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Abstract — The Transport layer, designed for old 
networking contexts and now obsolete applications 
requirements, is inefficient. This paper discusses the 
reasons behind this inefficiency and the obstacles to the 
evolution of Transport protocols. The discussion is then 
extended to derive new requirements for the Transport 
layer, both functional and architectural, in order to 
ensure optimal performances in all current and future 
contexts. To meet these new requirements, a novel 
architectural design of the Internet Transport layer is 
proposed following a service-oriented and a 
component-based approach. The proposed solution 
allows for optimization of the Transport service 
performance, facilitation of its utilization, and is aimed 
at allowing the integration of new services as needed.  

1. Introduction 

The Transport layer is one of the most important layers 
of the Internet communication protocol stack. Located 
between the application and the network layers, this 
layer is expected to take into account both the 
application feature / requirements and the underlying 
network capabilities / constraints in order to provide the 
best end-to-end communication service, matching as 
much as possible the application requirements, still 
taking into account the opportunities and limitations of 
the underlying network.  

In the last few decades, several new applications and 
networking technologies have emerged with very 
different requirements and characteristics, making 
initial Transport-level protocols (typically TCP and 
UDP in the Internet) no longer adapted. As a 
consequence, a lot of new Transport protocols and 
mechanisms have been proposed over the last 20 years 
in order to enhance both the Transport services offered 
to applications, and to optimize the usage of the 
different network technologies. 

Unfortunately, the factual observation is that all these 
new proposals are either not integrated in the actual 
operating systems (Windows, Linux, etc.), or hardly 
used in practice by the application developers, which in 
majority continue to use suboptimal TCP and UDP 
solutions.  

Since it is proved that these new propositions are widely 
more efficient than the actual used protocols, the main 
goals of this work are to identify the deployment 
obstacles of the new Transport propositions, and then to 
propose a new architecture of the Transport layer as a 
solution. 

In this context, the contributions of this article are 
threefold.  

The first contribution of the paper (section 2) is to 
analyze this general problem by identifying the 
obstacles that justify the lack of evolution of the 
Transport protocols in spite of the need.  
• The first part of this analysis deals with the design 

choices that explain the performance limitations of 
the current Transport protocols.  

• The second part explains in what tackling these 
sources of performance issue is a complex problem 
due to several main obstacles that no new Transport 
solution is able to put off in a global way.  

• This analysis leads finally to conclude that the 
solution to be promoted does not consist in 
developing a new concept of “perfect” Transport 
protocol but requires a revision of the current 
Transport layer architecture.  

Following this novel approach, the second contribution 
of the paper (sections 3 and 4) is to provide a new 
design of the Transport layer, with the aim to allow and 
facilitate the integration of both existing and new 
Transport solutions, their updating, and their usage by 
the applications.  
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Finally, the impact of the new architecture on the 
performances is discussed in section 6. 

2. Transport protocols: analysis and 
requirements towards an effective deployment 
of the news solutions in the Internet  

To tackle the evolution of both the application features / 
requirements and the network capabilities / constraints, 
a huge amount of research works dealing with desirable 
evolution of Transport protocols have been and are still 
published for more than 20 years. One of the main goals 
of these contributions is to provide adaptation of the 
protocol services to new applications requirements 
using more efficient mechanisms taking into account 
the evolution of network technologies. However, and in 
spite of their well-known limited services and 
inefficient behaviors in some contexts, TCP and UDP 
still remain the de facto two main Transport protocols 
used to support the end-to-end data transfers for Internet 
distributed applications. 

After a state of the art of this rich scientific matter 
(section 2.1), section (2.2) analyses the reasons 
explaining the lack of effective deployment of new 
Transport solutions in the Internet. On these bases, 
section (2.3) presents the positioning of our proposition 
together through a set of requirements that need to be 
satisfied with the aim to allow an effective deployment 
of new Transport protocols. 

2.1. State of the art of the Internet Transport 
protocols  

Sub-optimality, or “performance issue”, of a Transport 
protocol may be observed: 
• from the application point of view, with the absence 

of some required services, or the presence of non-
adapted ones; 

• from the network point of view, whose expectation 
is an as best as possible usage of its bandwidth 
resources.  

On this basis, two main reasons explain the 
performance issues of an existing Transport solution:  
• when the solution is to be used in a more exigent 

application context, i.e. when new applications have 
stronger (or more complex) requirements than the 
initial ones, such as real-time multimedia 
application that have stronger delay and general 
throughput requirements than classical web 
application;  

• and/or when the existing solution is to be used in a 
less efficient network context than the initial one, 
such as wireless links that leads (among other) to 

higher bit error rates or more variable access 
throughput, comparing to wired networks. 

In front of these performance issues, three main 
approaches have been and are still adopted in the design 
of Transport protocols: 
• the first one consists in designing one can be called 

“generalist” protocols, aimed at supporting as many 
as possible applications and network contexts using 
(almost) the same mechanisms whatever the context. 
Obviously, the main weakness of this kind of 
protocols is due to the generality principle of their 
design, which inherently leads to suboptimal 
performances; 

• the second approach consists in designing “specific” 
protocols, aimed at providing optimal performances 
for a given and precise application and/or network 
context. The main weakness of this kind of 
protocols is due to the specificity principle of their 
design, which inherently leads to the reduction of 
their deployment contexts; as a result, such solutions 
are difficult to consider for a large spectrum of 
application / network specificities; 

• finally, the third approach consists in designing 
“adaptive” protocols, whose internal mechanisms 
and parameters may be configured depending on  
the targeted application and/or network context. The 
main weakness of this kind of “ideal” solution 
firstly comes: 1) from the “intelligence” that need to 
be acquired to decide and then deployed the 
adequate mechanisms between the end-to-end 
entities, and 2) from the cost of this intelligence that 
need to be subtracted from the expected benefits. 

The following sections detail these three categories and 
then conclude on their effective deployment. 

2.1.1   Generalist Transport protocols 

Generalist Transport protocols have been designed with 
the aim to get acceptable performances in the context of 
an as large as possible set of applications distributed 
over an as large as possible set of network technologies.  

The latest examples are the Internet Transport protocols 
TCP [22], UDP [23], SCTP [24], MPTCP [25], etc. 
which try to cover all Internet contexts in all their 
heterogeneity.  

As several of these protocols have been designed 
considering the worst network case and the most 
stringent application requirements in terms of order and 
reliability, they induce useless treatments when the 
network provides better conditions or when the 
application has less stringent requirements, which leads 
ton suboptimal performances [1]. 
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2.1.2. Specific Transport protocols 

Obviously, a specific Transport protocol is expected to 
lead to optimal performances when applied in the 
context for which it has been designed.  

However, it is not unusual that such solutions are not so 
efficient and are subject to several issues even in their 
dedicated context. This is due to two main reasons:  
• the Transport solution is specific to either 

application or network but not the two together [2],  
• the solution is not enough specific [3].  

In the first case: 
• the solution may, for instance, be dedicated to a 

given set of “similar” applications but it does not 
consider the differences between the possible 
underlying network technologies. So, even if the 
solution is specific to a given set of applications, it 
is still general from the network point of view. This 
affirmation may be illustrated through protocols that 
have been designed to take into account multimedia 
applications features / requirements, but which run 
in the same way whatever the underlying network 
technology. Consequently, they are not efficient in 
several technologies, like satellites links [7], ad-hoc 
networks [3] or sensors networks [4]; 

• similarly, a Transport protocol may have been 
designed specifically to cope with a/some given 
network technology(ies), like WLANs, but are 
inefficient for several specific types of applications 
like multimedia ones [5] [6]. 

In the second case, the Transport solution tries to be 
specific to a given application and/or network context 
like protocols designed to support multimedia 
applications in wireless networks. However, the 
solution may be not enough specific, either from the 
application point of view applications, for the network 
or for both application and network.  

For instance: 
• some solutions do not consider the different 

“preferences” that could be expressed by multimedia 
applications, where some ones may wish to 
prioritize bandwidth [12] while others may prefer 
prioritize delay [9]; 

• also, they do not consider the differences in wireless 
networks characteristics between LANs [10] or ad-
hoc networks [11]. Therefore, the lack of specificity 
or in the degree of specificity makes specific 
solutions not optimal even if they are applied in 
their dedicated area. 

2.1.3. Adaptive Transport protocols 

Most of the existing Transport solutions may be 
considered as “monolithic”, in this way that they are 
neither configurable nor adaptive, and run in the same 
way for all application and network contexts.  

The “configurability” capability of Transport protocols 
is however a expectation that has been explored more 
than 20 years ago with the initial “partial order 
connection concept” proposed in [8], which introduced 
“order” and “reliability” as parameters of order / loss 
control mechanisms, aimed at taking into account 
multimedia application order / loss tolerance to reduce 
both end-to-end delay and bandwidth consumption. 

More generally, the configurability of a Transport 
solution is its ability to adopt different behaviors for 
different application and / or network contexts. This 
property may concern both the mechanisms to be 
activated (congestion control, error control, etc.) and 
their parameter [26]. 

The configurability can be “static”, i.e. defined at the 
design time of the protocol; in this case, the 
corresponding code needs to be recompiled each time a 
configuration change is required. It can also be 
“dynamic”, for instance when it is done at the 
connection establishment time, or even better if the 
protocol behavior may be changed during the 
communication [14]. 

Finally, a dynamic configurability may be 
“autonomous” if the changes are operated transparently 
for the applications [13, 15]. In this ideal case, the 
protocol is said to be “adaptive”. 

As introduced in section (2.1), adaptive protocols 
require to be provided with richer monitoring, analysis, 
decisions and execution capabilities that the other 
protocols and it is still a challenge to demonstrate their 
actual benefits. However, it is conceivable to make the 
promotion of this kind of protocols as the best solution 
in order to tackle performances issues of current 
Transport protocols.  

Let us however note that if some adaptive Transport 
protocols are considered by their authors to be fully 
extensible [13] [15], this extensibility is in fact limited. 
Indeed, a real extensibility should be based on a list 
components file like it is the case for several operating 
systems components, such as hardware drives. It is for 
instance possible to add as many drivers as needed 
without affecting the system or its complexity, because 
the system manages a file in which it simply adds an 
entry every time a new driver is added. The architecture 
of current adaptive protocols has not yet such capacities 
and it is then a still unsolved problem to add new 
mechanisms “on the fly” in the set of available ones. 
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2.1.4. Conclusion 

The previous state of the art was aimed at analyzing in 
what the design choices of Transport protocols have a 
non-negligible impact of the performances issue.  

Next Table 1 summarizes the different categories that 
have been exhibited together with their main features in 
terms of performances and deployment spectrum (i.e. 
application and network context). 

 Performance Covered context  References 
Generalist 
protocols Non optimal Large [22][23][24][25] 

Specific 
protocols Optimal Small (specific) [6][7][9][11][12] 

Adaptive 
protocols Optimal Large [2][15][26] 

Table 1: Categories of Transport protocols  

In spite of their a priori appropriate design that allows 
encompassing both general and specific protocols, 
adaptive protocols are very few deployed in the 
Internet, and it is often a lost fight for their designers or 
implementers to convince the operating system 
developers of the opportunity to integrate them in their 
systems. The next section (2.2) provides a deep analysis 
of the difficulty. 

2.2. Obstacles to the effective deployment of new 
Transport protocols in the Internet 

Several obstacles may be identified that explain the lack 
of effective deployment of new Transport solutions in 
the Internet. This section provides an analysis of the 
context that leads to exhibit those obstacles from the 
points of view of the different concerned actors. 

2.2.1. Points of view and expectations 

Three types of actors have to be considered in the 
analysis of the problem: the application developer, the 
protocol developer, and the operating system developer, 
which have different expectations that need to be 
addressed. 

The application developer is concerned by the usability 
of the service and by the compliance of the service to 
the application needs. The developer has not to know 
the complexity of the overall set of possible solutions. 
Moreover, it is not realistic to imagine a developer 
rewiring its application each time a novel Transport 
solution appears on the market. 

The protocol developer is concerned by the acceptation 
of a new solution or the improvement of an existing 
one. As a result, once a new solution has been 
developed, this one must be promoted:  

• from the application developers, with the aim to 
convince them of the added-value of using the new 
solution;  

• from the operating systems developers, with the aim 
to convince them of the added-value of integrating 
the solution into their system;  

Finally, the system developer is concerned by the ease 
of integrating a new solution in its system or to update 
an existing solution. His/her preoccupation is to 
minimize code rewriting for each added or updated 
operation.  

2.2.2. Obstacles that need to be tackled 

Based on the evolution of the application, network and 
terminal context, and taking into account the 
conclusions of the state of the art presented in section 
(2.1), five problematic points may be exhibited as 
obstacles to the actual deployment of the new Transport 
solution in the Internet. These obstacles may concern 
one or several of the previous identified actors. 

a) Problem of complexity 

The complexity of the current protocol solutions may 
lead to the exhibition of three problems:  
• Transport protocols are quite complex by nature 

because of their operating principles, the techniques 
on which their mechanisms are based, and finally 
their algorithms. This complexity has a direct 
impact on the offered service, which required to be 
known to tackle the applications requirements. For 
example, a window-based congestion control 
mechanism, like the one applied in the basic version 
of TCP, induces both throughput and delay 
variations that are incompatible with the need in 
constant throughput and bounded delay of 
interactive multimedia applications. As a result, in 
front of this complexity, an application developer 
should have a detailed knowledge of the behavior of 
the underlying protocol before developing their 
applications. Clearly, this requires a detailed 
knowledge for developers whose Transport 
protocols is not the area of expertise.  

• Transport protocols are also complex in their use. 
Indeed, the use of their service is done via an 
application programming interface (API), which 
generally requires the mastery of knowledge in 
several areas, including system programming. As a 
result, an application developer should know several 
API it he/her wanted to benefit from the different 
possible solutions. This is clearly not desirable from 
an application developer point of view, which 
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certainly would prefer having to learn a single API, 
for all the possible underlying solutions. 

• Finally, the proliferation of proposals for Transport 
protocols and APIs confronts the application 
developer to a third difficulty, which is the choice of 
the best solution tailored to its application.  

b) Problem of dependency of the application to the 
invoked protocol  

The complexity of the protocol selection is not the only 
problem resulting from the evolution of the possible 
solutions. Indeed, this choice is made in design time, 
i.e. at the time of the application design. This means 
that the application is written for a given protocol and 
has to use its own service during all its life cycle. 

The resulting problem comes from the fact that the 
chosen protocol cannot be adapted to evolving 
application requirements (or when network constraints 
change), except in rewriting the code of the application. 
Note that this problem does not only concern the new 
protocol solutions, but also any migration from a given 
application to another existing Transport protocol.  

This dependency of the application to the underlying 
protocol is also partly responsible for the problem of 
scalability and deployment described hereafter.  

c) Problem of extensibility of the existing solutions  

The extensibility of the existing solutions is a crucial 
issue as it raises several problems depending on the 
adopted point of view:  

• The integration of a new solution, or the updating of 
an existing solution, is a problem for the operating 
systems developers. Indeed, any protocol 
modification requires changes in the hosting 
systems, dealing with their integration in the new 
versions of the system, the updating of the earlier 
versions or the management of the compatibility 
between both. These implications explain the 
reluctance of the operating systems developers with 
regard to the adoption of new solutions; this also 
explains why the system environments are 
heterogeneous in terms of supported Transport 
solutions.  

• From the perspective of the protocol developers, the 
previous statement is a real obstacle given the high 
probability of non-acceptance of new solutions by 
the systems, or in the best case, given the significant 
delays in the integration of their solution (usually 
several years).  

• Finally, from the perspective of the application 
developers, these heterogeneous environments lead 

themselves to be careful when using new solutions, 
nobody being ready to accept that its application has 
operational problems for the simple reason that it 
runs in a system that does not support the desired 
Transport protocol.  

In summary, the application developers are waiting for 
wide deployment of the solutions before using them, 
while at the same time, the systems developers are 
waiting for a use of these solutions by the application 
developers. This vicious circle constitutes the main 
cause of the deployment problem described below.  

d) Deployment problem (of new protocol solutions)  

Deployment of new Transport solutions is the most 
restrictive problem in the evolution of the Transport 
layer. It includes the issues of extensibility and protocol 
dependency in addition to a crucial problem: the 
acceptability of the solution by the network.  

Indeed, middleboxes, whatever their functionalities, 
often deploy operating policies based on protocol types 
and their content. Some of them allow the transmission 
of only certain protocols (generally TCP and UDP), and 
a new protocol might not be able to cross through a 
middleboxe even if it is supported by the end systems. 
Any modification of an existing protocol or the 
integration of a new protocol requires updating these 
middleboxes.  

e) Configurability problem  

With the evolution of applications requirements, the 
“monolithic” services offered by TCP and UDP have 
become inadequate.  
The lack of configurability of these protocols has 
several impacts. First, the applications are obliged to 
use the overall set of services providing for instance by 
TCP (reliable service, ordered service, etc.) inducing 
both useless data transfers and process time, but also in 
certain case a degradation of the targeted services (a 
reliable service has a cost that can expressed in term of 
additional delay from the application point of view).  
The non-configurability of such protocols, which makes 
that applications are obliged to use the full set of 
services, explains the proliferation of new protocols 
offering no new services, but only some subsets of 
services existing in the current protocols. 

2.3. Proposition and requirements for an effective 
deployment of Transport protocols 

Based on the previous analysis, the approach proposed 
in this article is not to define a new protocol. 
Differently, it is to take advantage of all existing 
protocol solutions within a novel architecture for the 
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Transport layer, in order to meet as best as possible the 
applications requirements still taking into account the 
capabilities of the network and end-systems.  

The architecture must be general enough to be used by 
any application without any source code adaptation. 
However, this generality must be achieved not by a 
single solution having the same behavior in any context, 
but by an adaptive solution that can be general and 
specific in the same time: general by the capability to be 
used by any application and to be run over any network 
technology, and specific by its capability to adopt a 
specific behavior depending on the supported 
application features/requirements and the underlying 
network capabilities/constraints. 

Also, the architecture must be easily extensible, without 
or with minor implications for operating and network 
systems, this in order to be capable to integrate any new 
Transport solution. This extensibility will ensure the 
evolution of the Transport layer as well as applications 
and networks evolution, and motivate developers to 
continuously update and create more adapted Transport 
solutions.  

The integration of new solutions must have no effect 
not only for systems, but also for the existing and future 
applications. The proposed design for the Transport 
layer must adopt a loose-coupling software architecture 
paradigm to separate applications from technical details 
of Transport solutions. By this, architecture extensions, 
either by addition of new solutions or by updating of 
existing ones, will be transparent for the applications, 
which then could be distributed over any solution 
offering the same service.  

Without any systems or applications impact, a 
Transport architecture will then ensure its extensibility, 
and consequently will be adaptable to any evolution of 
applications requirements or networks technologies. It 
is also thanks to those conditions that new Transport 
protocols would have the possibility to be integrated in 
the operating systems. 

Another requirement is related to the “acceptability” 
part of the protocol deployment problem. This problem 
results from the independent management of Transport 
protocols in systems. The only way to resolve this issue 
is to apply a global management for all protocols and 
then to impose a congestion control for each Transport 
connection. When access networks managers will be 
sure that there is no equity problem in the bandwidth 
sharing, they will allow any protocol to transit in their 
network. 

Finally, the targeted Transport architecture must 
provide a better programming interface to application 

developers in order to not impose them to master all 
related technical considerations, especially for ones that 
are not specialized in system and programming area. 
Therefore, the architecture must have an easy access 
interface, limiting the interaction with applications to 
high-level descriptions. 

Next Figure 1 summarizes the sources of performance 
issues and the corresponding architectural obstacles that 
limit the deployment of new Transport protocols. 

 
Figure 1: Issues sources and architectural obstacles 

3. Service-oriented and component-based 
architecture 

Section 3 and 4 present our proposal for a new 
architecture of the Transport layer. In a first time 
(section 3), we illustrate the used design paradigms and 
how they allow tackling the limitations of the current 
architecture of the Transport layer. Next section 4 
describes the complete architecture of our proposition. 

3.1   Description of the approaches  

Our architecture is service-oriented and component 
based. This association of these two paradigms should 
offer all what the Transport layer needs to ensure its 
evolution, regarding itself, applications and networks. 

The service-oriented approach has been created in order 
to remove the dependency between heterogeneous, and 
eventually independent systems when must interact to 
offer or get services. Its principle is to limit the 
interactions with external systems to a set of services, 
and to abstract all the details concerning how these 
services are really realized. The service approach offers 
an independency between systems, which may 
communicate with any system offering the same 
services, without any modification. In addition, an 
internal modification in a given system will not affect 
the other ones, as long as its interface is not changed. 

Contrary to the service-oriented approach, the 
component-based one is related to the internal 
architecture of the system. It consists in dividing the 
global system in a set of relatively simple subsystems. 
The aim is multiple. It concerns first the simplicity of 
the design process, by allowing a progressive 
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development by components. Also, the component-
based approach facilitates the detection and the 
resolution of bugs, and the maintenance and the 
extensibility of the system.  

Because the Transport layer issues deal with both the 
Transport layer itself, the applications and the network, 
we combine these two paradigms in our proposed 
architecture in order to resolve the whole of issues. We 
describe in the next section the capabilities offered by 
these approaches and the corresponding tackled issues.  

3.2   New architecture capabilities 

The service-oriented approach concerns the interface 
between applications and the Transport layer. By this, it 
allows changing integrally the interaction way between 
them and limits it to the invocation of “services” instead 
of protocols. For their part, protocols will be defined by 
independent services evocable separately as required, 
following a component-based approach. The next 
sections list the capabilities offered by these two 
approaches, where each one allows the resolution of a 
part of the global issue (described in section 2.2.2). 

3.2.1. Abstraction 

The interface we propose is completely different from 
those offered by classical Transport API. It is no longer 
based on primitives, but on services, and the Transport 
layer is no longer shown by applications as a set of 
protocols but as a set of services. The way these 
services are implemented internally by the Transport 
layer is completely transparent for applications, which 
will have to request only these services (with eventual 
parameters) and it is to the Transport layer to choose the 
optimal way to offer them1. The abstraction principle 
concerning the Transport mechanisms is currently under 
study in a dedicated working group of the IETF 
(TAPS). However, the group objectives are currently 
limited to the specification of a set of standardized 
Transport services. 

Such high level of abstraction, limiting the interaction 
between the applications and the Transport layer will 
have several benefits, and allow the resolution of a 
number of issues. 

First, this remove the dependency between applications 
and their protocols interfaces, and consequently remove 
all issues resulting from the dependency obstacle. The 
applications may now run on any environment, 
whatever the Transport mechanism used inside, as long 
as it offers the desired services. This increases the 

                                                
1 Details about services and their implementation will be described in 
section 4 

portability of applications, and the need to rewrite them 
for specific environments, or to support new 
capabilities. This will be very useful for the autonomic 
part of the architecture we propose, by selecting the best 
mechanism based on the network characteristics, since 
the offered service is the same.   

In addition, this transparency of internal implementation 
of services makes naturally all internal modifications 
also transparent for applications, as longer as the 
services interfaces stay the same. It is now possible to 
add or update Transport components without taking 
account applications.  

The last benefit is about the complexity resulted from 
the increasing of the number of existing Transport 
solution (the first part of the complexity issue), and the 
impossibility of the application developer to have 
enough knowledge to choose the most adapted solution 
to their applications. Now, developers have only to 
express their needs in terms of Transport services, 
without any knowledge about the underlying 
mechanisms. Also, the service-oriented interface will be 
easier to use than the current sockets. This will increase 
the productivity, and reduce the needed competency to 
develop with the Transport layer. 

The abstraction is the most important capability offered 
by the service-oriented approach. In fact, it allows the 
resolution of almost all issues involving applications. 
The other capability is the configurability, offered in 
combination with the component-based approach, is 
presented in the next. The rest of capabilities concerns 
the internal issues of the Transport layer, and therefore, 
will be resolved by the component approach. 

3.2.2. Extensibility 

We consider the extensibility as the capability of a 
system to make modifications (adding, updating, …) of 
its extensible components without impact on the rest of 
the system. The lack in the extensibility is mainly 
caused by the high dependency on the different parts of 
a system, resulting of only on or too few modules. 
Thus, the modification of any part needs to recompile 
the entire code source of the system. For Transport 
protocols, the problem is more important, because their 
implementation in the kernel.  

The component-based approach has as principal to 
separate a complex system to a set of independent, and 
relatively simple, subsystems. This independency 
concerns not the source files, but the resulting 
compiled, generally as shared libraries. Each part 
(component or module) is compiled separately and 
therefore can be maintained independently of the others. 
The granularity of the decomposition of the systems 
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depends on the context of the system. In our 
architecture, we consider a component for a service. 
Each service is realized by an entire component. It is 
possible that a given service is offered by several types 
of components, but each one offer the entire service, 
and only one can be used at the same time. 

The architecture is based on a list of components that 
can be loaded dynamically. All the components offer 
the same common interface, allowing the Transport 
layer to be capable to use them without having to know 
them previously. It must just through the list of 
components, and load those are necessary according to 
the requested services. 

3.2.3. Reusability  

Most of new protocols, and especially new versions of 
existing ones, propose some little differences comparing 
the previous version. However, because of the 
monolithic aspect of their architecture, we need a 
complete new protocol, even the difference is minimal. 
The component based approach offer the possibility to 
reuse the existing components, and in this case, have 
only the different components of the new version. This 
reduces the complexity of the system, the development 
time, and the system usage. 

3.2.4.  Scalability 

The other part of the complexity (concerning the 
overload of operating system) comes mainly from the 
fact that the whole of the protocol is implemented in the 
kernel, and directly linked to the system. By a 
component approach, this link will concern only the 
elements that may interact with the system; the other 
ones will be implemented independently of it. This 
means that it becomes possible to have as much as 
needed of Transport services and mechanisms, since 
their only cost will be limited to the memory space 
occupied by the components modules files. 

3.2.5. Configurability and adaptability 

The other capability offered by the component-based 
approach is the possibility to choose an optimal set of 
services. In fact, for the classical monolithic 
architectures, the applications are forced to use the 
whole of the service offered by the underlying protocol. 
By decomposing the protocols in elementary services, it 
becomes possible to choose any subset from them, and 
offer to the application only what it needs, optimizing 
therefore the performances.  

In addition, these independent services can be offered 
by different ways, each one corresponds to a different 

component, and adapted to a specific network context. 
Thus, the Transport layer can choose different 
components to offer the same service following the 
network state. 

The configurability starts before all by a custom request 
of the application, by a specific list of services. These 
capabilities are offered by the association 
service/component, which makes it very easy to 
translate a list of requested services to a list of 
corresponding components. 

Next Table 2 summarizes the pertinence of the service-
oriented and component-based architectural approaches 
in front of the previous identified issues. 

Approach / Issue 
Comp 
lexity 

Configu 
rability 

Depen
dency 

Extensi 
bility 

Service-oriented  x x x  
Component-based x x  x 

Table 2: Architectural approaches and corresponding issues 

4   Description of the architecture 

This section describes the main principles of the 
proposed Transport layer architecture. The design 
proposes modification of the foundations of classical 
approaches, where a set of independent protocols 
composes the Transport layer. In the proposed solution, 
a management layer is added. This additional 
component to the architecture is used to coordinate 
connections by creating, modifying, and closing them. 
For each connection, the choice of the protocol 
mechanisms and parameters is done in order to best fit 
the applications needs while also taking into account the 
network state at the time of decision as well as its 
possible evolutions.  

The management component is instantiated as a 
singleton object, by such it is common to all 
applications and connections on a given endpoint. It is 
independent from connections, and interacts with them 
through a unique standard interface. When a connection 
is created, the management component can modify its 
composition (i.e. in response to an application request, 
or a change in network state). The interaction between 
the applications and their associated connections for 
sending and receiving data is made directly without 
implication of the management component. 

The architecture is illustrated in Figure 2. The next 
sections provide further details of each component.  
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Figure 2: Components diagram of the architecture (common components on the right, connection components on the left) 

4.1   Management (Common) components 

The management components (right part of Figure 2) 
are responsible for processing applications requests by 
selecting the most appropriate components and instating 
them in the connection. In addition to this feature, the 
management components manage the integration of 
new components into the architecture. Moreover, in 
order to ensure fairness among multiple connections in 
their access to the network layer, the management 
components perform a round robin scheduling of the 
connection buffers in their interface with the network 
layer.  The Transport layer manages two databases in 
which it stores information about the services offered to 
the applications and the components offering them.  

4.1.1   Databases 

Global services database: a list of available services 
provided to the applications developers. This database 
is globally unique (i.e. common for all systems and 
users). The database items are described as abstracted 
services without any information about the component 
implementations offering these services. 

Local services database: Opposite to the global 
database, this database is private and available only on a 
given system. It stores the correspondence between 
services and the component implementations offering 
them. This database is used by the decision component 
to satisfy application requests. The construction and 
maintenance of the database is ensured by the 
integration component.  

Such paradigm de-correlating an abstract description of 
services from the components implementing those 
services is a current practice in the service-oriented 
architecture. The two databases contribute to ensure the 
abstraction, the extensibility, the configurability and the 
adaptability of the Transport layer. 

4.1.2   Software components 

The software components are responsible of managing 
services, from their integration in the Transport layer, to 
their instantiation in response to the applications 
requests taking into account the network state. In what 
follows, we will detail the different software 
components that compose the architecture and, for each 
of them, identify the capabilities (identified in section 
2.2.2) that these components provide. Furthermore, the 
optional nature of some of the components contributes 
to the adaptation capability identified earlier in the 
sense that, when not required (i.e. for complexity or 
implementation reasons), the modularity of the proposal 
allows for their removal.  

Integration Component: ensures the extensibility and 
scalability of the Transport layer. This component is 
responsible of integrating new Transport services into 
the endpoint system after checking the integrity of their 
implementation and ensuring the reliability of their 
source. Indeed, only normalized and “manufacturer or 
community approved” service components 
implementation can be added to the Transport layer. 
Following integration, the local database is updated by 
adding in entry for the new component.  



10 
 

Applications interface: this component serves two 
functions. It is an interface between application and the 
Transport layer as well as a relay between the other 
components. It contributes to the abstraction of the 
services offered by the Transport layer and the 
configurability through the decision component. For 
applications, the applications interface is responsible to 
process their service requests. It communicates the 
necessary components in order to create a connection 
meeting the requirements of the application. It is also 
possible for applications to modify the service request 
during communication. In the connection establishment 
process, the application interface manages the 
interactions between the components. 

Decision Component: ensure extensibility in 
conjunction with the integration component as well as 
adaptability through the monitoring component, and 
configurability through the applications interface 
component. The role of this component is the automatic 
selection of the associated Transport services 
component implementations for a given service request. 
To achieve this objective, it bases decision on the local 
services database in which it searches for the best suited 
component for each requested service taking into 
account the current network state. It is used by the 
applications interface when creating the connection or 
when changing the service, and by the connections 
when a change in network profile is detected. 

Connections manager: responsible of the creation and 
the management of the different connections. It is used 
by the applications interface during connection 
establishment. The connections manager creates 
connections for the applications using the Transport 
layer and maintains a connections table. During a 
connection, the manager can be used to implement 
changes to connections either following an application 
request or changes of the network profile. 

Network interface: This component has two roles; it 
offers an abstraction of the Network layer to the 

different connections (multiplexing and de-
multiplexing) and it ensures a fair sharing of the local 
link bandwidth between the different connections. 

4.2   Connections components 

Once a connection is created, the applications directly 
interact with it for data transmission. For management 
interactions that might be required during 
communication, these are performed via the application 
interface.  

Connections components (left part of Figure 2) are 
responsible for the effective data transmission. They are 
specific for each connection, and consequently 
instantiated every time an application requests a service.  

4.2.1   Shared memories 

The shared variables are used by different components 
in order to exchange information.  

Buffer: temporary store for the data to be transmitted. It 
is used by the connection interface to set or get data to 
and from applications, and by the assembler component 
to set or get data from and to network interface. 

Transmission parameters: These variables are used by 
the assembler component to manage the data flow, 
capturing the state and state changes of some Transport 
service components implementation. As an example, 
the “throughput” parameter may be determined by a 
component like the congestion control. The list of such 
parameters is extensible, and the available ones depend 
on the Transport components that are deployed for a 
given connection. 

Network profile: This variable is used by the monitoring 
component in order to detect variations in the network 
state. It contains the values monitored by Transport 
services. The list of values to be monitored is also 
extensible and depends on the components present in 
this connection. 

4.2.2   Software components 

There are two types of components. Some ones are used 
for the internal management of the connection, and 
some others are used to the effective transmission, i.e. 
they implement Transport services.  

Connection interface: constitutes the interface, on one 
side with the application and with Transport layer on 
the other side. This interface is divided in data and 
control parts. The data part is dedicated to an 
application. Data transmission is the only direct 
interaction between the application and its connections. 
The control part is dedicated to the Transport layer (via 

the application interface). The connection uses this 
interface to signal network profile changes. The 
Transport layer uses this interface to adapt the 
connection service components when needed. 

Buffer manager: manages access to the buffer by the 
connection interface and the communication 
components. This choice is motivated by the existence 
of several components that can decide on packets 
discarding from the buffer (e.g. a reliability 
component). The management will coordinate the 
discarding of packets among the involved services 
implementations. Access to the buffer is exclusively 
reserved to the buffer manager, and any operation by 
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the other component must be performed through of the 
buffer manager.  

Monitoring: contributes to the adaptability together 
with the decision component. The monitoring 
component permanently checks and detects network 
states variations to determine profiles. Upon profile 
change, these are transmitted to the Transport layer for 
reaction (i.e. possible change in service composition).  
The monitoring component is not used to detect the 
different network parameters (bitrate, delay, …). These 
parameters are computed and published by the 
Transmission components (e.g. the reliability 
component for the loss rate parameter). The monitoring 
component only analyzes these parameters in order to 
detect eventual variations. 

Transport components: they are the components that are 
responsible of the effective transmission and implement 
the requested services by the application. They 
constitute the dynamic part of the connections. Indeed, 
their instantiation depends on the requested services and 
the network state. There are two types of components: 
mandatory and optional. The mandatory ones are 
services that the Transport layer offers independently of 
the application requirements. Nevertheless, it is possible 
that the components implementation for mandatory 
service varies depending on the network profile; 
however, they are always offered by the system. These 
components are mainly: the assembler component 
(creates data packets and transmit them to each of the 
components implementation before reaching the 
network interface).  

Table 3 summarizes the Transport layer components 
classified based on their respectively provided 
capability.   
 

Component
/ Capability 

Abstra
ction 

Configu 
rability  

Reusa 
bility 

Extensi 
bility 

Scala
bility 

Interface  x x    
Decision  x x x  
Integration   x x x 
Monitoring  x    

Table 3: Transport layer components and corresponding issues  

4.3   Dynamic description 

In this part we describe the important behavioral aspects 
of our architecture (Figure 4).  

  
Figure 3: Description of the Transport layer behavior  

The process starts in listening state, waiting for an 
application request. Request are composed of a list of 
desired services, and eventually with their parameters, 
in addition to the classical parameter necessary for the 
Transport layer, like the remote address or the 
application type. Given the extensible nature of the 
architecture, it is possible that some services are not 
available on a given system. To handle this case and to 
avoid long negotiation processes in case of 
unavailability, the list of requested services is divided 
into two parts: mandatory and optional services. The 
Transport layer can accept the request even if some of 
the optional services are not available. But for the 
mandatory ones, it must be available for the connection 
to be established. The same rule is applied in the server 
side; the connection request is accepted only if all 
mandatory services are available. 

When the application interface receives the connection, 
it extracts the list of services and transmits them to the 
decision component, which in turn, searches the local 
database of services to determine the available 
components implementations offering the requested 
services. For the first use of the decision component, i.e. 
before the establishment of the connection, it considers 
only the application requirements, because the network 
state is not yet known. In case of more than one 
component offer a given service, the decision 
component chooses the default one. The initial choice 
can be further optimized after connection establishment. 
This choice refinement is activated by the detection of a 
new network profile by the monitoring component, or 
when the application requirements change.  

Once the Application Interface component has verified 
the local availability of the services requested by the 
application, the same process is performed on the 
remote host. Once the availability issue is resolved, the 
Application Interface component invokes the 
Connections Manager component, which creates a new 
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connection by instantiating the corresponding service 
component implementations. A reference to this 
connection is returned to the application to 
communicate directly with it (without passing by the 
application interface). However, this communication is 
limited to the data transmission (send and receive data). 
If the application wants to change its services, or end 
the connection, it requests this to the application 
interface. In this case, the procedure is similar to the 
first request. However, it differs from this initial 
procedure in the sense that the decision is optimized by 
taking into account the network state based on the 
current network profile provided by the Monitoring 
component. 

In the connection, for each packet of the application, the 
assembler component calls all the instantiated Transport 
service components implementation. These components 
can transform the data (e.g. compression), add header 
fields to the packet (e.g. sequence number), or both. 
Once the process is over, the assembler transmits the 
packet to the network interface responsible of its 
effective transmission in the network. At the remote 
side, the assembler follows the reverse process by 
passing the packet to all service components 
implementations in the reverse order.  

The Transport service components implementations are 
responsible for the monitoring of the different values of 
the network, and write them in the network profile. The 
monitoring component subscribes to these values 
changes. When a profile change is detected, it is 
transmitted to the Transport layer, which can eventually 
decide to change the current service composition.  

The next section discusses of the benefits and additional 
cost that are obtained and caused by the new 
architecture. 

5   Architecture benefits and costs 

Since the architecture proposal is in a conceptual state, 
this section discusses theoretically the expected benefits 
and the additional work that should cause 
supplementary cost comparing to the current 
architecture. 

5.1   Benefits 

Our proposition is based on the principle that specific 
Transport solutions are more efficient than general 
ones. This fact has been demonstrated many times 
though multiple enhancements for TCP and other 
protocols for specific application and/or network 
contexts [2]. These works demonstrated that these 
specific versions lead to important performances 
enhancement, both in terms of network bandwidth 

occupation and of (functional and non functional) 
services offered to the applications. In addition, some of 
these works offer new capabilities (such as the partially 
reliable error control), which are not available or cannot 
be integrated on general solutions. The problem comes 
from the difficulty, on one hand, to integrate all the 
solutions on one system, and on the other hand, to affect 
(automatically) each solution to its dedicated context. 

Thus, we assume in our proposition, that if we offer an 
environment where all the specific solutions can be 
deployed and dedicated to the appropriate applications 
and networks, we will obtain optimal performances. 
Therefore, the first benefit of our proposition is to allow 
optimal Transport solutions to be integrated and 
correctly used. 

Another benefit, related to the existence of as much 
solutions is in their usage by applications. The 
abstraction layer of our architecture makes it transparent 
for the applications all these details, and the usage of 
the Transport layer becomes not only easy, but easier 
than when it was composed by few solutions.  

The last benefit, that constitutes one of our main 
objectives, is to guarantee the continuous evolution of 
the Transport layer. This is allowed by the extensibility 
capability, which offers the capability to integrate or 
update any services, without any impact to the 
Transport layer; moreover, this evolution is also 
allowed by the independency between the applications 
and the Transport components, thanks to the service 
approach used in the interface exposed to the 
applications. 

5.2   Additional cost 

The additional cost in terms of network bandwidth 
occupation, processing load or additional delay, should 
appear through the implementation of the functionalities 
ensuring the new capabilities of the architecture. This is 
expected, a priori, in the connection establishment, the 
decision and the monitoring processes. For the other 
functioning modes, like for the instantiation, or the 
composition of services, they will concretely be similar 
to the actual protocols modes, and will not have 
additional cost. 

For the connection establishment process, the additional 
cost is associated to the list of services that have to be 
transmitted to the other host for the availability 
verification. The remote host, in case of unavailability 
of some optional services, will have to transmit the list 
of available ones. Taking into account the number of 
services (NB:  referred by single identifiers) that can be 
associated to the applications, the additional cost 
including the information containing this list of services 
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will be very small. In addition, taking into account the 
optimization that this negotiation will offer after the 
connection established, and taking also into account the 
fact that this procedure is used only one time, we 
assume that this additional cost is negligible. 

As far as the monitoring functionality is concerned, as 
described below, it is realized by the Transport 
components. Thus, instead to send additional traffic in 
the network in order to measure some values that are 
already known by the Transport components (like the 
loss rate thanks to the reliability component), the 
architecture includes a mechanism allowing the 
different Transport components to share their 
information with the monitoring component, avoiding 
additional traffic. The function of the monitoring 
component is therefore limited to checking this shared 
information with the aim to detect an eventual network 
state variation. Thus, its work is completely 
independent of the communication process, and will not 
induce any additional cost. 

Finally, and as far as the decision process is concerned, 
it is clear that its cost is in processing and not in 
communication. We adopt for the decision a utility 
function approach, which calculates a utility value for 
each component and compare them to those of the 
current network profile with the aim to see the one 
offering the best correspondence. This problem is then 
be reduced to a classical maximization problem that can 
be resolved in a linear time regarding the number of 
available components. Taking into account this number, 
and the linearity of the decision algorithm, the decision 
process is then expected to be achieved in a negligible 
time.  

The future implementation and experimentation works 
of the architecture are aimed at supporting these 
theoretical estimations of the additional cost. However, 
we believe that, taking into account the actual services 
and performances offered by the Transport protocols, 
and because of the limitations of the current Transport 
architecture, the additional cost will be negligible 
comparing to the enhancements that our proposal will 
be able to offer.  

6   Conclusion 

Transport protocols are an important piece of the 
Internet communication stack as it allows linking as 
best as possible the application level with the network 
one. Performance of such this conceptual link is a 
crucial issue, which is addressed for a long time. 
However, the fact is that both the application and the 
operating system developers continue to make use of 
suboptimal solutions.  

The goal of this paper was to analysis this problematic 
and then to propose a novel design of the Transport 
layer aimed at allowing an actual integration of all the 
Transport solutions. After having identified the 
obstacles that need to be tackled, we studied how the 
application of service-oriented and component-based 
approaches allows leading to the design of such a new 
Transport layer. We showed that the service-oriented 
approach, in association with the component-based one, 
can effectively resolve the whole of the current 
Transport layer problems and limitations, with a 
minimal expected additionally cost.  

The perspectives of this work are to formalize the 
proposed design for this new architecture of the 
Transport layer, and to demonstrate its benefits thanks 
to appropriate simulations.  
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