA * . This latter construction is reminiscent of the following construction of the profinite monoid A * . Let χ X be the characteristic function of a subset X of A * . The set of all functions from A * into {0, 1} can be identified with the set P(A * ). Now, the map from A * into {0, 1} P(A * ) which maps a word u onto the family (χ X (u)) X∈P(A * ) is continuous and its image is A * . Both spaces A * and βA * are compact, but only A * is a compact monoid. However, it is possible to define two continuous maps βA * × A * → βA * and A * × βA * → βA * which both extend the product on A * . In other words, right and left products by an element of A * are well defined on βA * .

Let L be a language of A * and let L be its closure in βA * . Let u and v be two procompact words of βA * . We say that L satisfies the equation u → v if u ∈ L implies v ∈ L. The following characterization was given in [START_REF] Gehrke | Duality and equational theory of regular languages[END_REF]. It is very general since it applies to any lattice of languages. Theorem 6.1 A set of languages of A * is a lattice of languages if and only if it can be defined by a set of equations of the form u → v, where u and v are elements of βA * .

For instance, the lattice of right ideals of A * (languages of the form LA * ) is defined by the set of equations {x → xy | x ∈ βA * , y ∈ A * }.

Conclusion

Equational descriptions open the way to an algebraic approach to some difficult problems. These problems arise in language theory, like the decision problem for a given class of languages, but may also deal with the expressive power of certain logic fragments. However, there are several difficulties to overcome, even for regular languages.

First, Theorem 5.1 guarantees the existence of equations, but does not provide any method for finding them. Second, profinite words might be difficult to handle, in particular when they are only given as the limit of a sequence of words. Third, the set of profinite equations is in general infinite, and even if it is given by some recursive description, one still needs to find an algorithm to decide whether a given regular language satisfies these equations. Nevertheless, these problems have been already partially solved for varieties of languages, where the same difficulties are present, and so one can be reasonably optimistic.

In the nonregular case, Theorem 6.1 shows that one can, in principle, separate any two distinct lattices of languages by exhibiting an equation holding in one and not in the other. The difficulty arises from the problem of getting one's hands on such an equation. Again, the existence statement provided by the theory does not include a means of finding the equations. A further difficulty is that procompact words cannot be given explicitly.

Finally, the scope of equations is not limited to languages of finite words. Actually, Eilenberg-Reiterman theory has already been successfully extended to infinite words and to ω-regular languages [START_REF] Perrin | Infinite Words[END_REF]. Extensions to words over linear orders [START_REF] Bruyère | Automata on linear orderings[END_REF] and to finite and infinite trees [START_REF] Bojańczyk | Piecewise testable tree languages[END_REF] are on the way.

  Examples include the classes of all [p-, d-, i-, m-] morphisms. A [positive] C-variety of languages is a class V of regular languages satisfying the first condition defining a [positive] variety but only a weaker version of the second condition of this definition: (2 ′ ) V is closed under inverses of C-morphisms. When C is the class of p-[d-, i-, m-]morphisms, we use the term p-variety [d-, i-, m-variety].

  m-identity words of the same length

Corollary 4 . 2

 42 Any [positive ] C-variety of languages can be defined by a set of profinite C-identities of the form u = v [u v].

Corollary 5 . 3 A

 53 set of regular languages of A * is a lattice [Boolean algebra ] closed under quotients if and only if it can be defined by a set of equations of the form u v [u = v], where u, v ∈ A * . Note that Theorem 5.1 and Corollary 5.3 subsume the Eilenberg-Reiterman theorem and its extension to C-varieties. Indeed, a class of languages is closed under inverses of C-morphisms if and only if its equations are closed under Cmorphisms.
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An element x of a monoid is aperiodic if there exists an integer n > 0 such that x n+1 = x n . A finite monoid is aperiodic if all its elements are aperiodic.

In a monoid, the J preorder is defined by u v if u = xvy for some x, y ∈ M . A monoid is J -trivial when this preorder is an order.

Recall that u -1 L = {x ∈ A * | ux ∈ L} and Lu -1 = {x ∈ A * | xu ∈ L}.

Recall that the exponent of a regular language L of A * is the smallest integer n such that, for all u ∈ A * , u n ∼ L u 2n .