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marginal constraints ∗

Gaoyue Guo† Xiaolu Tan‡ Nizar Touzi§
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Abstract

The Skorokhod embedding problem aims to represent a given probability measure
on the real line as the distribution of Brownian motion stopped at a chosen stopping
time. In this paper, we consider an extension of the optimal Skorokhod embedding
problem in Beiglböck, Cox & Huesmann [1] to the case of finitely-many marginal
constraints1. Using the classical convex duality approach together with the optimal
stopping theory, we obtain the duality results which are formulated by means of
probability measures on an enlarged space. We also relate these results to the
problem of martingale optimal transport under multiple marginal constraints.

Key words. Skorokhod embedding, martingale optimal transport, model-free pric-
ing, robust hedging.

AMS subject classification (2010). Primary: 60G40, 60G05; Secondary: 49M29.

1 Introduction

Let µ be a probability measure on R, with finite first moment and centered, the
Skorokhod embedding problem (SEP) consists in finding a stopping time τ on a
Brownian motion W such that Wτ ∼ µ and the stopped process Wτ∧· :=

(

Wτ∧t

)

t≥0

is uniformly integrable. We refer the readers to the survey paper [36] of Ob lój for
a comprehensive account of the field.

In this paper, we consider its extension to the case of multiple marginal con-
straints. Namely, let µ := (µ1, · · · , µn) be a given family of centered probability
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1While producing the final version of this paper, we knew from Mathias Beiglböck about the new

development in [2] that is also in the final producing version and extends the previous work [1] to the
case of finitely-many marginal contraints. We emphasize that our approach is of completely different
nature.
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measures such that the family is increasing in convex ordering, i.e. for every convex
function φ : R → R, one has

∫

R

φ(x)µk(dx) ≤

∫

R

φ(x)µk+1(dx) for all k = 1, · · · , n− 1.

The extended SEP is to find an increasing family of stopping times τ := (τ1, · · · , τn)
such that Wτk ∼ µk for all k = 1, · · · , n and the stopped process Wτn∧· is uniformly
integrable. We study an associated optimization problem, which consists in maxi-
mizing the expected value of some reward function among all such embeddings.

One of the motivations to study this problem is its application in finance to
compute the arbitrage-free model-independent price bounds of contingent claims
consistent with the market prices of vanilla options. Mathematically, the under-
lying asset is required to be a martingale according to the no-arbitrage condition
and the market calibration allows to recover the marginal laws of the underlying
at certain maturities (see e.g. Breeden & Litzenberger [7]). Then by consider-
ing all martingales fitting the given marginal distributions, one can obtain the
arbitrage-free price bounds. Based on the fact that every continuous martingale
can be considered as a time-changed Brownian motion by Dambis-Dubins-Schwarz
theorem, Hobson studied the model-free hedging of lookback options in his seminal
paper [25] by means of the SEP. The main idea of his poineering work is to ex-
ploit some solution of the SEP satisfying some optimality criteria, which yields the
model-free hedging strategy and allows to solve together the model-free pricing and
hedging problems. Since then, the optimal SEP has received substantial attention
from the mathematical finance community and various extensions were acheived in
the literature, such as Cox & Hobson [9], Hobson & Klimmek [27], Cox, Hobson &
Ob lój [10], Cox & Ob lój [11] and Davis, Ob lój & Raval[12], Ob lój & Spoida [37],
etc. A thorough literature is provided in Hobson’s survey paper [26].

Beiglböck, Cox and Huesmann generalized this heuristic idea and formulated the
optimal SEP in [1], which recovered the previous known results by a unifying for-
mulation. Namely, their main results are twofold. First, they establish the expected
identity between the optimal SEP and the corresponding model-free superhedging
problem. Second, they derive the chacterization of the optimal embedding by a ge-
ometric pathwise property which allows to recover all previous known embeddings
in the literature.

The problem of model-free hedging has also been approached by means of
the martingale optimal transport, as initiated by Beiglböck, Henry-Labordère &
Penkner [3] in discrete-time case and Galichon, Henry-Labordère & Touzi [20] in
continuous-time case. Further developpement enriches this literature, such as Bei-
glböck & Juillet [4], , Henry-Labordère & Touzi [24], Henry-Labordère, Tan & Touzi
[23]. An remarkable contribution for the continuous-time martingale optimal trans-
port is due to Dolinsky and Soner [14, 15]. We also refer to Tan and Touzi [42] for
the optimal transport problem under more general controlled stochastic dynamics.

Our objective of this paper is to revisit the duality result of [1] and to extend the
duality to the case of multiple marginal constraints. Our approach uses tools from
a completely different nature. First, by following the convex duality approach, we
convert the optimal SEP into an infimum of classical optimal stopping problems.
Next, we use the standard dynamic programming approach to relate such opti-
mal stopping problems to model-free superhedging problems. We observe that the
derived duality allows to reproduce the geometric characterization of the optimal
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embedding introduced in [1], see e.g. [21]. Finally, we show that our result induces
the duality for a class of martingale optimal transport problems in the space of
continuous paths.

The paper is organized as follows. In Section 2, we formulate our optimal SEP
under finitely-many marginal constraints and provide two duality results. In Section
3 the duality of optimal SEP together with time-change arguments gives the duality
for the martingale optimal transport problem under multi-marginal constraints. We
finally provide the related proofs in Section 4.

Notations. (i) Let Ω := C(R+,R) be the space of all continuous paths ω on
R+ such that ω0 = 0, B be the canonical process, P0 be the Wiener measure,
F := (Ft)t≥0 be the canonical filtration generated by B, and Fa := (Fa

t )t≥0 be the
augmented filtration under P0.

(ii) Define for some fixed integer n ≥ 1 the enlarged canonical space by Ω := Ω×Θ
(see El Karoui and Tan [18, 19]), where Θ :=

{

(θ1, · · · , θn) ∈ Rn
+ : θ1 ≤ · · · ≤

θn
}

. All the elements of Ω are denoted by ω̄ := (ω, θ) with θ := (θ1, · · · , θn).
Denote further by (B,T ) (with T := (T1, · · · , Tn)) the canonical element on Ω,
i.e. Bt(ω̄) := ωt and T (ω̄) := θ for every ω̄ = (ω, θ) ∈ Ω. The enlarged canonical
filtration is denoted by F := (F t)t≥0, where F t is generated by (Bs)0≤s≤t and all
the sets {Tk ≤ s} for all s ∈ [0, t] and k = 1, · · · , n. In particular, all random
variables T1, · · · , Tn are F−stopping times.

(iii) We endow Ω with the compact convergence topology, and Θ with the classical
Euclidean topology, then Ω and Ω are both Polish spaces (separable, complete
metrizable space). In particular, F∞ :=

∨

t≥0 F t is the Borel σ−field of the Polish

space Ω (see Lemma A.1).

(iv) Denote by C1 := C1(R) the space of all continuous functions on R with linear
growth.

(v) Throughout the paper UI, a.s. and q.s. are respectively the abbreviations
of uniformly integrable, almost surely and quasi-surely. Moreover, given a set of
probability measures N (e.g. N = P and N = M in the following) on some
measurable space, we write N−q.s. to represent that some property holds under
every probability of N .

2 An optimal Skorokhod embedding problem

and the dualities

In this section, we formulate an optimal Skorokhod embedding problem (SEP)
under finitely-many marginal constraints, as well as its dual problems. We then
provide two duality results.

2.1 An optimal Skorokhod embedding problem

Throughtout the paper, µ := (µ1, · · · , µn) is a vector of n probability measures on
R and we denote, for any integrable function φ : R → R,

µk(φ) :=

∫

R

φ(x)µk(dx) for all k = 1, · · · , n.
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The vector µ is said to be a peacock if each probability µk has finite first moment,
i.e. µk(|x|) < +∞, and µ is increasing in convex ordering, i.e, k 7→ µk(φ) is non-
decreasing for every convex function φ. A peacock µ is called centered if µk(x) = 0
for all k = 1, · · · , n. Denote by P� the collection of all centered peacocks.

Optimal SEP As in Beiglböck, Cox & Huesmann [1], we shall consider the
problem in a weak setting, i.e. the stopping times may be identified by probability
measures on the enlarged space Ω. Recall that the elements of Ω are denoted
by ω̄ :=

(

ω, θ = (θ1, · · · , θn)
)

and the canonical element is denoted by
(

B,T =
(T1, · · · , Tn)

)

, and in particular T1, · · · , Tn are all F−stopping times. Let P(Ω) be
the space of all probability measures on Ω, and define

P :=
{

P ∈ P(Ω) : B is an F− Brownian motion and BTn∧· is UI under P

}

.(2.1)

Set for any given family of probability measures µ = (µ1, · · · , µn)

P(µ) :=
{

P ∈ P : BTk

P
∼ µk for all k = 1, · · · , n

}

. (2.2)

As a consequence of Kellerer’s theorem in [33], P(µ) is nonempty if and only if
µ ∈ P�.

Let Φ : Ω → R be a measurable function, then Φ is called non-anticipative if
Φ(ω, θ) = Φ

(

ωθn∧·, θ
)

for every (ω, θ) ∈ Ω. Define the optimal SEP for a non-
anticipative function Φ by

P (µ) := sup
P∈P(µ)

EP
[

Φ(B,T )
]

, (2.3)

where the expectation of a random variable ξ is defined by EP[ξ] = EP[ξ+]−EP[ξ−]
with the convention ∞ − ∞ = −∞. The problem is well-posed if there exists at
least a P ∈ P(µ) such that EP[|Φ(B,T )|] < +∞. We emphasize that Φ is non-
anticipative throughout the paper.

Remark 2.1. A µ−embedding is a collection

α =
(

Ωα,Fα,Pα,Fα = (Fα
t )t≥0,W

α, τα = (τα1 , · · · , τ
α
n )

)

,

where Wα is an Fα−Brownian motion, τα1 , · · · , τ
α
n are increasing Fα−stopping

times such that Wα
ταn∧· is uniformly integrable, and Wα

τα
k

∼ µk for all k = 1, · · · n.
We observe that for every centered peacock µ, there exists a one-to-one correspon-
dence between P(µ) and the set of µ−embeddings. Indeed, it is clear that every
µ−embedding α induces a probability measure P := P

α
◦ (Wα, τα)−1 ∈ P(µ). Con-

versely, every P ∈ P(µ) induces a µ−embedding.

2.2 The duality results

We introduce two dual problems. Recall that P0 is the Wiener measure on Ω =
C(R+,R) under which the canonical process B is a standard Brownian motion,
F = (Ft)t≥0 is the canonical filtration and Fa = (Fa

t )t≥0 is the augmented filtration
by P0. Denote by T a the collection of all increasing families of Fa−stopping times
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τ = (τ1, · · · , τn) such that the process Bτn∧· is uniformly integrable. Define also
the class of functions

Λ := Cn
1 =

{

λ := (λ1, · · · , λn) : λk ∈ C1 for all k = 1, · · · n
}

. (2.4)

For µ = (µ1, · · · , µn), λ = (λ1, · · · , λn) and
(

ω, θ = (θ1, · · · , θn)
)

∈ Ω, we denote

µ(λ) :=

n
∑

k=1

µk(λk) and λ(ωθ) :=

n
∑

k=1

λk(ωθi) with ωθ := (ωθ1 , · · · , ωθn).

Then the first dual problem for the optimal SEP (2.3) is given by

D0(µ) := inf
λ∈Λ

{

sup
τ∈T a

EP0
[

Φ(B, τ) − λ(Bτ )
]

+ µ(λ)
}

. (2.5)

As for the second dual problem, we return to the enlarged space Ω. Given P ∈ P ,
an F−adapted process M = (Mt)t≥0 is called a strong P−supermartingale if

EP
[

Mτ2

∣

∣Fτ1

]

≤ Mτ1 , P− a.s.

for all F−stopping times τ1 ≤ τ2. Let L2
loc be the space of all F−progressively

measurable processes H = (Ht)t≥0 such that

∫ t

0
H

2
sds < +∞ for every t ≥ 0, P − q.s..

For H ∈ L2
loc, the stochastic integral (H ·B) :=

∫ ·
0HsdBs is well defined P−a.s. for

all P ∈ P . We introduce a subset of processes:

H :=
{

H ∈ L2
loc : (H · B) is a P− strong supermartingale for all P ∈ P

}

.

Denote further

D :=
{

(λ,H) ∈ Λ ×H : λ(BT ) + (H ·B)Tn
≥ Φ(B,T ), P − q.s.

}

,

and the second dual problem is given by

D(µ) := inf
(λ,H)∈D

µ(λ). (2.6)

Loosely speaking, the two dual problems dualize respectively different constraints
of the primal problem (2.3). By penalizing the marginal constraints, we obtain the
first dual problem D0(µ) of (2.5), where a multi-period optimal stopping problem
appears for every fixed λ ∈ Λ. Then the second dual problem D(µ) of (2.6) follows
by the resolution of the optimal stopping problem via the Snell envelop approach
and the Doob-Meyer decomposition.

Our main result of this section is the following duality results.

Assumption 2.2. The non-anticipative function Φ is bounded from above, and
θ 7→ Φ(ω, θ) is upper-semicontinuous for each ω ∈ Ω.

5



Assumption 2.3. One of the following conditions holds true.
(i)The reward function Φ admits the representation Φ(ω̄) =

∑n
k=1 Φk(ω, θ1, · · · , θk),

where for each k = 1, · · · , n, Φk : Ω × Rk
+ satisfies that Φk(ω, θ1, · · · , θk) =

Φk(ωθk∧·, θ1, · · · , θk), the map θk 7→ Φk(ω̄) is càdlàg and

(θ1, · · · , θk−1) 7→ Φk(ω, θ1, · · · , θk)

is uniformly continuous for 0 ≤ θ1 ≤ · · · ≤ θk−1 ≤ θk, uniformly in θk.
(ii) The map ω̄ 7→ Φ(ω̄) is upper-semicontinuous.

Theorem 2.4. (i) Under Assumption 2.2, there is some P
∗
∈ P(µ) such that

EP
∗

[Φ] = P (µ) = D0(µ).

(ii) Suppose in addition that Assumption 2.3 holds true, then

P (µ) = D0(µ) = D(µ).

Remark 2.5. (i) Based on the first dual problem D0(µ) in (2.5), a numerical
algorithm has been obtained in Bonnans and Tan [6] for the above optimal SEP.

(ii) The second dual problem D(µ) in (2.6) is similar to that in Beiglböck, Cox and
Huesmann [1], where they use a continuous martingale instead of the stochastic
integral (H · B) in our formulation.

(iii) The duality result in [1, 2] is established under Assumptions 2.2 and 2.3 (ii) .
Our Assumption 2.2 (i) does not involve any regularity in ω, and allows to handle
examples as Φ(ω̄) =

∑n
k=1 ϕ(ω, θk) for some non-anticipative càdlàg process ϕ :

Ω × R+ → R.

3 Application to a class of martingale trans-

port problems

In this section, we use the previous duality results of the optimal SEP to study a
continuous time martingale transport problem under multiple marginal constraints.
As an application in finance to study the robust superhedging problem, the multi-
marginal case is very natural. Namely, when the vanilla options are available for
trading for several maturities, which allows to recover the marginal distributions
of the underlying asset at several times, we can formulate the robust superhedging
problem as a martingale transport problem under multiple marginal constraints.

3.1 Robust superhedging and martingale transport

Define the canonical process X := (Xt)0≤t≤1 by Xt = B1∧t for all t ∈ [0, 1] and
its natural filtration F̃ := (F̃t)0≤t≤1. Denote further by M the collection of all
martingale measures P̃, i.e. the probability measures under which X is a martingale.
Let I := (0 < t1 < · · · < tn = 1) be a set of time instants and define the set of
martingale transport plans for µ ∈ P�

M(µ) :=
{

P̃ ∈ M : Xtk
P̃
∼ µk for all k = 1, · · · , n

}

.

6



By Karandikar [31], there is a non-decreasing F̃−progressive process 〈X〉 which
coincides with the quadratic variation of X, P̃−a.s. for every martingale measure
P̃ ∈ M. Denote

〈X〉−1
t := inf

{

s ≥ 0 : 〈X〉s > t
}

and Wt := X〈X〉−1
t

for every t ≥ 0.

For a measurable function ξ : Ω → R, the martingale transport problem under
multiple marginal constraints is defined by

P̃ (µ) := sup
P̃∈M(µ)

EP̃
[

ξ(X)
]

. (3.7)

Denote by H̃ the collection of all F̃−progressive processes H̃ := (H̃t)0≤t≤1 such that

∫ 1

0
H̃2

s d〈X〉s < +∞, M− q.s. and (H̃ ·X) is P̃− supermartingale for all P̃ ∈ M.

Then the two dual problems are given by

D̃0(µ) := inf
λ∈Λ

{

sup
P̃∈M

EP̃
[

ξ
(

X
)

− λ(XI)
]

+ µ(λ)
}

and D̃(µ) := inf
(λ,H̃)∈D̃

µ(λ),

where

λ(XI) :=
n
∑

i=1

λi(Xti) with XI := (Xt1 , · · · ,Xtn)

and

D̃ :=
{

(λ, H̃) ∈ Λ × H̃ : λ(XI) + (H̃ ·X)1 ≥ ξ
(

X
)

, M− q.s.
}

.

It is easy to check that the weak dualities hold:

P̃ (µ) ≤ D̃0(µ) ≤ D̃(µ). (3.8)

Remark 3.1. The problem D̃(µ) has a natural interpretation in financial mathe-
matics as the minimal robust superhedging cost of the exotic option, where λ and
H̃ are called the static and dynamic strategy, respectively. Here robustness refers
to the fact that the underlying probability measure is not fixed a priori, so that the
superhedging requirement is imposed under all possible models.

3.2 Duality results

Using the duality results of the optimal SEP in Theorem 2.4, we can establish the
duality for the above martingale transport problem.

Theorem 3.2. Assume that the reward function ξ admits the representation

ξ(X) = Φ
(

W, 〈X〉t1 , · · · , 〈X〉tn
)

,

for some Φ : Ω → R satisfying Assumptions 2.2 and 2.3. Then

P̃ (µ) = D̃0(µ) = D̃(µ).
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Example 3.3. Let φ :
(

R+×R3
)n

→ R be upper-semicontinuous and bounded from
above. Then the ξ defined below satisfies the condition in Theorem 3.2.

ξ(X) = φ
(

〈X〉ti ,Xti ,X ti ,X ti , i = 1, · · · n
)

, (3.9)

where Xt := sup0≤s≤tXs and Xt := inf0≤s≤tXs.

Remark 3.4. In Dolinsky & Soner [14], the duality is established (in a stronger
sense) for the case n = 1, for a general payoff function ξ which is Lipschtiz with
respect to the uniform metric. In our Theorem 3.2, the reward function ξ is more
specific, but it may include the dependence on the quadratic variation of the underly-
ing process, which is related to the variance option in finance. Moreover, our results
is given for the multiple marginal case, such an extension for their technique seems
not obvious, see also the work of Hou & Ob lój [28] and Biagini, Bouchard, Kardaras
& Nutz [5]. More recently, an analogous duality is proved in the Skorokhod space
under suitable conditions in Dolinsky & Soner [15] , where the underlying asset is
assumed to take values in some subspace of càdlàg functions.

Proof of Theorem 3.2. Combining the dualities P (µ) = D0(µ) = D(µ) in
Theorem 2.4 and the weak dualities P̃ (µ) ≤ D̃0(µ) ≤ D̃(µ), it is enough to prove

P (µ) ≤ P̃ (µ) and D(µ) ≥ D̃(µ),

where P (µ) and D(µ) are defined respectively in (2.3) and (2.6) with reward func-
tion Φ.

(i) Define the process M := (Mt)0≤t≤1 by

Mt := B(
Tk+

t−tk

tk+1−t

)

∧Tk+1

for all t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,

with T0 = t0 = 0 and M1 = BTn
. It is clear that M is a continuous martingale

under every probability P ∈ P and Mtk = BTk
for all k = 1, · · · , n, which implies

in particular Mtk
P
∼ µk for every P ∈ P(µ). Let P ∈ P(µ) be arbitrary, then

P̃ := P◦M−1 ∈ M(µ). Moreover, one finds P−a.s., 〈M〉tk = Tk for all k = 1, · · · , n
and Bt = M〈M〉−1

t

, which yields

ξ(M) = Φ
(

B, 〈M〉t1 , ..., 〈M〉tn
)

= Φ(B,T ), P− a.s.

Thus

P̃ (µ) ≥ EP
[

ξ(M)
]

= EP
[

Φ
(

B,T
)]

. (3.10)

It follows that

P (µ) ≤ P̃ (µ).

(ii) Let us now prove D̃(µ) ≤ D(µ). Let (λ,H) ∈ D, i.e. (λ,H) ∈ Λ ×H be such
that

λ(BT ) + (H · B)Tn
≥ Φ

(

B,T
)

, P − q.s..

For every P̃ ∈ M, it follows by Dambis-Dubins-Schwarz theorem that the time-
changed process Wt = X〈X〉−1

t

with 〈X〉−1
t = inf{s ≥ 0 : 〈X〉s > t} is a Brownian

motion with respect to the time-changed filtration
(

F̃〈X〉−1
t

)

t≥0
under P̃ and

Xt = W〈X〉t for every t ∈ [0, 1], P̃− a.s.

8



Moreover, 〈X〉I := (〈X〉tk )1≤k≤n are stopping times w.r.t. the time-changed filtra-

tion
(

F̃〈X〉−1
t

)

t≥0
. Let us define P := P̃ ◦

(

W, 〈X〉t1 , ..., 〈X〉tn
)−1

, then P ∈ P and

thus we have P̃−a.s.

λ
(

W〈X〉I

)

+
(

Hs ·W
)

〈X〉1
≥ Φ

(

W, 〈X〉t1 , ..., 〈X〉tn
)

.

Define

H̃s(X) := H〈X〉s

(

W, 〈X〉t1 , ..., 〈X〉tn

)

,

then it follows by Propositions V.1.4 and V.1.5 of Revuz and Yor [39] that H is
F̃−progressively measurable such that

∫ 1

0
H̃2

s d〈X〉s =

∫ 〈X〉1

0
H

2
sds < + ∞, P̃− a.s.,

and

(

H ·W
)

〈X〉t
= (H̃ ·X)t for every 0 ≤ t ≤ 1, P̃− a.s.

Hence

λ(XI) + (H̃ ·X)1 ≥ Φ
(

W, 〈X〉t1 , ..., 〈X〉tn
)

= ξ
(

X
)

, P̃− a.s. (3.11)

Notice that H ∈ H, and hence (H ·W ) is a strong supermartingale under P̃, which
implies by the time-change argument that the stochastic integral

(

H ·W
)

〈X〉·
is a

supermartingale under P̃ (with respect to its natural filtration) and so it is with
(H̃ ·X). Hence H̃ ∈ H̃ and further (λ, H̃) ∈ D̃. It follows that D̃(µ) ≤ D(µ), which
concludes the proof.

4 Proof of Theorem 2.4

To prove our main results in Theorem 2.4, we begin by a lemma which is repeatedly
used in the following and then cite some technical lemmas from the classical optimal
stopping theory.

4.1 Technical lemmas

Recall that P� denotes the collection of all centered peacocks, which is a collection
of vectors of probability measures on R. We first introduce a notion of convergence
W1 on P� which is stronger than the weak convergence. A sequence of centered
peacocks

(

µm = (µm1 , · · · , µ
m
n )

)

m≥1
⊂ P� is said to converge under W1 to µ0 =

(µ01, · · · , µ
0
n) ∈ P� if µmk converges to µ0k under the Wasserstein metric for all

k = 1, · · · ,m (see e.g. Definition 6.1 in Villani [43]). This convergence is denoted

by
W1−→. It follows by Theorem 6.9 of [43] that the convergence

W1−→ holds if and
only if for any φ ∈ C1,

lim
m→∞

µmk (φ) = µ0k(φ) for all k = 1, · · · , n. (4.12)

In particular, the convergence
W1−→ implies the (usual) weak convergence.
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Further, in order to apply the Fenchel-Moreau theorem, we shall consider a
linear topological space containing all centered peacocks. Let M denote the space
of all finite signed measures ν on R such that

∫

R

(

1+ |x|
)

|ν|(dx) < +∞. We endow
M with a topology of Wasserstein kind, denoted still by W1 without any confusion.
Let (νm)m≥1 ⊂ M and ν0 ∈ M, we say νm converges to ν0 under W1 if

lim
m→∞

∫

R

φ(x)νm(dx) =

∫

R

φ(x)ν0(dx) for all φ ∈ C1. (4.13)

Let Mn := M×...×M be the n−product of M, endowed with the product topology.
It is clear that under W1, P

� is a closed convex subspace of Mn and the restriction
of this convergence on P� is as same as the Wasserstein convergence.

It is well known that the space of all finite signed measures equipped with the
weak convergence topology is a locally convex topological vector space, and its
dual space is the space of all bounded continuous functions (see e.g. Section 3.2 of
Deuschel and Stroock [14]). By exactly the same arguments, we have the following
similar result.

Lemma 4.1. There exists a topology On for Mn which is compatible with the

convergence
W1−→ such that (Mn,On) is a Hausdorff locally convex space. Moreover,

its dual space can be identified by (Mn)∗ = Λ.

We next turn to the space P(Ω) of all Borel probability measures on the Polish
space Ω. Denote by Cb(Ω) the collection of all bounded continuous functions on
Ω, and Bmc(Ω) the collection of all bounded measurable function φ, such that
θ 7→ φ(ω, θ) is continuous for all ω ∈ Ω. Notice that the weak convergence topology

on P(Ω) is defined as the coarsest topology under which P 7→ EP[ξ] is continuous for
all ξ ∈ Cb(Ω). Following Jacod and Mémin [29], we introduce the stable convergence

topology on P(Ω) as the coarsest topology under which P 7→ EP[ξ] is continuous for
all ξ ∈ Bmc(Ω). Recall that every probability measure in P (defined by (2.1)) has
the same marginal law on Ω. Then as an immediate consequence of Proposition 2.4
of [29], we the following result.

Lemma 4.2. The weak convergence topology and the stable convergence topology
coincide on the space P.

Lemma 4.3. Let (µm)m≥1 be a sequence of centered peacocks such that µm
W1−→ µ0,

(Pm)m≥1 be a sequence of probability measures with Pm ∈ P(µm) for all m ≥ 1.
Then (Pm)m≥1 is relatively compact under the weak convergence topology. More-
over, any accumulation point of (Pm)m≥1 belongs to P(µ0).

Proof. (i) For any ε > 0, there exists a compact set D ⊂ Ω such that Pm(D×Θ) =
P0(D) ≥ 1 − ε for every m ≥ 1. In addition, by Proposition 7 of Monroe [35], one
has for any constant C > 0,

Pm

[

Tn ≥ C
]

≤ C−1/3
(

1 +
(

µmn (|x|)
)2
)

≤ C−1/3
(

1 +
(

sup
m≥1

µmn (|x|)
)2
)

.

Choose the cube [0, C]n large enough such that Pm

[

T ∈ [0, C]n
]

≥ 1 − ε for all
m ≥ 1. The tightness of (Pm)m≥1 under weak convergence topology follows by

Pm

[

D × [0, C]n
]

≥ Pm

[

D × Θ
]

+ Pm

[

Ω × [0, C]n
]

− 1 ≥ 1 − 2ε for all m ≥ 1.
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Let P0 be any limit point. By possibly subtracting a subsequence, we assume that
Pm → P0 weakly.

(ii) Notice that B is F−Brownian motion under each Pm and thus the process
ϕ(Bt)−

∫ t
0

1
2ϕ

′′(Bs)ds is a F−martingale under Pm whenever ϕ is bounded, smooth

and of bounded derivatives. Notice that the maps (ω, θ) 7→ ϕ(ωt) −
∫ t
0 ϕ

′′(ωs)ds is
also bounded continuous, then

EP0

[(

ϕ(Bt) − ϕ(Bs) −

∫ t

s

1

2
ϕ′′(Bu)du

)

ψ
]

= 0 (4.14)

for every r < s < t and bounded continuous and F r−measurable random variable
ψ. Since Fr can be generated by bounded continuous random variables (see Lemma
A.1), it follows that (4.14) is still true for every bounded and Fr−measurable ψ.
Letting s→ r, by the dominated convergence theorem, it follows that (4.14) holds
for every r = s < t and bounded Fs−measurable random variable ψ. This implies
that B is a F−Brownian motion under P0.

(iii) We next assume that Pm ∈ P(µm) and prove

BTn∧· is uniformly integrable under P0. (4.15)

The convergence of (µm)m≥1 to µ0 implies in particular

EPm

[(∣

∣BTn

∣

∣−R
)+]

= µmn
(

(|x| −R)+
)

−→ µ0n
(

(|x| −R)+
)

< + ∞.

Therefore, for every ε > 0, there is Rε > 0 large enough such that µmn
(

(|x|−Rε)
+
)

<
ε for every m ≥ 1. It follows by Jensen’s inequality and |x|1{|x|>2R} ≤ 2(|x| −R)+

that

EPm
[
∣

∣BTn∧t

∣

∣1{|BTn∧t|>Rε}

]

≤ 2EPm
[(
∣

∣BTn

∣

∣−Rε

)+]
≤ 2ε for all t ≥ 0.

Notice also that the function |x|1{|x|>2Rε} is lower semicontinuous and we obtain
by Fatou’s lemma

EP0
[∣

∣BTn∧t

∣

∣1{|BTn∧t|>Rε}

]

≤ lim inf
m→∞

EPm

[∣

∣BTn∧t

∣

∣1{|BTn∧t|>Rε}

]

≤ 2ε,

which justifies the claim (4.15). Moreover, since the map (ω, θ) 7→ ωθk is continuous,

it follows that BTk

P0∼ µ0k for all k = 1, · · · , n. Therefore, P0 ∈ P(µ0), which
concludes the proof.

We next recall some useful results from the classical optimal stopping theory
(see e.g. El Karoui [16], Peskir and Shiryaev [38], Karatzas and Shreve [32] etc.)
Let (Ω∗,F∗,P∗) be an abstract complete probability space, which is equipped with
two filtrations F∗ = (F∗

t )t≥0 and G∗ = (G∗
t )t≥0, where F∗

t ⊆ G∗
t for every t ≥ 0

and both filtrations satisfy the usual conditions. Denote F∗
∞ := ∨t≥0F

∗
t and G∗

∞ :=
∨t≥0G

∗
t . We denote further by TF∗ the class of all F∗−stopping times, and by TG∗

the collection of all G∗−stopping times. Let Y be a càdlàg F∗−optional process
defined on Ω∗ of class (D).

The first result is about the equivalence of the optimal stopping problem for
different filtrations under the following so-called Assumption (K) in the optimal
stopping theory.
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Assumption 4.4 (K). For every t ≥ 0, every Gt−measurable bounded random
variable X satisfies

E
[

X|F∗
t

]

= E
[

X|F∗
∞

]

, P∗ − a.s.

Lemma 4.5. Under Assumption 4.4 we have

sup
τ∈TF∗

E[Yτ ] = sup
τ∈TG∗

E[Yτ ].

Proof. The result follows by Theorem 5 of Szpirglas and Mazziotto [41]. We notice
that they assume that Y is positive, which induces immediately the same result
when Y is of class (D) since it can be dominated from below by some martingale.

The next result recalls the so-called Snell envelope characterization of optimal
stopping problems.

Lemma 4.6. There is a càdlàg F∗−adapted process Z, which is the smallest su-
permartingale dominating Y , and satisfies E[Z0] = supτ∈TF∗

E
[

Yτ
]

.

4.2 Proof of the first duality

We now provide the proof for the first duality result in Theorem 2.4. The main
idea is to show that µ 7→ P (µ) is concave and upper-semicontinuous and then to
use the Fenchel-Moreau theorem.

Lemma 4.7. Under Assumption 2.2, the map µ ∈ P� 7→ P (µ) ∈ R is concave
and upper-semicontinuous w.r.t. W1. Moreover, for every µ ∈ P�, there is some

P
∗
∈ P(µ) such that EP

∗

[Φ] = P (µ).

Proof. (i) Let µ1, µ2 ∈ P�, P1 ∈ P(µ1) and P2 ∈ P(µ2) and α ∈ (0, 1), it follows
by definition that αP1 + (1−α)P2 ∈ P(αµ1 + (1−α)µ2). Therefore, it is clear that
the map µ 7→ P (µ) is concave.

(ii) We now prove that µ 7→ P (µ) is upper-semicontinuous w.r.t. W1. Let
(µm)m≥1 ⊂ P� and µm → µ0 ∈ P� in W1. After possibly passing to a subse-
quence, we can have a family (Pm)m≥1 such that

Pm ∈ P(µm) and lim sup
m→∞

P (µm) = lim
m→∞

EPm

[

Φ
(

B,T
)

]

.

B Lemma 4.3, we may find a subsequence still named by (Pn)n≥1, which converges
weakly to some P0 ∈ P(µ0). By Lemma 4.2, the map P 7→ EP

[

Φ(B,T )
]

is upper-
semicontinuous on P w.r.t. the weak convergence topology for all Φ satisfying
Assumption 2.2. We then obtain by Fatou’s lemma that

lim sup
m→∞

P (µm) = lim
m→∞

EPm

[

Φ
(

B,T
)

]

≤ EP0

[

Φ
(

B,T
)

]

≤ P (µ0).

(iii) Let µ ∈ P�, choosing µm = µ and using the same arguments, it follows

immediately that there is some P
∗
∈ P(µ) such that EP

∗

[Φ] = P (µ).

The results in Lemma 4.7 together with the Fenchel-Moreau theorem implies the
first duality in Theorem 2.4. Before providing the proof, we consider the optimal
stopping problem arising in the dual formulation (2.5). Denote for every λ ∈ Λ,

Φλ(ω, θ) := Φ(ω, θ) − λ(ωθ) for all (ω, θ) ∈ Ω. (4.16)
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Recall that T a denotes the collection of all increasing families of Fa−stopping times
τ = (τ1, · · · , τn) such that Bτn∧· is uniformly integrable. Let N > 0, denote also by
T a
N ⊂ T a the subset of families τ = (τ1, · · · , τn) such that τn ≤ N , P0−a.s. Denote

further by PN ⊂ P the collection of P ∈ P such that Tn ≤ N , P−a.s.

Lemma 4.8. Let Φ be bounded and continuous, then for every λ ∈ Λ

sup
τ∈T a

EP0 [Φλ(B, τ)] = lim
N→∞

sup
τ∈T a

N

EP0 [Φλ(B, τ)] (4.17)

= lim
N→∞

sup
P∈PN

EP
[

Φλ(B,T )
]

= sup
P∈P

EP
[

Φλ(B,T )
]

.

In particular, let φ ∈ C1 and denote by φconc its concave envelope, then

sup
τ∈T a

EP0 [φ(Bτn)] = φconc(0). (4.18)

Proof. (i) Given λ ∈ Λ there is some constant C > 0 such that

∣

∣Φλ(B, τ)
∣

∣ ≤ C
(

1 +

n
∑

k=1

∣

∣Bτk

∣

∣

)

. (4.19)

Let τ ∈ T a, define τN := (τN1 , · · · , τ
N
n ) with τNk := τk ∧ N , then it is clear

that limN→∞ Φλ(B, τN ) = Φλ(B, τ), P0−a.s. By the domination in (4.19) and
the fact that Bτn∧· is uniformly integrable, we have limN→∞ EP0

[

Φλ(B, τN )
]

=
EP0

[

Φλ(B, τ)
]

. It follows by the arbitrariness of τ ∈ T a and the fact T a
N ⊂ T a that

sup
τ∈T a

EP0 [Φλ(B, τ)] = lim
N→∞

sup
τ∈T a

N

EP0 [Φλ(B, τ)].

By the same arguments, it is clear that we also have

sup
P∈P

EP
[

Φλ(B,T )
]

= lim
N→∞

sup
P∈PN

EP
[

Φλ(B,T )
]

.

(ii) We now apply Lemma 4.5 to prove that for every fixed constant N > 0,

sup
τ∈T a

N

EP0 [Φλ(B, τ)] = sup
P∈PN

EP
[

Φλ(B,T )
]

. (4.20)

First, let us suppose that n = 1. Let P ∈ PN , denote Yt := Φλ(B, t∧N), it is clear

that EP
[

supt≥0 Yt
]

< ∞. Denote by F
P

= (F
P

t )t≥0 the augmented filtration of F

under P and by F
B,P

the filtration generated by B on Ω and by F
B,P

= (F
B,P
t )t≥0 its

P−augmented filtration. It is clear that F
B,P
t ⊂ F

P

t . More importantly, by the fact

that B is a F
P
−Brownian motion under P, it is easy to check that the probability

space (Ω,F
P
,P) together with the filtration F

P
and F

B,P
satisfies Hypothesis (K)

(Assumption 4.4). Then by Lemma 4.5, EP
[

Φλ(B,T )
]

≤ supτ∈T a

N

EP0 [Φλ(B, τ)]

and hence supP∈PN
EP

[

Φλ(B,T )
]

≤ supτ∈T a

N

EP0 [Φλ(B, τ)]. We then have equality

(4.20) since the inverse inequality is clear. Finally, when n > 1, it is enough to use
the arguments together with induction to prove (4.20).
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(iii) To prove (4.18) it suffices to set Φ ≡ 0 and n = 1. Then by (4.17), it follows
that

sup
τ∈T a

EP0
[

φ(Bτ )
]

= lim
N→∞

sup
τ∈T a

N

EP0
[

φ(Bτ )
]

≤ φconc(0).

The other inequality is obvious by considering the exiting time of the Brownian
motion from an open interval. We then conclude the proof.

Proof of Theorem 2.4 (i). The existence of optimal embedding is already proved
in Lemma 4.7. For the first duality result, we shall use the Fenchel-Moreau theorem.
Let us first extend the map µ 7→ P (µ) from P� to Mn by setting that P (µ) = −∞,
for every µ ∈ Mn\P�. It is easy to check, using Lemma 4.7, that the extended map
µ 7→ P (µ) from the topological vector space Mn to R is still concave and upper-
semicontinuous. Then by the Fenchel-Moreau theorem together with Lemma 4.1
and, it follows that

P (µ) = P ∗∗(µ)

= inf
λ∈Λ

{

sup
ν∈P�

sup
P∈P(ν)

EP
[

Φλ(B,T )
]

+ µ(λ)
}

= inf
λ∈Λ

{

sup
τ∈T a

EP0
[

Φλ
(

B, τ
)]

+ µ(λ)
}

,

where the last equality follows by (4.17). Hence we have P (µ) = D0(µ).

Remark 4.9. When Φ is bounded (which is the relevant case by the reduction of
Section 4.3.1), we can prove further that

D0(µ) = inf
λ∈Λ+

{

sup
τ∈T a

EP0
[

Φλ(B, τ)
]

+ µ(λ)
}

, (4.21)

where

Λ+ :=
{

λ = (λ1, · · · , λn) ∈ Λ : λk ≥ 0 for all k = 1, · · · , n
}

.

Indeed, using (4.18), it is easy to see that in the definition of D0(µ), it is enough to
take the infimum over the class of all functions λ ∈ Λ+ such that the convex envelop
λconvk (0) > −∞ for all k = 1, · · · ,m, since by (4.18) and the boundedness of Φ,
supτ∈T a EP0 [Φλ] = +∞ whenver (−λk)conc(0) = ∞ for some k. Hence the infimum
is taken among all λ ∈ Λ such that λconvk (0) > −∞ for all k = 1, · · · ,m, and
consequently λk is dominated from below by some affine function. Since EP0 [Bτk ] =
0 for every τ ∈ T a, we see that by possibly subtracting from λk the last affine
function, it is enough to take infimum over the class Λ+.

4.3 Proof of the second duality

For the second duality, we shall use the Snell envelop characterization of the optimal
stopping problem, together with the Doob-Meyer decomposition. We will provide
the proof progressively.

Recall that T a denotes the collection of all increasing families of Fa−stopping
times τ = (τ1, · · · , τn) such that Bτn∧· is uniformly integrable, and T a

N ⊂ T a the
subset of families τ = (τ1, · · · , τn) such that τn ≤ N , P0−a.s. Denote also by T 0

the collection of all Fa−stopping times τ0 such that Bτ0∧· is uniformly integrable,
and by T 0

N the collection of all stopping times τ0 ∈ T 0 such that τ0 ≤ N , P0−a.s.
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4.3.1 Reduction to bounded reward functions

Proposition 4.10. To prove Theorem 2.4 (ii), it is enough to prove the duality
P (µ) = D(µ) under additional condition that Φ is bounded.

Proof. Assume that the duality P (µ) = D(µ) holds true whenever Φ is bounded
and satisfies Assumptions 2.2 and 2.3.

We now consider the case without boundedness of Φ. Let Φm := Φ ∨ (−m) (or
Φm :=

∑n
k=1(−m) ∨ Φk in case of Assumption 2.3 (i) ), then Φm is bounded and

satisfies Assumptions 2.2 and 2.3.
Denote by Pm(µ) and Dm(µ) the corresponding primal and dual values associ-

ated to the reward function Φm, so that we have the duality

Pm(µ) = Dm(µ).

Further, notice that Φm ≥ Φ, one has Pm(µ) = Dm(µ) ≥ D(µ) ≥ P (µ). Then it is
enough to show that

lim sup
m→∞

Pm(µ) ≤ P (µ).

Let Pm ∈ P(µ) such that lim supm→∞ Pm(µ) = lim supm→∞ EPm [Φm]. Then af-
ter possibly passing to a subsequence we may assume that lim supm→∞ Pm(µ) =

limm→∞ EPm [Φm]. By Lemma 4.3, we know that (Pm)m≥1 is tight and every limit
point belongs to P(µ). Let P0 be a limit point of (Pm)m≥1, and label again the
convergent subsequence by m, i.e. Pm → P0. Then by the monotone convergence
theorem

P (µ) ≥ EP0 [Φ] = lim
m→∞

EP0 [Φm] = lim
m→∞

(

lim
l→∞

EPl [Φm]
)

≥ lim
m→∞

(

lim
l→∞

EPl [Φl]
)

= lim sup
l→∞

P l(µ),

which is the required result.

4.3.2 The second duality for a separable reward function

We first provide the duality result in a simplified context, so that the analysis of the
multiple stopping problem in (2.5) is much easier. We observe that the following
result is not needed for the proof of our main duality result, and is only provided
here for the convenience of the reader.

Let us first introduce a stronger version of the second dual problem. Denote
by H the collection of all F0−predictable process H0 : R+ × Ω → R such that the
stochastic integral (H0 ·B)t :=

∫ t
0 H

0
s dBs is a martingale under P0, and (H0 ·B)t ≥

−C(1 + |Bt|) for some constant C > 0. Denote further by S the set of all F−strong
càdlàg supermartingale in (Ω,F ,P0) such that |St| ≤ C(1+ |Bt|) for some constant
C > 0.

Define then

D′ :=
{

(λ,H1, · · · ,Hn) ∈ Λ × (H)n :
n
∑

k=1

(

λk(ωθk) +

∫ θk

θk−1

Hk
s dBs

)

≥ Φ
(

ω, θ
)

for all 0 ≤ θ1 ≤ · · · ≤ θn, and P0 − a.e. ω ∈ Ω
}

,
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and

D′′ :=
{

(λ, S1, · · · , Sn) ∈ Λ × (S)n :
n
∑

k=1

(

λk(ωθk) + Sk
θk

− Sk
θk−1

)

≥ Φ
(

ω, θ
)

for all 0 ≤ θ1 ≤ · · · ≤ θn, and P0 − a.e. ω ∈ Ω
}

.

Proposition 4.11. Suppose that Assumption 2.2 and Assumption 2.3 (i) hold true
with Φk : Ω × (R)k. Suppose in addition that Φk(ω, θ1, · · · , θk) depends only on
(ω, θk). Then

P (µ) = D′(µ) := inf
(λ,H)∈D′

µ(λ) = D′′(µ) := inf
(λ,S)∈D′′

µ(λ).

Proof. Given the first duality P (µ) = D0(µ), it suffices to study the optimal stop-
ping problem

sup
τ∈T a

[

Φλ
(

B, τ
)

]

= lim
N→∞

sup
τ∈T a

N

E[Φλ(B, τ)], (4.22)

for a given λ ∈ Λ+ (Remark 4.9) and under the additional condition that each Φk

is bounded (Proposition 4.10). Notice that in this case, there is some C such that

−C
(

1 +

n
∑

k=1

|ωθk |
)

≤ Φλ(ω̄) ≤ C.

Suppose that n = 1, then by Lemma 4.6, there is a supermartingale (Z1,N
t )

for every N ∈ N which is the Snell envelop for the optimal stopping problem
supτ∈T a

N

E[Φλ(B, τ)]. Clearly, Z1,N increases in N . Moreover, one has −C(1 +

|Bt|) ≤ Z1,N
t ≤ C for some constant C independent of N . Then by the domi-

nated convergence theorem together with Lemma 4.8, Z1 := supN∈N Z
1,N is still a

supermartingale, of class (DL), such that

Z1
0 = sup

τ∈T a

E[Φλ(B, τ)], and Z1
t ≥ Φλ(B, t), for all t ≥ 0, P0 − a.s.

We claim that the supermartingale Z1 is right-continuous in expectation and hence
admits a right-continuous modification. Indeed, let τ be a bounded stopping time,
and (τn)n≥1 be a sequence of bounded stopping time such that τn ց τ . Then by
the supermartingale property, we have E[Z1

τn ] ≤ E[Z1
τ ]. Further, for every ε > 0,

by the definition of Z1, there is some bounded stopping time σε ≥ τ such that
E[Z1

τ ] ≤ E
[

Φλ(B,σε)]+ε. It follows that E[Z1
τn ] ≥ E[Φλ(B,σε∧τn)] → E[Φλ(B,σε)].

Thus limn→∞ E[Z1
τn ] = E[Z1

τ ] by arbitrariness of ε > 0.
Now, by the Doob-Meyer decomposition for right-continuous supermartingales

together with the martingale representation, there is an Fa−predictable process H1

such that

λ1(Bt) + (H1 · B)t ≥ Φ(B, t), for all t ≥ 0, P0 − a.s.

Further, we can also choose H1 to be F−predictable (see e.g. Theorem IV.78 and
Remark IV.74 of Dellacherie and Meyer [13]). This proves in particular that

D′(µ) ≤ D0(µ) = P (µ).
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Hence by weak duality, we get

P (µ) = D0(µ) = D′(µ).

Suppose now n = 2, we first consider the optimal stopping problem

sup
τ∈T 0

N

[

Φ2(B, τ) − λ2(Bτ )
]

,

whose Snell envelop is given by Z2,N by Lemma 4.6, where in particular −C(1 +
|Bt|) ≤ Z2,N

t ≤ C for some constant C independent of N , and

Z2,N
θ2

≥ Φ2(B, θ2) − λ2(Bθ2), for all θ2 ≤ N, P0 − a.s.

We then reduce the multiple optimal stopping problem (4.22) to the n = 1 case,
i.e.

sup
τ∈T a

N

E
[

Φλ(B, τ)
]

= sup
τ1∈T 0

N

E
[

Z2,N
τ1 + Φ1(B, τ1) − λ1(Bτ1)

]

.

Using again the procedure for the case n = 1, we obtain a new Snell envelop,
denoted by Z1,N , such that Z1,N

t ≥ −C(1 + |Bt|).
Thus, Z1,N , Z2,N are both supermartingales of class (D), bounded from above by

C, and dominated from below by −C(1+|Bt|) for some constant C > 0 independent
of N . More importantly, we have Z1,N

0 = supτ∈T a

N

E
[

Φλ(B, τ)
]

, and

Z1,N
θ1

+
(

Z2,N
θ2

− Z2,N
θ1

)

≥ Φλ(B, θ1, θ2), for all θ1 ≤ θ2 ≤ N, P0 − a.s.

Since Z1,N and Z2,N both increase in N , define Z1 := supN Z
1,N and Z2 :=

supN Z
2,N , it follows by the dominated convergence theorem that Z1 and Z2 are

both supermartingales of class (DL). By similar arguments as in the case n = 1,
we may consider Z1 and Z2 in their right-continuous modifications. Moreover, it
follows from Lemma 4.8 that Z1

0 = supτ∈T a E
[

Φλ(B, τ)
]

and

Z1
θ1 +

(

Z2
θ2 − Z2

θ1

)

≥ Φλ(B, θ1, θ2), for all θ1 ≤ θ2, P0 − a.s.

Then (S1, S2) := (Z1, Z2) are the required strong super-martingale in dual for-
mulation D′′. Further, using the Doob-Meyer decomposition, together with the
martingale representation on Z1 and Z2, we obtain the process H = (H1,H2) as
we need in the dual formulation D′.

Finally, the case n > 2 can be handled by exactly the same recursive argument
as for the case n = 2.

4.3.3 The second duality under Assumption 2.3 (i)

Let N > 0, we first study the multiple optimal stopping problem

sup
τ∈T a

N

E
[

Φλ(B, τ)
]

= sup
τ∈T a

N

E

[

n
∑

k=1

(

Φk(B, τ1, · · · , τk) − λk(Bτk)
)]

, (4.23)

where λ ∈ Λ+ and Φk is bounded, so that

−C
(

1 +

n
∑

k=1

|ωθk |
)

≤ Φλ(ω̄) ≤ C,

for some constant C. Denote vNn+1(ω, θ1, · · · , θn, θn) := Φλ(ω, θ1, · · · , θn).
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Lemma 4.12. There are functionals (vNk )k=1,··· ,n, where vNk : Ω×(R+)k → R, such
that

vN1 (ω, 0) = sup
τ∈T a

N

E
[

Φλ(B, τ)
]

,

and under P0, for each k = 1, · · · , n, and θ1 ≤ · · · ≤ θk−1, the process

θ 7→ vNk (B, θ1, · · · , θk−1, θ) is a right-continuous F− supermartingale,

vNk (B, θ1, θk−1, θ) ≥ vNk+1(B, θ1, · · · , θk−1, θ, θ), a.s.

Moreover, vNk increases in N and satisfies −C(1 + |Bt|) ≤ vNk (B, · · · , t) ≤ C for
some constant C independent of N .

Proof of Theorem 2.4 (ii) By Remark 4.9 and Proposition 4.10, we can assume
without loss of generality that each Φk is bounded and choose λ ∈ Λ+ in the dual
formulation D0(µ).

(i) Let vNk be given by Lemma 4.12, we define further

vk(·) := sup
N
vNk (·), so that v0(ω, 0) = sup

τ∈T a

E
[

Φλ(B, τ)
]

.

It follows from the dominated convergence theorem that, for all k = 1, · · · , n
and 0 =: θ0 ≤ θ1 ≤ · · · ≤ θk−1, the process

(

vk(B, θ1, · · · , θk−1, t)
)

t≥θk−1
is a

F−supermartingale and

vk(B, θ1, · · · , θk−1, t) ≥ vk+1(B, θ1, · · · , θk−1, t, t), for all t ≥ θk−1, P0 − a.s.

By the same arguments as in Proposition 4.11, it can be modified to be a right-
continuous supermartingale since it is right-continuous in expectation.

(ii) By the Doob-Meyer decomposition and the martingale representation theorem,
it follows that for each k = 1, · · · , n, there is some Fa−predictable process Hk

t (ω) :=
Hk

t (ω, θ1, ..., θk−1) such that P0 − a.s.

vk(ω, θ1, ..., θk−1, θk−1) +

∫ θk

θk−1

Hk
udBu ≥ vk(ω, θ1, ...θk−1, θk)

≥ vk+1(ω, θ1, ...θk−1, θk, θk). (4.24)

Moreover, since the quadratic co-variation 〈vk(B, θ1, · · · , θk−1, ·), B·〉t can be de-
fined pathwisely (see e.g. Karandikar [31]), Hk can also be defined pathwisely and
to be F−progressively measurable by

Hk
t (θ1, · · · , θk−1) := lim sup

ε→0

〈vk(θ1, · · · , θk−1, ·), B〉t − 〈vk(θ1, · · · , θk−1, ·), B〉t−ε

ε
.

In particular, the map (ω, θ1, · · · , θk) 7→ Hk
θk

(ω, θ1, · · · , θk−1) is Borel measurable,
and

∫ t

θk−1

(

Hk
s (·, θ1, · · · , θk−1)

)2
ds < +∞ for all t ≥ θk−1, P0 − a.s. (4.25)

(iii) Next, we define a process H : R+ × Ω → R by

Hu(ω̄) :=

n
∑

k=1

1(θk−1,θk](u)Hk
u(ω, θ1, ..., θk−1) for all ω̄ = (ω, θ) ∈ Ω,
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where by convention θ0 = 0. Moreover, since

(ω, θ1, · · · , θk) 7→ Hk
θk

(ω, θ1, · · · , θk−1) is Borel measurable,

the process H is F−progressively measurable by Lemma A.2 in Appendix.

(iv) Now, let us take an arbitrary P ∈ P and consider a family of r.c.p.d. (regular
conditional probability distributions) (Pω̄)ω̄∈Ω of P with respect to FTk

for 0 ≤

k ≤ n− 1 (see Lemma A.2 for the existence of r.c.p.d.). Then for P−almost every
ω̄ ∈ Ω, under the conditional probability Pω̄, the process t 7→ Bt for t ≥ Tk is still
a Brownian motion. Moreover, we have Pω̄(Tk = θk, BTk∧· = ωθk∧·) = 1. Then it
follows by (4.24) that

vk+1(B,T1, ..., Tk, Tk) ≤ vk(B,T1, ..., Tk)

≤ vk(B,T1, ..., Tk−1, Tk−1) +

∫ Tk

Tk−1

Hk
s dBs, Pω̄ − a.s.

This means that the set Ak :=
{

vk+1 ≤ vk +
∫ Tk

Tk−1
Hk

s dBs

}

is of full measure under

Pω̄ for P−almost every ω̄ ∈ Ω, and hence by the tower property P(Ak) = 1 for all
k = 0, · · · , n. This yields that

Φλ(B,T ) = vn+1(B,T1, ..., Tn, Tn) ≤ v1(B, 0) + (H ·B)Tn
, P− a.s. (4.26)

(v) To conclude the proof, it suffices to check that H ∈ H. First, for any probability
measure P ∈ P , by taking r.c.p.d and using (4.25), it is clear that

∫ t

0
H

2
sds < +∞ for every t ≥ 0, P− a.s.

Further, by Remark 4.9, Φ is bounded and λ ∈ Λ+. Notice also that (4.26) holds
true for every P ∈ P , and by the tower property, it follows that for any F−stopping
time τ , we have for all P ∈ P ,

(H · B)Tn∧τ ≥ −C
(

1 + sup
1≤k≤n

|BTk∧τ |
)

, P− a.s.,

where the r.h.s. is uniformly integrable under P. Using Fatou’s Lemma, it follows
that (H · B)Tn∧· is a strong supermartingale under every P ∈ P .

Proof of Lemma 4.12. We provide here a proof for the case n = 2 for ease
of presentation. The general case can be treated by exactly the same backward
iterative procedure. We will use the classical aggregation procedure in the optimal
stopping theory (see e.g. El Karoui [16], Peskir and Shiryaev [38], Karatzas and
Shreve [32] etc.) A good resume can also be found in Kobylanski, Quenez and
Rouy-Mironescu [34].

1. For every τ1 ∈ T 0
N , we first consider the optimal stopping problem

sup
τ2∈T 0

N
, τ2≥τ1

E

[

Φ2

(

B, τ1, τ2) − λ2(Bτ2)
]

,

whose Snell envelop is denoted by (Z2,N
τ1,t )τ1≤t≤N . We shall prove in Step 2 below

that the above process can be aggregated into a function u2,N (ω, θ1, θ2) which is
Borel measurable as a map from Ω × (R+)2 → R, and

uniformly continuous in θ1, right continuous in θ2, P0−a.s.

u2,N (·, τ1, τ2) = Z2,N
τ1,τ2 , P0 − a.s. for all τ1 ≤ τ2 ≤ N.

(4.27)
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In particular, it is clear that t 7→ u2,N (ω, t, t) is right-continuous P0−a.s. Let

v2,N (ω, θ1, θ2) := u2,N (ω, θ1, θ2) + Φ1(ω, θ1) − λ1(ωθ1),

and consider the optimal stopping problem

sup
τ1∈T 0

N

E
[

v2,N (·, τ1, τ1)
]

(

= sup
τ∈T a

N

E
[

Φλ(B, τ)
]

.
)

.

Denoted by (Z1,N
t )0≤t≤N the corresponding Snell envelop. Notice that Z1,N

t is
Fa−adapted and right-continuous, and hence it is Fa−optional (or equivalently
Fa−predictable, since Fa is the augmented Brownian filtration), then Z1,N

t can
be chosen to be F−predictable (see e.g. Theorem IV.78 and Remark IV.74 of
Dellacherie and Meyer [13]). Define v1,N (ω, θ1) := Z1,N (ω, θ1). Then v1,N (·), v2,N (·)
are the required functionals.

2. We now construct the measurable map u2,N satisfying (4.27). Let τ1 ≤ τ2 ∈
T 0
N , define a random variable

Z
2,N
τ1,τ2 := ess sup

τ3∈T 0
N
, τ3≥τ2

E

[

Φ2

(

B, τ1, τ3) − λ2(Bτ3)
∣

∣

∣
Fa
τ2

]

. (4.28)

It is clear that for two stopping times τ11 and τ21 smaller than τ2, we have

Z
2,N
τ1
1
,τ2

= Z
2,N
τ2
1
,τ2
, P0 − a.s. on A = {τ11 = τ21 }. (4.29)

Notice that the process t 7→ Φ2(B, τ1, t) − λ2(Bt) is right-continuous and hence
right-continuous in expectation, then for fixed τ1, the family of random variables

(Z
2,N
τ1,τ2)τ2 is right-continuous in expectation (see e.g. Proposition 1.5 of [34]). Then,

for every fixed τ1, it can be aggregated into a right-continuous supermartingale,

denoted by Z2,N
τ1,t

(see e.g. Proposition 4.1 of [34]), such that Z
2,N
τ1,τ2 = Z2,N

τ1,τ2 , P0−a.s.

Notice that Z2,N
τ1,t is Fa−optional and equivalently Fa−predictable, we can choose

Z2,N
τ1,t to be F−predictable.

Further, since Φ2(ω, θ1, θ2) is uniformly continuous in θ1, denote by ρ the conti-
nuity modulus. Then it follows by its definition in (4.28) that the family of random

variables Z
2,N
τ1,τ2 is uniformly continuous w.r.t. τ1, in sense that

∣

∣Z
2,N
τ1
1
,τ2

− Z
2,N
τ2
1
,τ2

∣

∣ ≤ ρ(|τ11 − τ21 |), P0 − a.s. for stopping times τ i1 ≤ τ2.

We now define u2,N by

u2,N (ω, θ1, θ2) := Z2,N
θ1,θ2

(ω), for all θ1 ∈ Q,

and

u2,N (ω, θ1, θ2) := lim
Q∋θ′

1
→θ1

u2,N (ω, θ1, θ2), for all θ1 /∈ Q.

It is clear that u2,N is Borel measurable w.r.t. each variable since Z2,N
θ1,θ2

(ω) is

chosen to be F−predictable. Furthermore, by (4.29), we have u2,N (ω, τ1, θ2) =
Z2,N (ω, τ1, θ2) for all θ ≥ τ1, P0−a.s., for every stopping times τ1 taking values in
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Q. Since we can approximate any stopping time by stopping times taking values

in Q, then by the uniform continuity of Z
2,N
τ1,τ2 w.r.t. τ1, we obtain that

Z
2,N
τ1,τ2 = Z2,N

τ1,τ2 = u2,N (·, τ1, τ2) P0 − a.s. for all stopping times τ1 ≤ τ2 ∈ T 1
N .

In particular, u2,N (ω, θ1, θ2) is uniformly continuous in θ1 and right-continuous in
θ2, P0−a.s., which is the required functional in claim (4.27).

Remark 4.13. We notice that a general multiple optimal stopping problem has
been studied in Kobylanski, Quenez & Rouy-Mironescu [34], where they proved the
existence of optimal multiple stopping times by a constructive method. Here we
are in a specified context with Brownian motion and we are interested in finding a
process H whose stochastic integral dominates the value process.

4.3.4 The second duality under Assumption 2.3 (ii)

Let Φ satisfy Assumption 2.2 and Assumption 2.3 (ii), i.e. ω̄ 7→ Φ(ω̄) is upper-
semicontinuous and bounded from above. Define a metric d of Polish space Ω by

d(ω̄, ω̄′) :=

n
∑

k=1

(

|θk − θ′k| + ‖ωθk∧· − ω′
θ′
k
∧·‖

)

,

and then define Φm : Ω → R by

Φm(ω̄) := sup
ω̄′∈Ω

{

Φ(ω̄′) −md(ω̄, ω̄′)
}

. (4.30)

Then Φm is a d−Lipschitz reward function, and satisfies in particular Assumption
2.2 and Assumption 2.3 (i). Moreover, Φm(ω̄) decreases to Φ(ω̄) as m goes to
infinity for all ω̄ ∈ Ω.

Denote by Pm(µ) and Dm(µ) the corresponding primal and dual values associ-
ated to the reward function Φm. Since Φm satisfies Assumption 2.2 and Assumption
2.3 (i), we have proved in Section 4.3.3 the duality

Pm(µ) = Dm(µ).

Then by following the same line of argument as in Proposition 4.10, we deduce that
P (µ) = D(µ).

A Appendix

We finally provide some properties of the canonical filtration F = (F t)t≥0 of canon-
ical space Ω. Recall that the canonical element of Ω is denoted by

(

B,T =
(T1, · · · , Tn)

)

, the σ−field F t is generated by the processes Bt∧· and (T t
k, k =

1, · · · , n), where T t
k(ω̄) := θk1θk≤t −∞1θk>t for all ω̄ =

(

ω, θ = (θ1, · · · , θn)
)

∈ Ω.
Equivalently, F t is generated by random variables Bs and the sets {Tk ≤ s} for all
k = 1, · · · , n and s ∈ [0, t]. More importantly, (Tk, k = 1, · · · , n) are all F−stopping
times.

Lemma A.1. The σ−field F∞ is the Borel σ−filed of Ω. Moreover, the class
of all bounded continuous, F t−measurable functions on Ω generates the σ−field
F t− :=

∨

s<tFs.
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Proof. (i) Since Tk and B are all B(Ω)−measurable, one has F∞ ⊆ B(Ω). On
the other hand, the process (Bt, t ≥ 0) generates the Borel σ−field B(Ω) and the
collection of all sets {Tk ≤ s} generates the Borel σ−filed B(Θ), it follows that
B(Ω) = B(Ω) ⊗ B(Θ) ⊆ F∞.

(ii) Let t ≥ 0, denote FB
t := σ(Bs, 0 ≤ s ≤ t), FTk

t := σ
(

{Tk ≤ s}, s ∈ [0, t]
)

and by GTk

t the σ−field generated by all bounded continuous and FTk

t −measurable
functions. First, for every s < t, it is clear that FTk

s ⊂ GTk

t , thus FTk

t− ⊂ GTk

t .
Further, let φ : R+ → R be a bounded continuous function such that φ(Tk) is
FTk

t −measurable, then we have φ(t1) = φ(t2) for every t1 ≥ t2 ≥ t. It follows
that Φ(Tk) is FTk

t−−measurable. Therefore, we have FTk

t− = GTk

t . Besides, it is well
known that FB

t− = FB
t is the σ−field generated by all bounded, continuous and

FB
t −measurable functions. It follows that F t− = ∪n

k=1F
Tk

t− ∪ FB
t− is in fact the

σ−field generated by all bounded, continuous and F t−measurable functions.

We now consider the filtration F. Let t ≥ 0 and ω̄ = (ω, θ1, · · · , θn) ∈ Ω, we
introduce [ω̄]t = (ωt∧·, [θ1]t, · · · , [θn]t) by [θk]t := θk1θk≤t + (t + 1)1θ>t.

Lemma A.2. (i) Y : R+ × Ω → R is F−optional if and only if it is B(R+ ×
Ω)−measurable and satisfies

Ys(ω̄) = Ys([ω̄]s) for all s ≥ 0 and ω̄ ∈ Ω. (A.31)

(ii) Consequently, FTk
is countable generated and every probability measure P on

(Ω,F∞) admits a r.c.p.d. (Pω̄)ω̄∈Ω with respect to FTk
which satisfies that

a) (Pω̄)ω̄∈Ω is a family of conditional probabilities of P with respect to FTk
,

b) Pω̄(Tk = θk, BTk∧· = ωTk∧·) = 1 for all ω̄ = (ω, θ1, · · · , θn) ∈ Ω.

Proof. (i) First, if Y is F−optional, then Y is measurable and F−adapted, i.e. Ys
is Fs−measurable. Since Fs is generated by ω̄ 7→ (ωs∧·, [θ]s), it follows that (A.31)
holds true. On the other hand, the process (s, ω̄) 7→ (ωs∧·, [θ]s) is adapted and
right-continuous, and hence F−optional. Therefore, for every measurable process
Y , the process Y defined by (A.31) is F−optional.

(ii) Notice that B(Ω) is countably generated. And by the representation (A.31),
the F−optional σ−field is generated by the map (s, ω̄) ∈ R+ × Ω 7→ [ω̄]s ∈ Ω, and
hence is also countably generated. Moreover, by Theorem IV-64 of Dellacherie and
Meyer [13, p. 122], we have

FTk
= σ{BTk∧·, Tk},

and hence FTk
is countably generated. Therefore, it follows by Theorem 1.1.6 in

Stroock and Varadhan [40] that every probability measure P on (Ω,F∞) admits a
r.c.p.d. with respect to the σ−field FTk

satisfying the condition in item (ii) of the
lemma.
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