
1

Transport protocols: limitations, evolution obstacles and
solutions for an actual deployment in the Internet

Mohamed Oulmahdi1,2 Christophe Chassot1,2 Nicolas Van Wambeke3

1CNRS, LAAS, 7 avenue Colonel Roche F-31400 Toulouse, France
2Université de Toulouse, INSA, F-31400 Toulouse, France

3Thales Alenia Space, Toulouse, France

mohamed.oulmahdi@gmail.com, christophe.chassot@laas.fr, nicolas@vanwambeke.net

Abstract — The Transport layer, designed for old
networking contexts and now obsolete applications
requirements, is inefficient. This paper discusses the
reasons behind this inefficiency and the obstacles to the
evolution of Transport protocols. The discussion is then
extended to derive new requirements for the Transport
layer, both functional and architectural, in order to
ensure optimal performances in all current and future
contexts. To meet these new requirements, a novel
architectural design of the Internet Transport layer is
proposed following a service-oriented and a
component-based approach. The proposed solution
allows for optimization of the Transport service
performance, facilitation of its utilization, and is aimed
at allowing the integration of new services as needed.

1. Introduction

The Transport layer is one of the most important layers
of the Internet communication protocol stack. Located
between the application and the network layers, this
layer is expected to take into account both the
application feature / requirements and the underlying
network capabilities / constraints in order to provide the
best end-to-end communication service, matching as
much as possible the application requirements, still
taking into account the opportunities and limitations of
the underlying network.

In the last few decades, several new applications and
networking technologies have emerged with very
different requirements and characteristics, making
initial Transport-level protocols (typically TCP and
UDP in the Internet) no longer adapted. As a
consequence, a lot of new Transport protocols and
mechanisms have been proposed over the last 20 years
in order to enhance both the Transport services offered
to applications, and to optimize the usage of the
different network technologies.

Unfortunately, the factual observation is that all these
new proposals are either not integrated in the actual
operating systems (Windows, Linux, etc.), or hardly
used in practice by the application developers, which in
majority continue to use suboptimal TCP and UDP
solutions.

Since it is proved that these new propositions are widely
more efficient than the actual used protocols, the main
goals of this work are to identify the deployment
obstacles of the new Transport propositions, and then to
propose a new architecture of the Transport layer as a
solution.

In this context, the contributions of this article are
threefold.

The first contribution of the paper (section 2) is to
analyze this general problem by identifying the
obstacles that justify the lack of evolution of the
Transport protocols in spite of the need.
• The first part of this analysis deals with the design

choices that explain the performance limitations of
the current Transport protocols.

• The second part explains in what tackling these
sources of performance issue is a complex problem
due to several main obstacles that no new Transport
solution is able to put off in a global way.

• This analysis leads finally to conclude that the
solution to be promoted does not consist in
developing a new concept of “perfect” Transport
protocol but requires a revision of the current
Transport layer architecture.

Following this novel approach, the second contribution
of the paper (sections 3 and 4) is to provide a new
design of the Transport layer, with the aim to allow and
facilitate the integration of both existing and new
Transport solutions, their updating, and their usage by
the applications.

2

Finally, the impact of the new architecture on the
performances is discussed in section 6.

2. Transport protocols: analysis and
requirements towards an effective deployment
of the news solutions in the Internet

To tackle the evolution of both the application features /
requirements and the network capabilities / constraints,
a huge amount of research works dealing with desirable
evolution of Transport protocols have been and are still
published for more than 20 years. One of the main goals
of these contributions is to provide adaptation of the
protocol services to new applications requirements
using more efficient mechanisms taking into account
the evolution of network technologies. However, and in
spite of their well-known limited services and
inefficient behaviors in some contexts, TCP and UDP
still remain the de facto two main Transport protocols
used to support the end-to-end data transfers for Internet
distributed applications.

After a state of the art of this rich scientific matter
(section 2.1), section (2.2) analyses the reasons
explaining the lack of effective deployment of new
Transport solutions in the Internet. On these bases,
section (2.3) presents the positioning of our proposition
together through a set of requirements that need to be
satisfied with the aim to allow an effective deployment
of new Transport protocols.

2.1. State of the art of the Internet Transport
protocols

Sub-optimality, or “performance issue”, of a Transport
protocol may be observed:
• from the application point of view, with the absence

of some required services, or the presence of non-
adapted ones;

• from the network point of view, whose expectation
is an as best as possible usage of its bandwidth
resources.

On this basis, two main reasons explain the
performance issues of an existing Transport solution:
• when the solution is to be used in a more exigent

application context, i.e. when new applications have
stronger (or more complex) requirements than the
initial ones, such as real-time multimedia
application that have stronger delay and general
throughput requirements than classical web
application;

• and/or when the existing solution is to be used in a
less efficient network context than the initial one,
such as wireless links that leads (among other) to

higher bit error rates or more variable access
throughput, comparing to wired networks.

In front of these performance issues, three main
approaches have been and are still adopted in the design
of Transport protocols:
• the first one consists in designing one can be called

“generalist” protocols, aimed at supporting as many
as possible applications and network contexts using
(almost) the same mechanisms whatever the context.
Obviously, the main weakness of this kind of
protocols is due to the generality principle of their
design, which inherently leads to suboptimal
performances;

• the second approach consists in designing “specific”
protocols, aimed at providing optimal performances
for a given and precise application and/or network
context. The main weakness of this kind of
protocols is due to the specificity principle of their
design, which inherently leads to the reduction of
their deployment contexts; as a result, such solutions
are difficult to consider for a large spectrum of
application / network specificities;

• finally, the third approach consists in designing
“adaptive” protocols, whose internal mechanisms
and parameters may be configured depending on
the targeted application and/or network context. The
main weakness of this kind of “ideal” solution
firstly comes: 1) from the “intelligence” that need to
be acquired to decide and then deployed the
adequate mechanisms between the end-to-end
entities, and 2) from the cost of this intelligence that
need to be subtracted from the expected benefits.

The following sections detail these three categories and
then conclude on their effective deployment.

2.1.1 Generalist Transport protocols

Generalist Transport protocols have been designed with
the aim to get acceptable performances in the context of
an as large as possible set of applications distributed
over an as large as possible set of network technologies.

The latest examples are the Internet Transport protocols
TCP [22], UDP [23], SCTP [24], MPTCP [25], etc.
which try to cover all Internet contexts in all their
heterogeneity.

As several of these protocols have been designed
considering the worst network case and the most
stringent application requirements in terms of order and
reliability, they induce useless treatments when the
network provides better conditions or when the
application has less stringent requirements, which leads
ton suboptimal performances [1].

3

2.1.2. Specific Transport protocols

Obviously, a specific Transport protocol is expected to
lead to optimal performances when applied in the
context for which it has been designed.

However, it is not unusual that such solutions are not so
efficient and are subject to several issues even in their
dedicated context. This is due to two main reasons:
• the Transport solution is specific to either

application or network but not the two together [2],
• the solution is not enough specific [3].

In the first case:
• the solution may, for instance, be dedicated to a

given set of “similar” applications but it does not
consider the differences between the possible
underlying network technologies. So, even if the
solution is specific to a given set of applications, it
is still general from the network point of view. This
affirmation may be illustrated through protocols that
have been designed to take into account multimedia
applications features / requirements, but which run
in the same way whatever the underlying network
technology. Consequently, they are not efficient in
several technologies, like satellites links [7], ad-hoc
networks [3] or sensors networks [4];

• similarly, a Transport protocol may have been
designed specifically to cope with a/some given
network technology(ies), like WLANs, but are
inefficient for several specific types of applications
like multimedia ones [5] [6].

In the second case, the Transport solution tries to be
specific to a given application and/or network context
like protocols designed to support multimedia
applications in wireless networks. However, the
solution may be not enough specific, either from the
application point of view applications, for the network
or for both application and network.

For instance:
• some solutions do not consider the different

“preferences” that could be expressed by multimedia
applications, where some ones may wish to
prioritize bandwidth [12] while others may prefer
prioritize delay [9];

• also, they do not consider the differences in wireless
networks characteristics between LANs [10] or ad-
hoc networks [11]. Therefore, the lack of specificity
or in the degree of specificity makes specific
solutions not optimal even if they are applied in
their dedicated area.

2.1.3. Adaptive Transport protocols

Most of the existing Transport solutions may be
considered as “monolithic”, in this way that they are
neither configurable nor adaptive, and run in the same
way for all application and network contexts.

The “configurability” capability of Transport protocols
is however a expectation that has been explored more
than 20 years ago with the initial “partial order
connection concept” proposed in [8], which introduced
“order” and “reliability” as parameters of order / loss
control mechanisms, aimed at taking into account
multimedia application order / loss tolerance to reduce
both end-to-end delay and bandwidth consumption.

More generally, the configurability of a Transport
solution is its ability to adopt different behaviors for
different application and / or network contexts. This
property may concern both the mechanisms to be
activated (congestion control, error control, etc.) and
their parameter [26].

The configurability can be “static”, i.e. defined at the
design time of the protocol; in this case, the
corresponding code needs to be recompiled each time a
configuration change is required. It can also be
“dynamic”, for instance when it is done at the
connection establishment time, or even better if the
protocol behavior may be changed during the
communication [14].

Finally, a dynamic configurability may be
“autonomous” if the changes are operated transparently
for the applications [13, 15]. In this ideal case, the
protocol is said to be “adaptive”.

As introduced in section (2.1), adaptive protocols
require to be provided with richer monitoring, analysis,
decisions and execution capabilities that the other
protocols and it is still a challenge to demonstrate their
actual benefits. However, it is conceivable to make the
promotion of this kind of protocols as the best solution
in order to tackle performances issues of current
Transport protocols.

Let us however note that if some adaptive Transport
protocols are considered by their authors to be fully
extensible [13] [15], this extensibility is in fact limited.
Indeed, a real extensibility should be based on a list
components file like it is the case for several operating
systems components, such as hardware drives. It is for
instance possible to add as many drivers as needed
without affecting the system or its complexity, because
the system manages a file in which it simply adds an
entry every time a new driver is added. The architecture
of current adaptive protocols has not yet such capacities
and it is then a still unsolved problem to add new
mechanisms “on the fly” in the set of available ones.

4

2.1.4. Conclusion

The previous state of the art was aimed at analyzing in
what the design choices of Transport protocols have a
non-negligible impact of the performances issue.

Next Table 1 summarizes the different categories that
have been exhibited together with their main features in
terms of performances and deployment spectrum (i.e.
application and network context).

 Performance Covered context References
Generalist
protocols Non optimal Large [22][23][24][25]

Specific
protocols Optimal Small (specific) [6][7][9][11][12]

Adaptive
protocols Optimal Large [2][15][26]

Table 1: Categories of Transport protocols

In spite of their a priori appropriate design that allows
encompassing both general and specific protocols,
adaptive protocols are very few deployed in the
Internet, and it is often a lost fight for their designers or
implementers to convince the operating system
developers of the opportunity to integrate them in their
systems. The next section (2.2) provides a deep analysis
of the difficulty.

2.2. Obstacles to the effective deployment of new
Transport protocols in the Internet

Several obstacles may be identified that explain the lack
of effective deployment of new Transport solutions in
the Internet. This section provides an analysis of the
context that leads to exhibit those obstacles from the
points of view of the different concerned actors.

2.2.1. Points of view and expectations

Three types of actors have to be considered in the
analysis of the problem: the application developer, the
protocol developer, and the operating system developer,
which have different expectations that need to be
addressed.

The application developer is concerned by the usability
of the service and by the compliance of the service to
the application needs. The developer has not to know
the complexity of the overall set of possible solutions.
Moreover, it is not realistic to imagine a developer
rewiring its application each time a novel Transport
solution appears on the market.

The protocol developer is concerned by the acceptation
of a new solution or the improvement of an existing
one. As a result, once a new solution has been
developed, this one must be promoted:

• from the application developers, with the aim to
convince them of the added-value of using the new
solution;

• from the operating systems developers, with the aim
to convince them of the added-value of integrating
the solution into their system;

Finally, the system developer is concerned by the ease
of integrating a new solution in its system or to update
an existing solution. His/her preoccupation is to
minimize code rewriting for each added or updated
operation.

2.2.2. Obstacles that need to be tackled

Based on the evolution of the application, network and
terminal context, and taking into account the
conclusions of the state of the art presented in section
(2.1), five problematic points may be exhibited as
obstacles to the actual deployment of the new Transport
solution in the Internet. These obstacles may concern
one or several of the previous identified actors.

a) Problem of complexity

The complexity of the current protocol solutions may
lead to the exhibition of three problems:
• Transport protocols are quite complex by nature

because of their operating principles, the techniques
on which their mechanisms are based, and finally
their algorithms. This complexity has a direct
impact on the offered service, which required to be
known to tackle the applications requirements. For
example, a window-based congestion control
mechanism, like the one applied in the basic version
of TCP, induces both throughput and delay
variations that are incompatible with the need in
constant throughput and bounded delay of
interactive multimedia applications. As a result, in
front of this complexity, an application developer
should have a detailed knowledge of the behavior of
the underlying protocol before developing their
applications. Clearly, this requires a detailed
knowledge for developers whose Transport
protocols is not the area of expertise.

• Transport protocols are also complex in their use.
Indeed, the use of their service is done via an
application programming interface (API), which
generally requires the mastery of knowledge in
several areas, including system programming. As a
result, an application developer should know several
API it he/her wanted to benefit from the different
possible solutions. This is clearly not desirable from
an application developer point of view, which

5

certainly would prefer having to learn a single API,
for all the possible underlying solutions.

• Finally, the proliferation of proposals for Transport
protocols and APIs confronts the application
developer to a third difficulty, which is the choice of
the best solution tailored to its application.

b) Problem of dependency of the application to the
invoked protocol

The complexity of the protocol selection is not the only
problem resulting from the evolution of the possible
solutions. Indeed, this choice is made in design time,
i.e. at the time of the application design. This means
that the application is written for a given protocol and
has to use its own service during all its life cycle.

The resulting problem comes from the fact that the
chosen protocol cannot be adapted to evolving
application requirements (or when network constraints
change), except in rewriting the code of the application.
Note that this problem does not only concern the new
protocol solutions, but also any migration from a given
application to another existing Transport protocol.

This dependency of the application to the underlying
protocol is also partly responsible for the problem of
scalability and deployment described hereafter.

c) Problem of extensibility of the existing solutions

The extensibility of the existing solutions is a crucial
issue as it raises several problems depending on the
adopted point of view:

• The integration of a new solution, or the updating of
an existing solution, is a problem for the operating
systems developers. Indeed, any protocol
modification requires changes in the hosting
systems, dealing with their integration in the new
versions of the system, the updating of the earlier
versions or the management of the compatibility
between both. These implications explain the
reluctance of the operating systems developers with
regard to the adoption of new solutions; this also
explains why the system environments are
heterogeneous in terms of supported Transport
solutions.

• From the perspective of the protocol developers, the
previous statement is a real obstacle given the high
probability of non-acceptance of new solutions by
the systems, or in the best case, given the significant
delays in the integration of their solution (usually
several years).

• Finally, from the perspective of the application
developers, these heterogeneous environments lead

themselves to be careful when using new solutions,
nobody being ready to accept that its application has
operational problems for the simple reason that it
runs in a system that does not support the desired
Transport protocol.

In summary, the application developers are waiting for
wide deployment of the solutions before using them,
while at the same time, the systems developers are
waiting for a use of these solutions by the application
developers. This vicious circle constitutes the main
cause of the deployment problem described below.

d) Deployment problem (of new protocol solutions)

Deployment of new Transport solutions is the most
restrictive problem in the evolution of the Transport
layer. It includes the issues of extensibility and protocol
dependency in addition to a crucial problem: the
acceptability of the solution by the network.

Indeed, middleboxes, whatever their functionalities,
often deploy operating policies based on protocol types
and their content. Some of them allow the transmission
of only certain protocols (generally TCP and UDP), and
a new protocol might not be able to cross through a
middleboxe even if it is supported by the end systems.
Any modification of an existing protocol or the
integration of a new protocol requires updating these
middleboxes.

e) Configurability problem

With the evolution of applications requirements, the
“monolithic” services offered by TCP and UDP have
become inadequate.
The lack of configurability of these protocols has
several impacts. First, the applications are obliged to
use the overall set of services providing for instance by
TCP (reliable service, ordered service, etc.) inducing
both useless data transfers and process time, but also in
certain case a degradation of the targeted services (a
reliable service has a cost that can expressed in term of
additional delay from the application point of view).
The non-configurability of such protocols, which makes
that applications are obliged to use the full set of
services, explains the proliferation of new protocols
offering no new services, but only some subsets of
services existing in the current protocols.

2.3. Proposition and requirements for an effective
deployment of Transport protocols

Based on the previous analysis, the approach proposed
in this article is not to define a new protocol.
Differently, it is to take advantage of all existing
protocol solutions within a novel architecture for the

6

Transport layer, in order to meet as best as possible the
applications requirements still taking into account the
capabilities of the network and end-systems.

The architecture must be general enough to be used by
any application without any source code adaptation.
However, this generality must be achieved not by a
single solution having the same behavior in any context,
but by an adaptive solution that can be general and
specific in the same time: general by the capability to be
used by any application and to be run over any network
technology, and specific by its capability to adopt a
specific behavior depending on the supported
application features/requirements and the underlying
network capabilities/constraints.

Also, the architecture must be easily extensible, without
or with minor implications for operating and network
systems, this in order to be capable to integrate any new
Transport solution. This extensibility will ensure the
evolution of the Transport layer as well as applications
and networks evolution, and motivate developers to
continuously update and create more adapted Transport
solutions.

The integration of new solutions must have no effect
not only for systems, but also for the existing and future
applications. The proposed design for the Transport
layer must adopt a loose-coupling software architecture
paradigm to separate applications from technical details
of Transport solutions. By this, architecture extensions,
either by addition of new solutions or by updating of
existing ones, will be transparent for the applications,
which then could be distributed over any solution
offering the same service.

Without any systems or applications impact, a
Transport architecture will then ensure its extensibility,
and consequently will be adaptable to any evolution of
applications requirements or networks technologies. It
is also thanks to those conditions that new Transport
protocols would have the possibility to be integrated in
the operating systems.

Another requirement is related to the “acceptability”
part of the protocol deployment problem. This problem
results from the independent management of Transport
protocols in systems. The only way to resolve this issue
is to apply a global management for all protocols and
then to impose a congestion control for each Transport
connection. When access networks managers will be
sure that there is no equity problem in the bandwidth
sharing, they will allow any protocol to transit in their
network.

Finally, the targeted Transport architecture must
provide a better programming interface to application

developers in order to not impose them to master all
related technical considerations, especially for ones that
are not specialized in system and programming area.
Therefore, the architecture must have an easy access
interface, limiting the interaction with applications to
high-level descriptions.

Next Figure 1 summarizes the sources of performance
issues and the corresponding architectural obstacles that
limit the deployment of new Transport protocols.

Figure 1: Issues sources and architectural obstacles

3. Service-oriented and component-based
architecture

Section 3 and 4 present our proposal for a new
architecture of the Transport layer. In a first time
(section 3), we illustrate the used design paradigms and
how they allow tackling the limitations of the current
architecture of the Transport layer. Next section 4
describes the complete architecture of our proposition.

3.1 Description of the approaches

Our architecture is service-oriented and component
based. This association of these two paradigms should
offer all what the Transport layer needs to ensure its
evolution, regarding itself, applications and networks.

The service-oriented approach has been created in order
to remove the dependency between heterogeneous, and
eventually independent systems when must interact to
offer or get services. Its principle is to limit the
interactions with external systems to a set of services,
and to abstract all the details concerning how these
services are really realized. The service approach offers
an independency between systems, which may
communicate with any system offering the same
services, without any modification. In addition, an
internal modification in a given system will not affect
the other ones, as long as its interface is not changed.

Contrary to the service-oriented approach, the
component-based one is related to the internal
architecture of the system. It consists in dividing the
global system in a set of relatively simple subsystems.
The aim is multiple. It concerns first the simplicity of
the design process, by allowing a progressive

7

development by components. Also, the component-
based approach facilitates the detection and the
resolution of bugs, and the maintenance and the
extensibility of the system.

Because the Transport layer issues deal with both the
Transport layer itself, the applications and the network,
we combine these two paradigms in our proposed
architecture in order to resolve the whole of issues. We
describe in the next section the capabilities offered by
these approaches and the corresponding tackled issues.

3.2 New architecture capabilities

The service-oriented approach concerns the interface
between applications and the Transport layer. By this, it
allows changing integrally the interaction way between
them and limits it to the invocation of “services” instead
of protocols. For their part, protocols will be defined by
independent services evocable separately as required,
following a component-based approach. The next
sections list the capabilities offered by these two
approaches, where each one allows the resolution of a
part of the global issue (described in section 2.2.2).

3.2.1. Abstraction

The interface we propose is completely different from
those offered by classical Transport API. It is no longer
based on primitives, but on services, and the Transport
layer is no longer shown by applications as a set of
protocols but as a set of services. The way these
services are implemented internally by the Transport
layer is completely transparent for applications, which
will have to request only these services (with eventual
parameters) and it is to the Transport layer to choose the
optimal way to offer them1. The abstraction principle
concerning the Transport mechanisms is currently under
study in a dedicated working group of the IETF
(TAPS). However, the group objectives are currently
limited to the specification of a set of standardized
Transport services.

Such high level of abstraction, limiting the interaction
between the applications and the Transport layer will
have several benefits, and allow the resolution of a
number of issues.

First, this remove the dependency between applications
and their protocols interfaces, and consequently remove
all issues resulting from the dependency obstacle. The
applications may now run on any environment,
whatever the Transport mechanism used inside, as long
as it offers the desired services. This increases the

1 Details about services and their implementation will be described in
section 4

portability of applications, and the need to rewrite them
for specific environments, or to support new
capabilities. This will be very useful for the autonomic
part of the architecture we propose, by selecting the best
mechanism based on the network characteristics, since
the offered service is the same.

In addition, this transparency of internal implementation
of services makes naturally all internal modifications
also transparent for applications, as longer as the
services interfaces stay the same. It is now possible to
add or update Transport components without taking
account applications.

The last benefit is about the complexity resulted from
the increasing of the number of existing Transport
solution (the first part of the complexity issue), and the
impossibility of the application developer to have
enough knowledge to choose the most adapted solution
to their applications. Now, developers have only to
express their needs in terms of Transport services,
without any knowledge about the underlying
mechanisms. Also, the service-oriented interface will be
easier to use than the current sockets. This will increase
the productivity, and reduce the needed competency to
develop with the Transport layer.

The abstraction is the most important capability offered
by the service-oriented approach. In fact, it allows the
resolution of almost all issues involving applications.
The other capability is the configurability, offered in
combination with the component-based approach, is
presented in the next. The rest of capabilities concerns
the internal issues of the Transport layer, and therefore,
will be resolved by the component approach.

3.2.2. Extensibility

We consider the extensibility as the capability of a
system to make modifications (adding, updating, …) of
its extensible components without impact on the rest of
the system. The lack in the extensibility is mainly
caused by the high dependency on the different parts of
a system, resulting of only on or too few modules.
Thus, the modification of any part needs to recompile
the entire code source of the system. For Transport
protocols, the problem is more important, because their
implementation in the kernel.

The component-based approach has as principal to
separate a complex system to a set of independent, and
relatively simple, subsystems. This independency
concerns not the source files, but the resulting
compiled, generally as shared libraries. Each part
(component or module) is compiled separately and
therefore can be maintained independently of the others.
The granularity of the decomposition of the systems

8

depends on the context of the system. In our
architecture, we consider a component for a service.
Each service is realized by an entire component. It is
possible that a given service is offered by several types
of components, but each one offer the entire service,
and only one can be used at the same time.

The architecture is based on a list of components that
can be loaded dynamically. All the components offer
the same common interface, allowing the Transport
layer to be capable to use them without having to know
them previously. It must just through the list of
components, and load those are necessary according to
the requested services.

3.2.3. Reusability

Most of new protocols, and especially new versions of
existing ones, propose some little differences comparing
the previous version. However, because of the
monolithic aspect of their architecture, we need a
complete new protocol, even the difference is minimal.
The component based approach offer the possibility to
reuse the existing components, and in this case, have
only the different components of the new version. This
reduces the complexity of the system, the development
time, and the system usage.

3.2.4. Scalability

The other part of the complexity (concerning the
overload of operating system) comes mainly from the
fact that the whole of the protocol is implemented in the
kernel, and directly linked to the system. By a
component approach, this link will concern only the
elements that may interact with the system; the other
ones will be implemented independently of it. This
means that it becomes possible to have as much as
needed of Transport services and mechanisms, since
their only cost will be limited to the memory space
occupied by the components modules files.

3.2.5. Configurability and adaptability

The other capability offered by the component-based
approach is the possibility to choose an optimal set of
services. In fact, for the classical monolithic
architectures, the applications are forced to use the
whole of the service offered by the underlying protocol.
By decomposing the protocols in elementary services, it
becomes possible to choose any subset from them, and
offer to the application only what it needs, optimizing
therefore the performances.

In addition, these independent services can be offered
by different ways, each one corresponds to a different

component, and adapted to a specific network context.
Thus, the Transport layer can choose different
components to offer the same service following the
network state.

The configurability starts before all by a custom request
of the application, by a specific list of services. These
capabilities are offered by the association
service/component, which makes it very easy to
translate a list of requested services to a list of
corresponding components.

Next Table 2 summarizes the pertinence of the service-
oriented and component-based architectural approaches
in front of the previous identified issues.

Approach / Issue
Comp
lexity

Configu
rability

Depen
dency

Extensi
bility

Service-oriented x x x
Component-based x x x

Table 2: Architectural approaches and corresponding issues

4 Description of the architecture

This section describes the main principles of the
proposed Transport layer architecture. The design
proposes modification of the foundations of classical
approaches, where a set of independent protocols
composes the Transport layer. In the proposed solution,
a management layer is added. This additional
component to the architecture is used to coordinate
connections by creating, modifying, and closing them.
For each connection, the choice of the protocol
mechanisms and parameters is done in order to best fit
the applications needs while also taking into account the
network state at the time of decision as well as its
possible evolutions.

The management component is instantiated as a
singleton object, by such it is common to all
applications and connections on a given endpoint. It is
independent from connections, and interacts with them
through a unique standard interface. When a connection
is created, the management component can modify its
composition (i.e. in response to an application request,
or a change in network state). The interaction between
the applications and their associated connections for
sending and receiving data is made directly without
implication of the management component.

The architecture is illustrated in Figure 2. The next
sections provide further details of each component.

9

Figure 2: Components diagram of the architecture (common components on the right, connection components on the left)

4.1 Management (Common) components

The management components (right part of Figure 2)
are responsible for processing applications requests by
selecting the most appropriate components and instating
them in the connection. In addition to this feature, the
management components manage the integration of
new components into the architecture. Moreover, in
order to ensure fairness among multiple connections in
their access to the network layer, the management
components perform a round robin scheduling of the
connection buffers in their interface with the network
layer. The Transport layer manages two databases in
which it stores information about the services offered to
the applications and the components offering them.

4.1.1 Databases

Global services database: a list of available services
provided to the applications developers. This database
is globally unique (i.e. common for all systems and
users). The database items are described as abstracted
services without any information about the component
implementations offering these services.

Local services database: Opposite to the global
database, this database is private and available only on a
given system. It stores the correspondence between
services and the component implementations offering
them. This database is used by the decision component
to satisfy application requests. The construction and
maintenance of the database is ensured by the
integration component.

Such paradigm de-correlating an abstract description of
services from the components implementing those
services is a current practice in the service-oriented
architecture. The two databases contribute to ensure the
abstraction, the extensibility, the configurability and the
adaptability of the Transport layer.

4.1.2 Software components

The software components are responsible of managing
services, from their integration in the Transport layer, to
their instantiation in response to the applications
requests taking into account the network state. In what
follows, we will detail the different software
components that compose the architecture and, for each
of them, identify the capabilities (identified in section
2.2.2) that these components provide. Furthermore, the
optional nature of some of the components contributes
to the adaptation capability identified earlier in the
sense that, when not required (i.e. for complexity or
implementation reasons), the modularity of the proposal
allows for their removal.

Integration Component: ensures the extensibility and
scalability of the Transport layer. This component is
responsible of integrating new Transport services into
the endpoint system after checking the integrity of their
implementation and ensuring the reliability of their
source. Indeed, only normalized and “manufacturer or
community approved” service components
implementation can be added to the Transport layer.
Following integration, the local database is updated by
adding in entry for the new component.

10

Applications interface: this component serves two
functions. It is an interface between application and the
Transport layer as well as a relay between the other
components. It contributes to the abstraction of the
services offered by the Transport layer and the
configurability through the decision component. For
applications, the applications interface is responsible to
process their service requests. It communicates the
necessary components in order to create a connection
meeting the requirements of the application. It is also
possible for applications to modify the service request
during communication. In the connection establishment
process, the application interface manages the
interactions between the components.

Decision Component: ensure extensibility in
conjunction with the integration component as well as
adaptability through the monitoring component, and
configurability through the applications interface
component. The role of this component is the automatic
selection of the associated Transport services
component implementations for a given service request.
To achieve this objective, it bases decision on the local
services database in which it searches for the best suited
component for each requested service taking into
account the current network state. It is used by the
applications interface when creating the connection or
when changing the service, and by the connections
when a change in network profile is detected.

Connections manager: responsible of the creation and
the management of the different connections. It is used
by the applications interface during connection
establishment. The connections manager creates
connections for the applications using the Transport
layer and maintains a connections table. During a
connection, the manager can be used to implement
changes to connections either following an application
request or changes of the network profile.

Network interface: This component has two roles; it
offers an abstraction of the Network layer to the

different connections (multiplexing and de-
multiplexing) and it ensures a fair sharing of the local
link bandwidth between the different connections.

4.2 Connections components

Once a connection is created, the applications directly
interact with it for data transmission. For management
interactions that might be required during
communication, these are performed via the application
interface.

Connections components (left part of Figure 2) are
responsible for the effective data transmission. They are
specific for each connection, and consequently
instantiated every time an application requests a service.

4.2.1 Shared memories

The shared variables are used by different components
in order to exchange information.

Buffer: temporary store for the data to be transmitted. It
is used by the connection interface to set or get data to
and from applications, and by the assembler component
to set or get data from and to network interface.

Transmission parameters: These variables are used by
the assembler component to manage the data flow,
capturing the state and state changes of some Transport
service components implementation. As an example,
the “throughput” parameter may be determined by a
component like the congestion control. The list of such
parameters is extensible, and the available ones depend
on the Transport components that are deployed for a
given connection.

Network profile: This variable is used by the monitoring
component in order to detect variations in the network
state. It contains the values monitored by Transport
services. The list of values to be monitored is also
extensible and depends on the components present in
this connection.

4.2.2 Software components

There are two types of components. Some ones are used
for the internal management of the connection, and
some others are used to the effective transmission, i.e.
they implement Transport services.

Connection interface: constitutes the interface, on one
side with the application and with Transport layer on
the other side. This interface is divided in data and
control parts. The data part is dedicated to an
application. Data transmission is the only direct
interaction between the application and its connections.
The control part is dedicated to the Transport layer (via

the application interface). The connection uses this
interface to signal network profile changes. The
Transport layer uses this interface to adapt the
connection service components when needed.

Buffer manager: manages access to the buffer by the
connection interface and the communication
components. This choice is motivated by the existence
of several components that can decide on packets
discarding from the buffer (e.g. a reliability
component). The management will coordinate the
discarding of packets among the involved services
implementations. Access to the buffer is exclusively
reserved to the buffer manager, and any operation by

11

the other component must be performed through of the
buffer manager.

Monitoring: contributes to the adaptability together
with the decision component. The monitoring
component permanently checks and detects network
states variations to determine profiles. Upon profile
change, these are transmitted to the Transport layer for
reaction (i.e. possible change in service composition).
The monitoring component is not used to detect the
different network parameters (bitrate, delay, …). These
parameters are computed and published by the
Transmission components (e.g. the reliability
component for the loss rate parameter). The monitoring
component only analyzes these parameters in order to
detect eventual variations.

Transport components: they are the components that are
responsible of the effective transmission and implement
the requested services by the application. They
constitute the dynamic part of the connections. Indeed,
their instantiation depends on the requested services and
the network state. There are two types of components:
mandatory and optional. The mandatory ones are
services that the Transport layer offers independently of
the application requirements. Nevertheless, it is possible
that the components implementation for mandatory
service varies depending on the network profile;
however, they are always offered by the system. These
components are mainly: the assembler component
(creates data packets and transmit them to each of the
components implementation before reaching the
network interface).

Table 3 summarizes the Transport layer components
classified based on their respectively provided
capability.

Component
/ Capability

Abstra
ction

Configu
rability

Reusa
bility

Extensi
bility

Scala
bility

Interface x x
Decision x x x
Integration x x x
Monitoring x

Table 3: Transport layer components and corresponding issues

4.3 Dynamic description

In this part we describe the important behavioral aspects
of our architecture (Figure 4).

Figure 3: Description of the Transport layer behavior

The process starts in listening state, waiting for an
application request. Request are composed of a list of
desired services, and eventually with their parameters,
in addition to the classical parameter necessary for the
Transport layer, like the remote address or the
application type. Given the extensible nature of the
architecture, it is possible that some services are not
available on a given system. To handle this case and to
avoid long negotiation processes in case of
unavailability, the list of requested services is divided
into two parts: mandatory and optional services. The
Transport layer can accept the request even if some of
the optional services are not available. But for the
mandatory ones, it must be available for the connection
to be established. The same rule is applied in the server
side; the connection request is accepted only if all
mandatory services are available.

When the application interface receives the connection,
it extracts the list of services and transmits them to the
decision component, which in turn, searches the local
database of services to determine the available
components implementations offering the requested
services. For the first use of the decision component, i.e.
before the establishment of the connection, it considers
only the application requirements, because the network
state is not yet known. In case of more than one
component offer a given service, the decision
component chooses the default one. The initial choice
can be further optimized after connection establishment.
This choice refinement is activated by the detection of a
new network profile by the monitoring component, or
when the application requirements change.

Once the Application Interface component has verified
the local availability of the services requested by the
application, the same process is performed on the
remote host. Once the availability issue is resolved, the
Application Interface component invokes the
Connections Manager component, which creates a new

12

connection by instantiating the corresponding service
component implementations. A reference to this
connection is returned to the application to
communicate directly with it (without passing by the
application interface). However, this communication is
limited to the data transmission (send and receive data).
If the application wants to change its services, or end
the connection, it requests this to the application
interface. In this case, the procedure is similar to the
first request. However, it differs from this initial
procedure in the sense that the decision is optimized by
taking into account the network state based on the
current network profile provided by the Monitoring
component.

In the connection, for each packet of the application, the
assembler component calls all the instantiated Transport
service components implementation. These components
can transform the data (e.g. compression), add header
fields to the packet (e.g. sequence number), or both.
Once the process is over, the assembler transmits the
packet to the network interface responsible of its
effective transmission in the network. At the remote
side, the assembler follows the reverse process by
passing the packet to all service components
implementations in the reverse order.

The Transport service components implementations are
responsible for the monitoring of the different values of
the network, and write them in the network profile. The
monitoring component subscribes to these values
changes. When a profile change is detected, it is
transmitted to the Transport layer, which can eventually
decide to change the current service composition.

The next section discusses of the benefits and additional
cost that are obtained and caused by the new
architecture.

5 Architecture benefits and costs

Since the architecture proposal is in a conceptual state,
this section discusses theoretically the expected benefits
and the additional work that should cause
supplementary cost comparing to the current
architecture.

5.1 Benefits

Our proposition is based on the principle that specific
Transport solutions are more efficient than general
ones. This fact has been demonstrated many times
though multiple enhancements for TCP and other
protocols for specific application and/or network
contexts [2]. These works demonstrated that these
specific versions lead to important performances
enhancement, both in terms of network bandwidth

occupation and of (functional and non functional)
services offered to the applications. In addition, some of
these works offer new capabilities (such as the partially
reliable error control), which are not available or cannot
be integrated on general solutions. The problem comes
from the difficulty, on one hand, to integrate all the
solutions on one system, and on the other hand, to affect
(automatically) each solution to its dedicated context.

Thus, we assume in our proposition, that if we offer an
environment where all the specific solutions can be
deployed and dedicated to the appropriate applications
and networks, we will obtain optimal performances.
Therefore, the first benefit of our proposition is to allow
optimal Transport solutions to be integrated and
correctly used.

Another benefit, related to the existence of as much
solutions is in their usage by applications. The
abstraction layer of our architecture makes it transparent
for the applications all these details, and the usage of
the Transport layer becomes not only easy, but easier
than when it was composed by few solutions.

The last benefit, that constitutes one of our main
objectives, is to guarantee the continuous evolution of
the Transport layer. This is allowed by the extensibility
capability, which offers the capability to integrate or
update any services, without any impact to the
Transport layer; moreover, this evolution is also
allowed by the independency between the applications
and the Transport components, thanks to the service
approach used in the interface exposed to the
applications.

5.2 Additional cost

The additional cost in terms of network bandwidth
occupation, processing load or additional delay, should
appear through the implementation of the functionalities
ensuring the new capabilities of the architecture. This is
expected, a priori, in the connection establishment, the
decision and the monitoring processes. For the other
functioning modes, like for the instantiation, or the
composition of services, they will concretely be similar
to the actual protocols modes, and will not have
additional cost.

For the connection establishment process, the additional
cost is associated to the list of services that have to be
transmitted to the other host for the availability
verification. The remote host, in case of unavailability
of some optional services, will have to transmit the list
of available ones. Taking into account the number of
services (NB: referred by single identifiers) that can be
associated to the applications, the additional cost
including the information containing this list of services

13

will be very small. In addition, taking into account the
optimization that this negotiation will offer after the
connection established, and taking also into account the
fact that this procedure is used only one time, we
assume that this additional cost is negligible.

As far as the monitoring functionality is concerned, as
described below, it is realized by the Transport
components. Thus, instead to send additional traffic in
the network in order to measure some values that are
already known by the Transport components (like the
loss rate thanks to the reliability component), the
architecture includes a mechanism allowing the
different Transport components to share their
information with the monitoring component, avoiding
additional traffic. The function of the monitoring
component is therefore limited to checking this shared
information with the aim to detect an eventual network
state variation. Thus, its work is completely
independent of the communication process, and will not
induce any additional cost.

Finally, and as far as the decision process is concerned,
it is clear that its cost is in processing and not in
communication. We adopt for the decision a utility
function approach, which calculates a utility value for
each component and compare them to those of the
current network profile with the aim to see the one
offering the best correspondence. This problem is then
be reduced to a classical maximization problem that can
be resolved in a linear time regarding the number of
available components. Taking into account this number,
and the linearity of the decision algorithm, the decision
process is then expected to be achieved in a negligible
time.

The future implementation and experimentation works
of the architecture are aimed at supporting these
theoretical estimations of the additional cost. However,
we believe that, taking into account the actual services
and performances offered by the Transport protocols,
and because of the limitations of the current Transport
architecture, the additional cost will be negligible
comparing to the enhancements that our proposal will
be able to offer.

6 Conclusion

Transport protocols are an important piece of the
Internet communication stack as it allows linking as
best as possible the application level with the network
one. Performance of such this conceptual link is a
crucial issue, which is addressed for a long time.
However, the fact is that both the application and the
operating system developers continue to make use of
suboptimal solutions.

The goal of this paper was to analysis this problematic
and then to propose a novel design of the Transport
layer aimed at allowing an actual integration of all the
Transport solutions. After having identified the
obstacles that need to be tackled, we studied how the
application of service-oriented and component-based
approaches allows leading to the design of such a new
Transport layer. We showed that the service-oriented
approach, in association with the component-based one,
can effectively resolve the whole of the current
Transport layer problems and limitations, with a
minimal expected additionally cost.

The perspectives of this work are to formalize the
proposed design for this new architecture of the
Transport layer, and to demonstrate its benefits thanks
to appropriate simulations.

7. References

[1] Chanson, S.T.; Ravindran, K.; Robinson, J., "The design
and tuning of a transport protocol for local area
networks," Networks: Evolution or Revolution,
Proceedings. pp.631, 640, 27-31 Mar 1988.

[2] Schmidt, D.C.; Box, D.F.; Suda, T., "ADAPTIVE: a
flexible and adaptive transport system architecture to
support lightweight protocols for multimedia
applications on high-speed networks," High-
Performance Distributed Computing, pp.174, 186, 9-11
Sep 1992

[3] Henriksen, E.; Aas, G.; Rydningen, J.B., "A transport
protocol supporting multicast file transfer over satellite
links," Computers and Communications, pp.590, 596, 1-
3 April 1992

[4] Zhenghua Fu; Xiaoqiao Meng; Songwu Lu, "A transport
protocol for supporting multimedia streaming in mobile
ad hoc networks," vol.21, no.10, pp.1615, 1626, Dec.
2003

[5] Shihada, B.; Pin-Han Ho, "Transport control protocol in
optical burst switched networks: issues, solutions, and
challenges," Communications Surveys & Tutorials,
IEEE , vol.10, no.2, pp.70, 86, Second Quarter 2008

[6] Eshak, N.; Baba, M.D., "Design a new transport
protocol (wireless TCP) to support mobility for mobile
ad hoc networks," Telecommunication Technology,
pp.144, 147, 14-15 Jan. 2003

[7] Anand, B.; Sebastian, J.; Soh Yu Ming; Ananda, A.L.;
Mun Choon Chan; Balan, R.K., "PGTP: Power aware
game transport protocol for multi-player mobile games,"
Communications and Signal Processing (ICCSP),
pp.399, 404, 10-12 Feb. 2011

[8] Amer P, Chassot C, Connolly C, Conrad P, Diaz M.
Partial Order Transport Service for Multimedia and

14

other Applications. IEEE/ACM Transactions on
Networking, vol. 2, n° 5, October 1994.

[9] Ragothaman, V.; Baloch, F.; Pendse, R., "Transport of
flight critical data over Internet protocol," Digital
Avionics Systems Conference, 2005. DASC 2005. pp.
1-8, Vol. 1, 30 Oct.-3 Nov. 2005

[10] Hayashida, Y.; Baba, C.; Komatsu, M., "Stop-and-
selective repeat ARQ scheme for a high-speed transport
protocol," Networks, 1995. pp.101, 105, 3-7 Jul 1995

[11] Space Communications Protocol Specification
(SCPS)—Transport Protocol (SCPS-TP),” October
2006.

[12] Byung-Seok Kang; Kwangcheol Shin; In-Young Ko;
Pyoung-Yun Kim, "A Transport Protocol for
Multimedia Transmission in Overlay Networks,"
Advanced Information Networking and Applications
(AINA), pp.669, 674, 20-23 April 2010

[13] Young-Jin Kim; Kolesnikov, V.; Hongseok Kim;
Thottan, M., "SSTP: A scalable and secure transport
protocol for smart grid data collection," Smart Grid
Communications (SmartGridComm), pp.161, 166, 17-
20 Oct. 2011

[14] Linder, L.; Miloucheva, I.; Clausen, H.D., "A forward
error correction based multicast transport protocol for
multimedia applications in satellite environments,"
Performance, Computing, and Communications
Conference, pp.419, 425, 5-7 Feb 1997

[15] Van Wambeke, N.; Armando, F.; Chassot, C.; Exposito,
E., "Architecture and Models for Self-Adaptability of
Transport Protocols," Advanced Information
Networking and Applications Workshops, 2007, pp.977,
982, 21-23 May 2007

[16] T. W. Paper, “Service Oriented Architecture (SOA) and
Specialized Messaging Patterns,” pp. 1–15.

[17] J. Ga, “SOA Background Concepts”, jboss Red Hat
Division, 2008

[18] I. Member, I. Member, and N. Grumman, “Reference
Architecture Foundation for Service Oriented
Architecture Version 1. 0,” no. December 2012.

[19] S. Kinder, “IBM ’ s SOA Foundation,” pp. 1–68, 2005.

[20] P. Bianco, “Evaluating a Service-Oriented
Architecture,” no. September 2007.

[21] C. Chi, Z. Feng, Y. Xue, H. Cai, and P. Zhang,
“Component-based Protocol Stack Management for
Reconfigurable Systems,” pp. 26

[22] IETF, “Transmission Control Protocol”, RFC 793, 1981

[23] IETF, “User Datagram Protocol”, RFC 768, 1980

[24] IETF, “Stream Control Transmission Protocol”, RFC
3286, 2002

[25] IETF, “Multipath Transmission Control Protocol”, RFC
6824, 2013

[26] Bridges, P.G. ; Wong, G.T. ; Hiltunen, M. ; Schlichting,
R.D, "A Configurable and Extensible Transport
Protocol", IEEE/ACM Transactions on Networking,
Vol:15, 2007

