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Upper set monoids and

length preserving morphisms∗

Antonio Cano1 and Jean-Éric Pin2

October 22, 2011

Abstract

Length preserving morphisms and inverse of substitutions are two well-
studied operations on regular languages. Their connection with varieties
generated by power monoids was established independently by Reutenauer
and Straubing in 1979. More recently, an ordered version of this theory
was proposed by Polák and by the authors. In this paper, we present an
improved version of these results and obtain the following consequences.
Given a variety of finite ordered monoids V, let P

↑
V be the variety of

finite ordered monoids generated by the upper set monoids of members
of V. Then P

↑(P↑
V) = P

↑
V. This contrasts with the known results for

the unordered case: the operator PV corresponding to power monoids
satisfies P

3
V = P

4
V, but the varieties V, PV, P2

V and P
3
V can be

distinct.

All semigroups considered in this paper are either finite, free or profinite. In
particular, we use the term variety of monoids for variety of finite monoids.

Warning. This paper introduces some change of terminology and notation,
compared to the existing literature. We believe that this new terminology is an
improvement over the previous one, but it is fair to warn the reader of these
changes.

1 Introduction

Power monoids and power varieties (varieties of the form PV) are the topic of
numerous articles [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21] and many
other references can be found in Almeida’s remarkable survey [3]. Initially, the
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study of power varieties was partly motivated by semigroup theoretic questions
and partly by applications to language theory. By the way, several results on
power varieties were first established by using arguments of language theory.

The key result in this direction, proved independently by Reutenauer [20]
and Straubing [21] in 1979, establishes a surprising link between power varieties
and two natural operations on regular languages: length preserving morphisms
and inverse of substitutions. This result can be summarized as follows. Let V
be a variety of monoids and let V be the corresponding variety of languages.
Also let PV be the variety of languages corresponding to PV. Then, for each
alphabet A, PV(A∗) is the Boolean algebra generated by the set ΛV(A∗) of all
languages of the form ϕ(L), where ϕ is a length preserving morphism from B∗

into A∗ and L is a language of V(B∗). There is an analogous result for inverses
of substitutions.

The extension of Eilenberg’s variety theorem to ordered monoids [16] called
for a generalization of Reutenauer’s and Straubing’s result to the ordered case.
Such an extension was proposed by Polák [19, Theorem 4.2] and by the authors
[5, 6]. First, as shown by Polák, the upper set monoid is the proper extension of
the notion of power monoid to the ordered case. Let P↑ be the extension of this
operator to varieties of ordered monoids. Denoting by P↑V the positive variety
of languages corresponding to P↑V, it was no surprise to see that P↑V(A∗) is
the closure under union and intersection of ΛV(A∗).

The main result of this paper, Theorem 5.1, is an improvement of this result.
It shows that P↑V(A∗) is actually equal to ΛV(A∗). In particular, although P↑V
is closed under intersection, its description does not require this operation. As
it stands, this result looks like a rather minor improvement, but this is not
the case. Indeed, a major consequence of our result is that the operator P↑ is
idempotent. This contrasts with the corresponding result for the operator P,
which satisfies P3 = P4, but P2 6= P3.

2 Notation and background

In this section, we briefly recall some basic facts about ordered monoids and
profinite words. More details can be found in [18] for ordered monoids and in
[1, 17] for profinite words.

2.1 Ordered monoids

An ordered monoid is a monoid M equipped with a partial order 6 compatible
with the product on M : for all x, y, z ∈ M , if x 6 y then zx 6 zy and
xz 6 yz. Given two ordered monoidsM and N , a morphism of ordered monoids
ϕ : M → N is an order-preserving monoid morphism from M into N .

An ordered monoid M is a quotient of an ordered monoid R if there exists a
surjective morphism of ordered monoids from R ontoM . An ordered submonoid
of M is a submonoid of M , equipped with the restriction of the order on M .
Let M and N be ordered monoids. Then M divides N if M is a quotient of an
ordered submonoid of N .

The product of a family (Mi)i∈I of ordered monoids, is the product monoid∏
i∈I Mi equipped with the product order given by

(si)i∈I 6 (s′i)i∈I if and only if, for all i ∈ I, si 6 s′i.
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A variety of monoids is a class of monoids closed under taking submonoids,
quotients and finite direct products [7]. Equivalently, a variety of monoids is a
class of monoids closed under division and finite direct products. Varieties of
ordered monoids are defined analogously [16].

2.2 Profinite words

Let A be a finite alphabet. The set of profinite words is defined as the completion
of the free monoid A∗ for a certain metric.

A finite monoid M separates two words u and v of A∗ if there is a monoid
morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). One can show that any pair of
distinct words of A∗ can be separated by a finite monoid.

Given two words u, v ∈ A∗, we set

r(u, v) = min {|M | |M is a monoid that separates u and v}

We also set d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and
2−∞ = 0. Then d is a metric and the completion of the metric space (A∗, d) is
the set of profinite words on the alphabet A. Since the product of two words
is a uniformly continuous function from A∗ × A∗ to A∗, it can be extended
by continuity (in a unique way) to profinite words. The resulting topological

monoid, denoted Â∗, is called the free profinite monoid on A. It is a compact
monoid. It is a well known fact that, in a compact monoid, the smallest closed
subsemigroup containing a given element s has a unique idempotent, denoted
sω.

One can show that every morphism ϕ from A∗ onto a (discrete) finite monoid

M extends uniquely to a uniformly continuous morphism from Â∗ onto M . It
follows that if x is a profinite word and s = ϕ(x), then ϕ(xω) = sω.

For instance, the set of subsets of A is a monoid under union and the func-
tion which maps a word u onto the set of letters occurring in u is a continuous
morphism, which can be extended by continuity to profinite words. The re-
sulting map is called the content mapping and is denoted by c. For example,
c(abab) = {a, b} = c(((ab)ω(ba)ω)ω).

3 Upper set monoids

Let (M,6) be an ordered monoid. A lower set of M is a subset E of M such
that if x ∈ E and y 6 x then y ∈ E. An upper set of M is a subset F of M
such that if x ∈ F and x 6 y then y ∈ F . Note that a subset of M is an upper
set if and only if its complement is a lower set. Given an element s of M , the
set

↑s = {t ∈M | s 6 t}

is an upper set, called the upper set generated by s. More generally, if X is a
subset of M , the upper set generated by X is the set

↑X =
⋃

s∈X

↑s

The product of two upper sets X and Y is the upper set

XY = {z ∈M | there exist x ∈ X and y ∈ Y such that xy 6 z}
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This operation makes the set of upper sets of M a monoid, denoted by P↑(M)
and called the upper set monoid ofM . The identity element is ↑1 and the empty
set is a zero of P↑(M). If we omit this zero, we get the submonoid P↑

⋆ (M) of
nonempty upper sets of M .

Let us define a relation 6 on P↑(M) by setting X 6 Y if and only if Y ⊆ X .
In particular, one gets X 6 ∅ for any upper set X . We just mention for the
record that the other natural way to define an order on P↑(M) yields exactly
the same definition.

Proposition 3.1 One has X 6 Y if and only if, for each y ∈ Y , there exists
x ∈ X such that x 6 y.

Proof. Suppose that Y ⊆ X . Then the condition of the statement is clearly
satisfied by taking x = y. Conversely, suppose that this condition is satisfied
and let y ∈ Y . Then there exists an element x ∈ X such that x 6 y. Since X
is an upper set, y is also in X and thus Y is a subset of X .

Therefore, the monoids P↑(M) and P↑
⋆ (M) are ordered monoids and they will

be considered as such in the remainder of this paper.

Example 3.1 Let U1 be the monoid {0, 1} under the usual multiplication of
integers. We denote by U+

1 the ordered monoid defined by the order 0 6 1 and

by U−
1 the ordered monoid defined by the order 1 6 0. Then P↑

⋆ (U
−
1 ) has two

elements ({0, 1} and {0}) and is isomorphic to U−
1 . Similarly, P↑

⋆ (U
+
1 ) has two

elements ({0, 1} and {1}) and is isomorphic to U+
1 .

Example 3.2 Let 1 be the trivial monoid. Then P↑
⋆ (1) = 1 and P↑(1) = U−

1 .

The next three propositions were proved in [6].

Proposition 3.2 Let M be an ordered monoid. Then M is a submonoid of
P↑
⋆ (M), P↑

⋆ (M) is a submonoid of P↑(M) and P↑(M) is a quotient of U−
1 ×

P↑
⋆ (M).

Proposition 3.3 Let M1 and M2 be two ordered monoids. Then the ordered
monoid P↑

⋆ (M1)× P↑
⋆ (M2) is an ordered submonoid of P↑

⋆ (M1 ×M2).

Note that the corresponding result for P↑(M) does not hold. Indeed, if
M1 and M2 are the trivial monoid, M1 × M2 is also the trivial monoid, but
P↑(M1) = P↑(M2) = P↑(M1 ×M2) = U−

1 and thus P↑(M1) × P↑(M2) is not
an ordered submonoid of P↑(M1 ×M2).

Proposition 3.4 Let M be an ordered monoid and let X be a nonempty upper
set of M . Then the upper subset Xω is a semigroup and for each x ∈ Xω, there
is an idempotent e of Xω such that x 6J e in Xω.

We also need two elementary facts on lower sets.

Proposition 3.5 Let M be an ordered monoid, let S be a lower set of M and
let E be a subset of M . Then the conditions E ∩ S 6= ∅ and ↑E ∩ S 6= ∅ are
equivalent.
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Proof. Since E is contained in ↑E, it suffices to prove that if S meets ↑E, then
it also meets E. Let x ∈ ↑E ∩ S. Then there exists an element y ∈ E such that
y 6 x. Since S is a lower set, one gets y ∈ S and thus S meets E.

Proposition 3.6 Let M be an ordered monoid and let S be a lower set of M .
Then the set {X ∈ P↑(M) | X ∩ S 6= ∅} is a lower set of P↑(M).

Proof. Suppose that X ∩ S 6= ∅ and Y 6 X . Then X ⊆ Y and thus Y ∩ S 6=
∅.

Given a variety of ordered monoids V, we denote by P↑V [P↑
⋆V] the variety

of ordered monoids generated by the monoids of the form P↑(M) [P↑
⋆ (M)],

where M ∈ V. A slightly more precise description of P↑
⋆V is given in the next

proposition, which is an immediate consequence of Proposition 3.3.

Proposition 3.7 Let V be a variety of ordered monoids. An ordered monoid
belongs to P↑

⋆V if and only if it divides a monoid P↑
⋆ (M), with M ∈ V.

Proof. Recall that an ordered monoid belongs to the variety generated by a
class C of ordered monoids if and only if it divides a product of members of C.
The statement is therefore a consequence of Proposition 3.3.

The varieties P↑V and P↑
⋆V are related as follows.

Proposition 3.8 Let V be a variety of ordered monoids. Then P↑
⋆V is a sub-

variety of P↑V. Further, if V contains U−
1 , then P↑V = P↑

⋆V.

Proof. This is an immediate consequence of Proposition 3.2.

4 Two operations on languages

Let L be a regular language of A∗. An ordered monoid M recognizes L if there
exists a morphism η : A∗ → M and a lower set S of M such that L = η−1(S).

In this section, we show how two operations on languages, length preserv-
ing morphisms and inverses of substitutions, are related to upper set monoids.
These results are well known in the unordered case [20, 21] and were proved in
[5, 6, 19]) in a slightly different way. Let us first define our two operations.

A length preserving morphism is a morphism ϕ from A∗ into B∗, such that,
for each word u, the words u and ϕ(u) have the same length. It is equivalent to
require that, for each letter a, ϕ(a) is also a letter, that is, ϕ(A) ⊆ B.

A substitution σ from A∗ into B∗ is a morphism from A∗ into the monoid
P(B∗) of subsets of B∗. Note that the languages σ(a), for a ∈ A, completely
determine σ. Indeed, one has σ(1) = {1} and for every nonempty word a1 · · · an,
σ(a1 · · ·an) = σ(a1) · · ·σ(an).

Considered as a relation, σ has an inverse which maps a language K of A∗

to the language σ−1(K) of B∗ defined by

σ−1(K) = {u ∈ A∗ | σ(u) ∩K 6= ∅}
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We shall also consider two restrictions of these operations: surjective length
preserving morphisms and nonempty substitutions.

There is an obvious connection between length preserving morphisms and
substitutions. If ϕ : A∗ → B∗ is a [surjective] length preserving morphism, then
the relation ϕ−1 : B∗ → A∗ is a [nonempty] substitution σ such that σ−1 = ϕ.
We shall see in Section 5 that there is an even tighter connection between these
operations. For now, we establish a first link with upper set monoids.

Proposition 4.1 Let L be a language of B∗ recognized by an ordered monoid
M and let σ : A∗ → B∗ be a substitution [nonempty substitution ]. Then σ−1(L)

is recognized by P↑(M) [P↑
⋆ (M)].

Proof. Since M recognizes L, there is a monoid morphism η : B∗ → M and
a lower set P of M such that L = η−1(P ). Define a map ψ : A∗ → P↑(M)
by setting ψ(u) = ↑η(σ(u)). The definition of the product of two upper sets
implies that ψ is a morphism. By Proposition 3.6, the set

X = {X ∈ P↑(M) | X ∩ P 6= ∅}

is a lower set of P↑(M). Furthermore, one has

ψ−1(X ) = {u ∈ A∗ | ψ(u) ∩ P 6= ∅}

= {u ∈ A∗ | ↑η(σ(u)) ∩ P 6= ∅}

= {u ∈ A∗ | η(σ(u)) ∩ P 6= ∅} (by Proposition 3.5)

= {u ∈ A∗ | σ(u) ∩ η−1(P ) 6= ∅}

= {u ∈ A∗ | σ(u) ∩ L 6= ∅}

= σ−1(L).

Thus σ−1(L) is recognized by P↑(M).
If σ is a nonempty substitution, it suffices to replace every occurrence of

P↑(M) by P↑
⋆ (M) to get the proof.

Since a length preserving morphism is a special case of substitution, we get as
a corollary:

Corollary 4.2 Let L be a language of A∗ recognized by an ordered monoid M
and let ϕ : A∗ → B∗ be a [surjective ] length preserving morphism. Then ϕ(L)

is recognized by P↑(M) [P↑
⋆ (M)].

5 Main result

Let us first recall a few definitions. A class of languages is a correspondence C
which associates with each alphabet A a set C(A∗) of regular languages of A∗.
A positive variety of languages is a class of regular languages V such that:

(1) for every alphabet A, V(A∗) is closed under union and intersection,

(2) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),

(3) if L ∈ V(A∗) and u ∈ A∗, then u−1L and Lu−1 are in V(A∗).
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A variety of languages is a positive variety closed under complement.
There is a one to one correspondence between varieties of finite monoids

(resp. varieties of finite ordered monoids) and varieties of languages (resp.
positive varieties of languages) [7, 16].

Let V be a positive variety of languages. For each alphabet A, we denote by
ΛV(A∗) [Λ′V(A∗)] the set of all languages of A∗ of the form ϕ(K), where ϕ is a
[surjective] length preserving morphism from B∗ to A∗ and K is a language of
V(B∗).

Similarly, we denote by ΣV(A∗) [Σ′V(A∗)] the set of all languages of A∗ of
the form σ−1(K), where σ is a [nonempty] substitution from A∗ into B∗ and K
is a language of V(B∗).

Let V be a variety of ordered monoids. A description of the variety of
languages corresponding to P↑V was given by Polák [19, Theorem 4.2] and by
the authors [5] and [6, Proposition 6.3]. Our main theorem gives a stronger
form of these results. Indeed, contrary to the previous results, our description
does not require intersection.

Theorem 5.1 Let V be a variety of ordered monoids, and let V by the corre-
sponding positive variety of languages. Then the positive variety of languages
corresponding to P↑V is equal to ΛV and to ΣV.

The proof relies on an improvement of a result of [5, 6, 19], which itself
extends to positive varieties an argument of [20, 21]. However, the algebraic
encoding of intersection and union makes our proof more technical than that of
the weaker versions.

Proposition 5.2 Let M be an ordered monoid of V and L be a language of A∗

recognized by P↑(M). Then L belongs to ΛV(A∗).

Proof. Let M be an ordered monoid of V and let L be a language of A∗

recognized by P↑(M). Then there exists a morphism ψ : A∗ → P↑(M) and a
lower set S of P↑(M) such that L = ψ−1(S). Since S is a lower set, one has
S =

⋃
Z∈S ↓Z and hence

L = ψ−1(S) =
⋃

Z∈S

ψ−1(↓Z)

Further, one has

ψ−1(↓Z) = {w ∈ A∗ | ψ(w) 6 Z}

= {w ∈ A∗ | for every z ∈ Z there exists t ∈ ψ(w) such that t 6 z}

= {w ∈ A∗ | for every z ∈ Z,ψ(w)∩ ↓ z 6= ∅}

Setting Xz = {w ∈ A∗ | ψ(w) ∩ ↓z 6= ∅} for each z ∈ Z, we get

ψ−1(↓Z) =
⋂

z∈Z

Xz

and finally

L =
⋃

Z∈S

⋂

z∈Z

Xz (1)
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Let U be the disjoint union of the sets Z, for Z ∈ S and let N = MU . An
element of N is a family (mz)z∈U which can also be written as

(
(mz)z∈Z

)
Z∈S

.
Consider the lower set J of N defined by

J = {
(
(mz)z∈Z

)
Z∈S

∈ N | for some Z0 ∈ S, for all z ∈ Z0, mz 6 z}

and the alphabet

B = {(a, n) ∈ A×N | n =
(
(mz)z∈Z

)
Z∈S

where each mz

is a minimal element of ψ(a)}

Let us define a length preserving morphism ϕ : B∗ → A∗ by ϕ(a, n) = a and a
morphism η : B∗ → N by η(a, n) = n. Let K = η−1(J ). Since N belongs to V

by construction, K is a language of V(B∗).
We claim that ϕ(K) = L. First, if a1 . . . ak ∈ L, there exists by (1) an

element Z0 ∈ S such that

a1 · · ·ak ∈
⋂

z∈Z0

Xz

Thus, for every z ∈ Z0, one has ψ(a1 · · · ak) ∩ ↓z 6= ∅ and there are some
elements y1,z ∈ ψ(a1), . . . , yk,z ∈ ψ(ak) such that y1,z · · · yk,z 6 z. For every
z ∈ Z0, let us choose a minimal element xj,z ∈ ψ(aj) such that xj,z 6 yj,z. For
each Z 6= Z0 in S and for each z ∈ Z, we also choose a minimal element xj,z
of ψ(aj). Let bj = (aj , nj) be the letter of B defined by nj =

(
(xj,z)z∈Z

)
Z∈S

.

Setting v = b1 · · · bk, we get ϕ(v) = a1 · · · ak by construction. Furthermore,
η(v) = n1 · · ·nk. We are only interested in the component in MZ0 , whose value
is (x1,z)z∈Z0

· · · (xk,z)z∈Z0
. Now, for z ∈ Z0, we have by definition

(x1,z)z∈Z0
· · · (xk,z)z∈Z0

6 (y1,z)z∈Z0
· · · (yk,z)z∈Z0

Since for each z ∈ Z0, one has y1,z · · · yk,z 6 z, we get η(v) ∈ J , which shows
that v ∈ K and that L ⊆ ϕ(K).

To prove the opposite inclusion, consider a word v = b1 · · · bk of K. Let us
set, for 1 6 j 6 k, bj = (aj , nj), with nj =

(
(mj,z)z∈Z

)
Z∈S

. Since η(v) ∈ J ,
there exists a set Z0 ∈ S, such that, for all z ∈ Z0, m1,z · · ·mk,z 6 z. By
definition of B, each element mj,z is a minimal element of ψ(aj). Therefore,
one gets ψ(a1 · · · ak)∩↓z 6= ∅ for every z ∈ Z0. It follows that ϕ(v) = a1 · · · ak ∈⋂

z∈Z0
Xz. Consequently, a1 · · · ak ∈ L and thus ϕ(K) ⊆ L. This proves the

claim and concludes the proof of the proposition.

Note that if ψ is recognised by P↑
⋆ (M), then ψ(a) is never empty and the

length preserving morphism ϕ : B∗ → A∗ is surjective. Therefore we get the
following corollary.

Corollary 5.3 Let M be an ordered monoid of V and L be a language of A∗

recognised by P↑
⋆ (M). Then L belongs to Λ′V(A∗).

Let us now complete the proof of our main theorem.

Proof of Theorem 5.1. Let P↑V be the positive variety of languages corre-
sponding to P↑V. We prove successively the inclusions ΛV ⊆ ΣV ⊆ P↑V ⊆ ΛV .
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The inclusion ΛV ⊆ ΣV stems from the fact that a length preserving mor-
phism is a special case of inverse of substitution.

Let L ∈ V(B∗) and let σ : A∗ → B∗ be a substitution. If L is recognised by
M , then, by Proposition 4.1, σ−1(L) is recognised by P↑(M) and thus σ−1(L) ∈
P↑V(A∗). This proves the inclusion ΣV ⊆ P↑V .

Let L be a language of P↑V(A∗). By definition, L is recognised by a monoid
of P↑V. It follows from Proposition 3.3 that every ordered monoid of P↑V

divides an ordered monoid of the form P↑(M), with M ∈ V. Therefore, L is
recognised by a monoid of the form P↑(M), with M ∈ V. Proposition 5.2 now
shows that L belongs to ΛV(A∗).

One can use Corollary 5.3 to obtain the following description of the positive
variety of languages corresponding to P↑

⋆V.

Theorem 5.4 Let V be a variety of ordered monoids, and let V by the corre-
sponding positive variety of languages. Then the positive variety of languages
corresponding to P↑

⋆V is equal to Λ′V and to Σ′V.

Theorems 5.1 and 5.4 have an important consequence.

Corollary 5.5 For every variety of ordered monoids V, P↑(P↑V) = P↑V and
P↑

⋆(P
↑
⋆V) = P↑

⋆V.

Proof. Let V be the positive variety of languages corresponding to V . Since
the composition of two length preserving morphisms is again length preserving,
the equality P↑(P↑V) = P↑V holds for each positive variety of languages V . It
follows that P↑(P↑V) = P↑V. The equality P↑

⋆(P
↑
⋆V) = P↑

⋆V is obtained in a
similar way.
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