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Abstract

The numerical simulation of non-smooth hybrid systems
exhibiting chattering behavior requires high computa-
tional costs. In the worst case, the simulation appears to
come to a halt, since infinitely many discrete transitions
would need to be simulated. In this paper we present an
FMI-based framework and prototypical implementation
for robust and reliable detection and elimination “On
the Fly” of chattering behavior in run-time simulation
of non-smooth hybrid systems. The main benefit of the
developed framework is that it establishes solvability
requirements and theorems for simulating hybrid sys-
tems while performing the chattering path avoidance
internally in the master algorithm of the interface.
This increases the efficiency of the chattering-free
simulation as no enumeration of modes is required
during the chattering detection and elimination process.
The developed FMI-based framework can generate
a chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to
the FMI standard v2.0 Specification for model exchange.

Keywords: Functional Mockup Interface (FMI), Func-
tional Mockup Unit (FMU), Non-smooth Hybrid sys-
tems, Discontinuity mappings, Chattering

1 Introduction

In the literature, the term “hybrid systems” is used to de-
scribe a very wide class of dynamical systems with in-
teracting continuous and discrete dynamics. The state
variables in such systems are capable of evolving contin-
uously (flowing) and/or evolving discontinuously (jump-
ing). That is, the presence of two different behaviors,
continuous and discrete, is the cause of heterogeneity
(Zhang et al., 2001; Cai et al., 2008). However, even
simple hybrid systems can exhibit many unique phe-
nomena, such as chattering behavior. The interaction
between time-driven continuous variable dynamics (i.e.
ODEs, DAEs) and event-driven discrete logic dynamics
(i.e. If-then-else) may lead to this non-smooth be-

havior, which can be intuitively thought of as involving
infinitely fast and continuous switching between differ-
ent control actions or modes of operation (Aljarbouh and
Caillaud, 2015b). Models of physical hybrid systems
may be chattering due to modeling over-abstraction, ac-
tuators limitations, time discretization, or unmodeled dy-
namics (usually from servomechanisms, sensors and data
processors with small time constants).

1.1 Problem Statement

As in physical hybrid systems there is no chattering, it is
not reasonable then to assume that the control signal time
evolution can chatter or switch at infinite frequency. This
undesirable significant oscillation with an infinitely fast
frequency components of the control propagate through
the system, because of chattering, affects the system out-
put. In particular, chattering control is harmful because
it leads to low control accuracy, and once applied, can
lead to high wear of moving mechanical parts, as well as
high heat losses in electrical power circuits. In addition,
the numerical simulation of hybrid systems exhibiting
chattering behavior requires high computational costs as
small step-sizes are required to maintain the numerical
precision. For both non-adaptive and adaptive time step-
ping with event localization, root finding to locate the
exact time of occurrence of the chattering event causes
continuous integration to become dramatically and ex-
cessively slow. The system converges fast to the point in
time at which infinitely many discrete transitions need to
be simulated, and the simulation then appears to come
to a halt. Chattering behavior has to be treated in an
appropriate way to ensure that the numerical integration
progress terminates in a reasonable time. This has been
investigated by means of different methods. A smooth
sliding motion can be induced on the switching mani-
fold on which the chattering occurs (Leine and Nijmei-
jer, 2004; di Bernardo et al., 2008; Biák et al., 2013;
Weiss et al., 2015). Filippov Differential inclusion ap-
proach (Filippov, 1988) can be used in this case to define
equivalent sliding dynamics on the switching manifold
on which the chattering occurs. Another approach (the
so-called equivalent control) proposed by Utkin (Utkin,
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1992) can also be used. However, the computation of the
equivalent dynamics turns to be difficult whenever the
system chatters between more than two dynamics. This
arises when the chattering behavior occurs in dynami-
cal systems having multiple discontinuous control vari-
ables. In the Functional Mock-up Interface (FMI) spec-
ification, Functional Mockup Units (FMUs) should add
a small hysteresis to the event indicators to avoid chat-
tering (Blochwitz et al., 2012). This approach has the
following disadvantages: I) A Modelica tool will also
add a hysterisis when handling state events, to ensure
that the zero crossings happen with non-zero values of
the input arguments of the event functions at the integra-
tion restart. Therefore, when calling the FMI function
fmi2GetEventIndicators from the Modelica model,
it will introduce the hysteresis twice to the event indica-
tors, and as a result, the resulting event triggered by the
imported FMU is slightly inaccurate. II) Adding hys-
terisis to the event indicators does not guarantee an effi-
cient treatement of the chattering behavior, as the physics
in chattering hybrid systems make the solution xε(·) be
a saw-toothed, or zigzag function, i.e., a function that
oscillates around the switching surface, with peaks at
−ε < 0 and +ε > 0, with ti+1− ti = 2ε (see Example
1 in Section 2.3). III) The size of the small value ε shall
be related to the size of the event indicator z j. The inter-
face then would become more complicated, because, in
order to determine the size of ε in the simulation envi-
ronment which imports an FMU, the “nominal” value of
z j has to be reported by the FMU, which requires more
information from the tool that generated the FMU, but
cannot be handled efficiently in the simulation environ-
ment that calls the FMU. IV) If this would be handled in
the simulation environment, there is always the danger
that the environment does not handle it properly, but the
FMU would be blamed for a failure.

1.2 Contribution

In this paper, we present methods and techniques for
treating chattering behavior of non-smooth hybrid
dynamical systems in the context of the Functional
Mock-up Interface (FMI), and a prototypical imple-
mentation. In particular we discuss technical issues and
implementation of a generic FMI which rigorousely
detects and eliminates chattering behavior in run-time
simulation without modes enumeration, and without any
need to add a small hysteresis to the event indicators in
the FMUs. The developed chattering-free FMI localizes
the non-smooth structural changes in the system in
an accurate way and allows sliding mode simulation
when the chattering occurs. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Furthermore, our chattering-free FMI can robustly han-
dle the case of chattering on the intersection of finitely
many switching manifolds iteratively without any need

to solve stiff nonlinear equations for the computation
of the chattering-free coefficients. In addition, this
paper provides a guidance for development of a hybrid
chattering-free version of the Functional Mockup Inter-
face (FMI) standard, giving a computational framework
for an ideal manipulation of chattering behavior.

The paper is organized as follows: Section 2 gives
a closer look into how the chattering behavior occurs
in hybrid systems, as well as the challenges when
simulating hybrid systems with chattering executions.
Afterwards, we present in Section 3 the chattering-free
semantics for reliable detection and elimination of
chattering behavior in run time simulation. In Section 4,
a prototype implementation is sketched for applying
the chattering-free computational framework from
Section 3 to the Functional Mock-Up Interface v2.0
for Model Exachange. Finally, the simulation results
and conclusions of the work are given in Section 5 and
Section 6 respectively. We illustrate the concepts with
examples throughout the paper.

2 Chattering in Hybrid Systems
Formally we define chattering executions as solutions
to hybrid systems having infinitely many discrete tran-
sitions in finite time. This happens when nearly equal
thresholds for the transitions conditions of different
modes are satisfied and the system start to oscillate
around them. Numerical errors may also be the source
of chattering as transitions conditions can be satisfied be-
cause of local errors. In chattering behavior, the system
moves back and forth between modes, that is, the gradi-
ent of continuous-time behavior in each one of two ad-
jacent modes is directed towards their common switch-
ing surface. When in either of the two adjacent modes
on the common switching surface, an infinitesimal step
causes a mode change. In the new mode, the gradient
directs behavior to the previous mode and after another
infinitesimal step a change to the previous mode occurs.

2.1 Chattering Execution
An execution χ of a hybrid system is chattering if there
exist finite constants τ∞ and C such that

lim
i→∞

τi =
∞

∑
i=0

(τi+1− τi) = τ∞ (1)

∀i≥C : τi+1− τi = 0 (2)

where {τi}i∈N is a set of strictly increasing time instants
represents discontinuity points (state events instants).

2.2 Chattering and Simulation
An essential element of numerical simulation of a hybrid
dynamical system is the generation of discrete events
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from continuous variables that exceed thresholds. Gen-
erating these events is generally implemented using re-
lational operations (e.g. >, >=, <, <=). For an accu-
rate simulation, the point in time at which these relations
change their truth value has to be located within a small
tolerance. A zero-crossing function g(t,x) can be used
to identify the boundary at which the change takes place.
Usually state variables x are used as argument to the
event indicator g(t,x). The nature of zero-crossing detec-
tion and location is to compare the sign of the function
value g(t,x) at the beginning and the end of each time
integration step, and if it changes, declare that it crossed
zero and then bracketing the zero-crossing event (i.e. bi-
sectional search) to locate the zero-crossing. During the
search process, the values of state variables x, needed for
the computation of g(t,x), are evaluated by interpolation,
using the values x(ti) and x(ti+1). Because of the nature
of finite precision arithmetic on digital computers, the
time that the event occurred can only be located within
an interval [Tle f t ,Tright ] that corresponds to machine pre-
cision. During each iteration of the zero-crossing loca-
tion, the zero-crossing function is evaluated twice: at the
left and the right side of the reducing interval. After the
event is bracketed by Tle f t and Tright , the ODE solver first
advances integration time from ti to Tle f t . The solver is
then reset before advancing to Tright followed by switch-
ing the mode. In doing so, the assumption of continu-
ity holds throughout the numerical integration. However,
this approach may fail if the system exhibits a chattering
execution. The zero crossing function g(t,x) is a func-
tion of the model state, but it does not contribute to its
continuous dynamics f (t,x). Therefore, the numerical
integration can proceed without taking the dynamics of
g(t,x) into account, and when these are faster than the
dynamics f (t,x), the chattering execution then causes
the previous Tright to become the Tle f t of the next time
step, and the integration will move with the minimum
step size allowed. In order to illustrate the simulation of
a chattering execution, a simple example shall be given.

2.3 Example 1: Relay Feedback

The relay feedback system is a good candidate to show
the chattering behavior of a hybrid dynamical sys-
tem (Aljarbouh and Caillaud, 2015a). The relay feed-
back system consists of a dynamical system and a sign
function connected in feedback. The sign function
leads to a discontinuous differential equation (Johans-
son et al., 2002). Consider the following example for
x = (x1, · · · ,xn)

T ∈ Rn:

ẋ(t) = Ax(t)+Bu(t) (3)
y(t) =Cx(t) (4)
u(t) =−sgn(y(t)) (5)

A =

 −3 1 0
−3 0 1
−1 0 0

 B =

 −1
−2β

β 2

 (6)

C = [1 0 0] (7)

The system in this example is represented as a hybrid
system with two control modes q1 and q2 where the
phase space of the system is split by a single switch-
ing manifold Γ = {x ∈ Rn : g(t,x) = 0} into two do-
main: D1 = {x ∈ Rn : g(t,x) < 0} and D2 = {x ∈ Rn :
g(t,x)> 0} so that opposed zero crossing of the switch-
ing function g(t,x) = x1(t) defines the switching from
q1 to q2 and vice-versa (e.g. a switching from D1 to D2
occurs when g(t,x) changes its domain to g(t,x) ≥ 0).
It is important to recognize that the “zero crossing” ap-
proach defined by available integrators, for detecting
state events, requires that the event function variables are
non-zero at the event instant and after initialization. So,
suppose one integrates the differential equation 3 with
some delay in the control switch between +1 and −1
because some kind of hysteresis function implemented
around the switching surface x1 = 0. In addition to use it
for handling the non-zero domain change of event func-
tions, such a procedure is sometimes used in order to
avoid too many switches. Even with adding such hys-
terisis, the physics in this system, because of chattering,
makes the solution x1ε(·) to be a saw-toothed, or zigzag
function, i.e., a function that oscillates around x1 = 0,
with peaks at −ε < 0 and +ε > 0, where ti+1− ti = 2ε .
Let the hysteresis size go to zero, i.e., ε→ 0. Then x1ε(·)
converges uniformly towards the zero function. Clearly
the number of “events” goes to infinity on any interval of
time with positive measure.
Hybrid systems simulation tools struggle even with such
naive chattering hybrid system. For example, consider
OpenModelica, and Acumen. In OpenModelica, for
a data set β = 0.5 and x0 = [0.5 3 0.1]T , the solver
gets stuck and the simulation terminates with a halt
when the execution of the hybrid system start to ex-
hibit a chattering. OpenModelica reports the follow-
ing error message: Chattering detected around time
1.88743591101..1.88743593454 (100 state events in a
row with a total time delta less than the step size).

model Example1
parameter Real x10 = 0 . 5 ;
parameter Real x20 = 3 . 0 ;
parameter Real x30 = 0 . 1 ;
Real x1 , x2 , x3 , u ;
i n i t i a l equat ion
x1 = x10 ;
x2 = x20 ;
x3 = x30 ;
equat ion
der ( x1 ) = −3 ∗ x1 + x2 + u ;
der ( x2 ) = −3 ∗ x1 + x3 − u ;
der ( x3 ) = −x1 + 0 . 2 5 ∗ u ;
when x1 < 0 then
u = 1 ;
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elsewhen x1 > 0 then
u = −1 ;
end when ;
end Example1 ;

Acumen language was developed as an extension of
event-driven formalisms that have a similar flavor to syn-
chronous languages. In Acumen, models are simulated
by a fixed time stepping with fine interleaving of a se-
quences that can consist of multiple discrete computa-
tions followed by a single computation updating the val-
ues that should evolve continuously (i.e. global fixed
point semantics). Thus, simulating what is happening
at any single instance in time consists of zero or more
discrete steps followed by a single continuous step. The
Acumen model of the system in Example 1 can be writ-
ten as following:

Figure 1 shows the fixed time step simulation of Exam-
ple 1 in Acumen language without events localization.
With a fixed step size of 0.0001, the solution trajectory
exhibits an undesirable oscillations around the switching
surface Γ, with high frequency components of the control
switching propagate through the system.

3 Detection and Elimination of Chat-
tering

We consider a hybrid system H with a finite set of dis-
crete states q ∈ Q with transverse invariants (Lygeros
et al., 2008), where the state space is split into differ-
ent regions (invariants) Dq ∈ Rn by the intersection of
p transversally intersected Rn−1 switching manifolds Γ j
defined as the zeros of a set of scalar functions g j(t,x)
for j = 1,2, ..., p,

Γ j = {x ∈ Rn : g j(t,x) = 0 ; j = 1,2, ..., p} (8)

All switching functions g j(t,x) are assumed to be an-

alytic in their second arguments, (i.e. ∂g j(t,x)
∂x 6= 0), so

that, for each one of the intersected switching manifolds

Γ j, the normal unit vector ⊥ j =
∂g j(t,x)

∂x

||
∂g j(t,x)

∂x ||
, orthogonal to

the tangential plane Tx(Γ j), is well defined. Moreover,
the normal unit vectors are linearly independent for all

the R(n−r) swicthing intersections where r ∈ {2,3, ...,n}.
The flow map vector field f (t,x) of the hybrid system is
discontinuous on all the switching surfaces Γ j. There-
fore, we can associate to each discontinuity surface Γ j a
discontinuous vector field of the form:

ẋ = f j(t,x) =
{

f j1(t,x) f or x ∈ D j1
f j2(t,x) f or x ∈ D j2

}
(9)

D j1 = {x ∈ Rn : g j(t,x)< 0} (10)
D j2 = {x ∈ Rn : g j(t,x)> 0} (11)

so that opposed zero crossing of g j(t,x), defines the
switching from D j1 to D j2 and vice versa. Note that,
equation 9 represents the necessary condition for the hy-
brid system to accept a chattering execution between D j1
and D j2. If this necessary condition is satisfied for all
j = {1,2, · · · ,k} with k ≤ p, then the hybrid system is
said to accept a chattering on switching intersection. As
each discontinuity surface Γ j splits the phase domain
into two different invariants D j1 ∈ Rn and D j2 ∈ Rn,
the entire continuous domain of the hybrid system H
is then partitioned into 2p open convex regions Dq ∈ Rn,
in which the solution trajectory flow is governed by the
dynamics fq(t,x), where q = 1, · · · ,2p, and p is the total
number of the intersected switching manifolds Γ j. It is
assumed that fq are smooth in the state x for all Dq. For
more details on how the chattering occurs on switching
intersection, we refer the reader to (Aljarbouh and Cail-
laud, 2015b).

3.1 Chattering Detection
Upon crossing a switching manifold Γ j, the behavior of
the solution trajectory can uniquely be characterized by
the gradients of the continuous-time behavior according
to the dynamics f j1 and f j2 in a small neighborhood on
the both sides of Γ j. This is given by the normal projec-
tions of the dynamics f j1 and f j2 onto Γ j (i.e. directional
derivatives or Lie derivatives L f g j(t,x)), given by

f
⊥ j
j1 (t,x) = L f j1g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j1(t,x) (12)

f
⊥ j
j2 (t,x) = L f j2g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j2(t,x) (13)

The sufficient condition for the hybrid system H to ex-
hibit a chattering back and forth between the two do-
mains D j1 and D j2 requires that the necessary condition
of chattering is satisfied (equation 9), as well as the fol-
lowing two constraints:

1. a zero crossing on Γ j (state event) is detected in the
integration time interval [ti, ti+1], that is,

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (14)

2. the scalar inner porduct of the normal projections
f
⊥ j
j1 (ti,xi) and f

⊥ j
j2 (ti+1,xi+1) is strictly negative,
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Figure 1. Fixed time step simulation of Example 1 in Acumen without event localization for β = 0.5 and x0 = [0.5 3 0.1]T :
Up: time evolution of the event function and the control input with high chattering oscillation. Down: zoom on the first chattering
window around the switching surface x1(t) = 0.

that is, the projctions of the two different dynam-
ics (normal onto Γ j), before and after the zero-
crossing, have opposed signs (Figure 2),

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (15)

A chattering takes place on the intersection of k ∈ N
switching manifolds Γ j if the necessary condition of
chattering is satisfied, and for all j = 1,2, · · · ,k ≤ p, the
following three constraints are satisfied:

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (16)
g j(ti+1(σ)) = κ; σ ∈ (0,1); κ ∈ (−ε,ε) (17)

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (18)

In this case of chattering on the intersection of finitely
many switching manifolds, the excution of the hybrid
system H chatters back and forth between all the do-
mains Dq in the neighborhood of the intersection.

3.2 Chattering Elimination
One way to prevent the chattering is to keep the solu-
tion trajectory in a sliding motion on the switching man-
ifold/intersection on which the chattering occurs. An ad-
ditional mode, sliding mode, can be inserted into the sys-
tem to represent the equivalent chattering-free dynam-
ics. For all the switching manifolds Γ j, the dynamics

Figure 2. The chattering between two dynamics along a
switching surface.

ẋ = f j(t,x) can be replaced by a differential inclusion
ẋ ∈ η(x) given as a convex set containing all the limit
values of f j(x) for small neighbor x(t,x) 6∈ Γ j approach-
ing Γ j from the both sides (Biák et al., 2013). Equation 3
can be replaced then by:

η j ∈
1−δ j(g j(t,x))

2
· f j1(t,x)+

1+δ j(g j(t,x))
2

· f j2(t,x)

(19)
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where δ j(·) is a multi-valued sign function given by:

δ j(g j(t,x)) =

 (−1, 1) f or g j(t,x)< 0
(−1, 1) f or g j(t,x) = 0
(−1, 1) f or g j(t,x)> 0

 (20)

Roughly speaking, when a chattering occurs on Γ j, we
seek a smooth function δ j, taking the value δ j(g j(t,x))∈
(−1,1), so that the new equivalent chattering-free dy-
namics f jCHF is given for δ j(g j(t,x)) ∈ (−1,1) by:

f jCHF =
1−δ j(g j(t,x))

2
· f j1(x)+

1+δ j(g j(t,x))
2

· f j2(x)

(21)

The idea behind forcing the solution trajectory to stay
on the swicthing manifold during chattering execution
is by forcing the normal projection of the equivalent
chattering-free dynamics onto the swicthing manifold Γ j
to be tangential to Γ j, that is,

f⊥jCHF
(t,x) =

(
∂g j(t,x)

∂x

)
· f jCHF (t,x) = 0 (22)

which implies[
1−δ j(g j(t,x))

2
1+δ j(g j(t,x))

2

]
·
[

f⊥j1(t,x)
f⊥j2(t,x)

]
= 0

(23)

and then

δ j(g j(t,x)) =
f⊥j1(t,x)+ f⊥j2(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(24)

where f⊥j1(t,x) and f⊥j2(t,x) are given in equation 12 and
equation 13, respectively.
By the substitution of equation 24 in equation 21, the
equivalent chattering-free dynamics is given then by:

f jCHF (t,x) =
f⊥j1(t,x) · f j2(t,x)− f⊥j2(t,x) · f j1(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(25)

A smooth exist from sliding takes place instantly at
the time instant at which the sufficient condition of
chattering is no longer satisfied, that is, when either
f⊥j1(t,x) or f⊥j2(t,x) starts to change its signs (i.e. when
either f⊥j1(t,x) = 0 or f⊥j2(t,x) = 0).
Once a chattering execution is detected during the sim-
ulation process, the following Algorithm 1 is employed
to generate the chattering-free dynamics internally in
the simulation loop of the simulator. The number of
iterations need to be performed by Algorithm 1 to
compute the chattering-free dynamics is equal to the
total number of the switching manifolds Γ j on which
the chattering occurs instantly. That is, when the system
chatters between two dynamics, i.e. a chattering onto

a single switching manifold (as in Example 1), the
equivalent chattering-free dynamics will be generated
by Algorithm 1 in one iteration.
The main benefit of the iterative approach of Algo-
rithm 1 is that it allows us to eliminate chattering
efficiently in run-time simulation without any need
to modes enumeration, even when the chattering is
occurring on the intersection ∆ =

⋂
j(Γ j), j = 1,2, ..., p

of a large number p of intersected switching man-
ifolds. Another benefit is that there is no need to
solve stiff nonlinear equations for the computation
of the chattering-free coefficients δ j(g j(t,x)) in case
of chattering on switching intersection with p > 1.

Data: Discontinuous dynamics f (t,x), swicthing
functions g j(t,x).

Result: f∆CHF (t,x) = f jCHF (t,x)
Initialization:
j = 1;
f (x(t)) = f j(x(t)) (equation 9);
while j ≤ p do

Use f j(x(t)) to build a differetial inclusion η j
(equation 19);
Compute f jCHF (t,x) (equations 21 to 25);
Set f j(x(t)) = f jCHF (t,x);
j = j+1;
Repeat;

end
Algorithm 1: How to generate the equivalent
chattering-free dynamics f∆CHF (t,x).

In the following two simple examples we illustrate the
functionality of Algorithm 1 in case of chattering on
switching intersection.

Example 2:
Consider the simplest case of chattering onto the inter-
section of two switching manifolds, Γ1 and Γ2, defined
as the zeros of a set of scalar functions g1(t,x) = x1(t)
and g2(t,x) = x2(t), respectively.
ẋ1 = 0 init -sgn(g10) reset [-1;1] every up[g1;-g1]
ẋ2 = 0 init -sgn(g20) reset [-1;1] every up[g2;-g2]
g1 = x1 init g10; g2 = x2 init g20
where the zero-crossing is described as an expression
of the form up(z) that becomes true when the sign of
the event function z(t,x) switches from negative to
positive during an execution, that is, up(z)= True if
z(ti−1,xi−1) ≤ 0 ∧ z(ti,xi) > 0 (Schrammel, 2012). In
this example, the trajectories initialized outside the
origin reach the origin in finite time and with an infinite
number of crossings of the switching surfaces x1(t) = 0
and x2(t) = 0. The finite time convergence is easy to
establish as the time intervals between two switches
satisfy a geometric series and consequently have a finite
sum. This system has also an infinity of spontaneous
switches from the origin, that is, there is an infinity of
trajectories which start with the initial data (0,0), and
except for the trivial solution that stays at the origin,
they all cross the switching surfaces an infinity of times.
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To generate the intersection chattering-free dynamics
f∆CHF (t,x) on the intersection (the origin ) ∆ = Γ1 ∩Γ2,
Algorithm 1 performs two iterations:

• In Iteration1, the algorithm computes the equiva-
lent chattering-free dynamics on Γ1 (equation 26).

• In Iteration2, the algorithm computes the equiv-
alent chattering-free dynamics on the intersection
∆ = Γ1∩Γ2 (equation 27).

f1CHF (t,x) =

 0{
−1 f or x2(t)> 0}
−1 f or x2(t)< 0}

}  (26)

f∆CHF (t,x) =
[

0
0

]
(27)

Example 3: Stick-Slip Frictional System
Consider the following non-smooth mechanical system
with friction elements.

f (x) =



ẋm1 = vm1

v̇m1 =
1

m1
F1

ẋm2 = vm2

v̇m2 =
1

m2
(u− kxm2 −F1−F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(28)

In this example, the entire disontinuity region is given
as the union of two transversally intersected swicthing
manifolds Γ1 and Γ2 defined as the zeros of a set
of the scalar functions g1(t,x) = vm2(t)− vm1(t) and
g2(t,x) = vm2(t)− vm3(t), respectively.

F1 = 0 init Fc1sgn(g10) reset [Fc1 ;-Fc1] every up[g1;-g1]
F2 = 0 init Fc2sgn(g20) reset [Fc2 ;-Fc2] every up[g2;-g2]
g1(t,x) = vm2(t)− vm1(t) init g10
g2(t,x) = vm2(t)− vm3(t) init g20

We have p = 2 intersected swicthing manifolds.
The algorithm, then, performs two iterations to generate
f∆CHF (t,x).

The output of Iteration1:

f1CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2
(u− kxm2 −F2)

ẋm2 = vm2

v̇m2 =
1

m1+m2
(u− kxm2 −F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(29)

The output of Iteration2:

f∆CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2+m3
(u− kxm2)

ẋm2 = vm2

v̇m2 =
1

m1+m2+m3
(u− kxm2)

ẋm3 = vm3

v̇m3 =
1

m1+m2+m3
(u− kxm2)


(30)

4 Generic Implementation Scheme in
FMI 2.0

In this section, a prototype implementation is sketched
for applying the chattering-free computational frame-
work from the previous section to Functional Mock-Up
Interface v2.0 for Model Exachange. The goal is to pro-
vide in FMI, a rigorous chattering-free simulation, in
run-time, without modes enumeration, for any chattering
FMU which may be either generic or generated from a
modeling environment in which chattering models can
not be simulated rigorously, whenever the compliance
with FMI specification for model exchange is fulfilled.
The FMI chattering-free implementation has been per-
formed by embeding the chattering detection and elimi-
nation algorithm in the Event Mode of the FMI.

4.1 The Functional Mock-Up Interface FMI

FMI is an open standard for model exchange and co-
simulation between multiple software systems. This
new standard, resulting from the ITEA2 project MOD-
ELISAR, in 2010, is a response to the industrial need to
connect different environments for modeling, simulation
and control system design. It is used to create an instance
of a model which can be loaded into any simulator pro-
viding an import function for FMI. A software instance
compatible to the FMI is called an FMU. An FMU is
distributed as a compressed archive with a .fmu file ex-
tension. It contains a concrete mathematical model de-
scribed by differential, algebraic and discrete equations
with possible events of a dynamic physical system. An
FMU consists basically of two parts:

• an XML format for model interface information,

• C API model interface functions according to the
FMI specification, for model execution.

The XML format, specified by an XML schema con-
forming to the FMI specification, contains all static in-
formation about model variables, including names, units
and types, as well as model meta data. The C API, on the
other hand, contains C functions for data management, as
setting and retrieving parameter values, and evaluation of
the model equations. The implementation of the C API
may be provided either in C source code format or in bi-
nary forms (e.g. in the form of Windows dynamic link li-
brary .dll or a Linux shared object library .so files) to pro-
tect the model developer’s intellectual property. Addi-
tional parts can be added and compressed into the FMU,
as the documentation and the icon of the model. FMUs
can be written manually or can be generated automati-
cally from a modelling environment.
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4.2 Chattering-Free Support in FMI

In this section we explain the functionality of our
chattering-free FMI framework as well as how the
chattering behavior is treated internally in the main
simulation loop of interface without any need to add
hysterisis to the event indicators in the FMU.
Prior to a simulation experiment, the model has to be
instantiated. This includes extracting the files in the
FMU, loading the DLL and XML files and calling the
instantiation function available in the DLL. A model
can be instantiated multiple times for which the function
fmi2SetupExperiment is provided.
Simulating an FMI model means to split the solution
computation process in three different phases, catego-
rized according to three modes: Initialization Mode,
Continuous-Time Mode, and Event Mode.
In the Initialization Mode, the model is initial-
ized with finit(· · ·) by calling the FMI function
fmi2EnterInitializationMode in order to com-
pute the continuous-time states and the output variables
at the initial time t0. There are FMI functions used in
this Mode as fmi2GetContinuousStates as well as
functions for setting and getting values for Type Real,
Integer, String, and Boolean values, of the form
fmi2(Get/Set)(Type). The input arguments to the
Initialization Mode functions consist of the all variables
that are declared with "input" and "independent" causal-
ity in the FMU XML files, as well as all variables that
have a start value with initial = "exact". Once the model
is instantiated and initialized it can be simulated.
The main simulation loop starts once the FMI function
fmi2ExitInitializationMode is called. The
simulation is performed by calculating the deriva-
tives and updating time and states in the model via
the FMI functions fmi2SetContinuousStates,
fmi2SetTime, fmi2GetContinuousStates,
fmi2GetDerivatives, as well as the four
fmi2(Get/Set)(Type) functions mentioned above.
To retrieve or set variable data during a simulation,
value-references are used as keys. All variables are
connected to a unique number defined and provided in
the FMU XML-file. This number can then be used to
retrieve information about variables via functions in the
interface or can be used to set input values during a
simulation. During the simulation, events are monitored
via the functions fmi2GetEventIndicators and
fmi2CompletedIntegratorStep. Events are always
triggered from the environment in which the FMU
is called, so they are not triggered inside the FMU
(Blochwitz et al., 2012). Step-events are checked in
the model after calling the completed step function
fmi2CompletedIntegratorStep when an integra-
tion step was sucessfully completed. A step event occurs
if indicated by the return argument nextMode = Event-
Mode. For capturing state events during continuous
integration, the algorithm monitors, at every completed

integrator step, the set of event indicator functions z j(t,x)
provided in the function fmi2GetEventIndicators.
All event indicators z j(t,x) are piecewise continuous
and are collected together in one vector of real numbers
(Blochwitz et al., 2012). A state event occurs when the
event indicator changes its domain from z j(t,x) > 0
to z j(t,x) ≤ 0 or from z j(t,x) ≥ 0 to z j(t,x) < 0. If
a domain change of one of the indicator functions is
detected, a state event has occurred and the simulation
environment then informs the FMU by calling the
function fmi2NewDiscreteStates.
During the continuous integration, we distinuiush, for
each time integration step, the following cases:

1. If z j(ti,xi) · z j(ti+1,xi+1) > 0 for all j = 1,2, ..., p
where p is the total number of the event indicators,
then we continue integrating the system with the
same dynamics.

2. If there exist j ∈ {1,2, ..., p} for which: ∀τ ∈
[ti, ti+1[: z j(τ,x) < 0 ∧ ∃ m ≤ margin : ∀τ ∈
[ti+1, ti+1 + m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, a zero crossing in the time interval
[ti, ti + 1] is then detected. The algorithm performs
an iteration over time between the previous and the
actual completed integrator step, in order to deter-
mine the time instant of the switching point up to
a certain precision. In this case we have a contin-
uous smooth switching function z j(ti+1(σ)) taking
opposed signs at σ = 0 and σ = 1 and therefore
there exist a zero at σe ∈ (0,1) which defines the
state event xe = xi+1(σe) ∈ Γ j, where Γ j = {x ∈
Rn| z j(t,x) = 0} is the switching surface.

3. The case in which there exist finitely many event
indicator functions z j(t,x), j ∈ {1,2, ..., p}, all sat-
isfy: ∀τ ∈ [ti, ti+1[: z j(τ,x)< 0 ∧ ∃ m≤ margin :
∀τ ∈ [ti+1, ti+1 +m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, and z j(σe) = 0 for all j = 1,2, ...,k
where k≤ p and σe ∈ (0,1), indicates that the solu-
tion trajectory has reached the intersection of k≤ p
of transvrsally intersected R(n−1) switching mani-
folds Γ j.

At an event, the function fmi2NewDiscreteStates
has to be called. This function updates and re-initializes
the model in order for the simulation to be continued. In-
formation is also given about if the states have changed
values, if new state variables have been selected and in-
formation about upcoming time events.
In our chattering-free semantics, the master algorithm
has to decide, at the state event, whether the solution tra-
jctory should cross the switching surface transversally or
slide on it (to eliminate chattering). The computation of
the chattering-free solution is split in two phases: i) chat-
tering detection, and ii) chattering elimination.
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The chattering detection phase starts once a state event
is detected and located. The algorithm inspects whether
the state event is a chattering event or not. This implies
checking, at the state event, whether or not the sufficient
condition of chattering is satisfied, by analyzing the gra-
dients of the continuous time behavior before and after
the state event. For doing so, the directional derivatives
of the dynamics (the normal projection of dynamics onto
the switching surface) should be computed and evalu-
ated at the beginning and at the end of the completed
integration step at which the state event has been de-
tected. A state event xe ∈ Γ j detected in the time inter-
val [ti, ti+1] is said to be a chattering event if the condi-
tion: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0 is satisfied, where

NPj(ti,xi) = f
⊥ j
j1 (ti,xi), respectively NPj(ti+1,xi+1) =

f
⊥ j
j2 (ti+1,xi+1), is the normal projection of the dynam-

ics f j1 (before the state event), respectively f j2 (after
the state event), onto the switching manifold Γ j = {x ∈
Rn| z j(t,x) = 0}, at ti, respectively ti+1. A chattering
occurs on a switching intersection ∆ =

⋂
j Γ j (i.e. inter-

section state event), detected in the time interval [ti, ti+1],
if for all j = 1,2, ...,k: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0,
where as mentioned in Section 4 (equation 12 and equa-
tion 13), the normal projection NPj(ti,xi), respectively
NPj(ti+1,xi+1), is computed as a scalar product of the dy-
namics f (ti,xi), respectively f (ti+1,xi+1), with the par-
tial derivatives the event indicator function z j. The par-
tial derivatives of z j are computed numerically in the
integration step [ti, ti+1] at which the state event is de-
tected. As the nature of our chattering detection seman-
tics is to compare the sign of the directional derivatives
(normal projections) at the beginning and the end of the
time integration step [ti, ti+1] in which a state event is
occurred, and if it changes, declare a chattering event,
the environment then should be able to have an access
to the dynamics at ti (i.e. in the previous domain before
the event) and at ti+1 (i.e. in the next domain after the
event). For doing so, we use two arrays, xdotpre and
xdotpost , where during the continuous integration, and
for each time step [ti, ti+1] in which a state event has
been detected, the dynamics f (ti,xi), and f (ti+1,xi+1)
are computed and evaluated via fmi2GetDerivatives
and then stored in xdotpre, and xdotpost , respectively. In
the chattering elimination phase, Algorithm 1 (Section 3)
is employed in the environment’s master algorithm in or-
der to compute the smooth equivalent chattering-free dy-
namics internally giving the dynamics before and after
the state event, f j1 and f j2, repectively, as well as the
event indicators z j(t,x). Once the solution is at the fi-
nal time of a simulation, the function fmi2Terminate
is called to terminate the simulation. After a simulation
is terminated, memory has to be deallocated. The func-
tion fmi2FreeInstance is then called to deallocate all
memory that have been allocated since the initialization.

5 Simulation Results
Figure 3 shows the chattering-free simulation of the
system in Example 1 for the data set: β = 0.5, x0 =
[0.5,3,1]T . During a simulation time t = 10, 241685
chattering events have been detected and replaced by
two sliding windows. The first chattering event is de-
tected at t = 2.649 (Figure 4), the algorithm switches
to integrate the the system with the chattering-free dy-
namics generated internally. In Figure 5 and Fig-
ure 6, the Stick-Slip frictional systm in Example 3
was simulated for m1 = m2 = m3 = 1[kg], k = 0.88[N ·
m−1], Fc1 = 0.01996[N] Fc2 = 0.062[N], and x0 =
[0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T . The
external force u was simulated as a sine wave of fre-
quency of ω = 0.073[rad/sec]. The sliding bifurcations
depend on the effect of the external force u and the level
of Coulomb frictions Fc1 and Fc2 . At the time instant t =
32.69 sec, two masses m2 and m3 stick together and the
solution trajectory start a sliding motion on the switch-
ing manifold Γ2 = {x∈Rn : (vm2(t)−vm3(t) = 0)} (Fig-
ure 5). A smooth exit from sliding on Γ2 to evolve into q3
was detected at the time instant t = 77.23 sec. A transver-
sality switching from the discrete state q3 to the discrete
state q1 = {x ∈ Rn : (vm2(t)− vm1(t) > 0) ∧ (vm2(t)−
vm3(t)> 0)} at the intersection ∆ = Γ1∩Γ2 was detected
at t = 92.04 sec.
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Figure 3. The time evolution of the continuous state x1 with
chattering-free simulation.

6 Conclusions
In this paper we presented an FMI-based computa-
tional framework, and a prototypical implementation of
a generic chattering-free FMI for robust and reliable de-
tection and elimination "On the Fly" of chattering behav-
ior in run-time simulation of non-smooth hybrid systems,
without modes enumeration, and without any need to add
a small hysteresis to the event indicators in the FMUs.
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Figure 4. A smooth entering to sliding: First chattering state
event detected at t = 2.649.
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Figure 5. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm3(t).

The developed chattering-free FMI switches between the
transversality modes and the sliding modes simulation
automatically, integrates each particular state appropri-
ately, and localizes the non-smooth structural changes in
the system in an accurate way. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Our chattering-free FMI can robustly handle the case of
chattering on switching intercsetion without any need to
solve stiff nonlinear equations for the computation of the
chattering-free coefficients. Furthermore, a guidance for
development of a hybrid chattering-free version of the
FMI standard, was provided in this paper. Finally, the
simulation results on a set of representative examples
have demonstrated that our FMI-based chattering-free
framework is efficient and precise enough to provide a
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Figure 6. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm1(t).

rigorous chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to the
FMI standard v2.0 Specification for model exchange.
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