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Abstract

The sliding mode approach is recognized as an efficient
tool for treating the chattering behavior in hybrid systems.
However, the amplitude of chattering, by its nature, is pro-
portional to magnitude of discontinuous control. A possi-
ble scenario is that the solution trajectories may succes-
sively enter and exit as well as slide on switching mani-
folds of different dimensions. Naturally, this arises in dy-
namical systems and control applications whenever there
are multiple discontinuous control variables. The main
contribution of this paper is to provide a robust compu-
tational framework for the most general way to extend
a flow map on the intersection of p intersected (n− 1)-
dimensional switching manifolds in at least p dimensions.
We explore a new formulation to which we can define
unique solutions for such particular behavior in hybrid
systems and investigate its efficient computation/simula-
tion. We illustrate the concepts with examples throughout
the paper.
Keywords: Hybrid systems, Non-smooth dynamical sys-
tems, Discontinuity mappings, Chattering-free simulation,
Numerical methods.

1 Introduction

Hybrid systems are heterogeneous dynamical systems ex-
hibiting both continuous and discrete dynamics. Systems
of this type arise naturally in control systems where the
value of a control variable may jump or whenever the
laws of physics are dicontinuous. They are common in
a wide variety of engineering applications dealing with
multi-modal systems such like mechanical systems with
impact phenomena, robotics, mechatronics, automotive
industry, power systems, process control, as well as em-
bedded computation where program codes interact with
the physical world (Zhang et al., 2001; Cai et al., 2007).
In such dynamical systems, the state variables are capable
of evolving continuously (flowing) and/or evolving dis-
continuously (jumping) (Cai et al., 2007). The dynami-
cal behavior characterized by interacting continuous vari-
ables and discrete switching logics can be captured by

a mathematical framework given in terms of time-driven
continuous variable dynamics (usually described by dif-
ferential or difference equations) and event-driven discrete
logic dynamics (whose evolutions depend on “if-then-else
” type of rules and may be described by automata) (Lin
and Antsaklis, 2009).
Such interaction of continuous-time and discrete-time dy-
namics may lead to an infinitely fast and continuous
switching between several dynamics, such behavior is
called a chattering behavior (Zhang et al., 2008). This
often occurs in the optimal control of continuous and hy-
brid systems. Chattering executions can be defined as so-
lutions to the hybrid system having infinitely many dis-
crete transitions in finite time. Such behavior can be in-
tuitively thought of as involving infinitely fast switching
among different control actions or modes of operation.
Similar behavior appears in variable structure control sys-
tems and in relay control systems (Johansson et al., 2002).
The numerical simulation of hybrid systems exhibiting a
chattering behavior appears to come to a halt, since in-
finitely many transitions would need to be simulated. This
requires high computational costs as small step-sizes are
required to maintain the numerical precision. Chattering
behavior has to be treated in an appropriate way to en-
sure that the numerical integration progress in a reason-
able time. This has been investigated by means of differ-
ent methods. In general, one may prevent the chattering
in hybrid systems by inducing a smooth sliding motion
on the switching manifold on which the chattering occurs
(di Bernardo et al., 2008; Weiss et al., 2014; Guardia et al.,
2011). While the infinitely fast switching between modes
occurs, a smooth motion along the switching surface may
emerge while eliminating the fast chattering. Differential
inclusions (DIs) of the Filippov type (the so-called equiva-
lent dynamics) can be used to define a regularized solution
trajectory in a small neighborhood of the switching man-
ifold on which the chattering occurs so that the average
velocity of sliding on the surface can be determined (Fil-
ippov, 1988; Biák et al., 2013). Another approach (the so-
called equivalent control) was proposed by Utkin (Utkin,
1992). However, the computation of the equivalent dy-
namics turns of to be difficult whenever the systems chat-



ters between more than two dynamics. One of the main
properties of chattering behavior is that the solution tra-
jectory may successively enter and exit as well as slide
on switching manifolds of different dimensions. Problems
with this type of sliding arise naturally in dynamical sys-
tems and control applications whenever there are multiple
discontinuous control variables. Such multiple sliding be-
havior may be the origin of non-uniqueness of solution as
an inescapable and important property of heterogeneous
dynamical systems with discontinuous control variables.
The main contribution of this paper is to provide an ade-
quate technique to detect chattering “on the fly” in real-
time simulation and compute its regularization beyond the
infinitely fast mode switching. In particular, we present
a robust and computationally efficient framework for the
most general case of p intersected switching manifolds,
as well as the extent of how unique solutions in such
cases can be defined. A hierarchical application of con-
vex combinations to form a differential inclusion on the
intersection is employed. We provide a novel computa-
tional framework which treats non-smoothness in the tra-
jectory of the state variables during the regularization of
chattering by a smooth correction after each integration
time-step. The paper is organized as follows: Section 2
provides preliminaries on the modeling of hybrid systems.
Section 3 deals with the chattering behavior as well as the
chattering on switching intersection. Section 4 presents
a numerical approach to integrate the system dynamics
while eliminating the fast switching. Finally, simulation
results and conclusion of the study are given in Sections 5
and 6, respectively.

2 Modeling of Hybrid Systems
Definition 1: (Hybrid Automaton)
A hybrid automaton HA is a collection HA =
(Q,X , Init, f , I,E,G,R), wehre

1. Q, a finite set of discrete states q ∈ Q.

2. X , a finite set of continuous states variables xi ∈ X .

3. Init ⊆ Q×X , is a finite set of initial states.

4. f : Q×Rn → Rn, is a flow map, which describes,
through a differential equation, the continuous evo-
lution of the continuous state variable x.

5. I: Q ⇒ Rn, assigns to each location q ∈ Q an in-
variant map, which describes the conditions that the
continuous state x has to satisfy at this mode.

6. E ⊂ Q×Q, is a collection of discrete transitions,
which identifies the pairs (q, q′) such that a transi-
tion from the mode q to the mode q′ is possible.

7. G : E ⇒ Rn, assign to each e = (q,q′) ∈ E a guard
to which the continuous state x must belong so that a
transition from q to q′ can occur.

8. R : E×Rn → Rn assign to each e = (q,q′) ∈ E and
x ∈ X a reset map R(e,x), which describes, for each
e = (q,q′) ∈ E, the value to which the continuous
state x ∈Rn is set during a transition from mode q to
mode q′.

Definition 2: (The dynamics of a Hybrid Automaton)
As a hybrid system with explicitly shown modes, the con-
tinuous behavior in the hybrid automaton is modeled by a
flow map ẋ = fq(x), while the discrete behavior is mod-
eled by a jump map φq(x) (Cai et al., 2007). The condi-
tions that permit flows and/or jumps are given by the flow
set C and the jump set D, respectively, subsets of the state
space. The dynamics of a hybrid automaton is given by

H :

 ẋ = fq(x) x ∈Cq[
x+

q+

]
∈ φq(x) x ∈ Dq

 (1)

where

Dq =
⋃

e=(q,q′)∈E

G(e); Cq = Iq; (2)

φq(x) =
⋃

e=(q,q′);x∈G(e)

[
R(e,x)

q′

]
; (3)

C =
⋃

q∈Q

(Cq×{q}); D =
⋃

q∈Q

(Dq×{q}) (4)

The discrete transitions between modes are always
guarded by zero-crossings of the guard functions, and
continuous modes are always defined by a Boolean ex-
pression over discrete variables, which are piecewise con-
stant in continuous time, this is to make sure that a mode
change can only happen on discrete transitions. In gen-
eral, there are three natural choices for the semantics of a
zero-crossing up(z)(Schrammel, 2012):

• “At-zero” : z(xk−1, tk−1)≤ 0∧ z(xk, tk)≥ 0

• “Contact” : z(xk−1, tk−1)< 0∧ z(xk, tk)≥ 0

• “Crossing” : z(xk−1, tk−1)≤ 0∧ z(xk, tk)> 0

Based on non-standard analysis, by the continuity
of the event function z in the “Crossing” semantics
we can deduce that z(t) = 0 is valid at the zero-
crossing point in standard semantics: by standardizing
z(t)≤ 0 ∧ z(t +∂)> 0 we get st(z(t)) = st(z(t +∂)) = 0,
where ∂ is a non-standard infinitesimal (Benveniste et al.,
2012). This gives an unambiguous meaning to hybrid
systems even if they contain chattering behavior. In
order to allow chattering in the standard semantics, the
trajectories are allowed to actually go above zero, up to a
constant ε > 0.

Definition 3: (Lie derivatives)
Assume the flow map fq is analytic in its second argu-
ment, the Lie derivatives Lk

fqgq : Rn → Rn of a function



gq, also analytic in its second argument, along fq, for
k > 0, is defined by:

Lk
fqgq(x(t)) =

(
∂Lk−1

fq gq(x(t))

∂x(t)

)
· fq(x(t)) (5)

with

L0
fqgq(x(t)) = gq(x(t)) (6)

Definition 4: (Pointwise relative degree)
We define the relative degree nq(x) : Rn→ N by:

nq(x) = k i f
∧
j<k

L j
fqgq(x) = 0∧Lk

fqgq(x) 6= 0 (7)

3 The Chattering Behavior

Physically, chattering behavior occurs if equal thresholds
for the transition conditions of different modes are given
and the system starts to oscillate around them. A spe-
cific issue is the existence of multiple sliding modes due
to intersecting switching manifolds, that is, the chatter-
ing occurs on switching manifolds of different dimension,
roughly speaking, the chattering set may belong to many
R(n−r) switching manifolds of the same system, where
r ∈ {1,2, ...,n}. To illustrate this particular case, we study,
in the following, a mechanical stick-slip system with dry
Coulomb friction.

3.1 Case Study 1:

The non-smooth system to be investigated (Figure 1), con-
sists of three blocks of masses m, M1, and M2, where only
the block of mass m is connected to a fixed support by
a linear spring of stiffness k and is under the action of
a sinusoidal external force u generated by an actuator P
(u = A sin(ω t +ϕ)). We denote xm, xM1 , and xM2 to the
position of the small mass m and the two inertial masses
M1 and M2, respectively. We denote F1 to the tangential
contact force on the frictional interface between the small
mass m and the inertial mass M1, and F2 to the tangential
contact force on the frictional interface between the small
mass m and the inertial mass M2. The friction between the
inertial mass M2 and the ground is neglected. The origin
of the displacements xm, xM1 , and xM2 is taken where the
spring is un-stretched. The system’s state space represen-
tation is given by

f (x) :



ẋm = vm
v̇m = 1

m(u− kxm−F1−F2)
ẋM1 = vM1

v̇M1 =
1

M1
F1

ẋM2 = vM2

v̇M2 =
1

M2
F2


(8)

Figure 1. Schematic of the studied Stick-slip system.

where x = [xm vm xM1 vM1 xM2 vM2 ]
T , and vm, vM1 , and

vM2 are the velocities of the small mass m and the iner-
tial masses M1 and M2, respectively. In modeling friction-
induced vibration and noise problems, friction force is of-
ten treated phenomenologically, as a function of relative
velocity between surfaces.

F1 =

{
−Fc1 f or vr1(t)< 0
−Fc1 f or vr1(t)> 0

}
(9)

F2 =

{
−Fc2 f or vr2(t)< 0
−Fc2 f or vr2(t)> 0

}
(10)

where Fc1 , Fc2 are the levels of the Coulomb friction,
vr1 = vm−vM1 is the relative velocity related to the masses
m and M1, and vr2 = vm− vM2 is the relative velocity re-
lated to the masses m and M2. In the physical system, for
the frictional interface between the small mass m and the
inertial mass M1, as long as the force acting at the interface
(call it ρ1) does not exceed the Coulomb friction level Fc1 ,
the two masses m and M1 move together with vr1 = 0. As
soon as ρ1 exceeds the Coulomb friction level, one mass
slips over the other with vr1 6= 0. The slip is said to be pos-
itive (Slip+1 ) with a friction force F1 = +Fc1 if vm > vM1 .
The slip motion is said to be negative (Slip−1 ) with a fric-
tion force F =−Fc1 if vM1 > vm. The same applies for the
interface between the masses m and M2.
Obviously, we have a hybrid system with four explicitly
shown modes Q = {q1,q2,q3,q4}, where the four modes
q1 = slip+1 slip+2 , q2 = slip−1 slip+2 , q3 = slip−1 slip−2 , and
q4 = slip+1 slip−2 are distinguished by negative and posi-
tive relative velocities vr1 and vr2 . The hybrid automaton
of this system is given, in the form (2), by

H :

 ẋ = fq(x) x ∈Cq[
x+

q+

]
∈ φq(x) x ∈ Dq

 (11)

f1(x) :



ẋm = vm
v̇m = 1

m (u− kxm(t)−Fc1 −Fc2)
ẋM1 = vM1

v̇M1 =
1

M1
Fc1

ẋM2 = vM2

v̇M2 =
1

M2
Fc2


(12)



f2(x) :



ẋm = vm
v̇m = 1

m (u− kxm(t)+Fc1 −Fc2)
ẋM1 = vM1

v̇M1 =
−1
M1

Fc1

ẋM2 = vM2

v̇M2 =
1

M2
Fc2


(13)

f3(x) :



ẋm = vm
v̇m = 1

m (u− kxm(t)+Fc1 +Fc2)
ẋM1 = vM1

v̇M1 =
−1
M1

Fc1

ẋM2 = vM2

v̇M2 =
−1
M2

Fc2


(14)

f4(x) :



ẋm = vm
v̇m = 1

m (u− kxm(t)−Fc1 +Fc2)
ẋM1 = vM1

v̇M1 =
1

M1
Fc1

ẋM2 = vM2

v̇M2 =
−1
M2

Fc2


(15)

φ1(x) =
{

(x,q2) i f vr1 = 0∧ vr2 ≥ 0
(x,q4) i f vr1 ≥ 0∧ vr2 = 0

}
(16)

φ2(x) =
{

(x,q1) i f vr1 = 0∧ vr2 ≥ 0
(x,q3) i f vr1 ≤ 0∧ vr2 = 0

}
(17)

φ3(x) =
{

(x,q2) i f vr1 ≤ 0∧ vr2 = 0
(x,q4) i f vr1 = 0∧ vr2 ≤ 0

}
(18)

φ4(x) =
{

(x,q1) i f vr1 ≥ 0∧ vr2 = 0
(x,q3) i f vr1 = 0∧ vr2 ≤ 0

}
(19)

Dq1 = G(q1,q2) ∪ G(q1,q4) (20)

= {(vr1 = 0∧ vr2 ≥ 0)∪ (vr1 ≥ 0∧ vr2 = 0)}

Dq2 = G(q2,q1) ∪ G(q2,q3) (21)

= {(vr1 = 0∧ vr2 ≥ 0)∪ (vr1 ≤ 0∧ vr2 = 0)}

Dq3 = G(q3,q2) ∪ G(q3,q4) (22)

= {(vr1 ≤ 0∧ vr2 = 0)∪ (vr1 = 0∧ vr2 ≤ 0)}

Dq4 = G(q4,q1) ∪ G(q4,q3) (23)

= {(vr1 ≥ 0∧ vr2 = 0)∪ (vr1 = 0∧ vr2 ≤ 0)}

Clearly, the system is discontinuous on two hyper switch-
ing manifolds Γa and Γb characterized as zero sets of the
switching functions γa(x) and γb(x), respectively:

Γa = {x ∈ R6 : γa(x) |= vr1(t) = 0} (24)

Γb = {x ∈ R6 : γb(x) |= vr2(t) = 0} (25)

We will assume that ∂γa(x)
∂x 6= 0 for all x ∈ Γa and ∂γb(x)

∂x 6= 0
for all x ∈ Γb so that the normal units ⊥a(x) and ⊥b(x) or-
thogonal to the tangent planes Tx(Γa) and Tx(Γb), respec-
tively, are well defined (Filippov, 1988). Furthermore, we
assume that ⊥a(x) and ⊥b(x) are linearly independent for
all x ∈ Γa ∩Γb. In the neighborhood of the intersection

∆ = Γa ∩Γb (Figure 2), for the continuous time variables
vm, vM1 , vM2 , the R3 phase space consists of four open
regions (the flow sets) Ci, for i = 1,2,3,4, with the flow
map vector fields f1(x), f2(x), f3(x), and f4(x). The curve
∆ is a R(n−2) switching manifold results from the intersec-
tion of two transversally intersected R(n−1) manifolds and
is given by ∆ = Γa ∩Γb = {x ∈ Rn : vr1 = 0∧ vr2 = 0}.
Clearly, the curve ∆ belongs to the boundary of each one
of discrete states q1, q2, q3, and q4. Furthermore, each
two adjacent regions are separated by a hyper switching
manifold defined by opposed zero crossings of the same
switching function. Let Γ be the entire discontinuity re-

(vr1 > 0)∧(vr2 > 0)

(vr1 < 0)∧(vr2 > 0)

(vr1 < 0)∧(vr2 < 0)

(vr1 > 0)∧(vr2 < 0)
C1

C2

C3

C4

!!Higher!Dimensional!Cha0ering!

Γa1
⊂ Γa

Γb1
⊂ Γb

(vr1 = 0)∧(vr2 ≥ 0)

(vr1 = 0)∧(vr2 ≤ 0)

(vr1 ≥ 0)∧(vr2 = 0)

(vr1 ≤ 0)∧(vr2 = 0)

ΔΓa2
⊂ Γa

Γb2
⊂ Γb

Figure 2. The switching intersection set in the R3-dimensional
phase space of the studied system.

gion in the phase space defined as the union of the two hy-
per switching manifolds Γa and Γb: Γ=Γa∪Γb. A switch-
ing between the four different flow map’s vector fields f1,
f2, f3, and f4 takes place in the neighborhood of the in-
tersection ∆. A trajectory that crosses Γ transversally will
switch instantaneously between the vector fields fq with-
out any specific form of flow map vector on Γ. The only
alternative is that a trajectory exhibits an attractive chat-
tering on Γ, which yields an attractive chattering: i) be-
tween q1 and q2 on Γa1 ∈R(n−1), ii) between q3 and q4 on
Γa2 ∈ R(n−1), iii) between q1 and q4 on Γb1 ∈ R(n−1), iv)
between q2 and q3 on Γb2 ∈ R(n−1), v) as well as between
the four discrete states q1, q2, q3, and q4 on ∆ ∈ R(n−2).
On the intersection ∆, an infinite number of discrete tran-
sitions between the four modes is expected as long as for
all q ∈ Q the gradient of the continuous-time behavior ac-
cording to the flow map’s vector field fq is directed into
the intersection ∆, that is, in the neighborhood of the in-
tersection the gradients direct behavior towards ∆ so that
upon each entering to a new mode an infinitesimal step
causes another mode change. When simulating this sys-
tem, in general, such behavior breaks down the numerical
integration of the dynamics, as it does not progress in time,
but chatters between modes.



3.2 Chattering in The Neighborhood of a
Switching Intersection:

We consider a hybrid automaton H with a finite set of dis-
crete states q∈Q with transverse invariants (Morris, 2009)
where the state space is split into different regions (flow
sets Cq ∈ Rn) by the intersection of p transversally inter-
sected Rn−1 switching manifolds Γ j defined as the zeros
of a set of scalar functions γ j(x) for j = 1,2, ..., p,

Γ j = {x ∈ Rn : γ j(x) = 0 ; j = 1,2, ..., p} (26)

The zero crossing in opposite directions defines the
switching between two adjacent flow sets. All switching
functions γ j are assumed to be analytic in their second ar-
guments so the normal unit vector ⊥ j for each one of the
intersected switching manifolds Γ j is well defined. More-
over, the normal unit vectors are linearly independent for
all the R(n−r) intersections where r∈{2,3, ...,n}. The sys-
tem phase space C⊆Rn is partitioned into 2p open convex
regions (sub-domains) Cq ∈Rn, q = 1, ...2p, and p switch-
ing manifold γ j(x) ∈ Rn−1, j = 1,2, ..., p. In the convex
flow sets Cq, the solution trajectory flow is governed by
different vector fields fq(x(t)). Furthermore, it is assumed
that the flow maps fq are smooth in the state x for any open
flow set adjacent to the flow set Cq and all fq can be asso-
ciated to the intersection.
In general, the disjoint 2p regions flow sets can be charac-
terized in a systematic way by defining a sign matrix Ψ of
size (p,2p) as following:
Let W (k) = (Wi)1,2k be an 1× 2k vector of values Wi =
1, ∀i, with k = 1, ..., p−1.

1. The first row vector of the matrix Ψ: V1 = Ψ(1, :)
consists of 2p−1 pairs of

(
−W (1)(1,1),W (1)(1,2)

)
.

Ψ
(1) = {−W (1)(1,1),W (1)(1,2)}2p−1 (27)

2. The second row vector V2 = Ψ(2, :) consists of 2p−2

pairs of (−W (1),W (1)).

Ψ
(2) = {−W (1),W (1)}2p−2 (28)

3. The jth row vector Vj = Ψ( j, :) consists of 2p− j pairs
of (−W ( j−1),W ( j−1)) for j = 3, ..., p.

Ψ
( j) = {−W ( j−1),W ( j−1)}2p− j (29)

Each column vector defines the signs of the switching
functions γ j(x) for a given flow set Cq. We use the multi-
valued function α j(x) such that the convex set is given for
all Γ j| j=1,2,...,p and Ci|i=1,2,...,2p by:

ẋ ∈
2p

∑
i=1

(
(

p

∏
j=1

1+2Ψ j,i ·α j(x)−Ψ j,i

2
) · fi(x)

)
(30)

where

α j(x) =

 (0,1) f or γ j(x)> 0
[0,1] f or γ j(x) = 0
(0,1) f or γ j(x)< 0

 (31)

2p

∑
i=1

(
p

∏
j=1

1+2Ψ j,i ·α j−Ψ j,i

2

)
= 1 (32)

Equation (31) yields in

ẋ ∈ (1−α j) ·
2p

∑
i=1

(R1 · fi(x))+α j ·
2p

∑
i=1

(R2 · fi(x)) (33)

R1 =
p

∏
k=1;k 6= j;Ψk,i=−1

(
1+2Ψk,i ·αk−Ψk,i

2

)
(34)

R2 =
p

∏
k=1;k 6= j;Ψk,i=1

(
1+2Ψk,i ·αk−Ψk,i

2

)
(35)

We then define a matrix F of the normal projections
f
⊥ j
i (x) for j = 1,2, ..., p and i = 1,2, ...,2p as

F =



f⊥1
1 (x) f⊥2

1 (x) · · · f⊥p
1 (x)

f⊥1
2 (x) f⊥2

2 (x) · · · f⊥p
2 (x)

...
...

. . .
...

...
...

. . .
...

f⊥1
2p (x) f⊥2

2p (x) · · · f⊥p
2p (x)


(36)

where

f
⊥ j
i (x) = L fiγ j(x) =

(
∂γ j(x)

∂x

)T

· fi(x) (37)

In agreement with the sign matrix Ψ, the attractive chat-
tering on any R(n−r) switching manifold for r = 2,3, ...,n
can be easily observed by checking the signs of the
matrices F and Ψ.

Lemma 1:
The sufficient condition for having an attractive chat-
tering on any switching intersection in the system’s
state space requires a nodal attractivity towards the
intersection itself, for all the flow maps fi in the Rn

regions Ci associated to this intersection. That is, the
following constraint should be satisfied

∀i, j : sgn( f
⊥ j
i (x)) =−sgn(Ψ j,i) (38)

To keep the solution trajectory in a sliding motion on the
intersection as long as the attractive chattering condition
is satisfied we impose

∀ j = 1,2, ...p :

2p

∑
i=1

(
p

∏
j=1

1+2Ψ j,i ·α j−Ψ j,i

2
) · f

⊥ j
i (x) = 0 (39)



so that

α j =
W1

W1−W2
(40)

W1 =
2p

∑
i=1

(
p

∏
k=1;k 6= j;Ψk,i=−1

1+2Ψk,i ·αk−Ψk,i

2
) · f

⊥ j
i (41)

W2 =
2p

∑
i=1

(
p

∏
k=1;k 6= j;Ψk,i=1

1+2Ψk,i ·αk−Ψk,i

2
) · f

⊥ j
i (42)

For all αk ∈ (0,1), the product term in (42) (respectively
(43)) takes always a value in (0,1) since it is always a
product of (1−αk) (respectively αk). It holds always that
W1 > 0∧W2 < 0 as long as an attractive chattering takes
place at x ∈

(⋃p
j=1 Γ j

)
∩C, where C is the entire flow set

in the system phase space.
This gives us a hypercube convex hull of sign coordiantes
(±1, ±1, · · · , ±1) with an edge of length 2 and Rn vol-
ume 2p. Therefore, a solution to the fixed point non-
linear problem (40) exists. However, the uniqueness of the
solution is no guaranteed. To deal with non-uniqueness
on the intersection−on which the attractive chattering
occurs−we propose to give an equivalent to the product
term in (40) so that the sliding parameters are given in
term of a rational function of coefficients κi:

p

∏
j=1

1+2Ψ j,i ·α j−Ψ j,i

2
=

κi

∑
2p
k=1 κk

(43)

where

κi =

(
∏

2p

l=1;l 6=i(Ωl)
) 1

2p−1

(
∏

2p
l=1;l 6=i(Ωl)

) 1
2p−1 − (Ωi)

(44)

Ωi = [(bi)1 (bi)2 · · · (bi)p] ·


L fiγ1(x)
L fiγ2(x)

...
L fiγp(x)

 (45)

Ωl = [(bl)1 (bl)2 · · · (bl)p] ·


L fl γ1(x)
L fl γ2(x)

...
L fl γp(x)

 (46)

The vectors bn for n = i, l are given as sign permutations
of coordinates [±1,±1, · · · ,±1]T under the constraint:

sgn(bn) j =

{
−sgn(L fnγ j(x)) f or n = 1,3, ...,2p

−sgn(L fnγ j(x)) f or n = 2,3, ...,2p

}
(47)

where j = 1,2, ..., p and p is the number of the intersected
R(n−1) switching manifolds. This gives always Ω1 > 0
and Ωn < 0 for all n ∈ {2,3, ..,2p} which is exactly what
we want. Another advantage of using the signs constraint

in (48) is that κ j = 0 for all j 6= i when κi = 1 for a
given index i ∈ {1,2, ...,2p}, this allows us to detect
when a switching regime of different dimension has been
reached by the solution trajectory, and then, to select
the appropriate vector fields on this regime. Moreover,
the parameter κi takes always a value 0 ≤ κi ≤ 1 for

i = 1,2, ...,2p, yields in ∑
2p

i=1

(
κi

∑
2p
k=1 κk

)
= 1, which is

consistent with the approach of Filippov differential
inclusion.

Case Study 1 Revisited:
With A = u− kxm, the Lie derivatives of the switching
functions γa(x) and γb(x) along the flow map vector fields
f1, f2, f3, and f4 are given by

f⊥a
1 (x) =

1
m
·
(

A− (
m+M1

M1
) ·Fc1 −Fc2

)
(48)

f⊥b
1 (x) =

1
m
·
(

A−Fc1 − (
m+M2

M2
) ·Fc2

)
(49)

f⊥a
2 (x) =

1
m
·
(

A+(
m+M1

M1
) ·Fc1 −Fc2

)
(50)

f⊥b
2 (x) =

1
m
·
(

A+Fc1 − (
m+M2

M2
) ·Fc2

)
(51)

f⊥a
3 (x) =

1
m
·
(

A+(
m+M1

M1
) ·Fc1 +Fc2

)
(52)

f⊥b
3 (x) =

1
m
·
(

A+Fc1 +(
m+M2

M2
) ·Fc2

)
(53)

f⊥a
4 (x) =

1
m
·
(

A− (
m+M1

M1
) ·Fc1 +Fc2

)
(54)

f⊥b
4 (x) =

1
m
·
(

A−Fc1 +(
m+M2

M2
) ·Fc2

)
(55)

. We distinguish between the following cases:

• An infinitely fast back and forth switching between
the discrete states q1 and q2 occurs on Γa1 if and
only if f⊥a

1 (x)< 0∧ f⊥a
2 (x)> 0. This happens when

|(u− kxm−Fc2) | < (m+M1
M1

) ·Fc1 . The resulting slid-
ing vector field fsa1

is:

fsa1
=



vm
1

m+M1
(u− kxm−Fc2)

vM1
1

m+M1
(u− kxm−Fc2)

vM2
1

M2
Fc2


(56)

• An infinitely fast back and forth switching between
the discrete states q3 and q4 occurs on Γa2 if and
only if f⊥a

4 (x)< 0∧ f⊥a
3 (x)> 0. This happens when



|(u− kxm +Fc2) | < (m+M1
M1

) ·Fc1 . The resulting slid-
ing vector field fsa2

is:

fsa2
=



vm
1

m+M1
(u− kxm +Fc2)

vM1
1

m+M1
(u− kxm +Fc2)

vM2
−1
M2

Fc2


(57)

• An infinitely fast back and forth switching between
the discrete states q1 and q4 occurs on Γb1 if and
only if f⊥b

1 (x)< 0∧ f⊥b
4 (x)> 0. This happens when

|(u− kxm−Fc1) | < (m+M2
M2

) ·Fc2 . The resulting slid-
ing vector field fsb1

is:

fsb1
=



vm
1

m+M2
(u− kxm−Fc1)

vM1
1

M1
Fc1

vM2
1

m+M2
(u− kxm−Fc1)


(58)

• An infinitely fast back and forth switching between
the discrete states q2 and q3 occurs on Γb2 if and
only if f⊥b

2 (x)< 0∧ f⊥b
3 (x)> 0. This happens when

|(u− kxm +Fc1) | < (m+M2
M2

) ·Fc2 . The resulting slid-
ing vector field fsb2

is:

fsb2
=



vm
1

m+M2
(u− kxm +Fc1)

vM1
−1
M1

Fc1

vM2
1

m+M2
(u− kxm +Fc1)


(59)

• An infinitely fast switching between q1, q2, q3, and
q4 takes place on the intersection ∆ if and only if the
following four conditions are satisfied

1. ( f⊥Γa
1 < 0)∧ ( f⊥Γa

2 > 0) which happens when
|(A−Fc2) |< (m+M1

M1
) ·Fc1 .

2. ( f
⊥Γb
1 < 0)∧ ( f

⊥Γb
4 > 0) which happens when

|(A−Fc1) |< (m+M2
M2

) ·Fc2 .

3. ( f
⊥Γb
2 < 0)∧ ( f

⊥Γb
3 > 0) which happens when

|(A+Fc1) |< (m+M2
M2

) ·Fc2 .

4. ( f⊥Γa
4 < 0)∧ ( f⊥Γa

3 > 0) which happens when
|(A+Fc2) |< (m+M1

M1
) ·Fc1 .

The resulting sliding vector field fs∆
is:

fs∆
=



vm
1

m+M1+M2
(u− kxm)

vM1
1

m+M1+M2
(u− kxm)

vM2
1

m+M1+M2
(u− kxm)


(60)

4 Numerical Approach:

The algorithm has to detect: (i) when a switching man-
ifold of different dimension is reached, and (ii) whether
the trajectory stays on or leaves the switching manifold.
This has to be decided depending on the gradients of the
continuous time behavior in the neighborhood of the cur-
rent state. Let Γ =

⋃p
j=1 Γ j be the entire discontinuity re-

gion. The algorithm has to perform the following tasks:
(1) Robust integration outside the entire discontinuity re-
gion Γ; (2) Accurate detection and location of the switch
points xm when the solution trajectory reaches Γ, this in-
cludes switching intersections for lower dimensions; (3)
Check at xm ∈ Γ for the existence of a regular switching
(transversality) as well as for the existence of an attractive
chattering behavior (sliding motion); (4) Integration with
a sliding mode on Γ; (5) Decision of whether or not we
should leave the sliding region. We would like to men-
tion that our contribution is independent of using partic-
ular integration schemes. For discretizing the differential
equations outside the discontinuity region Γ any explicit
integration scheme can be used. In this work we have
used the mid-point rule of explicit 2nd order Runge-Kutta
integration scheme (Butcher, 2008; Cellier and Kofman,
2006; Munz et al., 2011). At the end of each integration
step we check whether the discontinuity region Γ has been
reached or not. We distinuiush the following cases:

1. If 〈γ j(xi) · γ j(xi+1)〉 > 0 for all j = 1,2, ..., p where
p is the number of the intersected R(n−1) switching
manifolds, then we continue integrating the system
with the same flow map vector fq.

2. If there exist j ∈ {1,2, ..., p} such that 〈γ j(xi) ·
γ j(xi+1)〉 < 0, this indicates a zero crossing in the
time interval (ti, ti +∆ti). In this case we have a con-
tinuous smooth switching function γ j(xi+1(σ)) tak-
ing opposed signs at σ = 0 and σ = ∆Ti and therefore
there exist a zero at σm ∈ (0,∆Ti) which defines the
switch point xm = xi+1(σm) ∈ Γ j.

3. The case in which we have 〈γ j(xi) · γ j(xi+1)〉 < 0∧
γ j(σm) = 0 for all j = 1,2, ...,k where k ≤ p and
σm ∈ (0,∆Ti) indicates that the solution trajectory has
reached the intersection of k ≤ p of transvrsally in-
tersected R(n−1) hyper switching manifolds Γ j.

In the last two cases, secant approach (Allen and Isaacson,
1998; Kaw and Kalu, 2008) is employed to find the root



σm of the switching function γ j(σ) = γ(xi+1(σ)). Once
the switch point xm has been located, the algorithm checks
whether the switch point xm is a transversality point (leads
to cross Γ) or a chattering equilibrium (leads to slide on
Γ) by checking the sign of the two matrices Ψ and F
(Lemma 1). The proposed convexification (Equation 40,
44-48) is used to approximate the system dynamics when
sliding on Γ. For the integration during the sliding any
implicit integration scheme can be used. In this work we
have used the midpoint rule of implicit Bathe time inte-
gration scheme (Bathe and Noh, 2012). To avoid any sit-
uation in which the intermediate stages values don’t lie
exactly on the sliding surface we use a projection formu-
lation for convex sets together with semi-smooth Newton
methods to project back to the sliding region the approx-
imated stage values xi+ 1

2
and xi+1 at ti + ∆ti

2 and ti +∆ti,
respectively. The objective of the projection formulation
is to stabilize the solution during the sliding on Γ. Con-
sider a point x∗ close to the hyper switching manifold Γ,
each one integration step of the projected Bathe scheme
on the sliding manifold Γs then is given as

1. x∗
i+ 1

2
= xi +

∆ti
4

(
fs(xi)+ fs(xi+ 1

2
)
)

2. xi+ 1
2
= pro j(x∗

i+ 1
2
)

3. x∗i+1 =−
1
3 xi +

4
3 xi+ 1

2
+ ∆ti

3 fs(xi+1)

4. xi+1 = pro j(x∗i+1)

The projection point x ∈ Γ to x∗: x = P(x∗) is given by the
solution of the projection function:

P : min
x∈Γs

u(x) : u(x) =
(

1
2
(x∗− x)T (x∗− x)

)
(61)

where Γs is the sliding manifold. To find the projected
value x we introduce a Lagrange multiplier λ and we need
to find the root of the equation system

G(x,λ) =
(

∂u(x)
∂x +λ

∂γ(x)
∂x

γ(x)

)
(62)

We use Newton iteration, by imposing the condition
G(xk+1,λk+1) = 0 and expand G(xk+1,λk+1) in Taylor se-
ries neglecting the terms of order equal or greater than 2.

0 = G(xk,λk)+

(
xk+1− xk
λk+1−λk

)
·G′(xk,λk) (63)

for k ≥ 0 so that

G′(xk,λk) ·
(

xk+1− xk
λk+1−λk

)
=−G(xk,λk) (64)

G′(x,λ) =

 I +λ
∂

∂x(
∂γ(x)

∂x ) ∂γ(x)
∂x(

∂γ(x)
∂x

)T
0

 (65)

At the end of each integration step from ti to ti +∆ti while
we integrate with the sliding vector fs, we keep checking
whether we have to keep sliding on Γs or leaving it, by
checking the value of κi in (45).

5 Simulation Results:

As shown in Figure 3, the system in Case Study 1
was simulated for m = M1 = M2 = 1[kg], k = 0.88[N ·
m−1], Fc1 = 0.01996[N] Fc2 = 0.062[N], and x0 =
[0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T . The
force u was simulated as a sine wave of frequency of
ω = 0.073[rad/sec]. The relative and absolute error toler-
ance used in the approximation were adjusted to ATOL =
RTOL = 10−8.
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Figure 3. The sliding mode simulation of Ex-
ample 2.4 with m = M1 = M2 = 1[kg], k =
0.88[N · m−1], Fc1 = 0.01996[N] Fc2 = 0.062[N], and
x0 = [0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T . In
(a): The time evolution of the relative velocity vr2 . In (b): The
time evolution of the velocities vr1 .

The sliding bifurcations depend on the effect of the
external force u and the level of Coulomb friction. We
can observe that, at the beginning of the simulation, the



execution of the hybrid automaton starts in the discrete
state q3 = Slip−1 Slip−2 , the system starts in a slip phase
for the two frictional interfaces in the system; since the
effect of the external force applied tangentially on the
interface is lower than the level of Coulomb friction. At
the time instant t = 32.69 sec, two masses m and M2
stick together and the solution trajectory start a sliding
motion on the switching manifold Γb2 (see Figure 3 (a))
ensuring a chattering path avoidance between the discrete
states q3 = Slip−1 Slip−2 and q2 = Slip−1 Slip+2 . A smooth
exit from the sliding motion on Γb2 into q3 was detected
at the time instant t = 77.23 sec. A regular switching
(transversality) from the discrete state q3 = Slip−1 Slip−2
to the discrete state q1 = Slip+1 Slip+2 at the intersection
∆ = Γa ∩Γb was detected at t = 92.04 sec. At t = 108
sec, two masses m and M1 stick together and the solution
trajectory start a sliding motion on the switching manifold
Γa2 ensuring a chattering path avoidance between the
discrete states q4 = Slip+1 Slip−2 and q3 = Slip−1 Slip−2 .
During a simulation time of 120 seconds, 5 mode switches
have been recorded.

Case Study 2:
Consider a mechanical system as depicted in Figure 4.
The system consists of three blocks of masses m1, m2, and
m3 on a moving belt with constant velocity vd . The three
blocks are connected along a line by two linear springs of
stiffness k12 and k23, and connected to a fix support by to
linear springs of stiffness k1, k2, and k3, respectively.

m1 m2 m3

k12 k23

k1 k2 k3

vd

xm1 xm2 xm3

Figure 4. The schematic of the studied Mechanical stick-slip
system with 3 blocks.

The equations of the system model in R6 are given by

f (x) :



ẋm1(t) = vm1(t)
v̇m1(t) =

1
m1
(u1− k1xm1(t)−F1)

ẋm2(t) = vm2(t)
v̇m2(t) =

1
m2
(u2− k2xm2(t)−F2)

ẋm3(t) = vm3(t)
v̇m3(t) =

1
m3
(u3− k3xm3(t)−F3)


(66)

u1 = k12(xm2 − xm1)+ k13(xm3 − xm1) (67)

u2 = k12(xm1 − xm2)+ k23(xm3 − xm2) (68)

u3 = k13(xm1 − xm3)+ k23(xm2 − xm3) (69)

We denote xm1 , xm2 , and xm3 to the position of the masses
m1, m2, and m3 respectively, F1, F2, and F3 to the tan-
gential contact force on the frictional interfaces between
the moving belt and the three masses m1, m2, and m3 re-
spectively. The functional relationship between the fric-
tion force and the relative velocity on the three frictional
interfaces between the moving belt and the blocks m1, m2,
and m3 is given by

F1 =

{
−Fc1 f or vm1 > vd
−Fc1 f or vm1 < vd

}
(70)

F2 =

{
−Fc2 f or vm2 > vd
−Fc2 f or vm2 < vd

}
(71)

F3 =

{
−Fc3 f or vm3 > vd
−Fc3 f or vm3 < vd

}
(72)

where vm1 , vm2 , and vm3 are the velocities of m1,m2, and
m3 respectively. Fc1 , Fc2 , and Fc3 are the levels of the
coulomb friction. Physically, for each one of the three fric-
tional interfaces in the system, as long as the force acting
at the interface (call it ρ j) does not exceed the Coulomb
friction level Fc j , the moving belt and the mass m j move
together with vr j = 0 where j = 1,2,3. As soon as ρ j ex-
ceeds the Coulomb friction level, the mass m j slips over
the belt with vr j 6= 0. The slip is said to be positive (Slip+j )
with a friction force F j = +Fc j , i.e. the mass m j slips on
the belt, if v j > vd . The slip motion is said to be negative
(Slip−j ) with a friction force F = −Fc j , if v j < vd . Obvi-
ously the system is discontinuous on three hyper switching
manifolds Γa, Γb, and Γc characterized as zero sets of the
switching functions γa(x), γb(x), and γc(x) respectively

Γa = {x ∈ Rn : γa(x) |= vm1(t) = vd(t)} (73)

Γb = {x ∈ Rn : γb(x) |= vm2(t) = vd(t)} (74)

Γc = {x ∈ Rn : γc(x) |= vm3(t) = vd(t)} (75)

The system was simulated for the data set:
m1 = m2 = m3 = 1[kg], Fc1 = 0.14[N], Fc2 =
0.13[N], Fc3 = 0.12[N], k1 = k2 = k3 = k12 =
k13 = k23 = 0.01[N · m−1], vd = 0.5m/sec and
x0 = [4.7799 0.2797 4.0038 1.7144 1.2922 4.1263]T . The
external force u was simulated as a sine wave of frequency
of ω = 0.24[rad/sec]. The relative and absolute error
tolerance used in the approximation were adjusted to
ATOL = RTOL = 10−8.
The simulation results for simulation time adjusted to
100 seconds are shown in Figure 5. At the beginning of
the simulation, the execution of the hybrid automaton
starts in the discrete state q1 = Slip+1 Slip+2 Slip+3 (i.e.
the system starts in a slip phase), since the effect of
the external force applied tangentially on the frictional
interface is greater than the level of Coulomb friction,
for the three frictional interfaces in the system. Both m1
and m2 stick with the moving belt in the time interval
from t = 74.84sec to t = 89.07sec and the solution



trajectory start a sliding motion on the intersection
Γa∩Γb = {x ∈ R6 : vm1 = vm2 = vd}. At the time instant
t = 76.69sec the solution passes through the intersection
of the three transversally intersected switching manifolds
Γa∩Γb∩Γc = {x ∈R6 : vm1 = vm2 = vm3 = vd} switching
from a sliding on the intersection Γa ∩Γb in the positive
direction of the switching manifold Γc into sliding on
the intersection Γa ∩ Γb in the negative direction of Γc
providing a chattering bath avoidance between the flow
sets associated to these intersections. During a simulation
time of 100 seconds, 16 mode switches as well as 12
tangential crossings have been recorded.

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
A plot of the relative velocity vr1 versus time t.

time (t): [sec]

Th
e 

re
la

tiv
e 

ve
lo

ci
ty

 v
r1

: [
m

/s
ec

]

 

 

vr1 versus t
events

(a)

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A plot of the relative velocity vr2 versus time t.

time (t): [sec]

Th
e 

re
la

tiv
e 

ve
lo

ci
ty

 v
r2

: [
m

/s
ec

]

 

 
vr2 versus t
events

(b)

Figure 5. The sliding mode simulation of Case
Study 2 with m1 = m2 = m3 = 1[kg], k1 = k2 =
k3 = k12 = k13 = k23 = 0.01[N · m−1], Fc1 = 0.14[N]
Fc2 = 0.13[N], Fc3 = 0.12[N], vd = 0.5m/sec, and
x0 = [4.7799 0.2797 4.0038 1.7144 1.2922 4.1263]T . In
(a): The time evolution of the relative velocity vr1 . In (b): The
time evolution of the relative velocity vr2 .

6 Conclusions

In this paper we presented a new approach for the robust
and stable numerical simulation of hybrid systems with
chattering behavior, characterized either by infinite fast
control actions or by discontinuous laws of physics. We
have proposed a technique to detect chattering behavior
“on the fly” in real-time simulation. Necessary and suf-
ficient conditions driving to chattering behavior are ex-
plicitly introduced, and the treatment of chattering behav-
ior during the numerical simulation using so-called slid-
ing mode simulation is studied. A simulation algorithm is
proposed that guarantees a robust treatment of chattering
behavior. Its purpose is to organize mode switching and
to allow sliding mode simulation each time the necessary
and sufficient condition for chattering is satisfied. A novel
computational framework which treats automatically any
non-smoothness in the trajectory of the state variables dur-
ing the regularization of the chattering path by a smooth
correction after each integration time-step was also pro-
vided. The main objective of the computational algorithm
is to switch between the transversality modes and the slid-
ing modes simulation automatically as well as integrating
each particular state appropriately and localize the struc-
tural changes in the system in an accurate way. Our ap-
proach is based on mixing compile-time transformations
of hybrid programs (generating what is necessary to com-
pute the smooth equivalent dynamics), the decision at run-
time of the necessary and sufficient conditions for entering
and exiting a sliding mode, and the computation, at run-
time, of the smooth equivalent dynamics. We have shown
by a special hierarchical application of convex combina-
tions that unique solutions can be found in general cases
when the switching function takes the form of finitely
many intersecting manifolds so that an efficient numerical
treatment of the sliding motion constrained on the entire
discontinuity region (including the switching intersection)
is guaranteed.
Finally, the simulation results - reported here on a set of
representative case studies - showed that our approach is
efficient and precise enough to provide a chattering bath
avoidance, to perform a special numerical treatment of
the constrained motion along the discontinuity surface, as
well as its robustness in achieving an accurate detection
and localization of the switch points for both entering to-
and exiting from- the sliding region for the case of a single
manifold of discointuniuity as well as the case of switch-
ing intersection.
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