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Phononic thermal resistance due to a finite periodic array of nano-scatterers 

T.T. Trang Nghiêm and P.-Olivier Chapuis 

CETHIL-UMR5008, INSA de Lyon and CNRS, UMR 5008, 69621 Villeurbanne, France 

The wave property of phonons is employed to explore the thermal transport across a finite periodic 

array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in 

all directions, we study their transmission through a single array for both normal and oblique 

incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional 

system. Roughness effects can be directly considered within the computations without relying on 

approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to 

observe the diffraction effects and the conversion of polarization. Frequency-dependent energy 

transmission coefficients are computed for symmetric and asymmetric objects. We demonstrate 

that the phononic array acts as an efficient thermal barrier by applying the theory of thermal 

boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying 

periodicity of 10 nm in the [5-100 K] temperature range. It is observed that the associated thermal 

conductance has the same temperature dependence than that without phononic filtering. 

 

I. INTRODUCTION 

Characterizing heat flow at interfaces [1, 2], where 

thermal boundary resistances (TBR, also called Kapitza 

resistances) can impede the heat transfer, is of critical 

importance at the sub-micron length scales due to the high 

surface-to-volume ratio. Adding carbon nanotubes to the 

metal/metal interface [3, 4], or including self-assembled 

nanoparticles embedded in the material [5] [6] are some 

experimental examples that can be used to tune the TBR, 

as well as chemical etching [7-9]. Other strategies have 

been highlighted, such as the addition of a new material to 

the solid/solid coupling or modulating the roughness [10]. 

Lattice dynamics [11, 12], Green‟s functions [13] and 

molecular dynamics are often employed for the 

calculations [14-16]. We observe that the two commonly 

applied models, the acoustic mismatch model (AMM) and 

diffuse mismatch model (DMM), do not necessarily lead 

to values that are comparable to the available 

experimental data [1, 15, 17, 18]. In all cases, it is clear 

that the shapes of embedded elements and/or interfaces 

have an important impact on the TBR [5], [6], [10] [19], 

[20].   

Phonon coherence effects may provide a new way to 

control heat transfer properties at boundaries. Such effects 

linked to the wave nature of the phonons have recently 

been experimentally evidenced by the Chen group [21] 

and the California group [22], showing in particular that 

peculiar effects may take place for nanometer sizes at low 

temperatures and up to temperatures close to ambient. In 

addition, phononic configurations, which involve periodic 

arrays of holes [23] [24] [25] or embedded particles [26], 

have shown a strong reduction of the effective thermal 

conductivity. It is debated if the reason is due to 

coherence in these particular experimental works or due 

to the involved sizes which appear larger than the thermal 

wavelengths, but many interesting proposals have been 

highlighted, from the GHz to the THz [27, 28] range 

where periodicity is expected to play a key role for heat 

transport [23, 29]. Most of the theoretical suggestions deal 

with crystals involving many periods and derive an 

effective thermal conductivity based on the infinite-

crystal approach. Since boundaries can already decrease 

strongly the heat transfer, it may be possible to block the 

heat transfer with smaller structures.  

Here, we study the transmission and the thermal 

resistance of a finite phononic structure consisting of a 

single array of periodic holes, by solving the elastic wave 

equation. The acoustic frame is particularly suitable to 

reproduce the low-temperature phonon behaviors [30] and 

may help to disentangle the elastic and inelastic 

contributions to thermal resistances [31]. Various hole 

shapes are considered, such as disks, equilateral and 

isosceles triangles. We note that roughness can be directly 

included in the model by designing associated shapes. In 

contrast to previous works that analyzed phonon 

transmission through such single array with the goal of 

highlighting non-symmetrical acoustic transmission 

(sometimes improperly called „acoustic rectification‟ 

[32]), we analyze the acoustic transmission not only for 

the normal incidence but also for oblique cases. This is 

required because thermal phonons are generated randomly 

in all directions. It allows observing reciprocity also for 

the case of asymmetric phononic structures. We perform 

an analysis of the displacement fields in order to 

determine if phonons of particular wavelengths and 

direction of propagation are especially filtered by the 

single array. Finally, we calculate the thermal 

conductances of the phononic array with the help of a 

Landauer-based approach which is similar to the AMM 

theory of thermal boundary resistance, both at equilibrium 

and out of equilibrium. A 10 nm-periodicity is considered 

for this example in two dimensions, showing that the 

structure indeed blocks a large portion of heat depending 
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on the geometrical parameters associated to the 

considered shapes. 

The article is organized as follows: In Sec. II, we 

describe (i) the structure, (ii) how we simulate phonon 

propagation with the elastic wave equation, (iii) the 

implementation and the computational domain, and (iv) 

present briefly the derivation of the thermal conductance 

based on the frequency-dependent transmission 

coefficients. In Sec. III, we (i) analyze the results of the 

spatial filtering resulting in diffraction effects and (ii) 

compute the transmission coefficients and the thermal 

conductance in the presence of the hole array. Finally, we 

present a summary and the consequences of this work in 

Sec. IV. 

II. Method 
A.  Simulated structure and computational 

domain  

The illustration of one simulated structure in two 

dimensions (2D) is shown in Figure 1. The periodicity in 

the y-direction is a and we simulate often more than one 

period, as will be explained in Sec. II.C. Empty holes with 

specific shapes are located in the middle of the simulated 

domain. Periodic boundary conditions are applied at the 

bottom and the top of structure. Two absorbing layers are 

created to avoid the reflection at left and right of the 

system [33-35]. The size of these layers is large enough to 

ensure that the fluxes at the end walls of the system are 

null. We recall the approach that we use to derive the 

elastic equation in the absorbing domain in Appendix A.  

 

FIG 1. Illustration of a simulated structure involving two rows 

with triangular shapes. Absorbing conditions are applied in the 

two blue regions (see more in Appendix); phonon source and 

detector are highlighted with the red lines. 

 

Acoustic waves are generated by the source at the left 

end of the lossless computational domain (left red line) 

and detected at its right end (right red line), and vice 

versa. The comparison between the propagation from left 

to right and right to left is particularly useful for the 

analysis of asymmetric objects. The distances between the 

single array and the source/detector are equal to Lsource = 

10, where  is the wavelength. The mesh is chosen so 

that both x and y are always smaller than /5. The 

wavelengths can be compared to the periodicity by 

introducing a non-dimensioned positive number N = a/. 

Hence, the circular frequency is also related to the 

medium velocity v and the periodicity a: 

 
2 v

N
a




   , (1) 

where v is the velocity for the considered polarization. 

Three shapes of holes are analyzed in this study: (a) 

circular, (b) equilateral triangle, (c) right isosceles 

triangle. To compare the area of these holes, we introduce 

a “filling factor” f defined by the ratio between the hole 

area and the a-side square area: 

h o le

s q u a r e

S
f

S
  . (2) 

This can be seen as the filling factor of the 

corresponding phononic crystal (of 2D periodicity). In 

addition, we consider what we will call the “blocking 

ratio” defined as the ratio of the projected length l to the 

periodicity a: 

l
r

a
  . (3) 

Fig. 2 presents three hole shapes with the same filling 

factor f = 0.2, with blocking ratios which are different. 

The values of the blocking ratios increase with the 

following order: disk, equilateral triangle, and then 

isosceles triangle.  

 

 

FIG 2. Three different hole shapes studied in this work: disk, 

equilateral triangle and right isosceles triangle, respectively 

from left to right. The periodicity is a and the filling factor f = 

0.2 is identical for these three cases. 

B. Phonons as elastic waves 

As phonons are propagative acoustic waves, we solve 

the linear elastic equation in two dimensions (2D) to 

compute the phonon transmission experiment through an 

array: 

 
 

 

2

2

,
,

u r t
r T r t

t



 



 
 

,  (4) 

where  is the mass density, u


 is displacement field and 

T is the stress tensor. The stress tensor relates to the 

elastic constant Cijkl by 
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   
   , ,1

,
2

k l

i j i jk l

l k

u r t u r t
T r t C r

x x

  
  

  

 
  . In the following, 

we use the usual abbreviated subscripts for elastic 

constants [36]  and require only three constants C11, C44 

and C12 for the cubic crystal case. To simplify, the 

material is assumed isotropic, so that C12 = C11 – 2C44. 

For silicon,  =2331 kgm
-3

, C11 = 16.57×10
10

 Nm
-2

 and 

C44 = 7.956×10
10

 Nm
-2

 [36]. The longitudinal velocity vl 

and the transverse one vt are defined by the materials 

properties: 1 1

l

C
v




 and 4 4

t

C
v


  . 

We solve numerically Eq. 1 with the finite element 

method [37]. We obtain the time evolution of the 

displacement field  ,u r t


 and the stress tensor   ,
i j

T r t


 

at each point in the system. This allows computing the 

acoustic Poynting vector  ,P r t
 

 that carries the energy 

flux: 

 
   

* ˆ, ,
,

2

v r t T r t
P r t  

  
 

 , (5) 

where v


 is the velocity calculated by derivation of the 

displacement field /d u d t


. In the following, we consider 

a bi-dimensional system and the Poynting vector is 

reduced to a vector with two components. The projection 

of the flux on the x-direction allows monitoring the 

energy propagation across the array: 

       
* *

,

, , , ,

2

x x x y y y

x

i l t

v r t T r t v r t T r t
P




 

   

 . (6) 

We note that this method can be used to study phonon 

transmission for many types of structures, such as 

boundaries between two dissimilar solids in direct contact 

(see Appendix B). It may provide a mesoscopic 

alternative to atomistic techniques such as molecular 

dynamics, especially at low temperatures where the latter 

does not behave well. Note that it could also be extended 

to nonlinear media. 

C. Condition linking oblique waves and the 

simulated domain  

As mentioned in Sec. I, a thermal source emits phonons 

to its surrounding environment in all directions. Hence, to 

calculate the heat flux generated and transmitted through 

a structure, all directions have to be included. We excite 

not only the normal acoustic waves that are perpendicular 

to the periodic direction, but also oblique waves (see Fig. 

3). As longitudinal and transverse wave propagations can 

be separated [36] (see more in Sec. III.A), we show here 

how to simulate the longitudinal waves. 

The acoustic wave displacement is expressed as 

  

(a) 

 
(b)                 

 
 

FIG 3. (a) Illustration of waves impinging the scatterer from 

different incident angles. (b) Periodic condition for the oblique 

incidence. 

   
0 0

x y
i t k r i t k x k y

u u e u e
   

 

  
, (7) 

where k


 is the wave vector, kx and ky are the projection 

of k


  on the x and y axis, respectively. 

0
u


is 

perpendicular or parallel to k


, depending on the 

polarization. From Eq. (7), the acoustic source located in 

0
r


 writes 
 0

.

0 0
( )

i t k r

u r u e
 



   
. The periodic condition in 

the y-direction requires that at one given position x0, the 

displacement field at the top and the bottom are the same. 

Fig. 3b shows two typical points y1 and y2 at the 

boundaries and illustrates the condition on the incident 

angle  ,u x 
 

 and the number of simulated rows Nrows. 

The condition is written as 

1 0 2 0
, ,

2 2

ro w s ro w s
a N a N

u y x u y x
   

      
   

 (8) 

Taking Eq. 8 into account, we have 

0 0

0 0

e x p s in c o s
2

e x p s in c o s
2

ro w s

ro w s

a N
u i t k k x

a N
u i t k k x

  

  

  
   

  

  
    

  

 
(9) 

Eq. 9 leads easily to the relation 

2
s in

ro w s

v
n

a N





 , (10) 
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where n is an integer that allows to satisfy 0 s in 1  . 

By taking Eq. 1 into account, we obtain the final 

condition: 

s in

ro w s

n

N N


  . (11) 

As we consider angles  from 0 to π/2, n takes values 

between 0 and NNrows. Consequently, for a given 

frequency N and a given number of simulated rows Nrows, 

we can simulate certain waves with incident angles 

satisfying the condition defined by Eq. 11.  

Fig. 4 illustrates the propagation of the waves by 

presenting a snapshot of the ux component of the 

displacement field for two incident angles in the case N = 

2.5 (as an example, for a = 10 nm,  = a/2.5 = 4 nm): (a) 

normal incident angle ( = 0), and (b) oblique incident 

angle with sin = 0.4. In this example the stationary 

regime has not been reached. The scattering objects 

separate the displacement field into two regions: a first 

one at left where incident and reflected waves are 

observed; a second one at right that contains the fields 

associated to the transmitted waves, where the 

propagation has been obviously modified. In addition, the 

interference between incident and reflected waves is 

observed in the first region. We note in particular that a uy 

component is generated immediately after the objects 

even though only the ux component is excited in the 

normal incident case (not shown here). This is due to the 

fact that the propagation direction is changed and is not 

anymore only in the normal incidence for longitudinal 

waves; the projection of the displacement field on the y-

axis is non-null. Animations related to normal and oblique 

incidence of phonons on the single array during 313 wave 

periods can be found in [38]. 

 
FIG 4. ux displacement field close to a single array of 

equilateral triangular holes: (a) wave in normal incidence, and 

(b) wave in normal incidence with sin = 0.4. Two regions are 

defined: the one with incident and reflected (IR) waves, and 

the one with transmitted (T) waves. 

As waves travel through a grating-like periodic 

structure, they can be diffracted according to Bragg‟s law 

expressed as 

s in
n

a n  , (12) 

where n is an integer which corresponds to the diffraction 

order characterized by the angle n (see also Appendix C). 

Considering the wave shown in Fig. 4 with N=2.5, the 

diffraction angles are 1 = 1/2.5 = 23.6° and 2 = 2/2.5 = 

53.1°. In the following, the magnitude of these waves will 

be determined by the spatio-temporal Fourier transform. 

D. Equilibrium thermal conductance in 2D and 

frequency-dependent transmission coefficients 

The TBR (Kapitza) measures the boundary resistance to 

the propagation of the thermal flux. The theory has been 

applied to predict the thermal resistance of different types 

of junction [15, 16, 39, 40]. Here, we consider the hole 

array as a barrier between two parts of same material. In 

the following, we recall how to apply the formula for the 

2D case. The thermal conductance G between two media 

is defined as: 

2 1

q
G

T T



  (13) 

where q is the heat flux across the junction, and Ti is the 

temperatures at the lead i. The heat flux across the 

structure relates to the transmitted phonons. At steady-

state, the net heat flux in 2D is 

     
 

     
 

2

1 1 2 1 2

2

2 2 1 2 2

d
, , ,

2

d
, , ,

2

x

k

x

k

k
q v k t k f k T

k
v k t k f k T

  



  




















  




  



  
(14) 

where ћ is the reduced Plank constant, vix denotes the 

phonon velocity in medium i projected along the direction 

x normal to the array,  ,
i

f k T


 is the phonon distribution 

function at the medium temperature Ti,  ,
ij

t k


 is the 

wave-vector dependent transmission coefficient from the 

medium i to the medium j. The signs + and – indicate that 

the integrals deal with kx > 0 and kx  < 0, respectively. 

When the thermal transport is close to the equilibrium 

state, the phonon distribution can be assimilated to the 

equilibrium Bose-Einstein distribution that does not 

anymore depend on the direction: 

 

1

, e x p 1
B E

B

f T
k T






  
   

  

 ,  (15) 

where kB is the Boltzmann constant. In a lossless medium, 

by invoking the balance principle when the heat flux is 

zero at thermal equilibrium [15], Eq. 14 can be simplified 

to 
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       
 

2

1 2 2 1 2

d
, , , ,

2
x B E B E

k

k
q v k t k f T f T    





   



 


. (16) 

In 2D coordinates, 2

2
d d . d d . dk k k

v


   


, where   

is the angle between k


 and the x  axis, 

,
2 2

 


 
 
 
 

 and 

therefore vx = v cos. We can perform the integration on 

0 ,
2




 

 
 

 and the 2D thermal conductance at equilibrium 

d

d

q
G

T
  associated to one polarization state is finally 

calculated as 

 

 
 

 

 
 

32

1 22 2

0

/ 23

1 22 2

0

d ,1
2 , c o s d d

d2

,1
2 , c o s d .

2

B E

e q

B E

f T
G t

v T

d f T
d t

v d T




 

 

 


    




    













 

 

 





 

(17) 

We introduce the frequency-dependent transmission 

coefficient 12(ω) as the transmission coefficient 

including all wavevector directions:  

   

/ 2

1 2 1 2

0

2 , c o s dt

 



     





 
, (18) 

so that e 2D thermal conductance writes: 

 

 
 

3

1 22 2

d ,1
d

d2

B E

e q

f T
G

v T



  



 


. (19) 

The maximal monochromatic thermal conductance (

1 2
1  ) for one polarization state is then given by 

 

 3

, e q , m a x 2 2

d ,1

d2

B E
f T

g
v T










. (20) 

The expression of Eq. 17 is established at equilibrium. 

Out of equilibrium, a discontinuity of temperature occurs, 

which can be accounted for by using the local distribution 

( )f r


 [39], which obeys the Boltzmann transport equation 

(BTE) with 

      B E
f r f T r f r 

  
. (24) 

   Including the deviation of the distribution function f in 

the relaxation time approximation of the BTE, the non-

equilibrium thermal conductance can finally be written as 

[39] 

1 2 2 1
1

e q

n e q

G
G

 


 

 (25) 

involving the quantity 

2

1 2 1 1 1 2 1
d /

e q

s c a tt x

k

f
v t k

T
   











  (26) 

where scatt,1 is the relaxation time and  is the thermal 

conductivity in material 1. 21 has a similar definition. To 

be consistent with the 2D conduction, these fractions are 

also calculated in 2D. By plugging the AMM expression 

into Eq. 25, the conductance Gneq  of this model has been 

shown to compare well with molecular dynamics 

simulations [39]. 

E. Numerical implementation 

The simulation allows us to compute the average flux 

density at a given position x0 including the contributions 

of all waves: 

   

m a x

m in

0 0

m a x m in

1
, d

y

x x

y

P x P x y y
y y




  (23) 

with ymax-ymin being a multiple of a, and Px(x0,y) is defined 

in Eq. 5. The frequency-dependent transmission 

coefficient can be calculated as the ratio between the sum 

of transmitted heat flux intensities and the sum of the 

incident heat flux intensities 
0

P : 

 

 

 0

, , c o s d d

c o s d

i t

i

t i t t t i

i i

P

P

 



     

 
  

 

 

  


 



 
(21) 

where  0
,

i
P    and  , ,

t i t
P    are the average 

flux densities, respectively of the incident wave (identical 

for all incident angles 
i

 ) and of the transmitted wave in 

a given angle 
t

  for an incident angle 
i

 . Numerically, 

we extract    , ,
, , , c o s d

t

t x i t x i t t t
P P



       
 , where 

the index x stands for the projection on the x axis. The 

frequency-dependent coefficient is computed by 

discretizing Eq. 21: 

 

 

 

,

0

,

i

t x
i i

P

P



  

 







. (22) 
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III. Results 
A. Diffraction effect – Spatial filtering 

To analyze the transmission and reflection processes, 

we use the spatio-temporal Fourier Transform (FT) [41]. 

It has been used to investigate the dispersion relation of 

surface acoustic modes [42], acoustic band structure [43] 

and to observe the diffraction angles [44]. In infinite 

space and time domains, the FT is written as 

   
 

, , d d
i t k r

U k t u r t e r t


 



 

  

  
. (27) 

 

By limiting to a given spatial domain and integrating 

over one period T = 2π/ω, the spatio-temporal FT 

becomes 

   
 

001

1 0 0

/ 2/ 2

/ 2 / 2

1 1 1
, , , e d d d

yx

x y

x y

y lx lt T

i t k x k y

x y t x l y l

U k t u x y t x y t
l l T





 

 

   
 ; (28) 

[x0 - lx/2, x0 + lx/2] and [y0 - ly/2, y0 + ly/2] are the bounds 

of the analyzed domain in x and y directions. We consider 

a time t1 for which the stationary regime is already 

established, ly proportional to a, x0 at left or right of the 

scattering elements with lx such that the addressed area is 

in the far field of the scattering elements. Both ux and uy 

components are analyzed with FT. In order to examine the 

conversion of polarization, we combine these two 

components to determine the relative contributions of the 

longitudinal and the transverse modes. The longitudinal 

and transverse amplitudes are obviously calculated with 

c o s s in

s in c o s

l x y

t x y

u u u

u u u

 

 

 


  

 (29) 

where  is the angle between x-axis and the wavevector 

k


. 

Fig. 5 shows the maps of spatio-temporal FT of the 

displacement field in reciprocal space with N=2.5, i.e. 

=a/2.5. The independent propagation of longitudinal ul 

and transverse ut modes are shown for two cases: (a-b-e-f) 

circular holes, (c-d-g-h) triangular holes. The two dotted 

circles represent the iso-wavevector curves for 

longitudinal waves (kl = ω/vl) and for transverse waves (kt 

= ω/vt). As the longitudinal velocity vl is larger than the 

transverse one vt, the inner circle corresponds to kl and the 

outer one corresponds to kt. In this figure, the wave 

vectors are normalized by the maximal longitudinal one. 

In Fig. 5a and 5c, the incident waves in normal 

incidence ( = 0) are represented by the points on the 

longitudinal circle, with kx > 0 and ky = 0; this shows the 

propagation in the positive direction. On the same circle, 

the points of negative kx represent the diffracted waves: 

the centered point is associated to the reflected wave 

(order 0), the next two symmetric points, which have  

ky/k = 1/2.5 = 0.4, are associated to the first order of 

diffraction, while the two outer points with  

ky/k = 2/2.5 = 0.8 are associated to the second order of 

 

FIG 5. Maps of spatio-temporal TF in reciprocal space for N = 2.5 in the case of circular holes (a-b-e-f) and in the case of equilateral 

triangular holes (c-d-g-h) : (a-c) incident region and (b-d) transmitted region for a wave in normal incidence ( = 0); (e-f) incident 

region and (g-h) transmitted region for a wave in oblique incidence with sin = 0.4.The dashed lines represent the iso-wavevector 

curves: the inner circle for the longitudinal one, the outer circle for the transverse one. The orders of diffraction are also shown in the 

maps (0 for the zeroth order, 1 for the first order, 2 for the second order). 
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diffraction. These ratios are exactly the sine values of 

diffracted angles 1 and 2, as predicted by Bragg‟s law.  

In addition, diffracted waves are also represented on the 

transverse circle. This shows the effect of conversion of 

polarization due to the arrays. In the transmitted region, 

diffracted waves that travel through the single array are 

represented with kx >0 in Fig. 5b and 5d. According to 

Snell‟s law, these transverse waves have the same ky 

component than the longitudinal wave of identical 

diffraction order. For an oblique wave with incidence 

such that sin = 0.4, the incident waves in Fig. 5e and 5g 

are found on the iso-longitudinal wavevector circle 

according to ky/kl = 0.4. As a consequence, the zeroth-

order diffracted waves also have this ratio. In addition, 

higher orders are shifted of n/a on the ky-axis. The 

analysis in the two regions remains similar to the normal 

incidence case. While the amplitude of each diffracted 

wave depends on the hole shape, Bragg‟s law and Snell‟s 

law apply for all structures. Diffraction plays an important 

role on the propagation direction, leading to spatial 

filtering effect. Note that for long wavelengths ( > a  

N <1) the propagation direction of the transmitted wave 

is the same as the one of the incident wave. 

B. Transmission coefficient and 2D thermal 

conductance 

 

 

1. Transmission coefficient through the 

periodic array 

 

 

FIG 6. Frequency-dependent transmission coefficient  as a 

function of the number of incident angles for N = 3.0 in two 

cases: (i) incidence toward the triangle bases (solid lines) and 

(ii) toward the vertices (dashed lines), both for a single array of 

equilateral triangles.  

First, we analyze the frequency-dependent transmission 

coefficients as a function of the number of incident 

angles. As the coefficient depends on cosine values, the 

large angles, especially those near π/2, are less important 

than the small ones. In our simulations incident angles are 

characterized by sine values in [0–0.89]. Fig. 6 shows the 

frequency-dependent coefficients as a function of number 

of incident angles for the case N = 3.0. In this example, 

the sine values included are 0, 0.11, 0.25, 0.4, 0.53, 0.67 

and 0.85. The convergence of the coefficient value 

appears to be obtained for a rather small number of 

angles. We have verified that increasing this number up to 

18 does not significantly improve the calculations in our 

case. In the following, we calculate the total transmission 

coefficients and the thermal conductance with 7 angles for 

each frequency.  

 

(a)  

 

(b) 

 

FIG 7. Frequency-dependent transmission coefficients for 

arrays of (a) circular holes and (b) equilateral and right isosceles 

triangular holes (plain lines). In (a), the dashed line represents 
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the results for rough circular holes. The filling factor f and the 

blocking ratio r are shown for each curve.  

We observe in Fig. 6 (and Fig. 7b) that the frequency-

dependent transmission coefficients associated to heat 

fluxes impinging the bases or the vertices of the 

asymmetric triangles are equal when all propagation 

directions are included. This is a manifestation of 

reciprocity, which is fulfilled in our lossless and linear 

acoustic system (see more in [32]). Indeed no rectification 

can be observed in absence of non-linear mechanism. 

This is different to the case of acoustic waves only excited 

and observed in normal incidence [44, 45]. We also note 

in Fig. 6 that the frequency-dependent transmission 

coefficients depend strongly on the filling factor f: as an 

example, the lower the filling factor ratio, the larger the 

transmission.  

Fig. 7 shows the frequency-dependent transmission 

coefficients as a function of the frequency 2 v/a) = N 

for (a) circular holes and (b) equilateral and right 

isosceles triangular holes. For all the presented 

longitudinal cases, we observe that the curves have same 

trend. The transmission coefficients reach unity at low 

frequency, and then reduce to a certain value when 

increasing the frequency. Two peaks at N = 1.5 and 3.5 

are observed, while the non-zero minimum values take 

place for N = 2.5. However, the values of the coefficient 

remain quite close for each filling factor/blocking ratio for 

frequencies larger than N = 0.5 and we do not observe 

sharp features in the spectrum. This may be due to the 

“thermal” averaging due to the integration over all the 

excited angles. For the circular holes of Fig. 7a, the 

transmission coefficients are around 65% for f = 0.1 (r = 

0.36), then around 55-60% for f = 0.2 (r = 0.50), and 

finally around 30% for f = 0.1 (r = 0.48).  The same order 

is obtained for equilateral triangular holes, the 

transmission coefficients are the largest for f = 0.1 (r = 

0.48), being close to only 60%. This means that phonons 

are already efficiently blocked and diffracted for a modest 

density of scatterers. The values of the coefficients are 

around 40% for f = 0.2 (r = 0.68), then less than 10% for f 

= 0.4 (r = 0.96). The same trend is observed for transverse 

waves (not shown here). Comparing the total coefficients 

with f = 0.2, they are different for each shape. The values 

of the frequency-dependent transmission coefficients 

decrease with the following order: disk, equilateral and 

right isosceles holes, in agreement with the values of the 

associated blocking ratios. Considering two cases with 

close values of r but different values of f - (i) circular 

array with f = 0.2, r = 0.50, and (ii) triangular array with f 

= 0.1, r = 0.48 - we observe close transmission 

coefficients through these arrays, around 60%. Despite 

the fact that wave scattering is often related to the area 

associated to the scatterer, the blocking ratio may be also 

a convenient way to describe the transmission. 

Let us note that we have considered ideal shapes until 

now, neglecting possible roughness on the walls of the 

holes. In contrast to many other works, such roughness 

can be accounted for by designing directly complex 

shapes without relying on approximate analytical 

expressions. For example, a roughness of =0.3 nm was 

introduced to the case f = 0.2 studied in Fig. 7a by 

extruding half disks and grafting them between the 

extruded area (see inset in Fig. 7a). Note that such 

roughness is not random but identical on each hole if no 

supercell is considered. A strong decrease of the 

transmission can be observed, reaching 17%. Roughness 

especially impacts the transmission coefficients at high 

frequencies when short wavelengths become comparable 

to the roughness characteristic size. In the following, we 

restrict our study to smooth shapes. 

 

2. Phononic thermal conductance 

(a) 

 

(b) 

  

FIG 8. (a) Equilibrium phononic thermal conductance as a 

function of temperature in absence of hole array G0 (solid black 

line), in presence of an array with circular holes (solid lines with 

symbols) and with equilateral triangular holes (dashed lines with 

symbols). (b) Ratio between the thermal conductance in 
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presence of the array and without it. Blue lines for filling factor f 

= 0.1, green lines for f = 0.2, red lines for f = 0.4. 

The single array of periodic holes acts as a thermal 

barrier to which a thermal conductance can be associated. 

In order to calculate the thermal conductance as described 

in Section II.D, we consider temperatures exciting 

thermal wavelengths which are commensurate with the 

geometric parameters of the array such as its periodicity. 

Here, a periodicity a = 10 nm is chosen as an example. 

The frequency dependence of the maximal 

monochromatic thermal conductance defined in Eq. 20 

(section II. D) is considered. The thermal frequencies 

associated to temperatures ranging from 5 K to 100 K are 

well located in the simulated frequency band 2v/a)  = 

[0.025 – 4.5]. We have checked that the summation of 

monochromatic thermal conductances g,max with our 

discretization fills over 90% of the values of the integral 

for each temperature, as is customary for bosons which 

possess broad spectra. Note that the time-domain 

simulations are computer intensive (few hours of CPU 

time on a 12-core processor with RAM 64GB for one 

simulation) and that the final computation requires 

summation over frequency and angle. 

The equilibrium thermal conductance Geq is shown in 

Fig. 8a for circular and triangular hole-based single 

arrays. The 2D conductance without the presence of hole 

G0 (integral of Eq. 20) is also plotted for comparison The 

thermal conductance decreases when the filling factor 

increases, as the transmission coefficients are reduced 

(see Eq. 19). Moreover, for the same filling factor the 

thermal conductance of the triangular array is always 

smaller than that of the circular one. We remark that the 

temperature dependence of the thermal conductance in all 

cases is quadratic, i. e.  Geq∝ 𝑇2
: the modulation of the 

Bose-Einstein factor by the transmission coefficients does 

not lead to a different thermal behavior. The reduction of 

thermal conduction in the presence of single arrays 

normalized to G0 is plotted in Fig. 8b. With f = 0.1, the 

relative conductance reduces to 65%-62% for the two 

hole types, while the conduction drops to 30% and 10% 

with f = 0.4. 

To obtain the non-equilibrium conductance (Eq. 25), we 

take into account phonon-phonon Umklapp scattering. 

Our purpose is more to analyze how non-equilibrium 

affects the values of the phononic thermal conductance 

than to properly account for phonon volume scattering. 

Slack and Galginaitis [46] suggested the following form 

for the Umklapp process:  

 
/ 31 2

D
T

U U
B T e


  


  (30) 

where BU is a fitted parameter and D is the Debye 

temperature. We consider the values of parameters 

calibrated to reproduce the experimental thermal 

conductivity of silicon in Ref. [47]. They are L = 586 K 

and BU
L
 = 5.5×10

-20
 s

-1
K

-3
.  

The results are shown in Fig. 9 for the case of 

longitudinal waves propagating through an array of 

triangular holes. As the same material is present on the 

two sides of the array, one can define only one fraction  

= 12 = 21. Due to reduction of the transmission 

coefficient when widening the holes, the same trend is 

obtained for  for temperatures from 5K to 100K. The 

non-equilibrium conductances are always higher than the 

equilibrium ones for all cases (see Eq. 25). The shift of 

the non-equilibrium conductance with respect to the 

equilibrium one increases with the transmission 

coefficient, i.e. when reducing the element size. The main 

conclusions of the preceding sections stay valid. 
 

 

FIG 9. Phononic thermal conductance as a function of 

temperature: in absence of hole array G0 (solid black line – 

equilibrium case for reference), in presence of a triangular array 

at equilibrium (dashed line with symbols) and out of equilibrium 

(solid lines with symbols). Blue lines for filling factor f = 0.1, 

green lines for f = 0.2, red lines for f = 0.4. 

IV. Conclusion 

In summary, we have investigated the transmission of 

heat though a finite periodic array of scatterers, here 

holes, by solving the elastic wave equation in finite 

geometries. The acoustic waves, which model thermal 

phonons, have been excited in various directions to model 

the thermal “emission” by a heat source. By analyzing the 

spatio-temporal FT of the displacement fields, we 

observed (i) that the periodicity follows Bragg‟s law of 

diffraction, and (ii) that the conversion of polarization 

takes place according to Snell‟s law. The amplitude of the 

transmission of each phonon mode varies as a function of 

the scattering object shape, and we found that there is 

strong filtering effect even for modest size of the 

elements, such as for an equivalent filling ratio f = 0.1. In 

particular, we observed that rough scatterers lead to lower 

transmission than smooth ones. 
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 The frequency-dependent transmission coefficients of 

three types of arrays were found to have similar trends 

when varying the frequency. We noticed that the 

“blocking ratio” appears useful to determine if phonons 

can be transmitted: despite of the different shapes, the 

frequency-dependent transmission coefficients through 

objects of similar ratios are very close. Furthermore, for 

triangular (asymmetric) objects, the frequency-dependent 

coefficients associated to the heat flux impinging (i) the 

bases and (ii) the vertices have the same values. This is a 

consequence of reciprocity. We also observed that there is 

no particular frequency at which sharp spectral features 

such as a total gap could appear. 

We highlighted that the single array acts as a thermal 

barrier, in a way very-closely related to thermal (Kapitza) 

boundary conductances. The phononic thermal 

conduction in the 2D case was characterized for these 

structures for temperatures ranging from 5K to 100K, in 

the example of isotropic silicon. Due to the impact on the 

frequency-dependent transmission coefficient, we 

observed that the hole size strongly influences the thermal 

conductance. A reduction of 90% could be reached for a 

blocking ratio r = 0.71. We also noticed that the presence 

of the array does not change the temperature dependence 

of the equilibrium thermal conductance: it merely filters 

the whole spectrum once a certain frequency is reached. 

We finally considered the impact of non-equilibrium 

close to the array.  

This work is an important step related to the study of the 

wake-like phonon scattering properties through artificial 

interfaces, which are created by adding a periodic 

structure which is finite in at least one dimension. It may 

provide a basis for future investigations dealing also with 

non-linear mechanisms [48, 49] expected to exhibit 

thermal rectification effects.  
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Appendix A: Wave equation in absorbing 

region 

We recall the derivation of the equation used for the 

absorbing zones [35]. In 1D, the elastic wave equation is 

written as 

2

2
0

u
T

t



  


. (A1) 

This equation can be expressed in the following form: 

 

2

2
0

u
C u

t



    


. (A2) 

In the absorbing zones, we introduce a new mass 

density and new elastic constants while keeping the same 

acoustic impedance Z C : 
a b s

d


    , 

a b s
C C d    . 

Then, we look for a solution with a plane wave form 

 i t k rr

u e e
 




  in the absorbing regions. We can take 

 
1

d
i


 




. (A3) 

 

By combining Eqs. A2 and A3, we obtain 

   
2 2

2 0u i u C u           . (A4) 

Finally, Eq. A. 4 can be rewritten in the real space as a 

third-order partial differential equation, or also as follows: 

2 2

2 2
1 2 0

u u
T

t t


  



   
     

  

. (A5) 

This linear equation, which mixes frequency and time, 

may appear as unusual, but it leads exactly to the same 

displacement field that the one of the third-order equation 

when a plane wave is excited at . It can be useful if one 

prefers only to solve second-order partial differential 

equations in the computational domain to avoid potential 

additional discretization requirements. 

 

 

Appendix B: Transmission through a perfect 

Si-Ge interface 

In this section, we compute the transmission through a 

perfect Si-Ge interface and compare the results with those 

obtained semi-analytically within the acoustic-mismatch 

model (AMM) [50]. This model captures the impedance 

mismatch effect of phonon transmission. At the interface, 

one part of wave is reflected and the other part is refracted 

at the other side of the interface following Snell‟s law: 

  

1 2

1 2

s in s in

v v

 
 . (B.1) 

1 and 2 are the incident and refraction angles, 

respectively. It is required that the incident angle be 

smaller than the critical angle c = asin(v2/v1). We 

consider longitudinal wave with velocity ratio vSi/vGe  

1.7. As a consequence, the critical angle of waves 

propagating from Ge towards Si is c  35.°, while there is 

no angle limit in the opposite direction.   
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Assuming that no inelastic scattering takes place at the 

interface, the transmission coefficient t12 through a perfect 

interface between two media 1 and 2 is given in the AMM 

framework by 

 
 

1 2 1 2

1 2 1 2

1 1 2 2

4 c o s c o s
,

c o s c o s

Z Z
t

Z Z

 
 

 





 with 1c  , 

 1 2 1
, 0t     otherwise, 

(B.2) 

where Z1, Z2 are the acoustic impedances of medium 1 

and 2, respectively.  

Fig. B.1 shows the transmission coefficients obtained 

for N = 1.25 as a function of the angle of incidence for 

two cases: waves propagating from Si to Ge (Fig. B.1a), 

and from Ge to Si (Fig. B.1b). The coefficients calculated 

with the AMM are also plotted, in solid lines. The results 

are in good agreement with the AMM prediction in the [0-

90°] range. This validates our method and allows us to 

study the transmission through the periodic array. 

 

 

 

 

 

FIG B.1. Transmission coefficients as a function of the angle of 

incidence for waves crossing the Si/Ge interface (a) from Si to 

Ge, (b) from Ge to Si. The blue solid lines present the AMM 

calculation and symbols are for the results obtained from 

simulations with   
1 .2 5

2
in c

N
v

a






 

   . The vertical dashed line 

shows the critical limit of 35.7° when the waves come from the 

Ge medium. 

Appendix C: Periodic conditions lead to 

diffraction 
 

The periodic condition for wave propagation in the 

simulated domain, in particular for the oblique ones, is 

expressed in Eq. 11: 

s in

ro w s

n

N N


  . (C.1) 

C.1. Propagation through a perfect interface 

According to Snell‟s law, the refraction angle at the 

interface between two different materials is defined from 

the condition 

 

1 2

1 2

s in s in

v v

 
 , (C.2) 

 

that can be rewritten 

2

2 1

1

s in s in
v

v
  . (C.3) 

As a consequence, 

2 2

2

1 ,1 1

1

, 2

2

s in

2

2

r o w s
r o w s

r o w s
r o w s
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v N N v
N
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n n

N N
N

v

a














   

 

. 
(C.4) 

This shows that the sine value of the refraction angle 

satisfies the periodic condition in medium 2. This is due 

to the well-known condition that the tangential 

component is conserved when crossing an interface. 

 

C.2. Propagation through a periodic array 

The diffracted waves satisfy Bragg‟s law as expressed 

in Eq. 12: 

a s in
m

m  , (C. 5) 

where m is an integer which corresponds to the 

diffraction order characterized by the angle m  

(  0 m N


  ). By replacing (1) in (12), we obtain:  
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2
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




 



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 
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 



 
(C. 6) 

 

The numerator of Eq. C.6 is obviously an integer. By 

comparing Eq. 11 and Eq. C.6, we verify that the 

diffracted waves are satisfying the periodic conditions. 
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