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Abstract

The martingale optimal transport aims to optimally transfer a probability measure

to another along the class of martingales. This problem is mainly motivated by the

robust superhedging of exotic derivatives in financial mathematics, which turns out

to be the corresponding Kantorovich dual. In this paper we consider the continuous-

time martingale transport on the Skorokhod space of càdlàg paths. Similar to the

classical setting of optimal transport, we introduce different dual problems and estab-

lish the corresponding dualities by a crucial use of the S−topology and the dynamic

programming principle1.

Key words. S−topology, dynamic programming principle, robust superhedging

1 Introduction

Initialed by the famous work of Monge and Kantorovich, the optimal transport problem

concerns the optimal transfer of mass from one location to another. Namely, let P(Rd)

be the space of probability measures on the Euclidean space Rd. For any given measures

µ, ν ∈ P(Rd), put

P(µ, ν) :=
{
P ∈ P(Rd × Rd) : P ◦X−1 = µ and P ◦ Y −1 = ν

}
, (1.1)

where (X,Y ) denotes the canonical process on Rd×Rd, i.e. X(x, y) = x and Y (x, y) =

y for all (x, y) ∈ Rd ×Rd. Then the optimal transport problem consists in optimizing
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the expectation of some measurable function ξ : Rd × Rd → R among all probability

measures in P(µ, ν). Various related issues are studied, e.g. the general duality theory

and optimality results, we refer to Rachev & Rüschendorf [53] and Villani [55] for a

comprehensive account of the literature.

Recently, a martingale optimal transport problem was introduced in Beiglböck,

Henry-Labordère & Penkner [5] in discrete-time (see Galichon, Henry-Labordère &

Touzi [26] for the continuous-time case), where a maximization problem is considered

over a subset M(µ, ν) :=
{
P ∈ P(µ, ν) : EP[Y |X] = X, P-a.s.

}
:

P(µ, ν) := sup
P∈M(µ,ν)

EP
[
ξ(X,Y )

]
.

Each element of M(µ, ν) is called a transport plan. Similarly to the classical setting,

the corresponding dual problem is defined by

D(µ, ν) := inf
(λ,ϕ,H)∈D(µ,ν)

{∫
λdµ+

∫
ϕdν

}
,

with D(µ, ν) being the collection of triplets (λ, ϕ,H), where λ, ϕ,H : Rd → R are

measurable functions such that λ ∈ L1(µ), ϕ ∈ L1(ν) and

λ(x) + ϕ(y) +H(x)(y − x) ≥ ξ(x, y) for all (x, y) ∈ Rd × Rd. (1.2)

The last dual formulation has the interpretation of minimal robust superhedging cost

of derivative security defined by the payoff ξ by trading the underlying security and any

possible Vanilla option. As observed by Breeden and Litzenberger [11], the marginal

distributions of the underlying asset is recovered by the market prices of calls for

all strikes, and any Vanilla option has a non-ambiguous price as the integral of its

payoff function with respect to the marginal. Therefore, the inequality (1.2) represents

a super-replication of ξ, which consist of the trading of the underlying and Vanilla

options at different maturities. Since there is no specific model imposed on the process

(X,Y ), the dual problem may be interpreted as the robust superhedging cost, i.e.

the minimum cost to construct super-replications. Similar to the classical setting, the

duality P(µ, ν) = D(µ, ν) holds under quite general conditions.

The present paper considers the continuous-time martingale optimal transport

problem. Let X :=
{
ω = (ωt)0≤t≤1 : ωt ∈ Rd for all t ∈ [0, 1]

}
, where X is either

the space of continuous functions or the Skorokhod space of càdlàg functions. Denote

by X = (Xt)0≤t≤1 the canonical process and by M the set of all martingale mea-

sures P, i.e. X is a martingale under P. For a given family of probability measures

µ = (µt)t∈T, where T ⊆ [0, 1] is a subset, define by M(µ) the subset of transport plans

P, i.e. P ◦ X−1
t = µt for all t ∈ T. Then for a measurable function ξ : X → R, the

problem is defined by

P(µ) := sup
P∈M(µ)

EP[ξ(X)]. (1.3)

In contrast with the discrete-time case, the set M(µ) is generally not tight with

respect to the usual topologies. Without the crucial compactness, the arguments in

the classical setting fail to be adapted to handle the related issues.
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In the existing literature, there are two dual formulations for the problem (1.3),

Galichon, Henry-Labordère & Touzi studied a class of transport plans defined by

stochastic differential equations in [26] and introduced a quasi-sure dual problem.

They applied a stochastic control approach and deduced the duality. Another im-

portant contribution is due to Dolinsky & Soner [23, 24], see also Hou & Oblój [39],

where the dual problem is still pathwisely formulated as in (1.2). By discretizing the

paths and a technical construction of approximated martingale measures, they avoid

the compactness issue and derive the duality.

In addition, the martingale optimal transport problem is studied by the approach

of Skorokhod embedding problem. Following the seminal paper of Hobson [33], this

methodology generated developments in many directions, see e.g. Brown, Hobson &

Rogers [12], Cox & Oblój [14, 15], Cox, Hobson & Oblój [16], Cox, Oblój & Touzi [17],

Cox & Wang [18], Davis, Oblój & Raval [19], Gassiat, Oberhauser & dos Reis [27],

Hobson & Klimmek [35, 36, 37], Hobson & Neuberger [38] and Madan & Yor [45]. A

thorough literature is provided in the survey papers Hobson [34] and Oblój [50].

Our main contribution in the paper is to study systematically the tightness of the

set M(µ) by means of the S−topology introduced in Jakubowski [41]. Endowing

properly the space of marginal laws with a Wasserstein kind topology, the tightness

yields the upper semicontinuity of the map µ 7→ P(µ) and further the first duality,

obtained by penalizing the marginal constraints. Based on the first duality and using

respectively the dynamic programming principle and the discretization argument of

path-space, the dualities are established for both quasi-sure and pathwise dual formu-

lations.

The above analysis immediately gives rise to a stability consequence. Denote P := P

and P(µ) := infP∈M(µ) E
P[ξ(X)], then it is shown that the map µ 7→ P(µ) (resp.

µ 7→ P(µ)) is upper (resp. lower) semicontinuous, which yields the stability, i.e.

for any sequence (µn)n≥1 convergent to µ, there exists a sequence (εn)n≥1 ⊆ R+

convergent to zero such that

[
P(µn), P(µn)

]
⊆

[
P(µ)− εn, P(µ) + εn

]
for all n ≥ 1,

which implies that the interval of model-free prices is stable with respect to the market.

The paper is organized as follows. We formulate the martingale optimal transport

problem and provide the dual problems in Section 2. In Section 3, the duality results

are presented and we reduce the infinitely-many marginal constraints to the finitely-

many marginal constraints. In Sections 4, 5 we focus on the finitely-many marginal

case and provide all related proofs.

2 Martingale optimal transport

For all 0 ≤ s < t, denote by D([s, t],Rd) the space of càdlàg functions defined on

[s, t] taking values in Rd. Let Ω := D([0, 1],Rd) with generic element denoted by ω.

Denote further by X := (Xt)0≤t≤1 the canonical process, i.e. Xt(ω) = ωt and by

F := (Ft)0≤t≤1 its natural filtration, i.e. Ft = σ(Xu, u ≤ t). Let P := P(Ω,F1)

3



be the set of probability measures on Ω. A probability measure P ∈ P is called a

martingale measure if the canonical process X is a martingale under P. Denote by M
the collection of all martingale measures.

2.1 Peacock and martingale optimal transport

Let P := P(Rd) be the space of all probability measures µ on Rd with finite first

moment. A pair (µ, ν) ∈ P×P is said to be increasing in convex ordering if

∫

Rd

λ(x)µ(dx) := µ(λ) ≤ ν(λ) :=

∫

Rd

λ(x)ν(dx)

holds for every convex function λ : Rd → R. This relation is denoted by µ � ν. Let

T ⊆ [0, 1] be some subset containing 1 and define the T−product of P by

PT :=
{
µ := (µt)t∈T : µt ∈ P for all t ∈ T

}
.

Definition 2.1. A family of probability measures µ = (µt)t∈T ∈ PT is called a peacock

(T−peacock) if µs � µt holds for all s, t ∈ T such that s ≤ t. A peacock µ is said to be

càdlàg if the map t 7→ µt is càdlàg on T with respect to the weak convergence. Denote

by PT
� the set of all càdlàg peacocks.

For each peacock µ ∈ PT
�, define the set of transport plans

M(µ) :=
{
P ∈ M : P ◦X−1

t = µt for all t ∈ T

}
. (2.1)

We may assume without loss of generality that T is closed under the lower limit

topology, i.e. the topology generated by all half-open intervals [s, t) ⊆ [0, 1], see e.g.

Steen & Seebach [54]. Indeed, denote by T̄ the closure of T under the lower limit

topology, then it follows that the law of Xt for t ∈ T̄ is uniquely determined by the

right continuity of X. This implies that M(µ̄) = M(µ), where µ̄ := (µ̄t)t∈T̄ is defined

by

µ̄t := lim
n→∞

µtn for any sequence (tn)n≥1 ⊆ T decreasing to t. (2.2)

Remark 2.2. (i) Since µtn � µ1 for all n, we have

µtn
(
(xi −K)+

)
≤ µ1

(
(xi −K)+

)
for all i = 1, · · · , d,

thus showing that the sequence (µtn)n≥1 is uniformly integrable. In particular, (µtn)n≥1

is tight, and we may verify immediately by a direct density argument that any two

possible accumulation points µ̄t and µ̄′t coincides, i.e. µ̄t = µ̄′t. Hence the sequence

(µtn)n≥1 converges weakly, justifying the convergence in (2.2) is well defined.

(ii) When T = [0, 1], M(µ) is nonempty by Kellerer’s theorem, see e.g. Hirsch &

Roynette [31, 32] and Kellerer [43]. For a general closed T, we may extend µ to some

µ̄ = (µ̄t)0≤t≤1 by µ̄t := µ̄t̄ with t̄ := inf{s ≥ t : s ∈ T}. Clearly, µ̄ ∈ P
[0,1]
� and µ̄t = µt

for all t ∈ T. Hence M(µ) ⊇ M(µ̄) is again nonempty.
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Let ξ : Ω → R be a measurable function. For every peacock µ ∈ PT
�, define the

martingale optimal transport problem by

P(µ) := sup
P∈M(µ)

EP
[
ξ(X)

]
, (2.3)

where EP[ξ] := EP[ξ+]− EP[ξ−] with the convention +∞−∞ = −∞.

2.2 Dual problems

First dual problem Let Λ be the set of continuous functions λ : Rd → R with

linear growth, i.e. supx∈Rd

(
|λ(x)|/(1 + |x|)

)
< +∞. Define

ΛT :=
{
λ := (λti)1≤i≤m : ti ∈ T, λti ∈ Λ for all i = 1, · · · ,m, m ∈ N

}
.

For every λ = (λti)1≤i≤m ∈ ΛT, µ = (µt)t∈T ∈ PT
� and ω ∈ Ω, denote

λ(ω) :=
m∑

i=1

λti(ωti) and µ(λ) :=
m∑

i=1

µti(λti).

Next, we introduce three dual formulations. Roughly speaking, as X is required to

be a martingale and has the given marginal laws in problem (2.3), then we dualize

respectively these two constraints. The first dual problem is defined by

D1(µ) := inf
λ∈ΛT

{
µ(λ) + sup

P∈M
EP

[
ξ(X)− λ(X)

]}
. (2.4)

The dual problem D1 is the Kuhn-Tucker formulation in convex optimization, where

the marginal constraints µ are penalized by the Lagrange multipliers λ.

Second dual problem The second dual problem dualizes further the martingale

constraint and has close analogues in the mathematical finance literature in the context

of a financial market with d risky assets, where the price process is modeled by the

canonical process X = (Xt)0≤t≤1. For technical reasons, the underlying process X is

assumed to be non-negative and start at some fixed price that may be normalized to

be 1 := (1, · · · , 1) ∈ Rd. Namely, define the set of market scenarios

Ω+ :=
{
ω ∈ Ω : ω0 = 1 and ωt ∈ Rd

+ for all t ∈ [0, 1]
}

and the set of all possible models M+ :=
{
P ∈ M : supp(P) ⊆ Ω+

}
. Consequently,

the market calibration µ should satisfy

µ0(dx) = δ1(dx) and supp(µ1) ⊆ Rd
+. (2.5)

Moreover, let us denote by FU = (FU
t )0≤t≤1 the universally completed filtration, i.e.

FU
t := ∩P∈PFP

t , where FP
t is the completed σ−field of Ft under P.
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Definition 2.3. A process S = (St)0≤t≤1 is called a M+−supermartingale if it is

FU−adapted and is a P−supermartingale for all P ∈ M+. Denote by S the collection

of all M+−supermartingales and by S0 ⊆ S the subset of processes starting at 0.

Denote further

D2(ξ) :=
{
(λ, S) ∈ ΛT × S0 : λ(ω) + S1(ω) ≥ ξ(ω) for all ω ∈ Ω+

}
.

For a peacock µ ∈ PT
� satisfying (2.5) , the second dual problem is defined by

D2(µ) := inf
(λ,S)∈D2(ξ)

µ(λ). (2.6)

Remark 2.4. (i) Notice that the supermartingale S ∈ S is not required to have any

regularity. If it were càdlàg then it would follow from Theorem 2.1 in Kramkov [44]

that, for every P ∈ M+ there exist a predictable process HP = (HP
t )0≤t≤1 and an

optional non-decreasing process AP = (AP
t )0≤t≤1 such that

St = S0 +

∫ t

0
HP

s dXs −AP
t for all t ∈ [0, 1], P-a.s.

However, it is not clear whether one can aggregate the last representation, i.e. find

predictable processes H and A such that (H,A) = (HP, AP), P-almost surely. See also

Nutz [47] for a partial result of this direction.

(ii) In financial mathematics, the pair (λ,HP) has the interpretation of a semi-static

super-replicating strategy under the model P. If the aggregation above were possible,

then the dual problem D2 turns to the quasi-sure formulation of the robust superhedging

problem, see also Beiglböck, Nutz & Touzi [7], and the duality P = D2 reduces to the

well know pricing-hedging duality.

Third dual problem Following the pioneering work [33] of Hobson, the martingale

optimal transport approach is applied to study the robust hedging problems in finance.

We do not postulate any specific model on the underlying assets and pursue here a

robust approach. Assume further that all call/put options are liquid in the market

for maturities t ∈ T, thus yielding a family of marginal distributions µ = (µt)t∈T that

is considered to be exogenous, see e.g. Breeden & Litzenberger [11]. Then, the time

0 market price of any derivative λ(Xt) is given by µt(λ). Hence, the cost of a static

strategy λ ∈ ΛT is µ(λ).

The return from a zero-initial cost dynamic trading, defined by a suitable process

H = (Ht)0≤t≤1, is given by the stochastic integral (H ·X) which we define similarly to

Dolinsky & Soner [24]. We restrict H : [0, 1] → Rd to be left-continuous with bounded

variation. Then, we may define the stochastic integral by integration by parts:

(H ·X)t := Ht ·Xt −H0 ·X0 −
∫ t

0
Xu · dHu for all t ∈ [0, 1], (2.7)

where
∫ t
0 Xu · dHu refers to the scalar Lebesgue-Stieltjes integration.
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Definition 2.5. An F−adapted process H : [0, 1] × Ω+ → Rd is called a dynamic

strategy if t 7→ Ht(ω) is left-continuous and of bounded variation for every ω ∈ Ω+ and

(H · X) is a supermartingale under every P ∈ M+. Let A be the set of all dynamic

strategies and define the set of robust super-replications

D3(ξ) :=
{
(λ,H) ∈ ΛT ×A : λ(ω) + (H ·X)1(ω) ≥ ξ(ω) for all ω ∈ Ω+

}
.

For a peacock µ ∈ PT
� satisfying (2.5), the third dual problem is defined by

D3(µ) := inf
(λ,H)∈D3(ξ)

µ(λ). (2.8)

Remark 2.6. It is clear by definition that the weak duality P(µ) ≤ D1(µ) holds.

Moreover, if the peacock µ satisfies (2.5), then

P(µ) ≤ D1(µ) ≤ D2(µ) ≤ D3(µ).

3 Main results

We aim to study the existence of optimal transport plans and establish the dualities in

a systematic way. Before providing these results in Sections 3.2 and 3.3, we first intro-

duce some notions of topology on Ω and the associated space of probability measures

in Section 3.1.

3.1 Preliminaries

In the classical optimal transport problem, the relevant results (existence of optimizers,

duality, etc.) rely essentially on the compactness condition of M(µ, ν). However, when

passing to the continuous-time case, as shown by Example 3.1 below, the set M(µ)

is in general not tight with respect to the topologies L∞ (uniform topology) and J1
(Skorokhod topology). For our purpose, we endow Ω with the S−topology introduced

by Jakubowski [41] such that the Borel σ-field agrees with the projection σ-filed F1, and

more importantly, the S−topology facilitates the tightness issue and both Skorokhod

representation theorem and Prohorov’s theorem hold true. Before introducing the

S−topology, we give an example which shows that the topologies L∞ and J1 are not

convenient to handle the tightness of M(µ).

Example 3.1. Let M = (M0,M1,M2) be a discrete-time martingale on some proba-

bility space such that P
[
M0 6= M1 and M1 6= M2

]
> 0. Define Pn := P ◦ (Mn)−1 for

n ≥ 3, where Mn = (Mn
t )0≤t≤1 is defined by

Mn
t := M01[0, 1

2
− 1

n
)(t) +M11[ 1

2
− 1

n
, 1
2
+ 1

n
)(t) +M21[ 1

2
+ 1

n
,1](t).

Clearly, Pn ∈ M(µ) for all n ≥ 3 with T = {0, 1} and µ =
(
P ◦ M−1

0 ,P ◦ M−1
2

)
.

However, it follows from Theorem VI.3.21 in Jacod & Shiryaev [40] that, the sequence

(Pn)n≥3 is not J1−tight and thus not L∞−tight.
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Definition 3.2 (S−topology). The S−topology on Ω is the sequential topology in-

duced by the following S−convergence, i.e. a set F ⊆ Ω is closed under S−topology

if it contains all limits of its S−convergent subsequences, where the S−convergence

(denoted by
S−→) is defined as follows. Let (ωn)n≥0 ⊆ Ω, we say that ωn S−→ ω0 as

n→ ∞ if for each ε > 0, we may find a sequence (vnε )n≥0 ⊆ Ω such that

vnε has bounded variation, ‖ωn − vnε ‖ ≤ ε for all n ≥ 0

and

lim
n→∞

∫

[0,1]
f(t) · dvnε (t) =

∫

[0,1]
f(t) · dv0ε(t) for all f ∈ C([0, 1],Rd).

We denote by
S∗

−→ the convergence induced by the S−topology.

Remark 3.3. (i) It is shown in Jakubowski [41] that the S−topology is not metriz-

able. However, its associated Borel σ-field coincides with F1. Moreover, a function

ξ : Ω → R is S−continuous (semicontinuous) if and only if ξ is S∗−continuous (semi-

continuous).

(ii) The functions ω 7→ ωi,1, ω 7→
∫ 1
0 ωi,tdt and ω 7→

∫ 1
0 |ωt|dt for i = 1, · · · , d are

S−continuous. The functions ω 7→ ‖ω‖ and ω 7→ sup0≤t≤1 ωi,t for i = 1, · · · , d are

S−lower semicontinuous.

Notice that the S−topology is not metrizable, then instead of the usual weak

convergence, we use another convergence of probability measures introduced in [41],

which induces easy criteria for S−tightness and preserves the Prohorov’s theorem, i.e.

tightness yields sequential compactness.

Definition 3.4. Let (Pn)n≥1 be a sequence of probability measures on the space (Ω,F1).

We say Pn
∗

=⇒D P if for each subsequence (Pnk)k≥1, one can find a further sub-

sequence (Pnkl
)l≥1 and stochastic processes (Y l)l≥1 and Y defined on the probability

space
(
[0, 1],B[0,1], ℓ

)
such that L(Y l) = Pnkl

for all l ≥ 1, L(Y ) = P,

Y l(e)
S∗

−→ Y (e) for all e ∈ [0, 1],

and for each ε > 0, there exists an S∗−compact subset Kε ⊆ Ω such that

ℓ
[
Y l ∈ Kε for all l ≥ 1

]
> 1− ε.

It follows from Jakubowski [41] (see Theorem A.1) that the convergence
∗

=⇒D

implies in some sense the convergence of finite dimensional distributions that is speci-

fied later, and more importantly, the limit of every convergent sequence of martingale

measures is still a martingale measure.

We next introduce the Wasserstein distance for the purpose of deriving the duality

P = D1. Recall the set P(µ, ν) introduced in (1.1).

Definition 3.5. The Wasserstein distance of order 1 is defined by

W1(µ, ν) := inf
P∈P(µ,ν)

EP
[∣∣X − Y

∣∣] for all µ, ν ∈ P.

A sequence (µn)n≥1 ⊆ P converges to µ ∈ P in W1 if W1(µ
n, µ) → 0 as n → ∞ or,

equivalently, limn→∞ µn(λ) = µ(λ) for all λ ∈ Λ, see e.g. Theorem 6.9 in Villani [55].
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For
(
µn = (µnt )t∈T

)
n≥1

⊆ PT
� and µ = (µt)t∈T ∈ PT

�, we say that µn converges to

µ if µnt converges to µt in W1 for all t ∈ T and this convergence is denoted by
WT

1−→.

We now provide a crucial tightness result for the present paper which is a consequence

from [41].

Let T0 ⊆ T be the collection of all condensation points under the lower limit

topology, i.e. t = 1 or [t, t+ ε) ∩ T is uncountable for any ε > 0.

Lemma 3.6. Let (Pn)n≥1 be a sequence of probability measures such that Pn ∈ M(µn)

for some µn ∈ PT
�, satisfying

µn WT

1−→ µ ∈ PT
�. (3.1)

(i)Then, (Pn)n≥1 is S−tight, i.e. any subsequence (Pnk
)k≥1 admits a further convergent

subsequence under
∗

=⇒D. Moreover, any limit point P of (Pn)n≥1 is again a martingale

measure.

(ii) Assume in addition that T0 = T, then P ∈ M(µ).

Proof. (i) By Theorem A.1, it is clear that (Pn)n≥1 is S−tight and there exist a

convergent subsequence (Pnk
)k≥1 with limit P ∈ P. Moreover, one has a countable

subset T ⊆ [0, 1) such that for any finite set {u1, · · · , ur} ⊂ [0, 1] \ T ,

Pnk
◦
(
Xu1 , · · · ,Xur

)−1 L−→ P ◦
(
Xu1 , · · · ,Xur

)−1
as k → ∞. (3.2)

Let s, t ∈ [0, 1]\T such that s < t, and take a finite subset {u1, · · · , ur} ⊆ [0, s]\T and

a sequence of bounded continuous functions {fi}1≤i≤r. Notice that for every u ∈ [0, 1],

Xu is uniformly integrable with respect to (Pn)n≥1. Indeeed,

lim
R→∞

sup
n≥1

EPn

[∣∣Xu

∣∣1|Xu|≥R

]
≤ lim

R→∞
sup
n≥1

EPn

[(
|Xu| −R/2

)
+

]

≤ lim
R→∞

sup
n≥1

EPn

[(
|X1| −R/2

)
+

]

= lim
R→∞

sup
n≥1

µn1
(
(|x| −R/2)+

)
= 0. (3.3)

Combining (3.2) and (3.3), one has

EP
[
f1(Xu1) · · · fr(Xur)

(
Xt −Xs

)]
= lim

k→∞
EPnk

[
f1(Xu1) · · · fr(Xur)

(
Xt −Xs

)]
= 0.

Since T is at most countable, it follows that EP[Xt|Fs] = Xs for any s, t ∈ [0, 1] \ T
such that s < t. It follows by the right continuity of X that P ∈ M.

(ii) To prove that P ∈ M(µ), it remains to show that P ◦ X−1
t = µt for all t ∈ T.

When t ∈ T \ T , by the convergence (3.2) and the fact that µn WT

1−→ µ, it follows

that P ◦ X−1
t = µt. Further, notice that T0 = T, then for every t ∈ T, there exists

a sequence (ti)i≥1 ⊆ T\T decreasing to t. Using again the right continuity of X, we

conclude P ◦X−1
t = limi→∞ P ◦X−1

ti
= µt.

As a consequence, the set M(µ) is S−tight and it is closed if T0 = T. The following

example shows that the closeness may fail when T0 6= T.
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Example 3.7. Let T = {0, 1} and consider a random variable Y such that P(Y =

1) = P(Y = −1) = 1/2. Define Pn := P ◦ (Mn)−1 for n ≥ 1, where Mn = (Mn
t )0≤t≤1

is defined by

Mn
t := Y 1[ 1

n
,1](t).

Define a peacock µ = (µ0, µ1) by µ0 := δ{0} and µ1 =
(
δ{−1} + δ{1}

)
/2. Obviously,

Pn ∈ M(µ) for all n ≥ 1. However, the limit of (Pn)n≥1 is a martingale measure P

such that Xt = X0, P-a.s. and P ◦X−1
0 = µ1, which does not lie in M(µ).

3.2 Finitely-many marginal constraints

We start by studying the finitely-many marginal case and assume throughout this

subsection that T = {0 = t0 < · · · < tm = 1}. Denote ∆ti := ti − ti−1 for all

i = 1, · · · ,m and ∆T := min1≤i≤m∆ti. Let us formulate some conditions on the

reward function ξ. We shall see later that the usual examples satisfy our conditions.

Assumption 3.8. lim supn→∞ ξ(ωn) ≤ ξ(ω) holds for all (ωn)n≥1 ⊆ Ω and ω ∈ Ω

such that

ωn S∗

−→ ω and ωn
ti −→ ωti for all i = 0, · · · ,m− 1.

For ε = (ε1, · · · , εm) ∈ Rm
+ such that |ε| < ∆T, let fε (forward function) and bε

(backward function) be two non-decreasing functions defined on [0, 1]:

fε(t) :=

m∑

i=1

1(ti−1,ti](t)
(
ti−1 +

∆ti
∆ti − εi

(
t− ti−1 − εi

)+)
, (3.4)

bε(t) :=

m∑

i=1

1(ti−1,ti](t)
(
ti −

(
∆ti −

∆ti
∆ti − εi

(
t− ti−1

))+)
. (3.5)

Assumption 3.9. There is a continuous function α : R+ → R+ with α(0) = 0 such

that the following inequality holds for any ε ∈ Rm
+ satisfying |ε| < ∆T

∣∣ξ(ω)− ξ
(
ωfε

)∣∣ ≤ α(|ε|)
(
1 +

m∑

i=0

|ωti |+
∫ 1

0
|ωt|dt

)
, (1)

∣∣ξ(ω)− ξ
(
ωbε

)∣∣ ≤ α(|ε|)
(
1 +

m∑

i=0

|ωti |+
∫ 1

0
|ωt|dt

)
, (2)

where ωfε (resp. ωbε) denotes the composition of ω and fε (resp. bε).

Theorem 3.10. Le ξ be bounded from above and satisfies Assumptions 3.8 and 3.9

(1). Then for all µ ∈ PT
�:

(i) The duality P(µ) = D1(µ) holds.

(ii) Assuming further that ξ is bounded, the duality D1(µ) = D2(µ) holds for all µ

satisfying (2.5).
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To establish the duality D1(µ) = D3(µ), we need more regularity conditions on ξ.

Define a distance ρT on Ω by

ρT(ω, ω
′) :=

m∑

i=1

ρ[ti−1,ti](ω, ω
′) +

∣∣∣
∫ 1

0

(
ωu − ω′

u

)
du

∣∣∣ for all ω, ω′ ∈ Ω, (3.6)

where ρ[s,t] : D([s, t],R
d) × D([s, t],Rd) → R+ dentoes the Skorokhod metric on the

space D([s, t],Rd). Clearly, |ωti − ω′
ti | ≤ ρT(ω, ω

′) for all ω, ω′ ∈ Ω and i = 1, · · · ,m.

Assumption 3.11. ξ is locally ρT−uniformly continuous.

Theorem 3.12. Let ξ be bounded and µ ∈ PT
� satisfying (2.5). Then under Assump-

tions 3.8, 3.9 and 3.11, the duality P(µ) = D3(µ) holds.

Remark 3.13. Using the pathwise Doob’s inequality in Acciaio, Beiglböck, Penkner,

Schachermayer & Temme [1], the boundeness condition in Theorem 3.12 may be re-

moved when µ1(|x|p) < +∞ for some p > 1, see also Dolinsky & Soner [24].

3.3 Infinitely-many marginal constraints

Using approximation techniques, we then obtain some results for the martingale trans-

port problem under infinitely-many marginal constraints.

Proposition 3.14. Let ξ be S∗−upper semicontinuous and bounded from above. For

all µ ∈ PT
�:

(i) Assume that there exists an increasing sequence of finite sets {Tn}n≥1 such that

1 ∈ Tn ⊆ T for all n ≥ 1 and ∪n≥1Tn is dense in T under the lower limit topology.

Then

lim
n→∞

P(µn) = P(µ) with µn := (µt)t∈Tn .

(ii) Assume T0 = T, then there exists an optimal transport plan P∗ ∈ M(µ), i.e.

P(µ) = EP∗

[ξ(X)]. (3.7)

Proof. (i) It follows by the definition of µn that P(µn) is non-increasing with respect

to n. Take a sequence (Pn)n≥1 such that Pn ∈ M(µn) and

P(µ) ≤ lim
n→∞

P(µn) = lim
n→∞

EPn [ξ].

By Lemma 3.6 (i) , there is a convergent subsequence (Pnk
)k≥1 with some limit P ∈ M.

It follows by the same arguments in the proof of Lemma 3.6 that P ∈ M(µ) and, the

upper semicontinuity of ξ yields

lim
n→∞

P(µn) = lim
k→∞

EPnk [ξ] ≤ EP[ξ] ≤ P(µ).

(ii) Take a maximizing sequence (Pn)n≥1 ⊆ M(µ), then we may get a limit point P∗

and by Lemma 3.6 (ii) , P∗ is the required optimal transport plan.

Consequently, we obtain immediately the dualities for general T through Proposition

3.14.
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Theorem 3.15. Let ξ be S∗−upper semicontinuous and bounded from above and µ ∈
PT

�, consider an increasing sequence of finite sets {Tn}n≥1 such that Tn ⊆ T, ∪n≥1Tn

is dense in T, and set µn := (µt)t∈Tn .

(i) Assume that P(µn) = D1(µ
n) for all n ≥ 1. Then P(µ) = D1(µ).

(ii)Assume further that µ satisfies (2.5) and D1(µ
n) = D2(µ

n) = D3(µ
n) for all n ≥ 1.

Then D1(µ) = D2(µ) = D3(µ).

Proof. It is enough to show (i). Notice by definition that D1(µ
n) ≥ D1(µ) for all

n ≥ 1, then it follows by Proposition 3.14 (i) that

P(µ) = lim
n→∞

P(µn) ≥ D1(µ).

Then the proof is fulfilled by the weak duality P(µ) ≤ D1(µ).

Remark 3.16. In the present setting, the marginal constraint µ = (µt)t∈T is given by

a family of joint distributions µt on Rd. If we replace the probability distribution µt by,

either d marginal distributions (µ1t , · · · , µdt ) on R, or a joint distribution ~µ~t on Rl×d

for some ~t := (t1, · · · , tl) with 0 ≤ t1 < · · · < tl ≤ 1, then all the arguments still hold

true and we can obtain similar duality results as in Theorems 3.10, 3.12 and 3.15.

4 The dualities P = D1 = D2

In the following, we focus on the finite-marginal case, i.e. T = {0 = t0 < · · · < tm = 1}
and start by proving the first duality. To prove the equality P = D1, we shall apply

the following well-known result from convex analysis.

Theorem 4.1 (Fenchel-Moreau). Let (E,Σ) be a Hausdorff locally convex space and

F : E → R be a concave and upper semicontinuous function. Then F is equal to its

biconjugate F ∗∗ which is defined by

F ∗∗(e) := inf
e∗∈E∗

{
〈e, e∗〉+ sup

e′∈E

(
F (e′)− 〈e′, e∗〉

)}

and E∗ denotes the dual space of E.

Next we show that the map µ 7→ P(µ) is WT
1 −upper semicontinuous and concave

and then identify its dual space to be ΛT by 〈µ,λ〉 = µ(λ).

4.1 Space of signed measures on Rd and its dual space

Let M denote the space of all finite signed Borel measures µ on Rd satisfying
∫

Rd

(
1 + |x|

)
|µ|(dx) < +∞.

It is clear that M is a linear vector space. We endow M with a topology (of Wasser-

stein kind) induced by the following convergence: Let (µn)n≥0 ⊆ M be a sequence of

bounded signed measures, we say µn converges to µ0 if

lim
n→∞

∫

Rd

λ(x)µn(dx) =

∫

Rd

λ(x)µ0(dx) for all λ ∈ Λ.
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Notice that the above topology restricted on the subspace P ⊆ M of probability

measures is exactly that induced by the Wasserstein distance. As for the space M0 of

all finite signed Borel measures on Rd equipped with the weak convergence topology,

it is well known that its dual space M∗
0 can be identified as the space of all bounded

continuous functions Λ0, see e.g. Deuschel & Stroock [22]. The following lemma

identifies the dual space of M.

Lemma 4.2. The space M is a Hausdorff locally convex space, and the duality relation

(λ, µ) ∈ Λ×M 7−→ µ(λ)

determines a representation of M∗ as Λ.

The proof is almost the same as that of M∗
0 = Λ0. For completeness, we provide

a short proof in Appendix. For the finite set T, let us endow MT with the product

topology and obviously, the dual space of MT is given by ΛT.

4.2 Proof of the duality P = D1

In preparation for the first duality, we show first the upper semicontinuity of µ 7→ P(µ)

in the context of Theorem 3.10 (i) . For ε = (ε1, · · · , εm) ∈ Rm
+ such that |ε| < ∆T,

we introduce

Mε(µ) :=
{
P ∈ M(µ) : Xt = Xtk on [tk, tk + εk) for all k = 0, · · · ,m− 1, P-a.s.

}

and

P
ε(µ) := sup

P∈Mε(µ)
EP

[
ξ(X)

]
.

Proposition 4.3. Let ξ be bounded from above and satisfying Assumptions 3.8 and

3.9 (1), then µ 7→ P(µ) is WT
1 −upper semicontinuous on PT

�.

Proof. (i) First notice Pε(µ) ≤ P(µ) since Mε(µ) ⊆ M(µ). Next, for each P ∈ M(µ),

define Pε := P ◦ X−1
fε

, where fε is defined in (3.4). It is clear that Pε ∈ Mε(µ) and

EPε

[ξ(X)] = EP[ξ(Xfε)]. It follows by Assumption 3.9 (1),

EP
[
ξ(X)

]
≤ EP

[
ξ(Xfε)

]
+ α(|ε|)

(
1 + (m+ 2)EP

[
|X1|

])

= EPε[
ξ(X)

]
+ α(|ε|)

(
1 + (m+ 2)µ1(|x|)

)

≤ P
ε(µ) + α(|ε|)

(
1 + (m+ 2)µ1(|x|)

)
,

which implies that

P(µ) = inf
0<|ε|<∆T

(
P
ε(µ) + α(|ε|)

(
1 + (m+ 2)µ1(|x|)

))
.

(ii) In order to prove that µ 7→ P(µ) is upper semicontinuous, it suffices to verify that

µ 7→ P
ε(µ) is upper semicontinuous µ 7→ P

ε(µ) is upper semicontinuous. To see this,
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let (µn)n≥1 ⊆ PT
� be a sequence such that µn WT

1−→ µ ∈ PT
�. By definition, we have a

sequence (Pn)n≥1 such that Pn ∈ Mε(µn) and

lim sup
n→∞

P
ε(µn) = lim sup

n→∞
EPn

[
ξ
]
.

Then one may find a convergent subsequence (Pnk
)k≥1 with limit P ∈ M. It follows by

exactly the same arguments as in Lemma 3.6 (ii) that P ∈ Mε(µ). Since ξ is bounded

from above, then it follows from Fatou’s lemma that

lim sup
n→∞

EPn [ξ] = lim
k→∞

EPnk [ξ] ≤ EP0 [ξ] ≤ P
ε(µ),

which concludes the proof.

Now we are ready to provide the first duality P(µ) = D1(µ). To apply Fenchel-

Moreau theorem, we need to embed PT
� to a locally convex space. Recall that M is

the space of all finite signed measures µ such that
∫

Rd

(
1 + |x|

)
|µ|(dx) < +∞,

and MT is its T−product. We then extend the map P from PT
� to MT by

P̃(µ) :=

{
P(µ), if µ ∈ PT

�,

−∞, otherwise.

Proof of Theorem 3.10 (i) . The concavity of the map µ 7→ P(µ) is immediate from its

definition. Together with the upper semicontinuity of Proposition 4.3, we may directly

verify that the extended map P̃ is also WT
1 −upper semicontinuous and concave. Then,

combining the Fenchel-Moreau theorem and Lemma 4.2, it follows that for all µ ∈ MT,

P̃(µ) = P̃
∗∗(µ),

where P̃
∗∗ denotes the biconjugae of P̃. In particular, for µ ∈ PT

� one has

P(µ) = P̃(µ) = P̃
∗∗(µ)

= inf
λ∈ΛT

{
µ(λ)− P̃

∗(λ)
}

= inf
λ∈ΛT

{
µ(λ)− inf

ν∈MT

{
ν(λ)− P̃(ν)

}}

≥ inf
λ∈ΛT

{
µ(λ) + sup

ν∈PT

�

{
sup

P∈M(ν)
EP

[
ξ − λ(X)

]}}

= inf
λ∈ΛT

{
µ(λ) + sup

P∈M
EP

[
ξ − λ(X)

]}
= D1(µ) ≥ P(µ),

which yields P(µ) = D1(µ).

4.3 Proof of the duality D1 = D2

For technical reasons, we need to restrict the static strategy λ to a smaller class of

functions ΛT
lip defined by

ΛT
lip :=

{
λ = (λti)1≤i≤m ∈ ΛT : each λti is boundedly supported and Lipschitz

}
.
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Proposition 4.4. Under the conditions of Theorem 3.10 (ii) one has

D1(µ) = inf
λ∈ΛT

lip

{
µ(λ) + sup

P∈M+

EP
[
ξ − λ(X)

]}
. (4.1)

Proof. Clearly, by the definition of D1 and the fact that µ0 = δ1(dx) and supp(µ1) ⊆
Rd
+, one obtains by interchanging inf and sup that

D1(µ) ≥ inf
λ∈ΛT

sup
P∈M+

{
µ(λ) + EP

[
ξ − λ(X)

]}

≥ sup
P∈M+

inf
λ∈ΛT

{
µ(λ) + EP

[
ξ − λ(X)

]}

= P(µ) = D1(µ),

by Theorem 3.10 (i). Hence

D1(µ) = inf
λ∈ΛT

{
µ(λ) + sup

P∈M+

EP
[
ξ − λ(X)

]}
.

Next for every λ = (λti)1≤i≤m ∈ ΛT, there exists some constant L > 0 such that for

every 1 ≤ i ≤ m,

λLti(x) := λti(x)− L(1 + 1 · x) ≤ 0 for all x ∈ Rd
+.

Denote λL := (λLti)1≤i≤m, then for every martingale measure P ∈ M+, we have

µ(λ) + EP
[
ξ − λ(X)

]
= µ(λL) + EP

[
ξ − λL(X)

]
.

Further, for each R > 0, let ψR : Rd → [0, 1] be some continuous function such that

ψR(x) = 1 whenever |x| ≤ R and ψR(x) = 0 whenever |x| > R+ 1.

Let λL,R :=
(
λL,Rti

)
1≤i≤m

with λL,Rti
(x) := λLti(x)ψR(x) ≥ λLti(x), then

sup
P∈M+

EP
[
ξ − λL,R(X)

]
≤ sup

P∈M+

EP
[
ξ − λL(X)

]
.

On the other hand, for all P ∈ M+ we have by monotone convergence theorem

lim
R→∞

EP
[
ξ − λL,R(X)

]
= EP

[
ξ − λL(X)

]
.

Hence

lim
R→∞

sup
P∈M+

EP
[
ξ − λL,R(X)

]
= sup

P∈M+

EP
[
ξ − λL(X)

]
.

It follows that

lim
R→∞

(
µ(λL,R) + sup

P∈M+

EP
[
ξ − λL,R(X)

])
= µ(λL) + sup

P∈M+

EP[ξ − λL(X)
]

= µ(λ) + sup
P∈M+

EP[ξ − λ(X)
]
.
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Finally, by a convolution argument each λL,Rti
can be approximated uniformly by some

Lipschitz function that is also boundedly supported, which yields the required result.

For all (ω, t) ∈ Ω+ × [0, 1], denote by Bsem
ω,t ⊆ P the set of probability measures P such

that P
[
Xs = ωs for all 0 ≤ s ≤ t

]
= 1 and (Xs)s≥t is a non-negative semimartingale

under P. Denote further

Mloc
ω,t :=

{
P ∈ Bsem

ω,t : (Xs)s≥t is a local martingale under P
}
.

Write in particular Bsem = Bsem
ω,0 and Mloc = Mloc

ω,0. Let ζ : Ω → R be a measurable

function and put

Vt(ω) := sup
P∈Mloc

ω,t

EP
[
ζ(X)

]
. (4.2)

Our objective now is to show that the process (Vt)0≤t≤1 is FU−adapted and that

the dynamic programming principle holds. To achieve this, we use the related results

in Neufeld & Nutz [48, 49]. Let P ∈ Bsem be a semimartingale measure with the triplet

(BP, CP, νP) of predictable semimartingale characteristics, see e.g. Chapter II of Jacod

& Shiryaev [40]. Notice that

Mloc =
{
P ∈ Bsem : BP

t = 0 for all t ∈ [0, 1]
}
.

By Theorem 2.5 in [48], the map P 7→ (BP, CP, νP) is measurable, then it follows that

Mloc is Borel. Moreover, by the same arguments we have the following lemma.

Lemma 4.5. The set
{
(ω, t,P) ∈ Ω× [0, 1] × P(Ω) : P ∈ Mloc

ω,t

}
is Borel.

By Theorem 2.1 in [49], we have the following lemma.

Lemma 4.6. Let P ∈ Mloc
ω,t and τ be an F−stopping time taking values in [t, 1].

(i) There is a family of conditional probability (Pω)ω∈Ω of P with respect to Fτ such

that Pω ∈ Mloc
ω,τ(ω) for P-a.e. ω ∈ Ω.

(ii) Assume that there exists a family of probability measures (Qω)ω∈Ω+ such that

Qω ∈ Mloc
ω,τ(ω) for P-a.e. ω ∈ Ω, and the map ω 7→ Qω is Fτ −measurable,

then P⊗Q ∈ Mloc
ω,t, where

P⊗Q(·) :=

∫

Ω
Qω(·)P(dω).

The dynamic programming principle follows by Lemmas 4.5 and 4.6, and as a

consequence we have the following proposition.

Proposition 4.7. Assume that ζ is bounded, then the process V = (Vt)0≤t≤1 defined

in (4.2) is a M+−supermartingale, i.e. V ∈ S.
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Proposition 4.8. Let ζ be a measurable and bounded function, then one has

sup
P∈M+

EP[ζ(X)] = inf
{
V0 : (Vt)0≤t≤1 ∈ S such that V1(ω) ≥ ζ(ω) for all ω ∈ Ω+

}
.

Proof. By Proposition 4.8 with the process V defined in (4.2), it remains to show that

sup
P∈M+

EP[ζ(X)] = sup
P∈Mloc

EP[ζ(X)].

It is clear that supP∈M+
EP[ζ(X)] ≤ supP∈Mloc EP[ζ(X)] since M+ ⊆ Mloc, then it

suffices to prove the converse inequality. For each P ∈ Mloc, there exists an increasing

sequence of stopping times (σn)n≥1 such that σn → +∞, P-almost surely and Xσn∧· is

a P−martingale, where Xσn∧· := (Xσn∧t)0≤t≤1. Hence

EP[ζ(Xσn∧·)] ≤ sup
Q∈M+

EQ[ζ(X)].

The required result follows from the dominated convergence theorem.

Proof of Theorem 3.10 (ii) . It remains to show D1(µ) ≥ D2(µ). Indeed, one has by

Proposition 4.4,

D1(µ) = inf
λ∈ΛT

lip

{
µ(λ) + sup

P∈M+

EP
[
ξ(X)− λ(X)

]}
.

For each λ ∈ ΛT
lip and ε > 0, by Proposition that 4.8 there exists a process V ε =

(V ε
t )0≤t≤1 ∈ S such that

D1(µ) + ε ≥ µ(λ) + V ε
0 and V ε

1 (ω) ≥ ξ(ω)− λ(ω).

This implies
(
λ, (V ε

t − V ε
0 )0≤t≤1

)
∈ D2(ξ), and therefore D1(µ) ≥ D2(µ) .

5 Proof of the duality D1 = D3

Now let us turn to prove the third duality D1 = D3 in Theorem 3.12. We will follow

the idea in Dolinsky & Soner [24] to discretize the underlying paths and then use the

classical constrained duality result of Föllmer & Kramkov [25]. The proof in [24] relies

on the min-max theorem and the explicit approximation of a martingale measure. We

emphasize that the present proof is less technically involved than [24] as the marginals

constraints have already been reduced by the first duality.

5.1 Reduction of ξ to be boundedly supported

In this section we denote P(µ, ξ) and D3(µ, ξ) in place of P(µ) and D3(µ) to emphasize

the dependence on ξ, then clearly for any ξ, ξ′ : Ω → R and c ∈ R, one has

D3(µ, ξ + ξ′) ≤ D3(µ, ξ) + D3(µ, ξ
′) and D3(µ, ξ + c) = D3(µ, ξ) + c.
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In particular for c > 0 one has

D3(µ, cξ) = cD3(µ, ξ).

Hence, under the conditions of Theorem 3.12, we may assume that 0 ≤ ξ ≤ 1. Indeed,

we show next that it suffices to establish the duality P(µ, ξ) = D3(µ, ξ) for ξ that is

boundedly supported. For all R > 0, define the continuous function χR : R+ → [0, 1]

by

χR(x) := 1[0,R](x) + (R+ 1− x)1(R,R+1](x) for all x ∈ R+.

Denote further for R > 0

ξR(ω) := ξ(ω)χR(‖ω‖) for all ω ∈ Ω.

Notice that 0 ≤ ξ ≤ 1 yields ξR(ω) ≤ ξ(ω) ≤ ξR(ω) + 1{‖ω‖≥R}, then it follows that

D3(µ, ξR) ≤ D3(µ, ξ) ≤ D3(µ, ξR) + D3(µ,1{‖X‖≥R}). (5.1)

Lemma 5.1. Let ξ be bounded and µ ∈ P
T,+
� . Then

D3(µ, ξ) = lim
R→∞

D3(µ, ξR)

Proof. It is enough to prove by (5.1) that

lim
R→+∞

D3(µ,1{‖X‖≥R}) = 0.

This is indeed a direct consequence of the pathwise inequality, see e.g. Lemma 2.3 of

Brown, Hobson and Rogers [12]

1{‖Xi‖≥R} ≤ (|Xi,1| −K)+

R−K
+ 1{‖Xi‖≥R}

R−Xi,1

R−K
for all i = 1, · · · , d

holds for every 0 < K < R. It follows by taking K = R/2 that

D3(µ,1{‖X‖≥R}) ≤
d∑

i=1

D3(µ,1{‖Xi‖≥R/d}) ≤ 2d

R

d∑

i=1

µ1
(
(xi −

R

2d
)+

)
.

The proof is fulfilled by letting R→ +∞.

Next we show that ξR inherits almost the same properties as ξ.

Lemma 5.2. For each R > 0:

(i) If ξ satisfies Assumptions 3.8 and 3.9, then so does ξR.

(ii) If ξ satifies Assumption 3.11, then

ξR is L∞−uniformly continuous, and

ξR(ω)− ξR(ω
′) ≤ β

(
ρT(ω, ω

′)
)
for all ω, ω′ ∈ Ω such that ‖ω′‖ ≤ ‖ω‖ (5.2)

for some continuous increasing function β : R+ → R+ with β(0) = 0.

18



Proof. (i) follows by the fact that ω 7→ ‖ω‖ is S∗−lower semicontinuous and ‖ωfε‖ =

‖ωbε‖ = ‖ω‖. Let us turn to show (ii) . Notice that ξ is ρT−uniformly continuous on{
ω : ‖ω‖ ≤ R

}
, i.e. there exists a continuous increasing function β : R+ → R+ with

β(0) = 0 such that for all ‖ω‖, ‖ω′‖ ≤ R

|ξ(ω)− ξ(ω′)| ≤ β
(
ρT(ω, ω

′)
)
.

Hence, for any ω, ω′ ∈ Ω such that ‖ω′‖ ≤ ‖ω‖, one has

ξR(ω)− ξR(ω
′) ≤ 1{‖ω‖≤R}

(
ξ(ω)− ξ(ω′)

)
≤ β

(
ρT(ω, ω

′)
)
.

Moreover,

|ξR(ω′)− ξR(ω)| ≤ |ξ(ω′)− ξ(ω)|χR(‖ω‖) + |χR(‖ω‖) − χR(‖ω′‖)|
≤ β

(
ρT(ω, ω

′)
)
+ ‖ω − ω′‖

≤ β
(
2‖ω − ω′‖

)
+ ‖ω − ω′‖,

which yields the L∞−uniform continuity of ξR.

Therefore, in the following it suffices to consider the function ξ that is boundedly

supported such that the Assumptions 3.8, 3.9 and Condition (5.2) hold. Similar to

the proof of the duality P(µ) = D2(µ), it remains to prove a duality without marginal

constraints.

5.2 Duality without marginal constraints

We consider in this section the optimization problem without marginal constraints.

Let ζ : Ω → R be bounded and define

P(ζ) := sup
P∈M+

EP[ζ(X)] and D(ζ) := inf
(z,H)∈D(ζ)

z. (5.3)

where, with the same definition of integral in (2.7),

D(ζ) :=
{
(z,H) ∈ R×A : z + (H ·X)1(ω) ≥ ζ(ω) for all ω ∈ Ω+

}
.

We provide immediately a duality result for the above optimization problems, and

leave its proof in Section 5.3.

Theorem 5.3. Suppose that ζ satisfies the Assumptions 3.8, 3.9 and Condition (5.2),

then

P(ζ) = D(ζ). (5.4)

By exactly the same arguments as in the proof of Theorem 3.10 (ii) , the duality

P(µ, ξR) = D3(µ, ξR) follows immediately by taking ζ = ξR − λ in Theorem 5.3.

Proof of Theorem 3.12. Using Lemma 5.1 as well as the first duality P = D1 for ξR,

one has

P(µ, ξ) ≥ lim
R→∞

P(µ, ξR) = lim
R→∞

D3(µ, ξR) = D3(µ, ξ).

Hence we conclude the proof by the weak duality P(µ, ξ) ≤ D3(µ, ξ).
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5.3 Proof of Theorem 5.3

Recall that T = {0 = t0 < · · · < tm = 1}, ∆ti = ti − ti−1 for i = 1, · · · ,m and

∆T = min1≤i≤m∆ti. Let ζ : Ω → R be measurable and boundedly supported. Then

for each 0 ≤ δ < ∆T, denote Ωδ := D([0, 1 + δ],Rd) and all its elements by ωδ. Put

Tδ := {0 = tδ0 < · · · < tδm = 1 + δ}, where tδi := kδti for all i = 0, · · · ,m with

kδ := 1 + δ. Define ζδ : Ωδ → R by

ζδ(ωδ) := ζ(ω̄δ), where ω̄δ ∈ Ω is defined by ω̄δ
t := ωδ

kδt
for all t ∈ [0, 1]. (5.5)

Proposition 5.4. Assume that ζ satisfies the Assumptions 3.8, 3.9 and Condition

(5.2). Then:

(i) For all 0 ≤ δ < ∆T, the ζδ defined by (5.5) satisfies the Assumptions 3.8, 3.9 and

Condition (5.2).

(ii) There is a continuous function η : R+ → R+ with η(0) = 0 such that for all

0 ≤ δ < δ′ < ∆T the following inequality holds

∣∣∣ζδ(ωδ)− ζδ
′

(ωδ′,δ)
∣∣∣ ≤ η

(δ′ − δ

1 + δ′

)(
1 +

m∑

i=0

|ωδ
tδ
i
|+

∫ 1+δ

0
|ωδ

t |dt
)
for all ωδ ∈ Ωδ,

where ωδ′,δ ∈ Ωδ′ is defined by

ωδ′,δ
t := ωδ

(t−tδ
′

i +tδi )∧t
δ
i+1

for all t ∈ [tδ
′

i , t
δ′

i+1] and i = 0, · · · ,m− 1.

Proof. (i) will be proved in Lemmas 5.10, 5.11 and 5.12 in Section 5.5.

(ii) Clearly, ζδ
′

(ωδ′,δ) = ζ(ω̄δ′,δ), where

ω̄δ′,δ
t := ωδ′,δ

kδ′ t
for all t ∈ [0, 1].

Direct computation reveals that ω̄δ,′δ = ω̄δ ◦ bε with

ε :=
δ′ − δ

1 + δ′
(
∆t1, · · · ,∆tm

)
.

Hence by Assumption 3.9 one obtains
∣∣∣ζδ(ωδ)− ζδ

′

(ωδ′,δ)
∣∣∣ =

∣∣∣ζ(ω̄δ)− ζ(ω̄δ′,δ)
∣∣∣

≤ α(|ε|)
(
1 +

m∑

i=0

|ω̄δ
ti |+

∫ 1

0
|ω̄δ

t |dt
)

≤ α
(
|∆T|δ

′ − δ

1 + δ′

)(
1 +

m∑

i=0

|ωδ
tδi
|+

∫ 1+δ

0
|ωδ

t |dt
)
.

The proof is completed by taking η(·) = α(|∆T|·).

We are now ready to prove the required duality. Define

Ωδ
+ :=

{
ωδ ∈ Ωδ : ωδ

0 = 1 and ωδ
t ∈ Rd

+ for all t ∈ [0, 1 + δ]
}
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and the corresponding martingale optimal transport problem

Pδ := sup
P∈Mδ

+

EP[ζδ(Xδ)],

where similarly, Xδ = (Xδ
t )0≤t≤kδ denotes the canonical process and Mδ

+ denotes the

set of martingale measures supported on Ωδ
+. The dual problem is slightly different.

Denote further

Ωc,δ
+ :=

{
ωδ ∈ Ωδ

+ : ωδ
tδ
i
−
= ωδ

tδ
i
for all i = 1, · · · ,m

}

and define the dual problem by

D
c
δ := inf

(z,H)∈Dc
δ

z,

with Dc
δ given by

Dc
δ :=

{
(zδ ,Hδ) ∈ R×Aδ : zδ + (Hδ · ωδ)1 ≥ ζδ(ωδ) for all ωδ ∈ Ωc,δ

+

}
,

where, similarly to Definition 2.5, Aδ denotes the collection of all left-continuous

adapted processes with bounded variation such that the stochastic integral (Hδ ·Xδ)

is a supermartingale under all probability measures in Mδ
+.

The main technical step for our result is the following.

Lemma 5.5. Suppose that ζ satisfies Assumptions 3.8, 3.9 and Condition (5.2). Then

D
c
δ ≤ Pδ for all δ ≥ 0. (5.6)

The proof of Lemma 5.5 is adapted from Dolinsky & Soner [24] and is reported in

Section 5.4.

Lemma 5.6. Suppose that ζ satisfies Assumption 3.8, 3.9 and Condition (5.2). Then

lim inf
δ↓0

D
c
δ ≥ D(ζ) and lim sup

δ↓0
Pδ ≤ P(ζ). (5.7)

Proof. (i) For each (zδ,Hδ) ∈ Dc
δ with δ > 0 let us construct a robust super-replication

on Ω+. For any ω ∈ Ω+ define H0(ω) = Hδ
0(ω

δ,0) and

Ht(ω) := Hδ
t−ti+tδi

(ωδ,0) for all t ∈ (ti, ti+1] and i = 0, · · · ,m− 1,

where ωδ,0 ∈ Ωc,δ
+ is defined as before by

ωδ,0
t = ω(t−tδi+ti)∧ti+1

for all t ∈ [tδi , t
δ
i+1] and i = 0, · · · ,m− 1.

It is clear that H is F−adapted, left-continuous, with bounded variation, and (H ·X)

is a supermartingale under every P ∈ M+, hence H ∈ A. Moreover,

zδ +
(
Hδ · ωδ,0

)
1+δ

≥ ζδ(ωδ,0) for all ω ∈ Ω+. (5.8)
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Notice that
(
Hδ ·ωδ,0

)
1+δ

= (H ·ω)1, thus we obtain by Assumption 3.9 and Condition

(5.8)

zδ + (H · ω)1 ≥ ζ(ω)− η
( δ

1 + δ

)(
1 +

m∑

i=0

|ωti |+
∫ 1

0
|ωt|dt

)
for all ω ∈ Ω+,

which yields Dc
δ +

(
1 + (m+ 2)d

)
η
(

δ
1+δ

)
≥ D(ζ) and therefore

lim inf
δ↓0

D
c
δ ≥ D(ζ).

(ii) Let (δn)n≥1 be such that δn > 0 and δn ↓ 0. Then there is a sequence (Pn)n≥1 such

that

lim sup
n→∞

Pδn = lim sup
n→∞

EPn
[
ζδn(Xδn)

]
.

For any fixed δ0 > 0, we assume without loss of generality that δn ≤ δ0 for all n ≥ 1.

Then for each n ≥ 1, let us define P̃n := Pn ◦
(
X̃δn

)−1
where X̃δn(ωδn) := Xδ0(ωδ0,δn)

is the extended process from Ωδn to Ωδ0 . It follows by Proposition 5.4 (ii) that

EPn
[
ζδn(Xδn)

]
≤

(
1 + (m+ 2)d

)
η
(δ0 − δn
1 + δ0

)
+ EPn

[
ζδ0(X̃δn)

]

=
(
1 + (m+ 2)d

)
η
(δ0 − δn
1 + δ0

)
+ EP̄n

[
ζδ0(Xδ0)

]
.

Again by the same argument in Proposition 4.3 we obtain

lim sup
n→∞

Pδn ≤ 2
(
1 + (m+ 2)d

)
η
( δ0
1 + δ0

)
+ P(ζ)

which yields the required result since δ0 > 0 is arbitrary.

Proof of Theorem 5.3. Let (z,H) ∈ D(ζ), we know by definition z + (H · ω)1 ≥ ζ(ω),

∀ω ∈ Ω+. Taking expectation over each sides, it follows that

z ≥ EP[ζ(X)] for all P ∈ M+.

Then we get the weak duality P(ζ) ≤ D(ζ). The reverse inequality follows by Lemmas

5.5 and 5.6.

5.4 Proof of Lemma 5.5

The arguments are mainly adapted from Dolinsky & Soner [24] and the main idea is

to discretize the paths on the Skorokhod space. By Proposition 5.4 (i), the proof of

D
c
δ ≤ Pδ is not altered by the value of δ. We therefore consider δ = 0 in this subsection.

5.4.1 A probabilistic hedging problem

For all n ∈ N, put

A(n) :=
{
2−nq : q ∈ Nd

}
and B(n) :=

{
i
√
d2−n : i ∈ N

}
∪
{√

d2−n/j : j ∈ N∗
}
.

We then define a subspace Ω̂ := Ω̂(n) ⊆ Ω+ as follows.
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Definition 5.7. A path ω ∈ Ω+ belongs to Ω̂ if there exist non-negative integers

0 = K0 < K1 < · · · < Km+m and a partition
{
0 = τ̂0 < τ̂1 < · · · < τ̂Km+m = 1

}
such

that τ̂Ki+i = ti for 1 ≤ i ≤ m and

ωt =

m−1∑

i=0

(Ki+1+i−1∑

k=Ki+i

ωτ̂k1[τ̂k,τ̂k+1)(t) + ωti+11[τ̂Ki+1+i,ti+1)(t)
)
+ ω11{t=1},

where ωti ∈ A(n) for 1 ≤ i ≤ m and for 0 ≤ i < m

ωτ̂k ∈ A(n+k−Ki−i), Ki + i < k < Ki+1 + i+ 1,

τ̂k − τ̂k−1 ∈ B(n+k−Ki−i), Ki + i < k < Ki+1 + i+ 1.

Notice that Ω̂ is countable, then there exists a probability measure P̂ := P̂(n) on

Ω+ supported on Ω̂ which gives positive weight to every element of Ω̂. In particular,

the canonical process X has finitely many jumps P̂-almost surely. Denote by F̂ the

completed filtration of F under P̂. Put

Ĥ(n) :=
{
Ĥ : [0, 1] × Ω+ → Rd is F̂− predictable such that ‖Ĥ‖ ≤ n

}

and

Â(n) :=
{
Ĥ ∈ Ĥ(n) : (Ĥ ·X)t ≥ K for all t ∈ [0, 1], P̂-a.s. for some K ∈ R

}
.

Let

D̂(n)(ζ) :=
{
(z, Ĥ) ∈ R× Â(n) : z + (Ĥ ·X)1 ≥ ζ(X), P̂-a.s.

}

and define the robust superhedging problem under the dominating measure P̂

D
(n)(ζ) := inf

(z,Ĥ)∈D̂(n)(ζ)
z.

Let P̂ ⊆ P be the subset of probability measures supported on Ω̂, and M̂n ⊆ P̂ be

the subset of probability measures Q that have the following properties:

EQ
[Km+m∑

k=1

∣∣∣EQ[Xτ̂k |Fτ̂k−]−Xτ̂k−1

∣∣∣
]

≤ 1

n
,

where 0 < τ̂1(ω) < · · · < τ̂Km+m−1(ω) < 1 are the jumps times of the piecewise

constant process X(ω) with τ̂0(ω) = 0 and τ̂Km+m(ω) = 1. Then the required result

D
c(ζ) ≤ P(ζ) follows from the following Propositions 5.8 and 5.9.

Proposition 5.8. Assume that ζ satisfies Assumptions 3.8, 3.9 and is L∞−uniformly

continuous, then

lim sup
n→∞

D
(n)(ζ) ≤ P(ζ).
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Proof. (i) From Example 2.3 and Proposition 4.1 in Föllmer & Kramkov [25], it follows

that

D
(n)(ζ) = sup

Q∈P̂

EQ
[
ζ − n

Km+m∑

k=1

∣∣∣Xτ̂k−1
− EQ[Xτ̂k |Fτ̂k−]

∣∣∣
]
.

Since 0 ≤ ζ ≤ 1, we determine that D(n)(ζ) ≥ 0 and we have for every Q ∈ P̂\M̂n,

EQ
[
ζ − n

Km+m∑

k=1

∣∣∣Xτ̂k−1
− EQ[Xτ̂k |Fτ̂k−]

∣∣∣
]

≤ 0,

which yields

D
(n)(ζ) ≤ sup

Q∈M̂n

EQ[ζ(X)].

(ii) Let us take a sequence (Qn)n≥1 with Qn ∈ M̂n such that

lim sup
n→∞

{
sup

Q∈M̂n

EQ[ζ(X)]
}

= lim sup
n→∞

EQn [ζ(X)].

Since under each Qn the canonical processX is piecewise constant with jump times 0 <

τ̂1 < · · · < τ̂Km+m−1 < 1, X is a Qn−semimartingale. Then we have the decomposition

X = MQn − AQn , where AQn is a predictable process of bounded variation and MQn

is a martingale under Qn. Moreover, AQn is identified by

AQn

t =

Km+m−1∑

k=1

1[τ̂k,τ̂k+1)(t)

k∑

j=1

[
Xτ̂j−1

− EQn [Xτ̂j |Fτ̂j−]
]
for all t ∈ [0, 1),

and AQn

1 = limt→1A
Qn

t . It follows then EQn
[
|X1 −MQn

1 |
]
≤ EQn

[
|AQn

1 |
]
≤ 1/n and

Qn

[
‖AQn‖ ≥ n−1/2

]
≤ n1/2EQn

[Km+m−1∑

k=1

∣∣Xτ̂k−1
− EQn [Xτ̂k |Fτ̂k−]

∣∣
]

≤ n−1/2.

Since ζ is L∞−uniformly continuous, one obtains

lim sup
n→∞

EQn [ζ(X)] ≤ lim sup
n→∞

EQn [ζ(MQn)].

Let Pn = Qn ◦ (MQn)−1, then

sup
n≥1

EPn[|X1|] = sup
n≥1

EQn [|MQn

1 |]

≤ sup
n≥1

EQn [|MQn

1 −X1|] + sup
n≥1

EQn [X1]

≤ sup
n≥1

EQn [|MQn

1 −X1|] + sup
n≥1

EQn [X1 −MQn

1 ] + sup
n≥1

EQn [MQn

1 ]

≤ 1 +
2

n
≤ 3.
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By Assumptions 3.8 and 3.9, it follows that for any ε ∈ Rm
+ such that 0 < |ε| < ∆T

lim sup
n→∞

EPn[ζ(X)] ≤ lim sup
n→∞

EPn [ζ(Xfε)] +
(
1 + (m+ 2)d

)
α(|ε|).

Again with the same reasoning, we may prove

lim sup
n→∞

EPn [ζ(Xfε)] ≤ P(ζ).

Since ε is arbitrary we get

lim sup
n→∞

[
sup

Q∈M̂n

EQ[ζ(X)]
]

≤ P(ζ),

and hence the required result.

5.4.2 Time-space discretization

Discretization: For each ω ∈ Ωc
+ let us define τk := τ

(n)
k (ω) and Ki := K

(n)
i (ω) by

τ0 := 0, K0 := 0,

τ1 := t1 ∧
√
d2−n ∧ inf

{
t > 0 : |ωt − ω0| ≥ 2−n

}
,

τk+1 := t1 ∧ (τk +∆τk) ∧ inf
{
t > τk : |ωt − ωτk | ≥ 2−n

}
, ∆τk = τk − τk−1 for k ≥ 1.

Set further

K1 := min {k ∈ N : τk = t1} .

Recursively, we define for 1 ≤ i ≤ m− 1 and k ≥ Ki,

τKi+1 := ti+1 ∧ (ti +
√
d2−n) ∧ inf

{
t > ti : |ωt − ωti | ≥ 2−n

}
,

τk+1 := ti+1 ∧ (τk +∆τk) ∧ inf
{
t > τk : |ωt − ωτk | ≥ 2−n

}
for k ≥ Ki + 1

and

Ki+1 := min {k ∈ N : τk = ti+1} .

It is clear that

0 = τ0 < τ1 · · · < τKm = 1 and τKi
= ti for all i = 1, · · · ,m.

Moreover, for 0 ≤ i ≤ m− 1, Ki < k ≤ Ki+1 and t ∈ [τk−1, τk),

|ωt − ωτk−1
| ≤ 2−n and ∆τk+1 ≤ ∆τk ≤ 2−n.

Also by the continuity of ω at τKi
= ti for all i = 1, · · · ,m

|ωt − ωτKi−1
| ≤ 2−n for all t ∈ [τKi−1, ti] and i = 1, · · · ,m.
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Lifting: Set τ̂0 := 0 and for 0 ≤ i ≤ m− 1

τ̂Ki+1 := τ̂Ki
+

√
d2−n,

τ̂k := τ̂k−1 +
(
1−

√
d2−n/∆ti+1

)
sup

{
∆t > 0 : ∆t ∈ B(n+k−Ki−i), ∆t < ∆τk−1

}
,

for all Ki + i+ 2 ≤ k ≤ Ki+1 + i,

τ̂Ki+1+i+1 := ti+1.

Denote Π̂(ω) =
(
Π̂(ω)

)
0≤t≤1

by

Π̂t(ω) :=

m−1∑

i=0

{Ki+1+i−1∑

k=Ki+i

π(n+k−Ki−i)(ωτk)1[τ̂k,τ̂k+1)(t) + π(n)(ωti)1[τ̂Kr ,ti+1)(t)
}

+π(n)(ω1)1{t=1},

then Π̂(ω) ∈ Ω̂. For each Ĥ ∈ Â we may define

Ht(ω) :=

Km−1∑

k=0

Ĥτ̂k+1(ω)(Π̂(ω))1(τk(ω),τk+1(ω)](t) for all (ω, t) ∈ Ω+ × [0, 1]. (5.9)

Following the argument of Lemmas 3.5 and 3.6 of Dolinsky & Soner [24], we see that

the process H defined by (5.9) belongs to A, and more importantly, there exists some

constant C > 0 independent of n such that for all ω ∈ Ω+,

ρT(ω, Π̂(ω)) ≤ C2−n
(
1 + ‖ω‖

)
and

∣∣(H · ω)1 − (Ĥ(Π̂(ω)) · Π̂(ω))1
∣∣ ≤ Cn2−n. (5.10)

Proposition 5.9. Assume that ζ satisfies Condition (5.2), then one has

lim inf
n→∞

D
(n)(ζ) ≥ D

c(ζ).

Proof. Take an arbitrary (ẑ, Ĥ) ∈ D̂. Then for any ω ∈ Ω+ one has Π̂(ω) ∈ Ω̂ and

thus

ẑ + (Ĥ(Π̂(ω)) · Π̂(ω))1 ≥ ζ(Π̂(ω)) for all ω ∈ Ω+.

Take H constructed as (5.9), then by (5.10), we have H ∈ A and

ẑ + (H · ω)1 ≥ ζ(Π̂(ω))− Cn2−n for all ω ∈ Ω+.

Moreover, by the construction of Π̂(ω) one has ‖Π̂(ω)‖ ≤ ‖ω‖. Notice that ζ is

boundedly supported, saying by
{
ω ∈ Ω : ‖ω‖ ≤ R

}
. Then by (5.2) one has a

continuous increasing function β : R+ → R+ with β(0) = 0 such that for all ω ∈ Ω+,

ζ(Π̂(ω)) ≥ ζ(ω)− 1{‖ω‖≤R}β
(
ρT

(
ω, Π̂(ω)

))
≥ ζ(ω)− β

(
C(1 +R)2−n

)
,

which implies that
(
ẑ + β

(
C(1 +R)2−n

)
+ Cn2−n,H

)
∈ Dc(ζ). Hence

D
c(ζ) ≤ D

(n)(ζ) + β
(
C(1 +R)2−n

)
+ Cn2−n,

which yields the required result.
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5.5 Proof of Proposition 5.4 (i)

Recal that ξ satisfies Assumptions 3.8, 3.9 and Condition (5.2). The required statement

follows from the three lemmas below.

Lemma 5.10. lim supn→∞ ξδ(ωδ,n) ≤ ξ(ωδ,0) holds for any sequence (ωδ,n)n≥0 ⊆ Ωδ

such that

ωδ,n S∗

−→ ωδ,0 and ωδ,n

tδi
−→ ωδ,0

tδi
for all i = 0, · · · ,m− 1.

Proof. For the sake of simplicity we may assume that

lim sup
n→∞

ξδ(ωδ,n) = lim
n→∞

ξδ(ωδ,n).

Since (ωδ,n)n≥1 is S−tight, then by the S−tightness criteria and the construction in

(5.5) we determine that (ω̄δ,n)n≥1 is again S−tight, which yields a convergent subse-

quence (ω̄δ,nk)k≥1 and a limit ω0 ∈ Ω, i.e. ω̄δ,nk
S∗

−→ ω0. Clearly, ωδ,n

tδi
−→ ωδ,0

tδi
implies

in particular that ω̄δ,nk
ti

−→ ω̄δ,0
ti

for all i = 0, · · · ,m− 1. Next, ωδ,nk
S∗

−→ ωδ,0 yields a

countable set T ⊆ [0, 1 + δ) such that

ωδ,nk
t −→ ωδ,0

t for all t ∈ [0, 1 + δ]\T ,

which yields another countable set T ′ ⊆ [0, 1) such that

ω̄δ,nk
t −→ ω̄δ,0

t for all t ∈ [0, 1]\T ′.

Hence one has ω̄δ,0 = ω0 and thus

ω̄δ,nk
S∗

−→ ω̄δ,0 and ω̄δ,nk
ti

−→ ω̄δ,0
ti

for all i = 0, · · · ,m− 1,

which implies that

lim
k→∞

ξδ(ωδ,nk) = lim
k→∞

ξ(ω̄δ,nk) ≤ ξ(ω̄δ,0) = ξδ(ωδ,0).

Lemma 5.11. There exists a continuous function αδ : R+ → R+ with αδ(0) = 0 such

that for all ε = (ε1, · · · , εm) ∈ Rm
+ sufficiently small one has

∣∣ξδ(ωδ)− ξδ
(
ωδ
fδ
ε

)∣∣,
∣∣ξδ(ωδ)− ξδ

(
ωδ
bδ
ε

)∣∣ ≤ αδ(|ε|)
(
1 +

m∑

i=0

|ωδ
tδi
|+

∫ 1+δ

0
|ωδ

t |dt
)
,

where f δε , b
δ
ε : [0, 1+δ] → [0, 1+δ] are two non-decreasing functions defined as in (3.4)

and (3.5).

Proof. We only prove the inequality on f δε , while the inequality on bδε follows by the

same arguments. Define f̄ δε : [0, 1 + δ] → [0, 1 + δ] by

f̄ δε(t) :=
1

kδ
f δε(kδt) for all t ∈ [0, 1].
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Thus by the construction of f δε we get

f̄ δε(t) =
1

kδ

m∑

i=1

1(tδi−1,t
δ
i ]
(kδt)

(
tδi−1 +

∆tδi
∆tδi − εi

(
kδt− tδi−1 − εi

)+)

=

m∑

i=1

1(ti−1,ti](t)
(
ti−1 +

∆ti
∆ti − εi/kδ

(
t− ti−1 −

εi
kδ

)+)
,

which implies that

ω̄δ
fδ
ε
(t) = ωδ

kδ f̄δ
ε
(t) for all t ∈ [0, 1]

and thus ω̄δ
fδ
ε

= ω̄δ ◦ f̄ δε . Hence
∣∣ξδ(ωδ)− ξδ

(
ω̄δ
fδ
ε

)∣∣ =
∣∣ξ(ω̄δ)− ξ

(
ω̄δ ◦ f̄ δε

)∣∣

≤ α(|ε|/kδ)
(
1 +

m∑

i=0

|ω̄δ
ti |+

∫ 1

0
|ω̄δ

t |dt
)

= α(|ε|/kδ)
(
1 +

m∑

i=0

|ωδ
tδi
|+ 1

kδ

∫ 1+δ

0
|ωδ

t |dt
)

≤ α(|ε|/kδ)
(
1 +

m∑

i=0

|ωδ
tδi
|+

∫ 1+δ

0
|ωδ

t |dt
)
.

The proof is completed by taking αδ(·) = α(·/kδ).

Lemma 5.12. ξδ is L∞−uniformly continuous and satisfies Condition (5.2) for ρTδ .

Proof. For any ωδ, vδ ∈ Ωδ such that ‖vδ‖ ≤ ‖ωδ‖, one has

ξδ(ωδ)− ξδ(vδ) = ξ(ω̄δ)− ξ(v̄δ) ≤ β
(
ρT(ω̄

δ, v̄δ)
)
,

∣∣ξδ(ωδ)− ξδ(vδ)
∣∣ =

∣∣ξ(ω̄δ)− ξ(v̄δ)
∣∣.

It is thus enough to show that

ρ[ti−1,ti](ω̄
δ, v̄δ) ≤ ρ[tδi−1,t

δ
i ]
(ωδ, vδ) for all i = 1, · · · ,m

and

∣∣∣
∫ 1

0

(
ω̄δ
t − v̄δt

)
dt
∣∣∣ ≤

∣∣∣
∫ 1+δ

0

(
ωδ
t − vδt

)
dt
∣∣∣.

Let Γ[s,t] denotes the collection of strictly increasing continuous functions γ defined on

[s, t] such that γ(s) = s and γ(t) = t. For any γδ ∈ Γ[tδi−1,t
δ
i ]
, define γ ∈ Γ[ti−1,ti] by

γ(t) :=
1

kδ
γδ
(
kδt

)
for all t ∈ [ti−1, ti].

Hence

sup
ti−1≤t≤ti

∣∣ω̄δ
γ(t) − v̄δt

∣∣ = sup
ti−1≤t≤ti

∣∣ωδ
kδγ(t)

− vδkδt
∣∣ = sup

ti−1≤t≤ti

∣∣ωδ
γδ((kδt)

− vδkδt
∣∣

= sup
tδi−1≤t≤tδi

∣∣ωδ
γδ(t) − vδt

∣∣
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and

sup
ti−1≤t≤ti

∣∣γ(t)− t
∣∣ = sup

ti−1≤t≤ti

∣∣∣
1

kδ
γδ
(
kδt

)
− t

∣∣∣ =
1

kδ
sup

ti−1≤t≤ti

∣∣γδ
(
kδt

)
− kδt

∣∣

=
1

kδ
sup

tδ
i−1≤t≤tδ

i

∣∣γδ(t)− t
∣∣ ≤ sup

tδ
i−1≤t≤tδ

i

∣∣γδ(t)− t
∣∣,

which implies that

ρ[ti−1,ti](ω̄
δ, v̄δ) ≤ ρ[tδi−1,t

δ
i ]
(ωδ, vδ).

We may thus conclude by

∣∣∣
∫ 1

0

(
ω̄δ
t − v̄δt

)
dt
∣∣∣ =

1

kδ

∣∣∣
∫ 1+δ

0

(
ωδ
t − vδt

)
dt
∣∣∣ ≤

∣∣∣
∫ 1+δ

0

(
ωδ
t − vδt

)
dt
∣∣∣.

A Appendix

A.1 Tightness under S−topology

Recall that Ω = D([0, 1],Rd) is the Skorokhod space of càdlàg paths on [0, 1], with

canonical processX = (Xt)0≤t≤1 and canonical filtration F = (Ft)0≤t≤1; and P denotes

the set of all probability measures on (Ω,F1). The following result is recalled from

Jakubowski [41] and shows that under S−topology, both Skorokhod representation

theorem and Prohorov’s theorem hold true.

Theorem A.1 (Jakubowski). (i)Let (Pn)n≥1 ⊆ P be a sequence of probability measures

such that X is a Pn−supermartingale for all n ≥ 1, then

sup
n≥1

sup
0≤t≤1

EPn
[
|Xt|

]
< +∞ =⇒ (Pn)n≥1 is S − tight.

(ii) Let (Pn)n≥1 ⊆ P be a S−tight sequence of probability measures. Then there exist

a subsequence (Pnk
)k≥1, a probability measure P ∈ P and a countable subset T ⊂ [0, 1)

such that for all finite sets {u1 < u2 < · · · < ur} ⊂ [0, 1]\T ,

Pnk
◦ (Xu1 , · · · ,Xur)

−1 −→ P ◦ (Xu1 , · · · ,Xur )
−1 as k → ∞. (A.1)

In particular, Xnk
∗

=⇒D X0 as k → ∞.

A.2 Dual space of M

Recall that M denotes the space of all finite signed measures µ on Rd satisfying
∫

Rd

(
1 + |x|

)
|µ|(dx) < +∞,

and it is equipped with the topology induced by the convergence
W1−→. We would like

identity its dual space as Λ, where the arguments are mainly adapted from Lemma
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3.2.3 of Deuschel & Stroock [22]. Notice that the topology on M is generated by all

the following open balls

Uλ1,··· ,λm,c(µ) :=
{
ν ∈ M :

∣∣µ(λi)− ν(λi)
∣∣ < c for all 1 ≤ i ≤ m

}
,

where λi ∈ Λ for 1 ≤ i ≤ m and c > 0. Let O be the collection of open sets generated

by the open balls above, then clearly, every open set U ∈ O could be expressed as

U =
⋃

α

Uλ1
α,··· ,λ

nα
α ,cα(µ

α) with λ ∈ Λ for 1 ≤ 1 ≤ nα, nα ∈ N and cα > 0.

Theorem A.2. The space (M,O) is a Hausdorff locally convex space, whose dual

space can be identified by M∗ = Λ.

Proof. (i) First, (M,O) is clearly a topological vector space. For every µ ∈ M, let

U(µ) :=
{
Uλ1

α,··· ,λ
nα
α ,cα(µ) : λ

i
α ∈ Λ1 for 1 ≤ i ≤ nα, nα ∈ N and cα > 0

}
.

By definition, one can check that U(µ) is a local basis of µ for every µ ∈ M. More-

over, by denoting 0 ∈ M the null measure, U(0) is a local basis of absolutely convex

absorbent sets and thus M is a locally convex space.

(ii) Now, let us identify the dual space of M. First, for every λ ∈ Λ, the map

Fλ : M → R defined by Fλ(µ) := µ(λ) gives a unique element in M, and hence

Λ ⊆ M∗. On the other hand, for any F ∈ M∗, we define a function λF by

λF (x) := F (δ{x}) for all x ∈ Rd.

Clearly one has the following implication

xn → x0 =⇒ δ{xn}
O−→ δ{x0} =⇒ λF (xn) → λF (x0),

which implies that λF is continuous. It follows that the set F−1
(
(−1, 1)

)
is open and

thus there exists some Uλ1,··· ,λm,c(0) such that

Uλ1,··· ,λm,c(0) ⊆ F−1
(
(−1, 1)

)
,

where λi ∈ Λ for all i = 1, · · · ,m and c > 0. Now for any µ ∈ M such that∑m
i=1

∣∣µ(λi)| > 0, we define

µ̄ :=
cµ∑m

i=1

∣∣µ(λi)
∣∣ .

Then µ̄ ∈ Uλ1,··· ,λm,c(0) and thus |F (µ̄)| < 1. It follows that

|F (µ)| ≤
m∑

i=1

∣∣µ(λi)| for all µ ∈ M,

and hence λF ∈ Λ. When µ is a linear combination of Dirac measures, it is obvious that

F (µ) = µ(λF ). Moreover, since such µ are dense in M, it follows that F (µ) = µ(λF )

holds for all µ ∈ M.
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[14] A. Cox and J. Oblój : Robust pricing and hedging of double no-touch options,

Finance and Stochastics, 15(3): 573–605, 2011.
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[19] M. Davis, J. Oblój and V. Raval : Arbitrage Bounds for Weighted Variance Swap

Prices, Mathematical Finance 24(4): 821-854.

[20] F. Delbaen and W. Schachermayer : A general version of the fundamental theorem

of asset pricing, Mathematische Annalen, Vol. 300 (1994), pp. 463-520.

[21] L. Denis and C. Martini : A theoretical framework for the pricing of contin-

gent claims in the presence of model uncertainty, Ann. Appl. Probab. Volume 16,

Number 2 (2006), 827-852.

[22] J.D. Deuschel and D.M. Stroock : Large Deviations, American Mathematical

Society, 978-0821827574, 2001.

[23] Y. Dolinsky and H.M. Soner : Robust hedging and martingale optimal transport

in continuous time, Probability Theory and Related Fields, to appear.

[24] Y. Dolinsky and H.M. Soner : Martingale optimal transport in the Skorokhod

space, preprint, 2014.
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