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On the monotonicity principle

of optimal Skorokhod embedding problem ∗

Gaoyue Guo† Xiaolu Tan‡ Nizar Touzi§

June 11, 2015

Abstract

This is a continuation of our accompanying paper [18]. We provide an alter-
native proof of the monotonicity principle for the optimal Skorokhod embedding
problem established in Beiglböck, Cox and Huesmann [2]. Our proof is based on
the adaptation of the Monge-Kantorovich duality in our context, a delicate appli-
cation of the optional cross-section theorem, and a clever conditioning argument
introduced in [2].
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1 Introduction

The Skorokhod embedding problem (SEP) consists in constructing a Brownian mo-
tion W and a stopping time τ so that Wτ has some given distribution. Among the
numerous solutions of the SEP which appeared in the existing literature, some
embeddings enjoy an optimality property w.r.t. some criterion. For instance, the
Azéma-Yor solution [1] maximizes the expected running maximum, the Root so-
lution [27] was shown by Rost [28] to minimize the expectation of the embedding
stopping time.

Recently, Beiglböck, Cox & Huesmann [2] approached this problem by introduc-
ing the optimal SEP for some given general criterion. Their main result provides
a dual formulation in the spirit of optimal transport theory, and a monotonicity
principle characterizing optimal embedding stopping times. This remarkable re-
sult allows to recover all known embeddings which enjoy an optimality property,
and provides a concrete method to derive new embeddings with such optimality
property.

Our main interest in this note is to provide an alternative proof of the last
monotonicity principle, based on a duality result. Our argument follows the classical
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proof of the monotonicity principle for classical optimal transport problem, see
Villani [31, Chapter 5] and the corresponding adaptation by Zaev [32, Theorem
3.6] for the derivation of the martingale monotonicity principle of Beiglböck &
Juillet [5]. The present continuous-time setting raises however serious technical
problems which we overcome in this paper by a crucial use of the optional cross
section theorem.

In the recent literature, there is an important interest in the SEP and the corre-
sponding optimality properties. This revival is mainly motivated by its connection
to the model-free hedging problem in financial mathematics, as initiated by Hobson
[22], and continued by many authors [9, 10, 11, 13, 18, 24, 25, 26], etc.

Finally, we emphasize that the connection between the model-free hedging prob-
lem and the optimal transport theory was introduced simultaneously by Beiglböck,
Henry-Labordère & Penkner [4] in discrete-time, and Galichon, Henry-Labordère
& Touzi [17] in continuous-time. We also refer to the subsequent literature on
martingale optimal transport by [6, 7, 8, 14, 15, 19, 20, 21, 23, 24], etc.

In the rest of the paper, we formulate the monotonicity principle in Section 2,
and then provide our proof in Section 3.

2 Monotonicity principle of optimal Skorokhod

embedding problem

2.1 Preliminaries

Let Ω ⊂ C(R+,R) be the canonical space of all continuous functions ω on R+ such
that ω0 = 0, B denote the canonical process and F = (Ft)t≥0 the canonical filtration
generated by B. Notice that Ω is a Polish space under the compact convergence
topology, and its Borel σ−field is given by F :=

∨
t≥0 Ft. Denote by P(Ω) the space

of all (Borel) probability measures on Ω and by P0 ∈ P(Ω) the Wiener measure on
Ω, under which B is a Brownian motion.

We next introduce an enlarged canonical space Ω := Ω × R+, equipped with
canonical element B := (B,T ) defined by

B(ω̄) := ω and T (ω̄) := θ, for all ω̄ = (ω, θ) ∈ Ω,

and the canonical filtration F = (F t)t≥0 defined by

F t := σ(Bu, u ≤ t) ∨ σ
(
{T ≤ u}, u ≤ t

)
,

so that the canonical variable T is a F−stopping time. In particular, we have

the σ−field FT on Ω. Define also F
0

:= σ(Bt, t ≥ 0) as σ−field on Ω. Under
the product topology, Ω is still a Polish space, and its Borel σ−field is given by
F :=

∨
t≥0 F t. Similarly, we denote by P(Ω) the set of all (Borel) probability

measures on Ω.
Next, for every ω̄ = (ω, θ) ∈ Ω and t ∈ R+, we define the stopped path by

ωt∧· :=
(
ωt∧u

)
u≥0

and ω̄t∧· := (ωt∧·, t ∧ θ). For every ω̄ = (ω, θ), ω̄′ = (ω′, θ′) ∈ Ω,

we define the concatenation ω̄ ⊗ ω̄′ ∈ Ω by

ω̄ ⊗ ω̄′ := (ω ⊗θ ω
′, θ + θ′),
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where
(
ω ⊗θ ω

′
)
t

:= ωt1[0,θ)(t) +
(
ωθ + ω′

t−θ

)
1[θ,+∞)(t), for all t ∈ R+.

Let ξ : Ω → R be a random variable, and P ∈ P(Ω), we defined the expectation
E[ξ] := E[ξ+] − E[ξ−], by the convention ∞−∞ = −∞.

2.2 The optimal Skorokhod embedding problem

We now introduce an optimal Skorokhod embedding problem and its dual problem.
Let µ be a centered probability measure on R, i.e. admitting first order moment
and with zero mean, we then introduce the set of all embeddings by

P
0
(µ) :=

{
P ∈ P

0
: BT ∼P µ

}
,

with

P
0

:=
{
P ∈ P(Ω) : B is F− Brownian motion and

BT∧· is uniformly integrable under P
}
. (2.1)

Let ξ : Ω −→ R be some (Borel) measurable map, we then define the optimal
Skorokhod embedding problem (with respect to µ and ξ) by

P (µ) := sup
P∈P

0
(µ)

EP
[
ξ
]
. (2.2)

We next introduce a dual formulation of the above Skorokhod embedding prob-
lem (2.2). Let Λ denote the space of all continuous functions λ : R → R of linear
growth, and define for every λ ∈ Λ,

µ(λ) :=

∫

R

λ(x)µ(dx).

Define further

D :=
{

(λ, S) ∈ Λ × S : λ(ωt) + St(ω) ≥ ξ(ω, t), for all t ≥ 0, P0 − a.s.
}
,

where S denotes the collection of all F−strong càdlàg supermartingales S : R+ ×
Ω → R on (Ω,F ,P0) such that S0 = 0 and for some L > 0,

∣∣St(ω)
∣∣ ≤ L(1 + |ωt|), for all ω ∈ Ω, t ∈ R+. (2.3)

Then the dual problem is given by

D(µ) := inf
(λ,S)∈D

µ(λ). (2.4)

Remark 2.1. By the Doob-Meyer decomposition together with the martingale rep-
resentation w.r.t. the Brownian filtration, there is some F−predictable process
H : R+ × Ω → R and non-increasing F−predictable process A (A0 = 0) such
that St = (H · B)t − At for all t ≥ 0, P0−a.s., where (H · B) denotes the stochas-
tic integral of H w.r.t B under P0. We then have another dual formulation, by
replacing D with

D′ :=
{

(λ,H) : λ(ωt) + (H ·B)t(ω) ≥ ξ(ω, t), for all t ≥ 0, P0 − a.s.
}
.

Here, we use the formulation in terms of the set D for ease of presentation.
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2.3 The monotonicity principle

We now introduce the monotonicity principle formulated and proved in Beiglböck,
Cox and Huesmann [2], which provides a geometric characterization of the optimal
embedding of problem (2.2) in terms of its support.

Let Γ ⊆ Ω be a subset, we define Γ
<

by

Γ
<

:=
{
ω̄ = (ω, θ) ∈ Ω : ω̄ = ω̄′

θ∧· for some ω̄′ ∈ Γ with θ′ > θ
}
.

Definition 2.2. A pair (ω̄, ω̄′) ∈ Ω×Ω is said to be a stop-go pair if ωθ = ω′
θ′ and

ξ(ω̄) + ξ(ω̄′ ⊗ ω̄′′) > ξ(ω̄ ⊗ ω̄′′) + ξ(ω̄′) for all ω̄′′ ∈ Ω
+
,

where Ω
+

:=
{
ω̄ = (ω, θ) ∈ Ω : θ > 0

}
. Denote by SG the set of all stop-go pairs.

The following monotonicity principle was introduced and proved in [2].

Theorem 2.3. Let µ be a centered probability measure on R. Suppose that the

optimal Skorokhod embedding problem (2.2) admits an optimizer P
∗
∈ P

0
(µ), and

the duality P (µ) = D(µ) holds true. Then there exists a Borel subset Γ
∗
⊆ Ω such

that

P
∗[

Γ
∗]

= 1, and SG ∩
(
Γ
∗<

× Γ
∗)

= ∅. (2.5)

Remark 2.4. Suppose that ξ is bounded from above, and for all ω ∈ Ω, the map
t 7→ ξ(ω, t) is upper semicontinuous and right-continuous, then the conditions in
Theorem 2.3 are satisfied (see e.g. Theorem 2.4 and Proposition 4.11 of [18], and
also [2, 3] for a slightly different formulation).

3 Proof of Theorem 2.3

Throughout this section, we fix an optimizer P
∗

of problem (2.2) in the context of
Theorem 2.3.

3.1 An enlarged stop-go set

Notice that by Definition 2.2, the set SG is a universally measurable set (co-analytic
set more precisely), but not a Borel set a priori. To overcome some measurability
difficulty, we will consider another Borel set SG∗ ⊂ Ω × Ω such that SG∗ ⊃ SG, as
in [2].

Recall that P
∗

is a fixed optimizer of the problem (2.2), then it admits a family of
regular probability probability distribution ( r.c.p.d. see e.g. Stroock and Varadhan

[29]) (P
∗
ω̄)ω̄∈Ω w.r.t. F

0
:= σ(Bt, t ≥ 0) on Ω. Notice that for ω̄ = (ω, θ), the

measure P
∗
ω̄ is independent of θ, we will denote this family by (P

∗
ω)ω∈Ω. In particular,

one has P
∗
ω[B· = ω] = 1 for all ω ∈ Ω. Next, for every ω̄ ∈ Ω, define a probability

Q
1
ω̄ on (Ω,F) by

Q
1
ω̄[A] :=

∫

Ω
P
∗
ω⊗θω

′(A) P0(dω
′), for all A ∈ F . (3.6)

4



Intuitively, Q
1
ω̄ is the conditional probability w.r.t the event {B·∧θ = ω·∧θ}. We

next define, for every ω̄ ∈ Ω, a probability Q
2
ω̄ by

Q
2
ω̄[A] := Q

1
ω̄

[
A
∣∣T > θ

]
1
{Q

1

ω̄ [T>θ]>0}
+ P

θ,ω
0 ⊗ δ{θ}[A]1

{Q
1

ω̄ [T>θ]=0}
, (3.7)

for all A ∈ F , where P
t,ω
0 is the shifted Wiener measure on (Ω,F) defined by

P
t,ω
0 [A] := P0

[
ω ⊗t B ∈ A

]
, for all A ∈ F .

We finally introduce a shifted probability Q
∗
ω̄ by

Q
∗
ω̄[A] := Q

2
ω̄

[
ω̄ ⊗B ∈ A

]
, for all A ∈ F .

and then define a new set SG∗ ⊃ SG by

SG∗ :=
{

(ω̄, ω̄′) : ωθ = ω′
θ′ , ξ(ω̄) + EQ

∗

ω̄ [ξ(ω̄′ ⊗ ·)] > EQ
∗

ω̄ [ξ(ω̄ ⊗ ·)] + ξ(ω̄′)
}
. (3.8)

Lemma 3.1. (i) The set SG∗ ⊂ Ω × Ω defined by (3.8) is FT ⊗FT−measurable.

(ii) Let τ ≤ T be a F−stopping time, then the family (P̂ω̄)ω̄∈Ω defined by

P̂ω̄ := 1{τ(ω̄)<θ}Q
2
(ω,τ(ω̄)) + 1{τ(ω̄)=θ}P

τ(ω̄),ω
0 ⊗ δ{θ}

is a family of conditional probability measures of P
∗
w.r.t. F τ , i.e. ω̄ 7→ P̂ω̄ is

Fτ−measurable, and for all bounded F−measurable random variable ζ, one has

EP
∗

[ζ|F τ ](ω̄) = P̂ω̄[ζ] for P
∗
−a.e. ω̄ ∈ Ω.

Proof. (i)Let us denote [ω]t := ωt∧·, [θ]t := θ1{θ≤t}+∞1{θ>t} and [ω̄]t := ([ω]t, [θ]t).

Then by Lemma A.2 of [18], a process Y : R+×Ω → R is F−optional if and only if
it is B(R+) ⊗ F−measurable, and Yt(ω̄) = Yt([ω̄]t). Further, using Theorem IV-64
of Dellacherie and Meyer [12, Page 122], it follows that a random variable X is
FT−measurable if and only if it is F−measurable and X(ω̄) = X([ω]θ, θ) for all
ω̄ ∈ Ω.

Next, by the definition of Q
1
ω̄, Q

2
ω̄ and Q

∗
ω̄, it is easy to see that ω̄ 7→

(
Q

1
ω̄,Q

2
ω̄,Q

∗
ω̄

)

are all F−measurable and satisfies Q
∗
ω̄ = Q

∗
[ω]θ,θ

for all ω̄ ∈ Ω. Then it fol-

lows that ω̄ 7→ Q
∗
ω̄ is FT−measurable, and hence by its definition in (3.8), SG∗

is FT ⊗FT−measurable.

(ii) Let τ ≤ T be a F−stopping time, we claim that F−stopping time τ0 on (Ω,F)
such that

there is some F− stopping time τ0 on (Ω,F), s.t. τ(ω̄) = τ0(ω) ∧ θ. (3.9)

Moreover, again by Theorem IV-64 of [12], we have

F τ = σ
(
Bτ∧t, t ≥ 0

)
∨ σ

(
T1{τ=T}, {τ < T}

)
. (3.10)

In the next of the proof, we will consider two sets {τ = T} and {τ < T} separately.
Let (P̂0

ω̄)ω̄∈Ω be a family of regular conditional probability distribution (r.c.p.d.

see e.g. Stroock and Varadhan [29]) of P
∗

w.r.t. Fτ , which implies that

P̂0
ω̄

[
Bτ∧· = ωτ(ω̄)∧·

]
= 1 for all ω̄ ∈ Ω; and P̂0

ω̄[T = θ] = 1 for all ω̄ ∈ {τ = T}.
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It follows that for P
∗
−a.e. ω̄ ∈ {τ = T}, one has P̂0

ω̄ = P̂ω̄ := P
τ(ω̄),ω
0 ⊗ δ{θ}.

Next, recall that P
∗
ω is a family of r.c.p.d of P

∗
w.r.t. σ(Bt, t ≥ 0) and Q

1
ω̄ are

defined by (3.6). Then (Q
1
ω̄)ω̄∈Ω is a family of conditional probability measures of

P
∗

w.r.t. σ
(
Bτ0(ω)∧t, t ≥ 0

)
. Further, by the representation of Fτ in (3.10), it

follows that for P
∗
−a.e. ω̄ ∈ {τ < T}, one has P̂0

ω̄ = Q
2
ω̄.

We now prove the claim (3.9). For every ω ∈ Ω and t ∈ R+, we denote Aω,t :=
{ω̄′ ∈ Ω : ω′

t∧· = ωt∧·, θ′ > t}. Then it is clearly that Aω,t is an atom in
F t, i.e. for any set C ∈ F t, one has either Aω,t ∈ C or Aω,t ∩ C = ∅. Let
ω̄ ∈ Ω such that τ(ω̄) < θ, and θ′ > θ, so that ω̄ ∈ Aω,t and (ω, θ′) ∈ Aω,t

for every t < θ. Let t0 := τ(ω̄), then ω̄ ∈ Aω,t0 , and ω̄ ∈ {τ = t0} ∈ F t0 ,
which implies that (ω, θ′) ∈ Aω,t0 ⊂ {τ = t0} since Aω,t0 is an atom in F t0 .
It follows that τ(ω, θ′) = τ(ω̄) for all θ′ > θ and ω̄ ∈ Ω such that τ(ω̄) < θ.
Notice that for each t ∈ R+, {ω̄ ∈ Ω : τ(ω̄) ≤ t} is F t−measurable, then by
Doob’s functional representation Theorem, there is some Borel measurable function
f : Ω × (R+ ∪ {∞}) → R such that 1{τ(ω̄)≤t} = f([ω]t, [θ]t). It follows that for

θ0 ∈ R+, {ω ∈ Ω : τ(ω, θ0) ≤ t} is Ft−measurable, and hence ω 7→ τ(ω, θ0) is a
F−stopping time on (Ω,F). Then the random variable τ0 : Ω → R+ defined by
τ0(ω) := supn∈N τ(ω, n) is the required F−stopping time of claim (3.9).

Finally, we notice that by its definition, one has ω̄ 7→ P̂ω̄ is F−measurable and
satisfies P̂ω̄ = P̂[ω̄]θ for all ω̄ ∈ Ω. Moreover, we have proved that P̂0

ω̄ = P̂ω̄ for

P
∗
−a.e. ω̄ ∈ Ω, where (P̂0

ω̄)ω̄∈Ω is a family of r.c.p.d. of P
∗

w.r.t. Fτ . Therefore,

(P̂ω̄)ω̄∈Ω is a family of conditional probability measures of P
∗

w.r.t. Fτ .

Notice that SG∗ ⊃ SG, then it is enough to show (2.5) for SG∗ to prove Theorem
2.3.

3.2 Technical results

We first define a projection operator ΠS : Ω × Ω → Ω by

ΠS

[
A
]

:=
{
ω̄ : there exists some ω̄′ ∈ Ω such that (ω̄, ω̄′) ∈ A

}
.

Proposition 3.2. Let the conditions in Theorem 2.3 holds true and P
∗
be the fixed

optimizer of the optimal SEP (2.2). Then there is some Borel set Γ
∗
0 ⊂ Ω such that

P
∗
[Γ

∗
0] = 1 and for all F−stopping time τ ≤ T , one has

P
∗[
τ < T, Bτ∧· ∈ ΠS

(
SG∗ ∩

(
Ω × Γ

∗
0

))]
= 0. (3.11)

Proof. (i) Let us start with the duality result P (µ) = D(µ) and the dual problem
(2.4). By definition, we may find a minimizing sequence {(λn, Sn)}n≥1 ⊂ D , so that
µ(λn) −→ D(µ) = P (µ) as n −→ ∞. Then, there is some Γ0 ⊂ Ω s.t. P0(Γ0) = 1
and

ηn(ω̄) := λn(ωt) + Sn
t (ω) − ξ(ω̄) ≥ 0, for all ω̄ ∈ Γ0 × R+. (3.12)

Notice that (Sn
t )t≥0 are all strong supermartingales on (Ω,F ,P0) satisfying (2.3).

It is then also a strong supermartingale on (Ω,F ,P
∗
) w.r.t. F. It follows that

0 ≤ EP
∗[
ηn

]
= EP

∗[
λn(BT ) + Sn

T − ξ
]
≤ µ(λn) − P (µ) −→ 0 as n −→ ∞.(3.13)
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Therefore, we can find some Γ0 ⊆ Ω such that P
∗
(Γ0) = 1, and after possibly

passing to a subsequence,

ηn(ω̄) −→ 0 as n −→ ∞, for all ω̄ ∈ Γ0.

Moreover, since Sn can be viewed as a F−strong supermartingale on (Ω,F ,P
∗
),

then there is some Borel set Γ1 ⊂ Ω such that P
∗
[Γ1] = 1, and for all ω̄ ∈ Γ1,

P0[ω ⊗θ B ∈ Γ0] = 1, and (Sn
θ+t(ω ⊗θ ·))t≥0 is a P0−strong supermartingale. Set

Γ
∗
0 := Γ0 ∩ Γ1, and we next show that Γ

∗
0 is the required Borel set.

(ii) Let us consider a fixed pair

(ω̄, ω̄′) ∈ SG ∩
(
Ω × Γ

∗
0

)
,

and define

δ(ω̄′′) := ξ(ω̄) + ξ(ω̄′ ⊗ ω̄′′) − ξ(ω̄ ⊗ ω̄′′) + ξ(ω̄′), for all ω̄′′ ∈ Ω.

By the definition of SG∗ (3.8), one has ωθ = ω′
θ′ . Then using the definition of ηn

in (3.12), it follows that for all ω̄′′ ∈ Ω,

δ(ω̄′′) = λn(ωθ) + Sn
θ (ω) − ηn(ω̄) −

(
λn(ω′

θ′) + Sn
θ′(ω

′) − ηn(ω̄′)
)

+ λn
(
ω′
θ′ + ω′′

θ′′

)
+ Sn

θ′+θ′′(ω
′ ⊗θ′ ω

′′) − ηn(ω̄′ ⊗ ω̄′′)

−
(
λn

(
ωθ + ω′′

θ′′

)
+ Sn

θ+θ′′(ω ⊗θ ω
′′) − ηn(ω̄ ⊗ ω̄′′)

)

= Sn
θ (ω) − ηn(ω̄) + Sn

θ′+θ′′(ω
′ ⊗θ′ ω

′′) − ηn(ω̄′ ⊗ ω̄′′)

−
(
Sn
θ′(ω

′) − ηn(ω̄′) + Sn
θ+θ′′(ω ⊗θ ω

′′) − ηn(ω̄ ⊗ ω̄′′)
)

≤
(
ηn(ω̄ ⊗ ω̄′′) + ηn(ω̄′)

)
− ηn(ω̄′ ⊗ ω̄′′)

+
(
Sn
θ′+θ′′(ω

′ ⊗θ′ ω
′′) − Sn

θ′(ω
′)
)

−
(
Sn
θ+θ′′(ω ⊗θ ω

′′) − Sn
θ (ω)

)
.

(iii) Let τ ≤ T be an F−stopping time, then
(
P̂ω̄

)
ω̄∈Ω

, defined by

P̂ω̄ := Q
2
(ω,τ(ω̄)) 1{τ(ω̄)<θ} + P

τ(ω̄),ω
0 ⊗ δ{θ} 1{τ(ω̄)=θ}

provides a family of conditional probability measures of P
∗

w.r.t. Fτ (see Lemma
3.1). Recall that P̂∗

ω̄ := Q
∗
(ω,τ(ω̄) for all ω̄ ∈ {τ < T} is the shifted probability

measures.
By (3.13), there is some set Γ

1
τ such that P

∗
[Γ

1
τ ] = 1 and

EP̂ω̄
[
ηn

]
−→ 0, as n −→ ∞, for all ω̄ ∈ Γ

1
τ . (3.14)

Further, (3.13) implies that 0 ≥ EP
∗

[Sn
T ] → 0 as n → ∞. Then it follows from the

strong supermartingale property of Sn that

Sn
τ − EP

∗[
Sn
T

∣∣Fτ

]
≥ 0, P

∗
− a.s. and EP

∗[
Sn
τ − EP

∗[
Sn
T

∣∣Fτ

]]
≤ −EP

∗

[Sn
T ] → 0,

Hence there is some set Γ
2
τ ⊂ Ω such that P

∗
[Γ

2
τ ] = 1 and for all ω̄ ∈ Γ

2
τ ,

0 ≤ Sn
τ (ω̄) − EP̂ω̄ [Sn

T ] −→ 0, as n → ∞, (3.15)

after possibly taking some subsequence. Moreover, by the definition of P
0

in (2.1),
B is a F−Brownian motion and BT∧t is uniformy integrable under P

∗
, and the

7



property holds still under the conditional probability measures. Then there is some

measurable set Γ
3
τ ⊂ Ω such that P

∗
[Γ

3
τ ] = 1 and for every ω̄ ∈ Γ

3
τ ∩ {τ < T}, one

has

P̂∗
ω̄

[
T > 0

]
> 0, P̂∗

ω̄

[
ω̄τ(ω̄)∧· ⊗B ∈ Γ

∗
0

]
= 1 and P̂∗

ω̄ ∈ P
0
. (3.16)

Set Γ
0
τ := Γ

1
τ ∩ Γ

2
τ ∩ Γ

3
τ , in the rest of this proof, we show that

(
(Γ

0
τ ∩ {τ < T}) × Ω

)
∩ SG∗ ∩

(
Ω × Γ

∗
0

)
= ∅, (3.17)

which justifies (3.11).

(iv) We finally prove (3.17) by contradiction. Let (ω̄, ω̄′) ∈ (Γ
0
τ×Ω)∩SG∗∩(Ω×Γ

∗
0).

Notice that ω̄′ = (ω′, θ′) ∈ Γ
∗
0 ⊂ Γ1 and for some constant Ln,

|Sn
θ′+T (ω′ ⊗θ B)| ≤ Ln

∣∣1 + ω′
θ′ + BT

∣∣,

it follows by the supermartingale property, together with the Fatou lemma, that

EP̂∗

ω̄
[
Sn
θ′+T (ω′ ⊗θ′ B)

]
≤ Sn

θ′(ω
′).

Moreover, one has EP̂∗

ω̄ [ηn(ω̄′ ⊗ B)] ≥ 0. Further, using (3.16) then (3.13), (3.14)
and (3.15), we obtain that

0 < EP̂∗

ω̄ [δ] ≤ EP̂∗

ω̄

[
ηn(ω̄ ⊗B)

]
+ ηn(ω̄′) − EP̂∗

ω̄

[
Sn
τ(ω̄)+T (ω ⊗τ(ω̄) B)

]
− Sn

τ(ω̄)(ω) → 0,

as n −→ ∞, which is a contradiction, and we hence conclude the proof.

Suppose that ΠS

(
SG∗ ∩ (Ω × Γ

∗
0)
)

is Borel measurable on Ω, then by Lemma
A.2 of [18], the set

{
(t, ω̄, ω̄′) ∈ R+ × Γ

∗
0 × Γ

∗
0 : t < θ, and (ω, t, ω̄′) ∈ SG∗

}
.

is an F−optional set. Using Proposition 3.2 together with the classical optional
cross-section theorem (see e.g. Theorem IV.86 of Dellacherie and Meyer [12]), it
follows immediately that there is some measurable set Γ

∗
1 ⊂ Ω such that P

∗
(Γ

∗
1) = 1

and ΠS

(
SG∗∩(Ω×Γ

∗
0)
)
∩Γ

∗<
1 = ∅. However, when the set SG∗∩(Ω×Γ

∗
0) is a Borel

set in Ω×Ω, the projection set ΠS

(
SG∗ ∩ (Ω×Γ

∗
0)
)

is a priori a B(Ω)−analytic set
(Definition III.7 of [12]) in Ω. Therefore, we need to adapt the arguments of the
optional cross-section theorem to our context.

Denote by O the optional σ−field w.r.t. the filtration F on R+ × Ω. Let E be
some auxiliary space, A ⊂ R+ × Ω × E, we denote

Π2(A) := {ω̄ : there is some (t, e) ∈ R+ × E such that (t, ω̄, e) ∈ A},

and
Π12(A) := {(t, ω̄) : there is some e ∈ E such that (t, ω̄, e) ∈ A}.

Proposition 3.3. Let P be an arbitrary probability measure on (Ω,F), (E, E) be a
Lusin measurable space 1. Suppose that A ⊂ R+ × Ω × E is a O × E−measurable
set. Then for every ε > 0, there is some F−stopping time τ such that P[τ <

∞] ≥ P[Π2(A)] − ε and (τ(ω̄), ω̄) ∈ Π12(A) whenever ω̄ ∈ Ω satisfies τ(ω̄) < ∞.

1A measurable space (E, E) is said to be Lusin if it is isomorphic to a Borel subset of a compact
metrizable space (Definition III.16 of [12]).
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Proof. We follow the lines of Theorem IV.84 of [12].

(i) Notice that every Lusin space is isomorphic to a Borel subset of [0, 1] (see
e.g. Theorem III.20 of [12]), we can then suppose without loss of generality that
(E, E) = ([0, 1],B([0, 1])). Then the projection set Π12(A) is clearly O−analytic in
sense of Definition III.7 of [12].

(ii)Using the measurable section theorem (Theorem III.44 of [12]), there is F−random
variable R : Ω → R ∪ {∞} such that P[R < ∞] = P[Π2(A)] and R(ω̄) < ∞ ⇒
(R(ω̄), ω̄) ∈ Π12(A). The variable R is in fact a stopping time w.r.t. the completed

filtration F
P

(see e.g. Proposition 2.13 of [16]), but not a F−stopping time a priori.
We then need to modify R following the measure ν defined on B(R+) ⊗F by

ν(G) :=

∫
1G(R(ω̄), ω̄)1{R<∞}(ω̄)P(dω̄), ∀G ∈ B(R+) ⊗F .

(iii) We continue by following the lines of item (b) in the proof of Theorem IV.84
of [12]. Denote by ζ0 the set of all intervals [[σ, τ [[, with σ ≤ τ and σ, τ are both
F−stoping times. Denote also by ζ the closure of ζ0 under finite union operation,
then ζ is a Boolean algebra which generates the optional σ−filed O. Moreover,
the debut of a set C ∈ ζδ (the smallest collection containing ζ and stable under
countable intersection) is a.s. equal to an F−stopping time. Further, the projection
set Π12(A) is O−analytic and hence O−universally measurable. Therefore, there
exists a set C ∈ ζδ contained in Π12(A) such that ν(C) ≥ ν(Π12(A)) − ε. Let τ0
be the F−stopping time, which equals to the debut of C, P−a.s., then define τ :=
τ01{(τ0(ω̄),ω̄)∈B}, which is a new F−stopping time since {ω̄ : (τ0(ω̄), ω̄) ∈ C} ∈ F τ0

by Theorem IV.64 of [12]. We then conclude the proof by the fact that τ is the
required stopping time.

3.3 Proof of Theorem 2.3

Let us define

A :=
{

(t, ω̄, ω̄′) ∈ R+ × Γ
∗
0 × Γ

∗
0 : t < θ, and (ω, t, ω̄′) ∈ SG∗

}
. (3.18)

Since SG∗ is a FT ⊗ FT−measurable set in Ω × Ω, it follows (see Lemma A.2. of
[18]) that the set A defined by (3.18) satisfies the conditions in Proposition 3.3 with
E = Ω.

We next prove that Π2(A) is P
∗
−null set. Indeed, if P

∗
[Π2(A)] > 0, by Propo-

sition 3.3, there is some F−stopping time τ such that (τ(ω̄), ω̄) ∈ Π12(A) for all
ω̄ ∈ {τ < ∞} = {τ < T}, and P

∗
[τ < ∞] = P

∗
[τ = T ] > 0. Notice that

(τ(ω̄), ω̄) ∈ Π12(A) implies that (ω, τ(ω̄)) ∈ ΠS(SG∗). We then have

0 < P
∗
[τ < T ] ≤ P

∗[
τ < T, Bτ∧· ∈ ΠS

(
SG∗ ∩

(
Ω × Γ

∗
0

))]
.

This is a contradiction to Proposition 3.2.
Since Π2(A) is a P

∗
−null set, we may find a Borel set Γ

∗
1 ⊂ (Ω \ Π2(A)) such

that P
∗
[Γ

∗
1] = 1 and ΠS(SG∗) ∩ Γ

∗<
1 = ∅. Therefore, Γ

∗
:= Γ

∗
0 ∩ Γ

∗
1 is the required

Borel subset of Ω.

Remark 3.4. (i) Proposition 3.2 can be compared to Proposition 6.6 of [2], while
the proofs are different. Our proof of Proposition 3.2 is in the same spirit of the
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classical proof for the monotonicity principle of optimal transport problem (see e.g.
Villani [31, Chapter 5]), or martingale optimal transport problem (see e.g. Zaev
[32, Theorem 3.6]), based on the existence of optimal transport plan and the duality
result.

(ii) Proposition 3.3 should be compared to the so-called filtered Kellerer Lemma
(Proposition 6.7 of [2]), where a key argument in their proof is Choquet’s capacity
theory. Our proof of Proposition 3.3 uses crucially an optional section theorem,
which is based on a measurable section theorem, and the latter is also proved in [12]
using Choquet’s capacity theory (see also the review in [16]).
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[20] Henry-Labordére, P., Tan, X. and Touzi, N., An Explicit Version of the One-

dimensional Brenier’s Theorem with Full Marginals Constraint, preprint, 2014.
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