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, which is better than that obtained by viscosity solution method. Finally, by approximating the conditional expectations arising in the numerical scheme with simulation-regression method, we obtain an implementable scheme.

Introduction

Stochastic optimal control theory is largely applied in economics, finance, physics and management problems. Since its development, numerical methods for stochastic control problems have also been largely investigated. For the Markovian control problem, the value function can usually be characterized by Hamilton-Jacob-Bellman(HJB) equations, then many numerical methods are also given as numerical schemes for PDEs. In this context, a powerful tool to prove the convergence is the monotone convergence of viscosity solution method of Barles and Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF].

In the one-dimensional case, the explicit finite difference scheme can be easily constructed and implemented, and the monotonicity is generally guaranteed under the Courant-Friedrichs-Lewy (CFL) condition. In two dimensional cases, Bonnans, Ottenwaelter and Zidani [START_REF] Bonnans | A fast algorithm for the two dimensional HJB equation of stochastic control[END_REF] proposed a numerical algorithm to construct monotone explicit schemes. Debrabant and Jakobsen [START_REF] Debrabant | Semi-Lagrangian schemes for linear and fully nonlinear diffusion equations[END_REF] gave a semi-Lagrangian scheme which is easily constructed to be monotone but needs finite difference grid together with interpolation method for the implementation. In general, these methods may be relatively efficient in low dimensional cases; while in high dimensional cases, Monte Carlo method is preferred if possible.

As a generalization of Feynman-Kac formula, the Backward Stochastic Differential Equation (BSDE) opens a way for the Monte Carlo method for optimal control problems (see e.g. Bouchard and Touzi [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF], Zhang [START_REF] Zhang | A numerical scheme for backward stochastic differential equations[END_REF]). Generally speaking, the BSDE covers the controlled diffusion processes problems of which only the drift part is controlled. However, it cannot include the general control problems when the volatility part is also controlled. This is one of the main motivations of recent developments of second order BSDE (2BSDE) by Cheridito, Soner, Touzi and Victoir [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF] and Soner, Touzi and Zhang [START_REF] Soner | Wellposedness of second order backward SDEs[END_REF]. Motivated by the 2BSDE theory in [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF], and also inspired by the numerical scheme of BSDEs, Fahim, Touzi and Warin [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF] proposed a probabilistic numerical scheme for fully nonlinear parabolic PDEs. In their scheme, one needs to simulate a diffusion process, and estimate the value function as well as the derivatives of the value function arising in the PDE by conditional expectations, and then compute the value function in a backward way on the discrete time grid. The efficiency of this Monte Carlo scheme has been shown by several numerical examples, we refer to Fahim, Touzi and Warin [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF], Guyon and Henry-Labordère [START_REF] Guyon | Uncertain Volatility Model: A Monte-Carlo Approach[END_REF] and Tan [START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic PDEs[END_REF] for the implemented examples.

However, instead of probabilistic arguments, the convergence of this scheme is proved by techniques of monotone convergence of viscosity solution of Barles and Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. Moreover, their scheme can be only applied in the Markovian case when the value function is characterized by PDEs.

The main contribution of this paper is to give a probabilistic interpretation to the Monte Carlo scheme of [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF] for fully nonlinear PDEs, which permits to generalize it to the non-Markovian case for a general stochastic optimal control problem. One of the motivations for the non-Markovian generalization comes from finance to price the path-dependent exotic derivative options in the uncertain volatility model.

Our general convergence result is obtained by weak convergence techniques in spirit of Kushner and Dupuis [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]. In contrast to [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF], where the authors define their controlled Markov chain in a descriptive way, we give our controlled discrete-time semimartingale in an explicit way using the cumulative distribution functions. Moreover, we introduce a canonical space for the control problem following El Karoui, Huu Nguyen and Jeanblanc [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: existence of an optimal control[END_REF], which permits to explore the convergence conditions on the reward functions. We also provide a convergence rate using the invariance principle techniques of Sakhanenko [START_REF] Sakhanenko | A new way to obtain estimates in the invariance principle[END_REF] and Dolinsky [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF]. Comparing to the scheme in [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF] in the context of -expectation (see e.g. Peng [START_REF] Peng | G-Expectation, G-Brownian motion, and related stochastic calculus of Itô type[END_REF] for -expectation), our scheme is implementable using simulation-regression method.

The rest of the paper is organized as follows. In Section 2, we first introduce a general path-dependent stochastic control problem, and propose a numerical scheme.

Then we give the assumptions on the diffusion coefficients and the reward functions, as well as the main convergence results, including the general convergence and a rate of convergence. Next in Section 3, we provide a probabilistic interpretation of the numerical scheme, by showing that the numerical solution is equivalent to the value function of a controlled discrete-time semimartingale problem. Then we complete the proofs of the convergence results in Section 4. Finally, in Section 5, we discuss some issues about the implementation of our numerical scheme, including a simulationregression method.

Notations. We denote by the space of all × matrices, and by + the space of all positive symmetric × matrices. Given a vector or a matrix , then ⊤ denotes its transposition. Given two × matrix and , their product is defined by ⋅ := Tr( ⊤ ) and | | := √ ⋅ . Let Ω := ([0, ], ℝ ) be the space of all continuous paths between 0 and , denote |x| := sup 0≤ ≤ |x | for every x ∈ Ω . In the paper, is a fixed compact Polish space, we denote

:= [0, ] × Ω × .

Suppose that (

) 0≤ ≤ is a process defined on the discrete time grid ( ) 0≤ ≤ of [0, ] with := ℎ and ℎ := , we usually write it as ( ) 0≤ ≤ , and denote by ˆ its linear interpolation path on [0, ]. In the paper, is a constant whose value may vary from line to line.

A numerical scheme for stochastic control problems 2.1 A path-dependent stochastic control problem

Let (Ω, ℱ, ℙ) be a complete probability space containing a -dimensional standard Brownian motion , = (ℱ ) 0≤ ≤ be the natural Brownian filtration. Denote by Ω := ([0, ], ℝ ) the space of all continuous paths between 0 and . Suppose that is a compact Polish space with a complete metric , ( , ) are bounded continuous functions defined on := [0, ] × Ω × taking value in × ℝ . We fix a constant 0 ∈ ℝ through out the paper. Then given a -progressively measurable -valued process = ( ) 0≤ ≤ , denote by the controlled diffusion process which is the strong solution to

= 0 + ∫ 0 ( , ⋅ , ) + ∫ 0 ( , ⋅ , ) . (2.1)
To ensure the existence and uniqueness of the strong solution to the above equation (2.1), we suppose that for every progressively measurable process ( , ), the processes ( , ⋅ , ) and ( , ⋅ , ) are progressively measurable. In particular, and depend on the past trajectory of . Further, we suppose that there is some constant and a continuity module , which is an increasing function on ℝ + satisfying (0

+ ) = 0, such that ( 1 , x 1 , 1 ) -( 2 , x 2 , 2 ) + ( 1 , x 1 , 1 ) -( 2 , x 2 , 2 ) ≤ |x 1 1 -x 2 2 | + (| 1 -2 | + ( 1 , 2 )), (2.2) 
where for every ( , x) ∈ [0, ] × Ω , we denote x := x 1 [0, ] ( ) + x 1 ( , ] ( ). Let Φ : x ∈ Ω → ℝ and : ( , x, ) ∈ → ℝ be the continuous reward functions, and denote by the collection of all -valued -progressively measurable processes, the main purpose of this paper is to approximate numerically the following optimization problem:

:= sup ∈ [ ∫ 0 ( , ⋅ , ) + Φ( ⋅ ) ] . (2.3) 
Similarly to and , we suppose that for every progressively measurable process ( , ), the process → ( , ⋅ , ) is progressively measurable. Moreover, to ensure that the expectation in (2.3) is well defined, we shall assume later that and Φ are of exponential growth in x and discuss their integrability in Proposition 2.5.

The numerical scheme

In preparation of the numerical scheme, we shall fix, through out the paper, a progressively measurable function 0

: [0, ] × Ω → such that 0 ( 1 , x 1 ) -0 ( 2 , x 2 ) ≤ |x 1 1 -x 2 2 | + (| 1 -2 |)), ∀( 1 , x 1 ), ( 2 , x 2 ) ∈ [0, ] × Ω ,
and with 0 > 0, 0 ⊤ 0 ( , x) ≥ 0 for every ( , x) ∈ [0, ] × Ω . Denote ,x 0

:= 0 ( , x), ,x 0 := ,x 0 ( ,x 0 ) ⊤ , ,x := ⊤ ( , x, ) -,x 0 , ,x := ( , x, ). (2.4) 
Then we define a function on

[0, ] × Ω × × ℝ by ( , x, , ) := sup ∈ ( ( , x, ) + 1 2 ,x ⋅ + ,x ⋅ ) , (2.5) 
which is clearly convex in ( , ) as the supremum of a family of linear functions, and lower-semicontinuous in ( , x) as the supremum of a family of continuous functions. Let ∈ ℕ, denote the time discretization by ℎ := and := ℎ . Let us take the standard -dimensional Brownian motion in the complete probability space (Ω, ℱ, ℙ). For simplicity, we denote := , Δ :

= --1 , ℱ := ( 0 , 1 , ⋅ ⋅ ⋅ ,
) and [⋅] := [⋅|ℱ ]. Then we have a process 0 on the discrete grid ( ) 0≤ ≤ defined by

0 0 := 0 , 0 +1 := 0 + 0 ( , ˆ 0 ⋅ )Δ +1 , (2.6) 
where ˆ 0 denotes the linear interpolation process of ( 0 ) 0≤ ≤ on interval [0, ].

Then, for every time discretization ℎ, our numerical scheme is given by

ℎ := [ ℎ +1 ] + ℎ ( , ˆ 0 ⋅ , Γ ℎ , ℎ ), (2.7) 
with terminal condition

ℎ := Φ( ˆ 0 ⋅ ), (2.8) 
where is defined by (2.5) and

Γ ℎ := [ ℎ +1 ( ⊤ 0, ) -1 Δ +1 Δ ⊤ +1 -ℎ ℎ 2 -1 0, ] , ℎ := [ ℎ +1 ( ⊤ 0, ) -1 Δ +1 ℎ ] ,
with 0, :=

, ˆ 0 0 = 0 ( , ˆ 0 ⋅ ).
Remark 2.1. By its definition, ℎ is a measurable function of ( 0 0 , ⋅ ⋅ ⋅ , 0 ). We shall show later in Proposition 2.5 that the function ℎ ( 0 , ⋅ ⋅ ⋅ , ) is of exponential growth in max 0≤ ≤ | | under appropriate conditions, and hence the conditional expectations in (2.7) are well defined. Therefore, the above scheme (2.7) should be well defined.

Remark 2.2. In the Markovian case, when the function Φ(⋅) (resp. ( , ⋅, ), ( , ⋅, ) and ( , ⋅, )) only depends on (resp. ), so that the function ( , ⋅, , ) only depends on and the value function of the optimization problem (2.3) can be characterized as the viscosity solution of a nonlinear PDE

-∂ - 1 2 0 ( , ) ⋅ 2 -( , , 2 , ) = 0.
Then the above scheme reduces to that proposed by Fahim, Touzi and Warin [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF].

The convergence results of the scheme

Our main idea to prove the convergence of the scheme (2.7), (2.8) is to interpret it as an optimization problem on a system of controlled discrete-time semimartingales, which converge weakly to the controlled diffusion processes. Therefore, a reasonable assumption is that Φ and are bounded continuous on Ω (i.e. Φ(⋅), ( , ⋅, ) ∈ (Ω )), or they belong to the completion space of (Ω ) under an appropriate norm. We shall suppose that Φ (resp. ) is continuous in x (resp. ( , x, )), and there are a constant and continuity modules 0 , ( ) ≥1 such that for every ( , x, ) ∈ and

( 1 , x 1 ), ( 2 , x 2 ) ∈ [0, ] × Ω and ≥ 1, ⎧   ⎨   ⎩ |Φ(x)| + | ( , x, )| ≤ exp ( |x| ) , | ( 1 , x, ) -( 2 , x, )| ≤ 0 (| 1 -2 |), |Φ (x 1 ) -Φ (x 2 )| + | ( , x 1 , ) - ( , x 2 , )| ≤ (|x 1 -x 2 |), (2.9) 
where Φ := (-) ∨ (Φ ∧ ) and := (-) ∨ ( ∧ ). Denote := min

( ,x, )∈ , ∈ℝ ( 1 2 
⊤ ,x

+ ,x ⋅ ) , (2.10) 
and

ℎ 0 := 1 =0 + 1 <0 min ( ,x, )∈ --1 ( 1 - 1 2 ,x ⋅ ( ,x 0 ) -1 ) , (2.11) 
where ,x 0 , ,x and ,x are defined in (2.4). Clearly, ≤ 0.

Assumption 1. For every ( , x, ) ∈ , we have

,x ≥ 0 and 1 - 1 2 ,x ⋅ ( ,x 0 
) -1 ≥ 0.
Further, the constants > -∞ and ℎ 0 > 0.

Remark 2.3. Assumption 1 is almost equivalent to Assumption F of [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF] in the context of the control problem, and it implies that the drift and are uniformly bounded, as assumed at the beginning of Section 2.1. In particular, it follows that when < 0, we have

1 - 1 2 ,x ⋅ ( ,x 0 
) -1 + ℎ ≥ 0, for every ( , x, ) ∈ and ℎ ≤ ℎ 0 .
Moreover, since 0 is supposed to be nondegenerate, the assumption implies that ⊤ ( , x, ) is nondegenerate for all ( , x, ) ∈ . The non-degeneracy condition may be inconvenient in practice (see e.g. Example 5.1), we shall also provide more discussions and examples in Section 5.1.

Remark 2.4. When ,x ≥ uniformly for some > 0, we get immediately > -∞ since ,x is uniformly bounded. When ,x degenerates, > -∞ implies that ,x lies in the image of ,x . Proposition 2.5. Suppose that the reward functions and Φ satisfy (2.9), then the optimal value in (2.3) is finite. Suppose in addition that Assumption 1 holds true. Then for every fixed ∈ ℕ (ℎ := ) and every 0 ≤ ≤ , as a function of ( 0 , ⋅ ⋅ ⋅ , ), ℎ ( 0 , ⋅ ⋅ ⋅ , ) is also of exponential growth in max 0≤ ≤ | |. And hence ℎ is integrable in (2.7), the numerical scheme (2.7) is well defined.

The proof is postponed in Section 3.1 after a technical lemma.

Our main results of the paper are the following two convergence theorems, whose proofs are left in Section 4.

Theorem 2.6. Suppose that and Φ satisfy (2.9) and Assumption 1 holds true. Then

ℎ 0 → as ℎ → 0.
To derive a convergence rate, we suppose further that is a compact convex subset of + × ℝ , and for every ( , x, ) = ( , x, , ) ∈ ,

> 0, ( , x, ) = ( , x, , ) = , ( , x, ) = ( , x, , ) = 1/2 . (2.12)
Moreover, we suppose that ( , x, ) = ℓ( , x) ⋅ for some continuous function ℓ : [0, ] × Ω → × ℝ and that there exists a constant > 0 such that for every couple

( 1 , x 1 ), ( 2 , x 2 ) ∈ , |ℓ( 1 , x 1 ) -ℓ( 2 , x 2 )| + |Φ(x 1 ) -Φ(x 2 )| (2.13) ≤ ( | 1 -2 | + |x 1 1 -x 2 2 | + |x 1 -x 2 | ) exp ( (|x 1 | + |x 2 | ) .
Theorem 2.7. Suppose that and Φ satisfy conditions (2.9) and (2.13), the set ⊂ + ×ℝ is compact and convex, functions and satisfy (2.12), and Assumption 1 holds true. Then for every > 0, there is a constant such that

| ℎ 0 -| ≤ ℎ 1/8-, ∀ℎ ≤ ℎ 0 . (2.14)
If, in addition, and Φ are bounded, then there is a constant such that

| ℎ 0 -| ≤ ℎ 1/8 , ∀ℎ ≤ ℎ 0 . (2.15)
Remark 2.8. In the Markovian context as in Remark 2.2, Fahim, Touzi and Warin [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF] obtained a convergence rate ℎ 1/4 for one side and ℎ 1/10 for the other side using Krylov's shaking coefficient method. Then their global convergence rate is ℎ 1/10 . We get a rate ℎ 1/8 in this path-dependent case under some additional constraints. When there is no control on the volatility part, the BSDE method in Bouchard and Touzi [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF] and Zhang [START_REF] Zhang | A numerical scheme for backward stochastic differential equations[END_REF] gives a convergence rate of order ℎ 1/2 . Our current technique cannot achieve this rate in the BSDE context.

Remark 2.9. When the covariance matrix ⊤ is diagonal dominated, Kushner and Dupuis [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF] gave a systematic way to construct a convergent finite difference scheme. However, the construction turns to be not easy when the matrix is not diagonal dominated, see e.g. Bonnans, Ottenwaelter and Zidani [START_REF] Bonnans | A fast algorithm for the two dimensional HJB equation of stochastic control[END_REF]. Our scheme relaxes this constraint. Moreover, our scheme implies a natural Monte Carlo implementation, which may be more efficient in high dimensional cases, see numerical examples in Fahim, Touzi and Warin [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF], Guyon and Henry-Labordère [START_REF] Guyon | Uncertain Volatility Model: A Monte-Carlo Approach[END_REF] and Tan [START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic PDEs[END_REF].

A controlled discrete-time semimartingale interpretation

Before giving the proofs of the above convergence theorems, we first provide a probabilistic interpretation to the scheme (2.7), (2.8) in spirit of Kushner and Dupuis [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]. Namely, we shall show that the numerical solution is equivalent to the value function of a controlled discrete-time semimartingale problem. For finite difference schemes, the controlled Markov chain interpretation given by Kushner and Dupuis [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF] is straightforward, where their construction of the Markov chain is descriptive. For our scheme, the probabilistic interpretation is less evident as the state space is uncountable. Our main idea is to use the inverse function of the distribution functions. This question has not been evoked in the Markovian context of [START_REF] Fahim | A probabilitic numerical method for fully nonlinear parabolic PDEs[END_REF] since they use the monotone convergence of viscosity solution technique, where the idea is to show that the terms ℎ and Γ ℎ defined below (2.8) are good approximations of the derivatives of the value function.

A technical lemma

Given a fixed ( , x, ) ∈ , let us simplify further the notations in (2.4),

0 := ,x 0 , 0 := ,x 0 , := ,x , := ,x . (3.1) Denote ℎ ( , x, , ) := 1 (2 ℎ) /2 | 0 | 1/2 exp ( - 1 2 ℎ -1 ⊤ -1 0 ) ( 1 - 1 2 ⋅ -1 0 + ⋅ -1 0 + 1 2 ℎ -1 ⋅ -1 0 ⊤ ( ⊤ 0 ) -1 ) . (3.2)
It follows by (2.10) that for every ( , x, ) ∈ and ∈ ℝ ,

⋅ -1 0 + 1 2 ℎ -1 ⋅ -1 0 ⊤ ( ⊤ 0 ) -1 = ℎ [ ⋅ -1 0 ℎ + 1 2 ⋅ -1 0 ℎ ⊤ ℎ ( ⊤ 0 ) -1 ] ≥ ℎ .
Then under Assumption 1, one can verify easily (see also Remark 2.3) that when ℎ ≤ ℎ 0 for ℎ 0 given by (2.11), → ℎ ( , x, , ) is a probability density function on

ℝ , i.e. ℎ ( , x, , ) ≥ 0, ∀ ∈ ℝ , and 
∫ ℝ ℎ ( , x, , ) = 1.
Lemma 3.1. Let ℎ ≤ ℎ 0 and be a random vector with probability density → ℎ ( , x, , ). Then for all functions : ℝ → ℝ of exponential growth, we have

[ ( )] = [ ( 0 ℎ ) ( 1 + ℎ ⋅ ( ⊤ 0 ) -1 ℎ ℎ + 1 2 ℎ ⋅ ( ⊤ 0 ) -1 ℎ ⊤ ℎ -ℎ ℎ 2 -1 0 )] , (3.3) 
where ℎ is a -dimensional Gaussian random variable with distribution (0, ℎ ).

In particular, it follows that there exists a constant 1 independent of (ℎ, , x,

) ∈ (0, ℎ 0 ] × such that [ ] = ℎ, Var[ ] = ( + 0 )ℎ - ⊤ ℎ 2 and [| | 3 ] < 1 ℎ 3/2 , (3.4) 
where Var[ ] means the covariance matrix of the random vector . Moreover, for any ∈ ℝ ,

[ ⋅ ] ≤ 2 ℎ (1 + 2 ℎ), (3.5) 
where 2 is independent of (ℎ, , x, ) and is defined by

2 := sup ( ,x, )∈ ( 1 2 ⊤ 0 + | ⋅ | + 1 2 ⊤ ) .
Proof. First, it is clear that

1 (2 ℎ) /2 | 0 | 1/2 exp ( -1 2 ℎ -1 ⊤ -1 0 )
is the density function of 0 ℎ . Then by (3.2),

[ ( )] = ∫ ℝ ℎ ( , x, , ) ( ) = ∫ ℝ 1 (2 ℎ) /2 | 0 | 1/2 exp ( - 1 2 ℎ -1 ⊤ -1 0 ) ( ) ( 1 - 1 2 ⋅ -1 0 + ⋅ -1 0 + 1 2 ℎ -1 ⋅ -1 0 ⊤ ( ⊤ 0 ) -1 ) = [ ( 0 ℎ ) ( 1 + ℎ ⋅ ( ⊤ 0 ) -1 ℎ ℎ + 1 2 ℎ ⋅ ( ⊤ 0 ) -1 ℎ ⊤ ℎ -ℎ ℎ 2 -1 0 
)] .

Hence (3.3) holds true.

In particular, let ( ) = or ( ) = ⊤ , it follows by direct computation that the first two equalities of (3.4) hold true. Further, letting ( ) = | | 3 , we get from

(3.3) that [| | 3 ] = ℎ 3/2 [ | 0 | 3 ( 1 + √ ℎ ⋅ ( ⊤ 0 ) -1 + 1 2 ⋅ ( ⊤ 0 ) -1 ( ⊤ -) -1 0 )] ,
where is a Gaussian vector of distribution (0, ). And hence (3.4) holds true with

1 := sup ( ,x, )∈ [ | 0 | 3 ( 1 + √ ℎ 0 ⋅ ( ⊤ 0 ) -1 + 1 2 ⋅ ( ⊤ 0 ) -1 ( ⊤ - ) -1 0 )] ,
which is clearly bounded and independent of (ℎ, , x, ). Finally, to prove inequality (3.5), we denote ℎ := + √ ℎ ⊤ 0 for every ℎ ≤ ℎ 0 . Then

[ ⋅ ] = [ ⊤ 0 ℎ ( 1 + ℎ ⋅ ( ⊤ 0 ) -1 ℎ ℎ + 1 2 ℎ ⋅ ( ⊤ 0 ) -1 ℎ ⊤ ℎ -ℎ ℎ 2 -1 0 )] = [ ⊤ 0 √ ℎ ( 1 + √ ℎ ⋅ ( ⊤ 0 ) -1 + 1 2 ⋅ ( ⊤ 0 ) -1 ( ⊤ - ) -1 0 )] = ⊤ 0 2 ℎ [ 1 + √ ℎ ⋅ ( ⊤ 0 ) -1 ℎ + 1 2 ⋅ ( ⊤ 0 ) -1 ( ℎ ⊤ ℎ - ) -1 0 ] = ⊤ 0 2 ℎ ( 1 + ( ⋅ + 1 2 ⊤ )ℎ ) ≤ 2 ℎ (1 + 2 ℎ),
where 2 := sup ( ,x, )∈ (

1 2 ⊤ 0 + | ⋅ | + 1 2 
⊤
) is bounded and independent of (ℎ, , x, ). Remark 3.2. Since the random vector does not degenerate to the Dirac mass, it follows by (3.4) that under Assumption 1,

⊤ ( , x, ) > ⊤ ( , x, )ℎ, for every ( , x, ) ∈ , ℎ ≤ ℎ 0 .
With this technical lemma, we can give the Proof of Proposition 2.5. For the first assertion, it is enough to prove that sup ∈ [exp( | ⋅ |)] is bounded by condition (2.9). Note that and are uniformly bounded. When = 1, is a continuous semimartingale whose finite variation part and quadratic variation are both bounded by a constant for every ∈ . It follows by Dambis-Dubins-Schwartz's time change theorem that sup

∈ [exp( | ⋅ |)] ≤ exp ( sup 0≤ ≤ | | ) < ∞, (3.6) 
where is a standard one-dimensional Brownian motion. When > 1, it is enough to remark that for = ( 1 , ⋅ ⋅ ⋅ , ), exp

( | ⋅ | ) ≤ exp ( (| 1 ⋅ | + ⋅ ⋅ ⋅ + | ⋅ |) )
; and we then conclude the proof of the first assertion applying Cauchy-Schwartz inequality.

For the second assertion, let us prove it by backward induction. Given 0 ≤ ≤ -1,

0 , ⋅ ⋅ ⋅ ,
∈ ℝ , we denote by ˆ the linear interpolation path of ( ) := , denote also

( 0 , ⋅ ⋅ ⋅ , , ) := ( , ˆ ⋅ , ), ∀ ∈ . (3.7)
For the terminal condition, it is clear that ℎ ( 0 , ⋅ ⋅ ⋅ , ) is of exponential growth in max 0≤ ≤ | | by condition (2.9). Now, suppose that

ℎ +1 ( 0 , ⋅ ⋅ ⋅ , +1 ) ≤ +1 exp ( +1 max 0≤ ≤ +1 | | ) .
Let be a random variable of distribution density → ℎ ( , ˆ , , ). Then it follows by (2.7) and Lemma 3.1 that

ℎ ( 0 , ⋅ ⋅ ⋅ , ) = sup ∈ { ℎ ( 0 , ⋅ ⋅ ⋅ , , ) + [ ℎ +1 ( 0 , ⋅ ⋅ ⋅ , , + 0 ℎ ) ( 1 + ℎ ,ˆ ⋅ ( ⊤ 0 ) -1 ℎ ℎ + 1 2 ℎ ,ˆ ⋅ ( ⊤ 0 ) -1 ℎ ⊤ ℎ -ℎ ℎ 2 -1 0 
)]} = sup ∈ { ℎ ( 0 , ⋅ ⋅ ⋅ , , ) + [ ℎ +1 ( 0 , ⋅ ⋅ ⋅ , , + ) ]} . (3.8) 
Therefore by (2.9) and (3.5),

ℎ ( 0 , ⋅ ⋅ ⋅ , ) ≤ ( +1 + ℎ) exp ( ( +1 + ℎ) max 0≤ ≤ | | ) sup ∈ [ exp ( +1 | | )] ≤ 2 ℎ (1 + 2 ℎ)( +1 + ℎ) exp ( ( +1 + ℎ) max 0≤ ≤ | | ) ,
where is the same constant given in (2.9), and the constant 2 is from (3.5) depending on +1 . We then conclude the proof.

The probabilistic interpretation

In this section, we shall interpret the numerical scheme (2.7) as the value function of a controlled discrete-time semimartingale problem. In preparation, let us show how to construct the random variables with density function → ℎ ( , x, , ). Let : ℝ → [0, 1] be the cumulative distribution function of a one-dimensional random variable, denote by -1 : [0, 1] → ℝ its generalized inverse function. Then given a random variable of uniform distribution ([0, 1]), it is clear that -1 ( ) turns to be a random variable with distribution . In the multi-dimensional case, we can convert the problem to the one-dimensional case since ℝ is isomorphic to [0, 1], i.e. there is a one-to-one mapping : ℝ → [0, 1] such that and -1 are both Borel measurable (see e.g. Proposition 7.16 and Corollary 7.16.1 of Bertsekas and Shreve [START_REF] Bertsekas | Stochastic optimal control, the discrete-time case[END_REF]). Define

ℎ ( , x, , ) := ∫ ( )≤ ℎ ( , x, , ) ( ) .
It is clear that → ℎ ( , x, , ) is the distribution function of random variable ( ) where is a random variable of density function → ℎ ( , x, , ). Denote by -1 ℎ ( , x, , ) the inverse function of → ℎ ( , x, , ) and

ℎ ( , x, , ) := -1 ( -1 ℎ ( , x, , )). (3.9)
Then given a random variable of uniform distribution on [0, 1], -1 ℎ ( , x, , ) has the same distribution of ( ) and ℎ ( , x, , ) is of distribution density → ℎ ( , x, , ). In particular, it follows that the expression (3.8) of numerical solution of scheme (2.7) turns to be

ℎ ( 0 , ⋅ ⋅ ⋅ , ) = sup ∈ [ ℎ ( 0 , ⋅ ⋅ ⋅ , , ) + ℎ +1 ( 0 , ⋅ ⋅ ⋅ , , + ℎ ( , ˆ , , ) ) ] , (3.10) 
where ˆ is the linear interpolation function of ( 0 , ⋅ ⋅ ⋅ , ) on [0, ]. Now, we are ready to introduce a controlled discrete-time semimartingale system. Suppose that 1 , ⋅ ⋅ ⋅ , are i.i.d random variables with uniform distribution on [0, 1] in the probability space (Ω, ℱ, ℙ). Let ℎ denote the collection of all strategies = ( ) 0≤ ≤ -1 , where is a universally measurable mapping from (ℝ ) +1 to . Given ∈ ℎ , ℎ, is defined by

ℎ, 0 := 0 , ℎ, +1 := ℎ, + ℎ ( , ˆ ℎ, ⋅ , ( ℎ, 0 , ⋅ ⋅ ⋅ , ℎ, ), +1 ) . (3.11) 
We then also define an optimization problem by

ℎ 0 := sup ∈ ℎ [ -1 ∑ =0 ℎ ( , ˆ ℎ, ⋅ , ) ) + Φ( ˆ ℎ, ⋅ ) ] . (3.12) 
The main result of this section is to show that the numerical solution given by (2.7) is equivalent to the value function of optimization problem (3.12) on the controlled discrete-time semimartingales ℎ, . Remark 3.3. It is clear that in the discrete-time case, every process is a semimartingale. When ≡ 0 and is of uniform distribution on [0, 1], the random variable Theorem 3.4. Suppose that and Φ satisfy (2.9) and Assumption 1 holds true. Then for 0 < ℎ ≤ ℎ 0 with ℎ 0 defined by (2.11),

ℎ 0 = ℎ 0 .
The above theorem is similar to a dynamic programming result. Namely, it states that optimizing the criteria globally in (3.12) is equivalent to optimizing it step by step in (3.10). With this interpretation, we only need to analyze the "distance" of the controlled semimartingale ℎ, in (3.11) and the controlled diffusion process in (2.1) to show this convergence of ℎ 0 to in order to prove Theorems 2.6 and 2.7. Before providing the proof, let us give a technical lemma. Lemma 3.5. For the function defined by (2.5) and every > 0, there is a universally measurable mapping

: × ℝ → such that for all ( , ) ∈ × ℝ , ( , x, , ) ≤ ( , x, ( , )) + 1 2 ,x ( , ) ⋅ + ,x ( , ) ⋅ + .
Proof. This follows from the measurable selection theorem, see e.g. Theorem 7.50 of Bertsekas and Shreve [START_REF] Bertsekas | Stochastic optimal control, the discrete-time case[END_REF] or Section 2 of El Karoui and Tan [START_REF] Karoui | Capacities, measurable selection and dynamic programming[END_REF].

Proof of Theorem 3.4: First, following (3.10), we can rewrite ℎ as a measurable function of ( 0 0 , ⋅ ⋅ ⋅ , 0 ), and

ℎ ( 0 , ⋅ ⋅ ⋅ , ) = sup ∈ [ ℎ ( 0 , ⋅ ⋅ ⋅ , , ) + ℎ +1 ( 0 , ⋅ ⋅ ⋅ , , + ℎ ( , ˆ , , +1 ) ) ] ,
where ˆ is the linear interpolation function of ( 0 , ⋅ ⋅ ⋅ , ) on [0, ], +1 is of uniform distribution on [0, 1] and is defined by (3.7). Next, for every control strategy ∈ ℎ and ℎ, defined by (3.11), we denote ℱ ℎ, := ( ℎ, 0 , ⋅ ⋅ ⋅ , ℎ, ) and

ℎ, := [ -1 ∑ = ℎ ( , ˆ ℎ, ⋅ , ) + Φ( ˆ ℎ, ⋅ ) ℱ ℎ, ] ,
which is clearly a measurable function of ( ℎ, 0 , ⋅ ⋅ ⋅ , ℎ, ) and satisfies

ℎ, ( 0 , ⋅ ⋅ ⋅ , ) = ℎ ( 0 , ⋅ ⋅ ⋅ , , ( 0 , ⋅ ⋅ ⋅ , )) + [ ℎ, +1 ( 0 , ⋅ ⋅ ⋅ , , + ℎ ( , ˆ , ( 0 , ⋅ ⋅ ⋅ , ), +1 ) ) ] .
Then by comparing ℎ, with ℎ and the arbitrariness of ∈ ℎ , it follows that

ℎ 0 ≤ ℎ 0 .
For the reverse inequality, it is enough to find, for any > 0, a strategy ∈ ℎ with ℎ, as defined in (3.11) using such that

ℎ 0 ≤ [ -1 ∑ =0 ℎ ( , ˆ ℎ, ⋅ , ) + Φ( ˆ ℎ, ⋅ ) ] + . (3.13)
Then for every ∈ ∞ (ℝ ), a process ( ) is defined on Ω by

( ) := ( ) -( 0 ) - ∫ 0 ∫ ℒ , ⋅, ( ) ( , ) . (4.4)
Denote by the collection of all probability measures on Ω under which 0 = 0 a.s. and ( ) is a -martingale for every ∈ ∞ (ℝ ). In [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: existence of an optimal control[END_REF], a probability measure in is called a relaxed control rule. 

( ) := ( ) -( 0 ) - ∫ 0 ( ( , , ) ⋅ ( ) + 1 2 ( , , ) ⋅ 2 ( )
) .

Therefore, under any probability ℙ ∈ , since ( , , ) is non-degenerate, there is a Brownian motion ˜ on Ω such that the canonical process can be represented as

= 0 + ∫ 0 ( , ⋅ , ) + ∫ 0 1/2 ( , ⋅ , ) ˜ .
Moreover, it follows by Itô's formula as well as the definition of ℙ in (4.2) that ℙ ∈ for every ∈ . In resume, we have 0 ⊂ ⊂ .

A completion space of (Ω ) Now, let us introduce two random variables on Ω by

Ψ( ) = Ψ( , ) := ∫ 0 ( , , ) ( , ) + Φ( ) (4.5)
and

Ψ ℎ ( ) = Ψ ℎ ( , ) := ∫ 0 ℎ ( , , ) ( , ) + Φ( ),
where ℎ ( , x, ) := ( , x, ) for every ≤ ≤ +1 given the discretization parameter ℎ := . It follows by the uniform continuity of that

sup ∈Ω |Ψ( ) -Ψ ℎ ( )| ≤ 0 (ℎ), (4.6) 
where 0 is the continuity module of in given before (2.9). Moreover, the optimization problem (2.3) and (3.12) are equivalent to

= sup ℙ∈ ℙ [Ψ] and ℎ 0 = sup ℙ∈ ℎ ℙ [Ψ ℎ ]. (4.7) 
Proof. For every > 0, there is ∈ (Ω ) such that sup

ℙ∈ * ℙ [| -|] ≤ . It follows that lim sup →∞ ℙ [ ] -ℙ [ ] ≤ lim sup →∞ [ ℙ [ - ] + ℙ [ ] -ℙ [ ] + ℙ [ - ] ] ≤ 2 .
Therefore, (4.8) holds true by the arbitrariness of .

The next result shows that the random variable Ψ defined by (4.5) belongs to 1 * , when and Φ satisfy (2.9). Lemma 4.3. Suppose that Assumption 1 holds true, Φ and satisfy (2.9). Then the random variable Ψ defined by (4.5) lies in 1 * .

Proof. We first claim that for every > 0 sup

ℙ∈ * ℙ [ | | ] < ∞, (4.9) 
which implies that [ | ℎ, | ] < ∞ is uniformly bounded in ℎ and in ∈ ℎ . Let 0 > 0 such that | ( , x, )| ≤ 0 , ∀( , x, ) ∈ . Then (| ℎ, -0 |) 0≤ ≤ is a sub-
martingale, and hence for every

1 > 0, ( 1 | ℎ, -0 | ) 0≤ ≤ is also a submartingale.
Therefore, by Doob's inequality,

[ sup 0≤ ≤ 1 | ℎ, | ] ≤ 0 [ sup 0≤ ≤ 1 | ℎ, -0 | ] ≤ 2 2 0 √ [ 2 1 | ℎ, | ] ,
where the last term is bounded uniformly in ℎ and by the claim (4.9). With the same arguments for the continuous-time case in spirit of Remark 4.1, it follows by (2.9) and (4.5) that sup

ℙ∈ * ℙ [ |Ψ| 2 ] ≤ ∞. (4.10) 
Similarly, we also have sup

ℙ∈ * ℙ [ |Ψ ′ | 2 ] ≤ ∞ for Ψ ′ ( , ) := ∫ 0 ( , , ) ( , ) + Φ( ) . Let Φ := (-) ∨ (Φ ∧ ), := (-) ∨ ( ∧ ) and Ψ ( , ) := ∫ 0 ∫ ( , , ) ( , ) + Φ ( ).
Then, Ψ is bounded continuous in = ( , ), i.e. Ψ ∈ (Ω ). It follows by Cauchy-Schwartz inequality that sup

ℙ∈ * ℙ |Ψ -Ψ | ≤ √ sup ℙ∈ * ℙ |Ψ -Ψ | 2 √ sup ℙ∈ * ℙ(|Ψ ′ | > ) ≤ √ sup ℙ∈ * ℙ |Ψ -Ψ | 2 √ sup ℙ∈ * ℙ [|Ψ ′ |] 1 √ → 0,
where the last inequality is from

ℙ(|Ψ ′ | > ) ≤ 1 ℙ [|Ψ ′ |].
And hence Ψ ∈ 1 * . Therefore, it is enough to justify the claim (4.9) to conclude the proof. By Lemma 3.1, for every random variable of density function ℎ ( , x, , ) and every ∈ ℝ , we have

[ ⋅ ] ≤ 2 ℎ (1 + 2 ℎ)
,

where 2 := sup ( ,x, )∈ ( 1 2 | ⊤ ,x 0 | + | ,x ⋅ | + 1 2 | ⊤ ,x | ) . It follows by taking conditional expectation on ⋅ ℎ that [ ⋅ ℎ ] ≤ 0 ( ) := sup ℎ≤ℎ 0 2 (1 + 2 ℎ) /ℎ < ∞.
Let be the vectors of the form (0, ⋅ ⋅ ⋅ , 0, ± , 0, ⋅ ⋅ ⋅ , 0) ⊤ , we can easily conclude that | ℎ | is uniformly bounded for all ℎ ≤ ℎ 0 and ℎ = ℎ, with ∈ ℎ . Further more, in spirit of Remark 4.1 and by the same arguments as (3.6) in the proof of Proposition 2.5, sup ℙ∈ ℙ [ | | ] is bounded. And therefore, we proved the claim (4.9).

Finally, we finish this section by providing two convergence lemmas, but leave their proofs in Appendix.

Lemma 4.4. (i) Let (ℙ ℎ ) 0<ℎ≤ℎ 0 be a sequence of probability measures such that ℙ ℎ ∈ ℎ . Then (ℙ ℎ ) 0<ℎ≤ℎ 0 is precompact, and any cluster point belongs to . (ii) Let ℙ ∈ 0 . Then we can construct a sequence of probability measures (ℙ ℎ ) 0<ℎ≤ℎ 0 such that ℙ ℎ ∈ ℎ and ℙ ℎ → ℙ as ℎ → 0. Lemma 4.5. Suppose that Assumptions 1 holds true, Φ and satisfy (2.9). Then 

sup ℙ∈ 0 ℙ [Ψ] = sup ℙ∈ ℙ [Ψ].
ℙ ℎ ∈ ℎ ℙ ℎ [Ψ] ≤ sup ℙ∈ ℙ [Ψ].
Moreover, it follows by (ii) of Lemma 4.4 that lim inf

ℎ→0 sup ℙ ℎ ∈ ℎ ℙ ℎ [Ψ] ≥ sup ℙ∈ 0 ℙ [Ψ].
We hence conclude the proof of the theorem by Lemma 4.5 and (4.6), (4.7).

Proofs of Theorem 2.7

The proof of Theorem 2.7 is similar to Dolinsky [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF], where the author uses the invariance principle technique of Sakhanenko [START_REF] Sakhanenko | A new way to obtain estimates in the invariance principle[END_REF] to approximate the discrete-time martingales. In our context, we shall approximate discrete-time semimartingales.

From continuous to discrete-time semimartingale

The next result is similar to Lemmas 4.2 and 4.3 of Dolinsky [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF], which states that a continuous martingale can be approximated by its discrete-time version.

In (2.12), we assume that is a convex compact subset in + ×ℝ and ( , x, ) = , ( , x, ) = 1/2 for every = ( , ) ∈ . Given a strategy = ( , ) 0≤ ≤ ∈ as well as a discrete time grid = ( ) 0≤ ≤ ( := ℎ, ℎ := / ≤ ℎ 0 ), let us define some discrete-time processes: , is well defined. We denote also

Δ , +1 := [ Δ , +1 ( , 
+1 ) ⊤ ] = [ ∫ +1 ] -Δ , +1 (Δ , +1 ) ⊤ .
Similarly, for every ( , ) = ( 0 , ⋅ ⋅ ⋅ , , 1 , ⋅ ⋅ ⋅ , ) ∈ ℝ ( +1) × ( + × ℝ ) , a discretetime version of function Ψ in (4.5) can be given by Ψ ( ,

) := -1 ∑ =0 ℎ ( , ˆ ⋅ , +1 ) + Φ(ˆ ⋅ ), (4.12) 
where ˆ is the linear interpolation function of 0 , ⋅ ⋅ ⋅ , . Now, we introduce a discrete-time version of the optimization problem (2.3): Then it is clear that = 0 + + ˜ . Since = ( , ) is uniformly bounded, there is a constant independent of such that sup

:= sup ∈ [ Ψ ( , , , ) ] , with , := ( 1 ℎ Δ , , 1 ℎ Δ , ) . (4 
∈ ∫ 0 - ∑ =1 ℎ , 2 ≤ 1 , (4.17) 
and

sup ∈ ⋅ -ˆ , ⋅ 2 ≤ 1 .
Moreover, it follows by Lemmas 4.2 of Dolinsky [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF] that

sup ∈ ˜ ⋅ -ˆ , ⋅ 2 ≤ 2 sup ∈ [ ˜ ⋅ -⋅ 2 + ⋅ -ˆ , ⋅ 2 ] ≤ 1 √ .
Therefore, by the fact that

| ⋅ -ˆ , ⋅ | 2 ≤ 2 ( | ⋅ -ˆ , ⋅ | 2 + | ˜ ⋅ -ˆ , ⋅ | 2 )
, we proved (4.15).

(ii) For the second assertion, we remark that by (2.13), for every ∈ ,

∫ 0 ( , ⋅ , ) - -1 ∑ =0 ℎ ( , ˆ , ⋅ , , +1 ) + Φ( ⋅ ) -Φ( ˆ , ⋅ ) ≤ exp ( (| ⋅ | + | ˆ , ⋅ |) ) ( ⋅ -ˆ , ⋅ + ℎ + ∫ 0 - ∑ =1 ℎ ,
) .

With similar arguments as used at the beginning of the proof of Proposition 2.5, we have sup

∈ [ 2 (| ⋅ |+| ˆ , ⋅|) ] < + ∞, for every > 0.
Finally, it follows by (4.13), (4.15) together with Cauchy-Schwarz inequality that (4.16) holds true.

Invariance principle in approximation of semimartingales

Let be a semimartingale on the discrete time grid ( ) 0≤ ≤ in the probability space (Ω, ℱ, ℙ). We have also characteristics and defined by decomposition with respect to the natural filtration of , let Δ , Δ be the conditional increment terms as Δ , , Δ , defined at the beginning of Section 4.2.1. Suppose in addition that there is a constant

0 > 0 such that |Δ | 3 ≤ 0 and ( 1 ℎ Δ , 1 ℎ Δ ) ∈ ℎ ⊂ + × ℝ a.s.
, where ℎ is defined in (4.14).

Let

: ℎ × [0, 1] → ℝ be a measurable mapping such that for every ( , ) ∈ ℎ and random variable with uniform distribution on [0, 1], ( , , ) = ℎ, Var ( , , ) = ℎ, and | ( , , )| 3 < ,

for a constant ≥ 0 . Now, on another probability space (Ω, ℱ, ℙ) equipped with 1 , ⋅ ⋅ ⋅ , and 1 , ⋅ ⋅ ⋅ , which are i.i.d. with uniform distribution on [0, 1], we can approximate the distribution of in Ω by sums of random variables of the form ( , , ) in Ω.

Lemma 4.8. There is a constant such that for every Θ > 0, we can construct two semimartingales and ℎ on (Ω, ℱ, ℙ) as well as Δ and Δ such that ( , Δ , Δ ) in (Ω, ℱ, ℙ) has the same distribution as that of ( , Δ , Δ ) in (Ω, ℱ, ℙ). Moreover,

ℎ = 0 + ∑ =1 (Δ , Δ , ) and ℙ ( max 1≤ ≤ - ℎ > Θ ) ≤ Θ 3 . (4.19)
We refer to Lemma 3.2 of Dolinsky [START_REF] Dolinsky | Numerical Schemes for G-Expectations[END_REF] for a technical proof, where the main idea is to use the techniques of invariance principle of Sakhanenko [START_REF] Sakhanenko | A new way to obtain estimates in the invariance principle[END_REF].

Remark 4.9. The process ℎ is defined in (4. [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]) by characteristics of , with as well as function . If we stay in the general stochastic control problem context, is a function depending on x, it follows then that the process ℎ is constructed by using functions of the form ( , , ⋅ ⋅ ⋅ ), which may not be an admissible controlled semimartingale defined in (3.11). This is the main reason for which we need to suppose that is independent of x in (2.12) to deduce the convergence rate in Theorem 2.7.

Remark 4.10. With ℎ given by (3.9), set ( , , ) := ℎ (0, 0, + ⊤ ℎ, , ), ∀( , , ) ∈ ℎ × ℝ . (4.20)

Since ( + ⊤ ℎ, ) ∈ for every ( , ) ∈ ℎ , then the above function (4.20) is well defined. Moreover, it follows by Lemma 3.1 that satisfies (4.18) with ≤ 0 -3/2 , for 0 independent of . In particular, let Θ = -1/8 , then

ℙ ( max 1≤ ≤ - ℎ > 1 8 ) ≤ 1 1 8 ,
for another constant 1 independent of (or equivalently of ℎ := / ).

Proof of Theorem 2.7

By Theorem 3.4 and Lemma 4.7, we only need to prove separately that By the same arguments in proving the claim (4.9), we know that ℙ [ exp

≤ ℎ 0 + ℎ 1/8-, (4.21) 
ℎ 0 ≤ + ℎ 1/8-, (4.22) 
( (| ˆ ⋅ | + | ˆ ℎ ⋅ |) )]
is bounded by a constant independent of ∈ . It follows by the definition of Ψ in (4.12) as well as (2.9) and (2.13) that for every > 0, there is a constant independent of ∈ such that

ℙ [ Ψ ( , ) -Ψ ( ℎ , ) ] ≤ ℙ [ exp ( (| ˆ ⋅ | + | ˆ ℎ ⋅ |) ) ˆ ⋅ - ˆ ℎ ⋅ ] ≤ ( ℎ 1/8 + ℙ(ℰ) 1/(1-8 ) ) ≤ ℎ 1/8-, (4.24) 
where the second inequality follows from Hölder inequality and Remark 4.10.

Next, we claim that

ℙ [ Ψ ( ℎ , ) ] = ℙ [ -1 ∑ =0 ℎ ( , ˆ ℎ ⋅ , +1 ) + Φ( ˆ ℎ ⋅ ) ] ≤ ℎ 0 . (4.25)
Then by the arbitrariness of ∈ , it follows by the definition of in (4.13) that (4.21) holds true. Hence we only need to prove the claim (4.25).

We can use the randomness argument as in Dolinsky, Nutz and Soner [START_REF] Dolinsky | Weak approximations of -expectations[END_REF] for proving their Proposition 3. And hence,

[ Ψ ( ℎ , ) ] = [ Ψ ( ˜ ˜ ′ , ˜ ˜ ′ ) ] = ∫ [0,1] [Ψ ( ˜ , ˜ )] ≤ ℎ 0 .
Therefore, we proved the claim, which concludes the proof of inequality (4.21).

Second inequality (4.22) Let ˜ ℎ ( , , ) denote the distribution function of the random variable ℎ + 1/2 ℎ , where ℎ is of Gaussian distribution (0, ℎ ). Denote also by ˜ -1 ℎ ( , , ) the inverse function of → ˜ ℎ ( , , ). Then for every ℎ, with ∈ ℎ , we can construct ℎ as in (4.19) with ( , , ) = ˜ -1 ℎ ( , , ) such that its distribution is closed to that of ℎ, . By the same arguments as in the proof of (4.21), we can prove (4.22).

Proof of Lemma 4.5. First, by almost the same arguments as in Section 4 of El Karoui, Huu Nguyen and Jeanblanc [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: existence of an optimal control[END_REF] (especially that of Theorem 4.10) that for every ℙ ∈ , there is a sequence of probability measures ℙ in such that ℙ → ℙ, where the main idea is using Fleming's chattering method to approximate a measure on [0, ] × by piecewise constant processes. We just remark that the uniform continuity of and w.r.t. in (2.2) is needed here, and the "weak uniqueness" assumption in their paper is guaranteed by Lipschitz conditions on and . Then we conclude by the fact that we can approximate a measurable function (x) defined on ([0, ], ℝ ) by functions (x , ≤ ) which is continuous (we notice that in Theorem 7.1 of Kushner [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF], the author propose to approximate a measurable function by functions which are constant on rectangles).

Remark 4 . 1 .

 41 We denote, by abuse of notations, the random processes in Ω ( , , ) := ∫ ( , , ) ( , ), ( , , ) := ∫ ⊤ ( , , ) ( , ), which are clearly adapted to the filtration . It follows that ( ) defined by (4.4) is equivalent to

  := [⋅|ℱ ] for ℱ := ( , 0 , ⋅ ⋅ ⋅ , ,). We notice that by Remark 3.2, the matrix defined by (4.11) is strictly positive for every under Assumption 1 and hence Δ

(4. 16 )

 16 Proof. (i) Given a control = ( , ) 0≤ ≤ ∈

and ℎ 0 - ≤ ℎ 1 / 8 ,First inequality ( 4 . 21 )

 018421 if and Φ are bounded.(4.23) For every ∈ as well as the discrete-time semimartingale , defined at the beginning of Section 4.2.1, we can construct, following Lemma 4.8, ( , Δ , Δ ) and ℎ in a probability space (Ω, ℱ, ℙ) with ( , , ) := ℎ (0, 0, + ⊤ ℎ, , ) as in Remark 4.10, such that the law of ( , Δ , Δ ) under ℙ is the same as ( , , Δ , , Δ , ) in (Ω, ℱ, ℙ), and (4.19) holds true for every Θ > 0. Fix Θ := ℎ 1/8 and denote ℰ

5 . 1 ,

 51 By the expression of ℎ in (4.[START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]), using regular conditional probability distribution, there is another probability space ( Ω, F, P) together with independent uniformly distributed random variables ( ˜ ) 1≤ ≤ , ( ˜ ′ ) 1≤ ≤ and measurable functions Π :[0, 1] × [0, 1] → ℎ such that with (Δ ˜ , Δ ˜ ) := Π ( ˜ 1 , ⋅ ⋅ ⋅ , ˜ , ˜ ′ 1 , ⋅ ⋅ ⋅ , ˜ ′ )and˜ := 0 + ∑ =1 (Δ ˜ , Δ ˜ , ˜ ), the distribution of ( ˜ , Δ ˜ , Δ ˜ ) 1≤ ≤ in ( Ω, F, P) equals to ( ℎ , Δ , Δ ) 1≤ ≤ in (Ω, ℱ, ℙ). Denote for every = ( 1 , ⋅ ⋅ ⋅ , ) ∈ [0⋅ ⋅ ⋅ , ˜ , 1 , ⋅ ⋅ ⋅ , ), ˜ ) .Since is given by (4.20), it follows by the definition of ℎ in (4.14) as well as that of ℎ 0 in (3.12) that, with strategy ˜ := 1 Π ( ˜ 1 , ⋅ ⋅ ⋅ , ˜ , 1 , ⋅ ⋅ ⋅ , ),[Ψ ( ˜ , ˜ )] ≤ ℎ 0 .

  4.1.3 Proof of the general convergence (Theorem 2.6)Finally, we are ready to give the proof of Theorem 2.6.

	Proof of Theorem 2.6. Since Ψ ∈ * 1 by Lemma 4.3, then in spirit of Lemma 4.2,
	we get from (i) of Lemma 4.4 that
	lim sup	sup
	ℎ→0	

  .13) Remark 4.6. The definition of , in (4.11) uses a perturbation version of . The main purpose is to adapt the biased term appearing in the variance term of (3.4). In particular, it follows that , ∈ ℎ almost surely for

	ℎ :=	{ ( -ℎ ⊤ , ) : ( , ) ∈	}	.	(4.14)
	Lemma 4.7. (i) There is a constant	independent of ℎ = 1/ such that
	sup ∈	⋅ -ˆ , ⋅	2 ≤	ℎ 1/2 .	(4.15)
	(ii) It follows that under conditions (2.9) and (2.13), there is a constant	such that
		-	≤	ℎ 1/4 .	

ℎ ( , x, , ) is centered, and hence ℎ, turns to be a controlled martingale. This is also the main reason we choose the terminology "semimartingale" in the section title.

Let us write Γ ℎ and ℎ defined below (2.7) as a measurable function of ( 0 0 , ⋅ ⋅ ⋅ , 0 ), and be given by Lemma 3.5, denote ( 0 , ⋅ ⋅ ⋅ , ) := (Γ ℎ ( 0 , ⋅ ⋅ ⋅ , ), ℎ ( 0 , ⋅ ⋅ ⋅ , )).

Then by the tower property, the semimartingale ℎ, defined by (3.11) with satisfies (3.13).

Proofs of the convergence theorems

With the probabilistic interpretation of the numerical solution ℎ in Theorem 3.4, we are ready to give the proofs of Theorems 2.6 and 2.7. Intuitively, we shall analyze the "convergence" of the controlled semimartingale ℎ, in (3.11) to the controlled diffusion process in (2.1).

Proof of Theorem 2.6

The main tool to prove Theorem 2.6 is the weak convergence technique due to Kushner and Dupuis [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF]. We adapt their idea in our context. We shall also introduce an enlarged canonical space for control problems following El Karoui, Huu Nguyen and Jeanblanc [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: existence of an optimal control[END_REF], in order to explore the convergence conditions. Then we study the weak convergence of probability measures on the enlarged canonical space.

An enlarged canonical space

In Dolinsky, Nutz and Soner [START_REF] Dolinsky | Weak approximations of -expectations[END_REF], the authors studied a similar but simpler problem in the context of -expectation, where they use the canonical space Ω := ([0, ], ℝ ). We refer to Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes[END_REF] for a presentation of basic properties of canonical space Ω . However, we shall use an enlarged canonical space introduced by El Karoui, Huu Nguyen and Jeanblanc [START_REF] Karoui | Compactification methods in the control of degenerate diffusions: existence of an optimal control[END_REF], which is more convenient to study the control problem for the purpose of numerical analysis.

An enlarged canonical space Let M([0, ] × ) denote the space of all finite positive measures on [0, ] × such that ([0, ] × ) = , which is a Polish space equipped with the weak convergence topology. Denote by M the collection of finite positive measures ∈ M([0, ] × ) such that the projection of on [0, ] is the Lebesgue measure, so that they admit the disintegration ( , ) = ( , ) , where ( , ) is a probability measure on for every ∈ [0, ], i.e.

In particular, ( ( , )) 0≤ ≤ is a measure-valued process. The measures in space M are examples of Young measures and have been largely used in deterministic control problems. We also refer to Young [START_REF] Young | Lectures on the calculus of variations and optimal control theory[END_REF] and Valadier [START_REF] Valadier | A course on Young measures[END_REF] for a presentation of Young measure as well as its applications.
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Clearly, M is closed under weak convergence topology and hence is also a Polish space. We define also the -fields on M by ℳ := { ( ), ≤ , ∈ ([0, ] × )}, where ( ) := ∫ 0 ( , ) ( , ). Then (ℳ ) 0≤ ≤ turns to be a filtration. In particular, ℳ is the Borel -field of M. As defined above, Ω := ([0, ], ℝ ) is the space of all continuous paths between 0 and equipped with canonical filtration = (ℱ ) 0≤ ≤ . We then define an enlarged canonical space by Ω := Ω × M, as well as the canonical process by ( ) := , ∀ = ( , ) ∈ Ω = Ω × M, and the canonical filtration = (ℱ ) 0≤ ≤ with ℱ := ℱ ⊗ ℳ . Denote also by M(Ω ) the collection of all probability measures on Ω .

Four classes of probability measures A controlled diffusion process as well as the control process may induce a probability measure on Ω . Further, the optimization criterion in (2.3) can be then given as a random variable defined on Ω . Then the optimization problem (2.3) can be studied on Ω , as the quasi-sure approach in Soner, Touzi and Zhang [START_REF] Soner | Quasi-sure Stochastic Analysis through Aggregation[END_REF]. In the following, we introduce four subclasses of M(Ω ).

Let > 0, we consider a particular strategy of the form = ( , ≤ ) for every ∈ ( , ( + 1) ], where

is the controlled process given by (2.1) with strategy , and : ℝ → is a continuous function. Clearly, is an adapted piecewise constant strategy. Denote by 0 the collection of all strategies of this form for all > 0. It is clear that 0 ⊂ . Given ∈ in the probability space (Ω, ℱ, ℙ), denote ( ,

) can induce a probability measure ℙ on Ω by

for every bounded measurable function Υ defined on Ω . In particular, for any bounded function :

Then the first and the second subsets of M(Ω ) are given by

( )1 ( , +1 ] ( ), and ℎ, be the discrete-time semimartingale defined by (3.11). It follows that ( ˆ ℎ, , ℎ, ) induces a probability measure ℙ ℎ, on Ω as in (4.2). Then the third subsets of M(Ω ) we introduce is

Finally, for the fourth subset, we introduce a martingale problem on Ω . Let ℒ ,x, be a functional operator defined by

Third inequality (4.23) When Φ and are both bounded, we can improve the estimations in (4.24) to

And all the other arguments in the proof of (4.21) and (4.22) hold still true. We hence conclude the proof of (4.23).

The implementation of the scheme

We shall discuss some issues for the implementation of the scheme (2.7).

The degenerate case

The numerical scheme (2.7) demands that ( , x, ) ≥ 0 ( , x) > 0 for every ( , x, ) ∈ in Assumption 1, which implies that the volatility part should be all non-degenerate. However, many applications are related to degenerate cases. ) .

Introducing ˜ := ∫ 0 , the above problem turns to be

which can be considered in the framework of (2.3). However, the volatility matrix of the controlled process ( , ˜ ) is clear degenerate.

The above example is the case of variance option pricing problem in uncertain volatility model in finance.

Example 5.2. An typical example of variance option is the option "call sharpe", where the payoff function is given, with constants 0 and , by

To make the numerical scheme (2.7) implementable in the degenerate case, we can perturb the volatility matrix. Concretely, given an optimization problem (2.3) with coefficients and , we set

Clearly, is nondegenerate. Given ∈ , let , be the solution to SDE

Then a new optimization problem is given by := sup

which is no more degenerate. A similar idea was also illustrated in Guyon and Henry-Labordère [START_REF] Guyon | Uncertain Volatility Model: A Monte-Carlo Approach[END_REF] as well as in Jakobsen [START_REF] Jakobsen | On error bounds for approximation schemes for non-convex degenerate elliptic equations[END_REF] for degenerate PDEs. We notice in addition that by applying Ito's formula on the process | -˜ , | 2 , then taking expectations and using classical method with Gronwall's lemma, we can easily get the error estimation

It follows that when and Φ satisfy conditions (2.9) and (2.13), we have

The simulation-regression method

To make scheme (2.7) implementable, a natural technique is to use the simulationregression method to estimate the conditional expectations arising in the scheme. First, given a function basis, we propose a projection version of the scheme (2.7). Next, replacing the 2 -projection by least-square regression with empirical simulations of 0 , it follows an implementable scheme. The error analysis of the simulation-regression method has been achieved by Gobet, Lemor and Warin [START_REF] Gobet | Rate of convergence of an empirical regression method for solving generalized backward stochastic diferential equations[END_REF] in the context of BSDE numerical schemes. In this paper, we shall just describe the simulation-regression method for our scheme and leave the error analysis for further study.

The Markovian setting

In practice, we usually add new variables in the optimization problem and make the dynamic of 0 (given by (2.6)) Markovian. Suppose that for ′ > 0, there are functions

and 0 +1 := +1 ( 0 , 0 +1 ). Then ( 0 , 0 ) 0≤ ≤ is a Markovian process from (2.6). Suppose further that there are functions ( , , ) :

Then it is clear that the numerical solution ℎ of (2.7) can be represented as a measurable function of ( 0 , 0 ), where the function in (2.5) turns to be ( , , , , )

(5.3)

Remark 5.3. In finance, when we consider the payoff functions of exotic options such as Asian option, lookback option, we can usually add the cumulative average, or cumulative maximum (minimum) to make the system Markovian.

The projection scheme

To simplify the notations, let us just give the scheme for the case = ′ = 1, while that in general case can be easily deduced; we also omit the superscript ℎ for ( , , Γ). Let ( , ) 1≤ ≤ , 0≤ ≤ -1 be a family of basis functions where every , is function defined on ℝ 2 , so that

is a convex subclass of 2 (Ω, ℱ ). A projection operator is defined by

Similarly, with basis functions , and Γ , , we can define , Γ as well as the projections operators , Γ . Inspired by [START_REF] Gobet | Linear regression MDP scheme for discrete BSDEs under general conditions[END_REF], we propose the following two projection schemes: with the same terminal condition ˆ = Φ( 0 , 0 ),

First scheme

) .

Second scheme

) .

We note that the numerical solutions are of the form ˆ = ( 0 , 0 ), ˆ = ( 0 , 0 ) and Γ = ( 0 , 0 ) with functions , , .

Empirical regression scheme

The simulation-regression scheme consists in simulating empirical processes by (2.6), denoted by ( 0, , 0, ) 1≤ ≤ , then replacing the projection of (5.4) by empirical least square method to estimate functions , and . Concretely, with the simulation-regression method, the first scheme turns to be

where

and ˆ , ˆ are also given by the corresponding least square method. Similarly, we can easily get an empirical regression scheme for the second projection scheme. Finally, we finish by remarking that in error analysis as well as in practice, we usually need to use truncation method in formula (5.5) with the a priori estimations of ( ˆ , ˆ , Γ ).

A Appendix

We shall give here the proofs of Lemmas 4.4 and 4.5. The arguments are mainly due to Section 8 of Kushner [START_REF] Kushner | Numerical methods for stochastic control problems in continuous time[END_REF], we adapt his idea of proving his Theorems 8.1, 8.2 and 8.3 in our context.

We first recall that given ℎ ∈ ℎ , ℎ, ℎ is defined by (3.11) and ℎ, ℎ ( , ) := ( ℎ ) ( ) for ∈ ( , +1 ]. Denote ℎ := ( ℎ ) for ∈ ( , +1 ] and ℎ, ℎ [⋅] := [⋅|ℱ ℎ, ℎ ] for ℱ ℎ, ℎ := ( ℎ, ℎ 0 , ⋅ ⋅ ⋅ , ℎ, ℎ ). Then for every ∈ ∞ (ℝ ), it follows by Taylor expansion that

where | ℎ | ≤ (ℎ 3/2 + ℎ (ℎ)) and is the continuity module of and in given by (2.2), with a constant depending on but independent of (ℎ, ℎ ).

Proof of Lemma 4.4. (i) First, let (ℙ ℎ ) ℎ≤ℎ 0 be the sequence of probability measures on Ω given in the lemma. Suppose that ℙ ℎ is induced by ( ˆ ℎ, ℎ , ℎ, ℎ ) with ℎ ∈ ℎ , then by (3.4), it is clear that there is a constant 3 such that for all 0 ≤ ≤ ≤ , sup

and hence it follows the precompactness of ( ℙ ℎ | Ω ) ℎ≤ℎ 0 . Further, since is supposed to be a compact Polish space, it follows by Prokhorov's Theorem that M([0, ] × ) (the space of all positive measures on [0, ] × such that ([0, ] × ) = ) is compact under the weak convergence topology. Then M is also compact as a closed subset of M([0, ]× ). It follows that the class of probability measures (ℙ ℎ | M ) ℎ≤ℎ 0 on M is precompact (still by Prokhorov' Theorem). Therefore, (ℙ ℎ ) ℎ≤ℎ 0 is precompact. Suppose that ℙ is a limit measure of (ℙ ℎ ) ℎ≤ℎ 0 , we shall show that ℙ ∈ . It is enough to show that for every ∈ ∞ (ℝ ),

for arbitrary , ∈ ℕ, < < , ∈ ([0, ]× ) and bounded continuous function

, where the process ( ) is defined by (4.4). Since ℙ ℎ is induced by ( ˆ ℎ, ℎ , ℎ, ℎ ) with ℎ ∈ ℎ , then

which turns to 0 as ℎ → 0 by taking conditional expectations and using (A.1).

(ii) Suppose that ℙ ∈ 0 is induced by a controlled process and the control ∈ 0 is of the form = ( , ), where ( , x) := (x , ≤ ) when ∈ ( , ( + 1)] for functions ( ) ≥0 and a constant > 0. Let ℙ be the probability measure on Ω induced by , which is clearly the unique probability measure on Ω under which 0 = 0 a.s. and ( ) -

is a -martingale for every ∈ ∞ (ℝ ), where is the canonical process of Ω and ℒ is defined by (4.3). Now, for every ℎ ≤ ℎ 0 , let us consider the strategy ∈ ℎ defined by ( 0 , ⋅ ⋅ ⋅ , ) := ( , ˆ ).

Denote by ℙ ℎ the probability measure induced by ℎ, on Ω , it follows by the same arguments as in proving (A.2), together with the uniqueness of solution to the martingale problem associated to (A.3), that ℙ ℎ → ℙ . Moreover, since under ℙ , x → ( , x) is continuous, it follows that ℙ ℎ → ℙ , where ℙ ℎ denotes the probability measure on Ω induced by ( ˆ ℎ, , ℎ, ).

In preparation of the proof for Lemma 4.5, we shall introduce another subset of M(Ω ). Let > 0, we consider the strategy = ( , ≤ ) for ∈ ( , ( + 1)], where are measurable functions defined on ([0, ], ℝ ). Denote by the collection of all probability measures induced by ( ˆ , ) as in (4.2), with of this form. Then it is clear that 0 ⊂ ⊂ ⊂ .