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Discrete-time probabilistic approximation

of path-dependent stochastic control problems

Xiaolu TAN ∗

August 26, 2013

Abstract

We give a probabilistic interpretation of the Monte Carlo scheme proposed by

Fahim, Touzi and Warin [Ann. Appl. Probab. 21(4) : 1322-1364 (2011)] for fully

nonlinear parabolic PDEs, and hence generalize it to the path-dependent (or non-

Markovian) case for a general stochastic control problem. General convergence result is

obtained by weak convergence method in spirit of Kushner and Dupuis [19]. We also get

a rate of convergence using the invariance principle technique as in Dolinsky [7], which

is better than that obtained by viscosity solution method. Finally, by approximating

the conditional expectations arising in the numerical scheme with simulation-regression

method, we obtain an implementable scheme.

Key words. Numerical scheme, path-dependent stochastic control, weak conver-

gence, invariance principle.

MSC 2010. Primary 65K99, secondary 93E20, 93E25

1 Introduction

Stochastic optimal control theory is largely applied in economics, finance, physics

and management problems. Since its development, numerical methods for stochastic

control problems have also been largely investigated. For the Markovian control prob-

lem, the value function can usually be characterized by Hamilton-Jacob-Bellman(HJB)

equations, then many numerical methods are also given as numerical schemes for PDEs.

In this context, a powerful tool to prove the convergence is the monotone convergence

of viscosity solution method of Barles and Souganidis [1].

In the one-dimensional case, the explicit finite difference scheme can be easily

constructed and implemented, and the monotonicity is generally guaranteed under the

∗Ceremade, University of Paris-Dauphine, Paris, xiaolu.tan@gmail.com. The author is grateful to Nizar

Touzi, J. Frédéric Bonnans, Nicole El Karoui and two anonymous referees for helpful comments and sugges-

tions.
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Courant-Friedrichs-Lewy (CFL) condition. In two dimensional cases, Bonnans, Otten-

waelter and Zidani [3] proposed a numerical algorithm to construct monotone explicit

schemes. Debrabant and Jakobsen [6] gave a semi-Lagrangian scheme which is easily

constructed to be monotone but needs finite difference grid together with interpolation

method for the implementation. In general, these methods may be relatively efficient

in low dimensional cases; while in high dimensional cases, Monte Carlo method is

preferred if possible.

As a generalization of Feynman-Kac formula, the Backward Stochastic Differential

Equation (BSDE) opens a way for the Monte Carlo method for optimal control prob-

lems (see e.g. Bouchard and Touzi [4], Zhang [28]). Generally speaking, the BSDE

covers the controlled diffusion processes problems of which only the drift part is con-

trolled. However, it cannot include the general control problems when the volatility

part is also controlled. This is one of the main motivations of recent developments of

second order BSDE (2BSDE) by Cheridito, Soner, Touzi and Victoir [5] and Soner,

Touzi and Zhang [22]. Motivated by the 2BSDE theory in [5], and also inspired by

the numerical scheme of BSDEs, Fahim, Touzi and Warin [11] proposed a probabilistic

numerical scheme for fully nonlinear parabolic PDEs. In their scheme, one needs to

simulate a diffusion process, and estimate the value function as well as the derivatives

of the value function arising in the PDE by conditional expectations, and then com-

pute the value function in a backward way on the discrete time grid. The efficiency of

this Monte Carlo scheme has been shown by several numerical examples, we refer to

Fahim, Touzi and Warin [11], Guyon and Henry-Labordère [15] and Tan [25] for the

implemented examples.

However, instead of probabilistic arguments, the convergence of this scheme is

proved by techniques of monotone convergence of viscosity solution of Barles and

Souganidis [1]. Moreover, their scheme can be only applied in the Markovian case

when the value function is characterized by PDEs.

The main contribution of this paper is to give a probabilistic interpretation to the

Monte Carlo scheme of [11] for fully nonlinear PDEs, which permits to generalize it

to the non-Markovian case for a general stochastic optimal control problem. One of

the motivations for the non-Markovian generalization comes from finance to price the

path-dependent exotic derivative options in the uncertain volatility model.

Our general convergence result is obtained by weak convergence techniques in spirit

of Kushner and Dupuis [19]. In contrast to [19], where the authors define their con-

trolled Markov chain in a descriptive way, we give our controlled discrete-time semi-

martingale in an explicit way using the cumulative distribution functions. Moreover, we

introduce a canonical space for the control problem following El Karoui, Huu Nguyen

and Jeanblanc [9], which permits to explore the convergence conditions on the reward

functions. We also provide a convergence rate using the invariance principle techniques

of Sakhanenko [23] and Dolinsky [7]. Comparing to the scheme in [7] in the context of

G−expectation (see e.g. Peng [20] for G−expectation), our scheme is implementable

using simulation-regression method.

The rest of the paper is organized as follows. In Section 2, we first introduce a

general path-dependent stochastic control problem, and propose a numerical scheme.
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Then we give the assumptions on the diffusion coefficients and the reward functions,

as well as the main convergence results, including the general convergence and a rate

of convergence. Next in Section 3, we provide a probabilistic interpretation of the

numerical scheme, by showing that the numerical solution is equivalent to the value

function of a controlled discrete-time semimartingale problem. Then we complete the

proofs of the convergence results in Section 4. Finally, in Section 5, we discuss some

issues about the implementation of our numerical scheme, including a simulation-

regression method.

Notations. We denote by Sd the space of all d × d matrices, and by S+
d the space

of all positive symmetric d × d matrices. Given a vector or a matrix A, then A⊤

denotes its transposition. Given two d × d matrix A and B, their product is defined

by A ⋅ B := Tr(AB⊤) and ∣A∣ :=
√
A ⋅A. Let Ωd := C([0, T ],ℝd) be the space of all

continuous paths between 0 and T , denote ∣x∣ := sup0≤t≤T ∣xt∣ for every x ∈ Ωd. In

the paper, E is a fixed compact Polish space, we denote

QT := [0, T ]× Ωd × E.

Suppose that (Xtk)0≤k≤n is a process defined on the discrete time grid (tk)0≤k≤n of

[0, T ] with tk := kℎ and ℎ := T
n , we usually write it as (Xk)0≤k≤n, and denote by X̂

its linear interpolation path on [0, T ]. In the paper, C is a constant whose value may

vary from line to line.

2 A numerical scheme for stochastic control prob-

lems

2.1 A path-dependent stochastic control problem

Let (Ω,ℱ ,ℙ) be a complete probability space containing a d−dimensional standard

Brownian motion W , F = (ℱt)0≤t≤T be the natural Brownian filtration. Denote by

Ωd := C([0, T ],ℝd) the space of all continuous paths between 0 and T . Suppose that

E is a compact Polish space with a complete metric dE , (�, �) are bounded continuous

functions defined on QT := [0, T ]×Ωd×E taking value in Sd×ℝd. We fix a constant

x0 ∈ ℝd through out the paper. Then given a F−progressively measurable E−valued

process � = (�t)0≤t≤T , denote by X� the controlled diffusion process which is the

strong solution to

X�
t = x0 +

∫ t

0
�(s,X�

⋅ , �s)ds +

∫ t

0
�(s,X�

⋅ , �s)dWs. (2.1)

To ensure the existence and uniqueness of the strong solution to the above equation

(2.1), we suppose that for every progressively measurable process (X, �), the processes

�(t,X⋅, �t) and �(t,X⋅, �t) are progressively measurable. In particular, � and � depend

on the past trajectory of X. Further, we suppose that there is some constant C and a

continuity module �, which is an increasing function on ℝ+ satisfying �(0+) = 0, such
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that ∣∣�(t1,x1, u1)− �(t2,x2, u2)
∣∣ +

∣∣�(t1,x1, u1)− �(t2,x2, u2)
∣∣

≤ C∣xt11 − xt22 ∣ + �(∣t1 − t2∣+ dE(u1, u2)), (2.2)

where for every (t,x) ∈ [0, T ] × Ωd, we denote xts := xs1[0,t](s) + xt1(t,T ](s). Let

Φ : x ∈ Ωd → ℝ and L : (t,x, u) ∈ QT → ℝ be the continuous reward functions, and

denote by U the collection of all E−valued F−progressively measurable processes, the

main purpose of this paper is to approximate numerically the following optimization

problem:

V := sup
�∈U

E
[ ∫ T

0
L
(
t,X�

⋅ , �t
)
dt + Φ(X�

⋅ )
]
. (2.3)

Similarly to � and �, we suppose that for every progressively measurable process

(X, �), the process t 7→ L(t,X⋅, �t) is progressively measurable. Moreover, to ensure

that the expectation in (2.3) is well defined, we shall assume later that L and Φ are

of exponential growth in x and discuss their integrability in Proposition 2.5.

2.2 The numerical scheme

In preparation of the numerical scheme, we shall fix, through out the paper, a progres-

sively measurable function �0 : [0, T ]× Ωd → Sd such that∣∣�0(t1,x1)− �0(t2,x2)
∣∣ ≤ C∣xt11 − xt22 ∣ + �(∣t1 − t2∣)),

∀(t1,x1), (t2,x2) ∈ [0, T ]× Ωd,

and with "0 > 0, �0�
⊤
0 (t,x) ≥ "0Id for every (t,x) ∈ [0, T ]× Ωd. Denote

�t,x0 := �0(t,x), at,x0 := �t,x0 (�t,x0 )⊤,

at,xu := ��⊤(t,x, u) − at,x0 , bt,xu := �(t,x, u). (2.4)

Then we define a function G on [0, T ]× Ωd × Sd × ℝd by

G(t,x, , p) := sup
u∈E

(
L(t,x, u) +

1

2
at,xu ⋅  + bt,xu ⋅ p

)
, (2.5)

which is clearly convex in (, p) as the supremum of a family of linear functions, and

lower-semicontinuous in (t,x) as the supremum of a family of continuous functions.

Let n ∈ ℕ, denote the time discretization by ℎ := T
n and tk := ℎk.

Let us take the standard d−dimensional Brownian motion W in the complete

probability space (Ω,ℱ ,ℙ). For simplicity, we denote Wk := Wtk , ΔWk := Wk−Wk−1,

ℱWk := �(W0,W1, ⋅ ⋅ ⋅ ,Wk) and EWk [⋅] := E[⋅∣ℱWk ]. Then we have a process X0 on the

discrete grid (tk)0≤k≤n defined by

X0
0 := x0, X0

k+1 := X0
k + �0(tk, X̂0⋅)ΔWk+1, (2.6)

where X̂0 denotes the linear interpolation process of (X0
k)0≤k≤n on interval [0, T ].
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Then, for every time discretization ℎ, our numerical scheme is given by

Y ℎ
k := EWk [Y ℎ

k+1] + ℎ G(tk, X̂0⋅,Γ
ℎ
k , Z

ℎ
k ), (2.7)

with terminal condition

Y ℎ
n := Φ(X̂0⋅), (2.8)

where G is defined by (2.5) and

Γℎk := EWk
[
Y ℎ
k+1(�⊤0,k)

−1 ΔWk+1ΔW⊤k+1 − ℎId
ℎ2

�−1
0,k

]
, Zℎk := EWk

[
Y ℎ
k+1(�⊤0,k)

−1 ΔWk+1

ℎ

]
,

with �0,k := �tk,X̂
0

0 = �0(tk, X̂0⋅).

Remark 2.1. By its definition, Y ℎ
k is a measurable function of (X0

0 , ⋅ ⋅ ⋅ , X0
k). We shall

show later in Proposition 2.5 that the function Y ℎ
k (x0, ⋅ ⋅ ⋅ , xk) is of exponential growth

in max0≤i≤k ∣xi∣ under appropriate conditions, and hence the conditional expectations

in (2.7) are well defined. Therefore, the above scheme (2.7) should be well defined.

Remark 2.2. In the Markovian case, when the function Φ(⋅) (resp. L(t, ⋅, u), �(t, ⋅, u)

and �(t, ⋅, u)) only depends on XT (resp. Xt), so that the function G(t, ⋅, , z) only

depends on Xt and the value function of the optimization problem (2.3) can be char-

acterized as the viscosity solution of a nonlinear PDE

−∂tv −
1

2
a0(t, x) ⋅D2v − G(t, x,D2v,Dv) = 0.

Then the above scheme reduces to that proposed by Fahim, Touzi and Warin [11].

2.3 The convergence results of the scheme

Our main idea to prove the convergence of the scheme (2.7), (2.8) is to interpret it

as an optimization problem on a system of controlled discrete-time semimartingales,

which converge weakly to the controlled diffusion processes. Therefore, a reasonable

assumption is that Φ and L are bounded continuous on Ωd (i.e. Φ(⋅), L(t, ⋅, u) ∈
Cb(Ω

d)), or they belong to the completion space of Cb(Ω
d) under an appropriate norm.

We shall suppose that Φ (resp. L) is continuous in x (resp. (t,x, u)), and there are a

constant C and continuity modules �0, (�N )N≥1 such that for every (t,x, u) ∈ QT and

(t1,x1), (t2,x2) ∈ [0, T ]× Ωd and N ≥ 1,⎧⎨⎩
∣Φ(x)∣ + ∣L(t,x, u)∣ ≤ C exp

(
C∣x∣

)
,

∣L(t1,x, u)− L(t2,x, u)∣ ≤ �0(∣t1 − t2∣),
∣ΦN (x1)− ΦN (x2)∣ + ∣LN (t,x1, u)− LN (t,x2, u)∣ ≤ �N (∣x1 − x2∣),

(2.9)

where ΦN := (−N) ∨ (Φ ∧N) and LN := (−N) ∨ (L ∧N).

Denote

mG := min
(t,x,u)∈QT , w∈ℝd

( 1

2
w⊤at,xu w + bt,xu ⋅ w

)
, (2.10)
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and

ℎ0 := 1mG=0 T + 1mG<0 min
(t,x,u)∈QT

− m−1
G

(
1− 1

2
at,xu ⋅

(
at,x0

)−1)
, (2.11)

where at,x0 , at,xu and bt,xu are defined in (2.4). Clearly, mG ≤ 0.

Assumption 1. For every (t,x, u) ∈ QT , we have

at,xu ≥ 0 and 1 − 1

2
at,xu ⋅

(
at,x0

)−1 ≥ 0.

Further, the constants mG > −∞ and ℎ0 > 0.

Remark 2.3. Assumption 1 is almost equivalent to Assumption F of [11] in the context

of the control problem, and it implies that the drift � and � are uniformly bounded, as

assumed at the beginning of Section 2.1. In particular, it follows that when mG < 0,

we have

1 − 1

2
at,xu ⋅

(
at,x0

)−1
+ ℎmG ≥ 0, for every (t,x, u) ∈ QT and ℎ ≤ ℎ0.

Moreover, since a0 is supposed to be nondegenerate, the assumption implies that ��⊤(t,x, u)

is nondegenerate for all (t,x, u) ∈ QT . The non-degeneracy condition may be incon-

venient in practice (see e.g. Example 5.1), we shall also provide more discussions and

examples in Section 5.1.

Remark 2.4. When at,xu ≥ "Id uniformly for some " > 0, we get immediately mG >

−∞ since bt,xu is uniformly bounded. When at,xu degenerates, mG > −∞ implies that

bt,xu lies in the image of at,xu .

Proposition 2.5. Suppose that the reward functions L and Φ satisfy (2.9), then

the optimal value V in (2.3) is finite. Suppose in addition that Assumption 1 holds

true. Then for every fixed n ∈ ℕ (ℎ := T
n ) and every 0 ≤ k ≤ n, as a function

of (X0, ⋅ ⋅ ⋅ , Xk), Y
ℎ
k (x0, ⋅ ⋅ ⋅ , xk) is also of exponential growth in max0≤i≤k ∣xi∣. And

hence Y ℎ
k is integrable in (2.7), the numerical scheme (2.7) is well defined.

The proof is postponed in Section 3.1 after a technical lemma.

Our main results of the paper are the following two convergence theorems, whose

proofs are left in Section 4.

Theorem 2.6. Suppose that L and Φ satisfy (2.9) and Assumption 1 holds true. Then

Y ℎ
0 → V as ℎ→ 0.

To derive a convergence rate, we suppose further that E is a compact convex subset

of S+
d × ℝd, and for every (t,x, u) = (t,x, a, b) ∈ QT ,

a > 0, �(t,x, u) = �(t,x, a, b) = b, �(t,x, u) = �(t,x, a, b) = a1/2. (2.12)
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Moreover, we suppose that L(t,x, u) = ℓ(t,x) ⋅ u for some continuous function ℓ :

[0, T ] × Ωd → Sd × ℝd and that there exists a constant C > 0 such that for every

couple (t1,x1), (t2,x2) ∈ QT ,

∣ℓ(t1,x1)− ℓ(t2,x2)∣ + ∣Φ(x1)− Φ(x2)∣ (2.13)

≤ C
(
∣t1 − t2∣ + ∣xt11 − xt22 ∣ + ∣x1 − x2∣

)
exp

(
C(∣x1∣+ ∣x2∣

)
.

Theorem 2.7. Suppose that L and Φ satisfy conditions (2.9) and (2.13), the set

E ⊂ S+
d ×ℝ

d is compact and convex, functions � and � satisfy (2.12), and Assumption

1 holds true. Then for every " > 0, there is a constant C" such that

∣Y ℎ
0 − V ∣ ≤ C"ℎ

1/8−", ∀ℎ ≤ ℎ0. (2.14)

If, in addition, L and Φ are bounded, then there is a constant C such that

∣Y ℎ
0 − V ∣ ≤ Cℎ1/8, ∀ℎ ≤ ℎ0. (2.15)

Remark 2.8. In the Markovian context as in Remark 2.2, Fahim, Touzi and Warin

[11] obtained a convergence rate ℎ1/4 for one side and ℎ1/10 for the other side using

Krylov’s shaking coefficient method. Then their global convergence rate is ℎ1/10. We

get a rate ℎ1/8 in this path-dependent case under some additional constraints. When

there is no control on the volatility part, the BSDE method in Bouchard and Touzi [4]

and Zhang [28] gives a convergence rate of order ℎ1/2. Our current technique cannot

achieve this rate in the BSDE context.

Remark 2.9. When the covariance matrix ��⊤ is diagonal dominated, Kushner and

Dupuis [19] gave a systematic way to construct a convergent finite difference scheme.

However, the construction turns to be not easy when the matrix is not diagonal dom-

inated, see e.g. Bonnans, Ottenwaelter and Zidani [3]. Our scheme relaxes this con-

straint. Moreover, our scheme implies a natural Monte Carlo implementation, which

may be more efficient in high dimensional cases, see numerical examples in Fahim,

Touzi and Warin [11], Guyon and Henry-Labordère [15] and Tan [25].

3 A controlled discrete-time semimartingale in-

terpretation

Before giving the proofs of the above convergence theorems, we first provide a proba-

bilistic interpretation to the scheme (2.7), (2.8) in spirit of Kushner and Dupuis [19].

Namely, we shall show that the numerical solution is equivalent to the value function

of a controlled discrete-time semimartingale problem.

For finite difference schemes, the controlled Markov chain interpretation given by

Kushner and Dupuis [19] is straightforward, where their construction of the Markov

chain is descriptive. For our scheme, the probabilistic interpretation is less evident as

the state space is uncountable. Our main idea is to use the inverse function of the

distribution functions. This question has not been evoked in the Markovian context of
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[11] since they use the monotone convergence of viscosity solution technique, where the

idea is to show that the terms Zℎ and Γℎ defined below (2.8) are good approximations

of the derivatives of the value function.

3.1 A technical lemma

Given a fixed (t,x, u) ∈ QT , let us simplify further the notations in (2.4),

�0 := �t,x0 , a0 := at,x0 , au := at,xu , bu := bt,xu . (3.1)

Denote

fℎ(t,x, u, x) :=
1

(2�ℎ)d/2∣�0∣1/2
exp

(
− 1

2
ℎ−1x⊤a−1

0 x
)

(
1− 1

2
au ⋅ a−1

0 + bu ⋅ a−1
0 x+

1

2
ℎ−1au ⋅ a−1

0 xx⊤(a⊤0 )−1
)
. (3.2)

It follows by (2.10) that for every (t,x, u) ∈ QT and x ∈ ℝd,

bu ⋅ a−1
0 x +

1

2
ℎ−1au ⋅ a−1

0 xx⊤(a⊤0 )−1 = ℎ
[
bu ⋅ a−1

0

x

ℎ
+

1

2
au ⋅ a−1

0

x

ℎ

x⊤

ℎ
(a⊤0 )−1

]
≥ ℎ mG.

Then under Assumption 1, one can verify easily (see also Remark 2.3) that when

ℎ ≤ ℎ0 for ℎ0 given by (2.11), x 7→ fℎ(t,x, u, x) is a probability density function on

ℝd, i.e.

fℎ(t,x, u, x) ≥ 0, ∀x ∈ ℝd, and

∫
ℝd
fℎ(t,x, u, x) dx = 1.

Lemma 3.1. Let ℎ ≤ ℎ0 and R be a random vector with probability density x 7→
fℎ(t,x, u, x). Then for all functions g : ℝd → ℝ of exponential growth, we have

E[g(R)] = E
[
g(�0Wℎ)

(
1 + ℎbu ⋅ (�⊤0 )−1Wℎ

ℎ
+

1

2
ℎau ⋅ (�⊤0 )−1WℎW

⊤
ℎ − ℎI
ℎ2

�−1
0

)]
,(3.3)

where Wℎ is a d−dimensional Gaussian random variable with distribution N(0, ℎId).

In particular, it follows that there exists a constant C1 independent of (ℎ, t,x, u) ∈
(0, ℎ0]×QT such that

E[R] = buℎ, Var[R] = (au + a0)ℎ− bub⊤u ℎ2 and E[∣R∣3] < C1ℎ
3/2, (3.4)

where Var[R] means the covariance matrix of the random vector Z. Moreover, for any

c ∈ ℝd,

E[ec⋅R] ≤ eC2ℎ(1 + C2ℎ), (3.5)

where C2 is independent of (ℎ, t,x, u) and is defined by

C2 := sup
(t,x,u)∈QT

(1

2
c⊤a0c + ∣bu ⋅ c∣ +

1

2
c⊤auc

)
.
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Proof. First, it is clear that 1
(2�ℎ)d/2∣�0∣1/2

exp
(
− 1

2ℎ
−1x⊤a−1

0 x
)

is the density function

of �0Wℎ. Then by (3.2),

E[g(R)] =

∫
ℝd
fℎ(t,x, u, x) g(x) dx

=

∫
ℝd

1

(2�ℎ)d/2∣�0∣1/2
exp

(
− 1

2
ℎ−1x⊤a−1

0 x
)

g(x)
(

1− 1

2
au ⋅ a−1

0 + bu ⋅ a−1
0 x+

1

2
ℎ−1au ⋅ a−1

0 xx⊤(a⊤0 )−1
)
dx

= E
[
g(�0Wℎ)

(
1 + ℎbu ⋅ (�⊤0 )−1Wℎ

ℎ
+

1

2
ℎau ⋅ (�⊤0 )−1WℎW

⊤
ℎ − ℎI
ℎ2

�−1
0

)]
.

Hence (3.3) holds true.

In particular, let g(R) = R or g(R) = RR⊤, it follows by direct computation that

the first two equalities of (3.4) hold true. Further, letting g(x) = ∣x∣3, we get from

(3.3) that

E[∣R∣3] = ℎ3/2 E
[
∣�0N ∣3

(
1 +
√
ℎbu ⋅ (�⊤0 )−1N +

1

2
au ⋅ (�⊤0 )−1(NN⊤ − I)�−1

0

)]
,

where N is a Gaussian vector of distribution N(0, Id). And hence (3.4) holds true with

C1 := sup
(t,x,u)∈QT

E
[
∣�0N ∣3

(
1 +

√
ℎ0

∣∣bu ⋅ (�⊤0 )−1N
∣∣+

1

2

∣∣au ⋅ (�⊤0 )−1
(
NN⊤ − I

)
�−1

0

∣∣)],
which is clearly bounded and independent of (ℎ, t,x, u).

Finally, to prove inequality (3.5), we denote Nℎ := N +
√
ℎ�⊤0 c for every ℎ ≤ ℎ0.

Then

E[ec⋅R] = E
[
ec
⊤�0Wℎ

(
1 + ℎbu ⋅ (�⊤0 )−1Wℎ

ℎ
+

1

2
ℎau ⋅ (�⊤0 )−1WℎW

⊤
ℎ − ℎId
ℎ2

�−1
0

)]
= E

[
ec
⊤�0N

√
ℎ
(

1 +
√
ℎbu ⋅ (�⊤0 )−1N +

1

2
au ⋅ (�⊤0 )−1

(
NN⊤ − Id

)
�−1

0

)]
= e

c⊤a0c
2

ℎ E
[
1 +
√
ℎbu ⋅ (�⊤0 )−1Nℎ +

1

2
au ⋅ (�⊤0 )−1

(
NℎN

⊤
ℎ − Id

)
�−1

0

]
= e

c⊤a0c
2

ℎ
(
1 + (bu ⋅ c+

1

2
c⊤auc)ℎ

)
≤ eC2ℎ(1 + C2ℎ),

where C2 := sup(t,x,u)∈QT

(
1
2c
⊤a0c+ ∣bu ⋅ c∣+ 1

2c
⊤auc

)
is bounded and independent of

(ℎ, t,x, u).

Remark 3.2. Since the random vector R does not degenerate to the Dirac mass, it

follows by (3.4) that under Assumption 1,

��⊤(t,x, u) > ��⊤(t,x, u)ℎ, for every (t,x, u) ∈ QT , ℎ ≤ ℎ0.

With this technical lemma, we can give the

Proof of Proposition 2.5. For the first assertion, it is enough to prove that

sup�∈U E[exp(C∣X�
⋅ ∣)] is bounded by condition (2.9). Note that � and � are uniformly

9



bounded. When d = 1, X� is a continuous semimartingale whose finite variation part

and quadratic variation are both bounded by a constant RT for every � ∈ U . It follows

by Dambis-Dubins-Schwartz’s time change theorem that

sup
�∈U

E[exp(C∣X�
⋅ ∣)] ≤ eCRTE exp

(
C sup

0≤t≤RT
∣Bt∣

)
< ∞, (3.6)

where B is a standard one-dimensional Brownian motion. When d > 1, it is enough

to remark that for X = (X1, ⋅ ⋅ ⋅ , Xd), exp
(
C∣X⋅∣

)
≤ exp

(
C(∣X1

⋅ ∣+ ⋅ ⋅ ⋅+ ∣Xd
⋅ ∣)
)
; and

we then conclude the proof of the first assertion applying Cauchy-Schwartz inequality.

For the second assertion, let us prove it by backward induction. Given 0 ≤ k ≤ n−1,

x0, ⋅ ⋅ ⋅ , xk ∈ ℝd, we denote by x̂ the linear interpolation path of x(ti) := xi, denote

also

Lk(x0, ⋅ ⋅ ⋅ , xk, u) := L(tk, x̂⋅, u), ∀u ∈ E. (3.7)

For the terminal condition, it is clear that Y ℎ
n (x0, ⋅ ⋅ ⋅ , xn) is of exponential growth in

max0≤i≤n ∣xn∣ by condition (2.9). Now, suppose that∣∣Y ℎ
k+1(x0, ⋅ ⋅ ⋅ , xk+1)

∣∣ ≤ Ck+1 exp
(
Ck+1 max

0≤i≤k+1
∣xi∣
)
.

Let Ru be a random variable of distribution density x 7→ fℎ(tk, x̂, u, x). Then it follows

by (2.7) and Lemma 3.1 that

Y ℎ
k (x0, ⋅ ⋅ ⋅ , xk)

= sup
u∈E

{
ℎLk(x0, ⋅ ⋅ ⋅ , xk, u) + E

[
Y ℎ
k+1

(
x0, ⋅ ⋅ ⋅ , xk, xk + �0Wℎ

)
(

1 + ℎbtk,x̂u ⋅ (�⊤0 )−1Wℎ

ℎ
+

1

2
ℎatk,x̂u ⋅ (�⊤0 )−1WℎW

⊤
ℎ − ℎI
ℎ2

�−1
0

)]}
= sup

u∈E

{
ℎLk(x0, ⋅ ⋅ ⋅ , xk, u) + E

[
Y ℎ
k+1

(
x0, ⋅ ⋅ ⋅ , xk, xk +Ru

)]}
. (3.8)

Therefore by (2.9) and (3.5),∣∣Y ℎ
k (x0, ⋅ ⋅ ⋅ , xk)

∣∣
≤ (Ck+1 + Cℎ) exp

(
(Ck+1 + Cℎ) max

0≤i≤k
∣xi∣
)

sup
u∈E

E
[

exp
(
Ck+1∣Ru∣

)]
≤ eC2ℎ(1 + C2ℎ)(Ck+1 + Cℎ) exp

(
(Ck+1 + Cℎ) max

0≤i≤k
∣xi∣
)
,

where C is the same constant given in (2.9), and the constant C2 is from (3.5) depend-

ing on Ck+1. We then conclude the proof.

3.2 The probabilistic interpretation

In this section, we shall interpret the numerical scheme (2.7) as the value function

of a controlled discrete-time semimartingale problem. In preparation, let us show

how to construct the random variables with density function x 7→ fℎ(t,x, u, x). Let

F : ℝ → [0, 1] be the cumulative distribution function of a one-dimensional random

10



variable, denote by F−1 : [0, 1] → ℝ its generalized inverse function. Then given a

random variable U of uniform distribution U([0, 1]), it is clear that F−1(U) turns to be

a random variable with distribution F . In the multi-dimensional case, we can convert

the problem to the one-dimensional case since ℝd is isomorphic to [0, 1], i.e. there is

a one-to-one mapping � : ℝd → [0, 1] such that � and �−1 are both Borel measurable

(see e.g. Proposition 7.16 and Corollary 7.16.1 of Bertsekas and Shreve [2]).

Define

Fℎ(t,x, u, x) :=

∫
�(y)≤x

fℎ(t,x, u, y)�(y)dy.

It is clear that x 7→ Fℎ(t,x, u, x) is the distribution function of random variable

�(R) where R is a random variable of density function x 7→ fℎ(t,x, u, x). Denote

by F−1
ℎ (t,x, u, x) the inverse function of x 7→ Fℎ(t,x, u, x) and

Hℎ(t,x, u, x) := �−1(F−1
ℎ (t,x, u, x)). (3.9)

Then given a random variable U of uniform distribution on [0, 1], F−1
ℎ (t,x, u, U) has the

same distribution of �(R) and Hℎ(t,x, u, U) is of distribution density x 7→ fℎ(t,x, u, x).

In particular, it follows that the expression (3.8) of numerical solution of scheme (2.7)

turns to be

Y ℎ
k (x0, ⋅ ⋅ ⋅ , xk) = sup

u∈E
E
[
ℎLk(x0, ⋅ ⋅ ⋅ , xk, u)

+ Y ℎ
k+1

(
x0, ⋅ ⋅ ⋅ , xk, xk +Hℎ(tk, x̂, u, U)

)]
, (3.10)

where x̂ is the linear interpolation function of (x0, ⋅ ⋅ ⋅ , xk) on [0, tk].

Now, we are ready to introduce a controlled discrete-time semimartingale system.

Suppose that U1, ⋅ ⋅ ⋅ , Un are i.i.d random variables with uniform distribution on [0, 1]

in the probability space (Ω,ℱ ,ℙ). Let Aℎ denote the collection of all strategies � =

(�k)0≤k≤n−1, where �k is a universally measurable mapping from (ℝd)k+1 to E. Given

� ∈ Aℎ, Xℎ,� is defined by

Xℎ,�
0 := x0, Xℎ,�

k+1 := Xℎ,�
k + Hℎ

(
tk, X̂ℎ,�⋅, �k(X

ℎ,�
0 , ⋅ ⋅ ⋅ , Xℎ,�

k ), Uk+1

)
. (3.11)

We then also define an optimization problem by

V ℎ
0 := sup

�∈Aℎ
E
[ n−1∑
k=0

ℎL
(
tk, X̂ℎ,�⋅, �k)

)
+ Φ(X̂ℎ,�⋅)

]
. (3.12)

The main result of this section is to show that the numerical solution given by (2.7)

is equivalent to the value function of optimization problem (3.12) on the controlled

discrete-time semimartingales Xℎ,�.

Remark 3.3. It is clear that in the discrete-time case, every process is a semimartin-

gale. When � ≡ 0 and U is of uniform distribution on [0, 1], the random variable

Hℎ(t,x, u, U) is centered, and hence Xℎ,� turns to be a controlled martingale. This is

also the main reason we choose the terminology “semimartingale” in the section title.
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Theorem 3.4. Suppose that L and Φ satisfy (2.9) and Assumption 1 holds true. Then

for 0 < ℎ ≤ ℎ0 with ℎ0 defined by (2.11),

Y ℎ
0 = V ℎ

0 .

The above theorem is similar to a dynamic programming result. Namely, it states

that optimizing the criteria globally in (3.12) is equivalent to optimizing it step by

step in (3.10). With this interpretation, we only need to analyze the “distance” of

the controlled semimartingale Xℎ,� in (3.11) and the controlled diffusion process X�

in (2.1) to show this convergence of V ℎ
0 to V in order to prove Theorems 2.6 and 2.7.

Before providing the proof, let us give a technical lemma.

Lemma 3.5. For the function G defined by (2.5) and every " > 0, there is a universally

measurable mapping u" : Sd × ℝd → E such that for all (, p) ∈ Sd × ℝd,

G(t,x, , p) ≤ L(t,x, u"(, p)) +
1

2
at,xu"(,p) ⋅  + bt,xu"(,p) ⋅ p + ".

Proof. This follows from the measurable selection theorem, see e.g. Theorem 7.50 of

Bertsekas and Shreve [2] or Section 2 of El Karoui and Tan [10].

Proof of Theorem 3.4: First, following (3.10), we can rewrite Y ℎ
k as a measurable

function of (X0
0 , ⋅ ⋅ ⋅ , X0

k), and

Y ℎ
k (x0, ⋅ ⋅ ⋅ , xk) = sup

u∈E
E
[
ℎLk(x0, ⋅ ⋅ ⋅ , xk, u)

+ Y ℎ
k+1

(
x0, ⋅ ⋅ ⋅ , xk, xk +Hℎ(tk, x̂, u, Uk+1)

)]
,

where x̂ is the linear interpolation function of (x0, ⋅ ⋅ ⋅ , xk) on [0, tk], Uk+1 is of uniform

distribution on [0, 1] and Lk is defined by (3.7).

Next, for every control strategy � ∈ Aℎ and Xℎ,� defined by (3.11), we denote

ℱℎ,�k := �(Xℎ,�
0 , ⋅ ⋅ ⋅ , Xℎ,�

k ) and

V ℎ,�
k := E

[ n−1∑
i=k

ℎL(ti, X̂ℎ,�⋅, �i) + Φ(X̂ℎ,�⋅)
∣∣∣ℱℎ,�k

]
,

which is clearly a measurable function of (Xℎ,�
0 , ⋅ ⋅ ⋅ , Xℎ,�

k ) and satisfies

V ℎ,�
k (x0, ⋅ ⋅ ⋅ , xk) = ℎLk(x0, ⋅ ⋅ ⋅ , xk, �k(x0, ⋅ ⋅ ⋅ , xk))

+E
[
V ℎ,�
k+1

(
x0, ⋅ ⋅ ⋅ , xk, xk +Hℎ(tk, x̂, �k(x0, ⋅ ⋅ ⋅ , xk), Uk+1)

)]
.

Then by comparing V ℎ,� with Y ℎ and the arbitrariness of � ∈ Aℎ, it follows that

V ℎ
0 ≤ Y ℎ

0 .

For the reverse inequality, it is enough to find, for any " > 0, a strategy �" ∈ Aℎ
with Xℎ," as defined in (3.11) using �" such that

Y ℎ
0 ≤ E

[ n−1∑
k=0

ℎL(tk, X̂ℎ,"⋅, �
"
k) + Φ(X̂ℎ,"⋅)

]
+ n ". (3.13)
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Let us write Γℎk and Zℎk defined below (2.7) as a measurable function of (X0
0 , ⋅ ⋅ ⋅ , X0

k),

and u" be given by Lemma 3.5, denote

�"k(x0, ⋅ ⋅ ⋅ , xk) := u"(Γℎk(x0, ⋅ ⋅ ⋅ , xk), Zℎk (x0, ⋅ ⋅ ⋅ , xkz)).

Then by the tower property, the semimartingale Xℎ," defined by (3.11) with �" satisfies

(3.13).

4 Proofs of the convergence theorems

With the probabilistic interpretation of the numerical solution Y ℎ in Theorem 3.4, we

are ready to give the proofs of Theorems 2.6 and 2.7. Intuitively, we shall analyze

the “convergence” of the controlled semimartingale Xℎ,� in (3.11) to the controlled

diffusion process X� in (2.1).

4.1 Proof of Theorem 2.6

The main tool to prove Theorem 2.6 is the weak convergence technique due to Kushner

and Dupuis [19]. We adapt their idea in our context. We shall also introduce an

enlarged canonical space for control problems following El Karoui, Huu Nguyen and

Jeanblanc [9], in order to explore the convergence conditions. Then we study the weak

convergence of probability measures on the enlarged canonical space.

4.1.1 An enlarged canonical space

In Dolinsky, Nutz and Soner [8], the authors studied a similar but simpler problem in

the context of G−expectation, where they use the canonical space Ωd := C([0, T ],ℝd).
We refer to Stroock and Varadhan [24] for a presentation of basic properties of canonical

space Ωd. However, we shall use an enlarged canonical space introduced by El Karoui,

Huu Nguyen and Jeanblanc [9], which is more convenient to study the control problem

for the purpose of numerical analysis.

An enlarged canonical space Let M([0, T ] × E) denote the space of all finite

positive measures m on [0, T ] × E such that m([0, T ] × E) = T , which is a Polish

space equipped with the weak convergence topology. Denote by M the collection of

finite positive measures m ∈M([0, T ] × E) such that the projection of m on [0, T ] is

the Lebesgue measure, so that they admit the disintegration m(dt, du) = m(t, du)dt,

where m(t, du) is a probability measure on E for every t ∈ [0, T ], i.e.

M :=
{
m ∈M([0, T ]× E) : m(dt, du) = m(t, du)dt s.t.

∫
Em(t, du) = 1

}
. (4.1)

In particular, (m(t, du))0≤t≤T is a measure-valued process. The measures in space M

are examples of Young measures and have been largely used in deterministic control

problems. We also refer to Young [27] and Valadier [26] for a presentation of Young

measure as well as its applications.
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Clearly, M is closed under weak convergence topology and hence is also a Polish

space. We define also the �−fields on M by ℳt := �{ms('), s ≤ t, ' ∈ Cb([0, T ] ×
E)}, where ms(') :=

∫ s
0 '(r, u)m(dr, du). Then (ℳt)0≤t≤T turns to be a filtration.

In particular, ℳT is the Borel �−field of M. As defined above, Ωd := C([0, T ],ℝd) is

the space of all continuous paths between 0 and T equipped with canonical filtration

Fd = (ℱdt )0≤t≤T . We then define an enlarged canonical space by Ω
d

:= Ωd ×M, as

well as the canonical process X by Xt(!) := !dt , ∀! = (!d,m) ∈ Ω
d

= Ωd ×M, and

the canonical filtration Fd = (ℱdt )0≤t≤T with ℱdt := ℱdt ⊗ℳt. Denote also by M(Ω
d
)

the collection of all probability measures on Ω
d
.

Four classes of probability measures A controlled diffusion process as well as

the control process may induce a probability measure on Ω
d
. Further, the optimization

criterion in (2.3) can be then given as a random variable defined on Ω
d
. Then the

optimization problem (2.3) can be studied on Ω
d
, as the quasi-sure approach in Soner,

Touzi and Zhang [21]. In the following, we introduce four subclasses of M(Ω
d
).

Let � > 0, we consider a particular strategy �� of the form ��s = wk(X
��

rki
, i ≤ Ik) for

every s ∈ (k�, (k + 1)�], where Ik ∈ ℕ, 0 ≤ rk0 < ⋅ ⋅ ⋅ < rkIk ≤ k�, X�� is the controlled

process given by (2.1) with strategy ��, and wk : ℝdIk → E is a continuous function.

Clearly, �� is an adapted piecewise constant strategy. Denote by U0 the collection of

all strategies of this form for all � > 0. It is clear that U0 ⊂ U .

Given � ∈ U in the probability space (Ω,ℱ ,ℙ), denote m�(dt, du) := ��t(du)dt ∈
M. Then (X� ,m�) can induce a probability measure ℙ� on Ω

d
by

Eℙ�Υ
(
!d,m

)
:= Eℙ Υ(X�

⋅ ,m
�
)
, (4.2)

for every bounded measurable function Υ defined on Ω
d
. In particular, for any bounded

function f : ℝdI+IJ → ℝ with arbitrary I, J ∈ ℕ, si ∈ [0, T ],  j : [0, T ] × E → ℝ
bounded,

Eℙ�f
(
Xsi ,msi( j), i ≤ I, j ≤ J

)
= Eℙf

(
X�
si ,

∫ si

0
 j(�r)dr, i ≤ I, j ≤ J

)
.

Then the first and the second subsets of M(Ω
d
) are given by

PS0 :=
{
ℙ� : � ∈ U0

}
and PS :=

{
ℙ� : � ∈ U

}
.

Now, let 0 < ℎ ≤ ℎ0 and � ∈ Aℎ, denote mℎ,�(dt, du) :=
∑n−1

k=0 ��k(du)1(tk,tk+1](dt),

and Xℎ,� be the discrete-time semimartingale defined by (3.11). It follows that

(X̂ℎ,�,mℎ,�) induces a probability measure ℙℎ,� on Ω
d

as in (4.2). Then the third

subsets of M(Ω
d
) we introduce is

Pℎ :=
{
ℙℎ,� : � ∈ Aℎ

}
.

Finally, for the fourth subset, we introduce a martingale problem on Ω
d
. Let ℒt,x,u

be a functional operator defined by

ℒt,x,u' := �(t,x, u) ⋅D' +
1

2
��⊤(t,x, u) ⋅D2'. (4.3)
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Then for every ' ∈ C∞b (ℝd), a process M(') is defined on Ω
d

by

Mt(') := '(Xt)− '(X0)−
∫ t

0

∫
E
ℒt,X⋅,u'(Xs) m(s, du) ds. (4.4)

Denote by PR the collection of all probability measures on Ω
d

under which X0 = x0

a.s. and Mt(') is a Fd−martingale for every ' ∈ C∞b (ℝd). In [9], a probability measure

in PR is called a relaxed control rule.

Remark 4.1. We denote, by abuse of notations, the random processes in Ω
d

�(t, !d,m) :=

∫
E
�(t, !d, u)m(t, du), a(t, !d,m) :=

∫
E
��⊤(t, !d, u)m(t, du),

which are clearly adapted to the filtration Fd. It follows that Mt(') defined by (4.4) is

equivalent to

Mt(') := '(Xt)− '(X0)−
∫ t

0

(
�(s, !d,m) ⋅D'(Xs) + 1

2a(s, !d,m) ⋅D2'(Xs)
)
ds.

Therefore, under any probability ℙ ∈ PR, since a(s, !d,m) is non-degenerate, there is

a Brownian motion W̃ on Ω
d

such that the canonical process can be represented as

Xt = x0 +

∫ t

0
�(s,X⋅,m)ds +

∫ t

0
a1/2(s,X⋅,m)dW̃s.

Moreover, it follows by Itô’s formula as well as the definition of ℙ� in (4.2) that

ℙ� ∈ PR for every � ∈ U . In resume, we have PS0 ⊂ PS ⊂ PR.

A completion space of Cb(Ω
d
) Now, let us introduce two random variables on

Ω
d

by

Ψ(!) = Ψ(!d,m) :=

∫ T

0
L
(
t, !d, u

)
m(dt, du) + Φ(!d) (4.5)

and

Ψℎ(!) = Ψℎ(!d,m) :=

∫ T

0
Lℎ
(
t, !d, u

)
m(dt, du) + Φ(!d),

where Lℎ(t,x, u) := L(tk,x, u) for every tk ≤ t ≤ tk+1 given the discretization param-

eter ℎ := T
n . It follows by the uniform continuity of L that

sup
!∈Ω

∣Ψ(!)−Ψℎ(!)∣ ≤ �0(ℎ), (4.6)

where �0 is the continuity module of L in t given before (2.9). Moreover, the optimiza-

tion problem (2.3) and (3.12) are equivalent to

V = sup
ℙ∈PS

Eℙ [Ψ] and V ℎ
0 = sup

ℙ∈Pℎ
Eℙ [Ψℎ]. (4.7)
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Finally, we introduce a space L1
∗ of random variables on Ω

d
. Let

P∗ :=
(
∪0<ℎ≤ℎ0 Pℎ

)
∪ PR,

and defined a norm ∣ ⋅ ∣∗ for random variables on Ω
d

by

∣�∣∗ := sup
ℙ∈P∗

Eℙ ∣�∣.

Denote by L1
∗ the completion space of Cb(Ω

d
) under the norm ∣ ⋅ ∣∗.

4.1.2 Convergence in the enlarged space

We first give a convergence result for random variables in L1
∗. Then we show that Ψ

defined by (4.5) belongs to L1
∗. In the end, we provide two other convergence lemmas.

Lemma 4.2. Suppose that � ∈ L1
∗, (ℙn)n≥0 is a sequence of probability measures in

P∗ such that ℙn converges weakly to ℙ ∈ P∗. Then

Eℙn [�] → Eℙ [�]. (4.8)

Proof. For every " > 0, there is �" ∈ Cb(Ω
d
) such that supℙ∈P∗ E

ℙ[∣� − �"∣] ≤ ". It

follows that

lim sup
n→∞

∣∣Eℙn [�] − Eℙ[�]
∣∣

≤ lim sup
n→∞

[
Eℙn[∣∣� − �"∣∣] +

∣∣Eℙn [�"]− Eℙ[�"]
∣∣ + Eℙ[∣∣�" − �∣∣]]

≤ 2".

Therefore, (4.8) holds true by the arbitrariness of ".

The next result shows that the random variable Ψ defined by (4.5) belongs to L1
∗,

when L and Φ satisfy (2.9).

Lemma 4.3. Suppose that Assumption 1 holds true, Φ and L satisfy (2.9). Then the

random variable Ψ defined by (4.5) lies in L1
∗.

Proof. We first claim that for every C > 0

sup
ℙ∈P∗

Eℙ [eC∣XT ∣] < ∞, (4.9)

which implies that E[eC∣X
ℎ,�
n ∣] < ∞ is uniformly bounded in ℎ and in � ∈ Aℎ. Let

C0 > 0 such that ∣�(t,x, u)∣ ≤ C0, ∀(t,x, u) ∈ QT . Then (∣Xℎ,�
k −C0tk∣)0≤k≤n is a sub-

martingale, and hence for every C1 > 0, (eC1∣Xℎ,�
k −C0tk∣)0≤k≤n is also a submartingale.

Therefore, by Doob’s inequality,

E
[

sup
0≤k≤n

eC1∣Xℎ,�
k ∣
]
≤ edC0TE

[
sup

0≤k≤n
eC1∣Xℎ,�

k −C0tk∣
]
≤ 2e2dC0T

√
E
[
e2C1∣Xℎ,�

n ∣
]
,
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where the last term is bounded uniformly in ℎ and � by the claim (4.9). With the same

arguments for the continuous-time case in spirit of Remark 4.1, it follows by (2.9) and

(4.5) that

sup
ℙ∈P∗

Eℙ [∣Ψ∣2] ≤ ∞. (4.10)

Similarly, we also have supℙ∈P∗ Eℙ [∣Ψ′∣2] ≤ ∞ for

Ψ′(!d,m) :=

∫ T

0

∣∣L(t, !d, u)
∣∣m(dt, du) +

∣∣Φ(!d)
∣∣.

Let ΦN := (−N) ∨ (Φ ∧N), LN := (−N) ∨ (L ∧N) and

ΨN (!d,m) :=

∫ T

0

∫
E
LN
(
t, !d, u)m(dt, du) + ΦN (!d).

Then, ΨN is bounded continuous in ! = (!d,m), i.e. ΨN ∈ Cb(Ω
d
). It follows by

Cauchy-Schwartz inequality that

sup
ℙ∈P∗

Eℙ∣Ψ−ΨN ∣ ≤
√

sup
ℙ∈P∗

Eℙ∣Ψ−ΨN ∣2
√

sup
ℙ∈P∗

ℙ(∣Ψ′∣ > N)

≤
√

sup
ℙ∈P∗

Eℙ∣Ψ−ΨN ∣2
√

sup
ℙ∈P∗

Eℙ[∣Ψ′∣] 1√
N
→ 0,

where the last inequality is from ℙ(∣Ψ′∣ > N) ≤ 1
NEℙ[∣Ψ′∣]. And hence Ψ ∈ L1

∗.

Therefore, it is enough to justify the claim (4.9) to conclude the proof.

By Lemma 3.1, for every random variable R of density function fℎ(t,x, u, x) and

every c ∈ ℝd, we have

E[ec⋅R] ≤ eC2ℎ(1 + C2ℎ),

where C2 := sup(t,x,u)∈QT
(

1
2 ∣c
⊤at,x0 c∣ + ∣bt,xu ⋅ c∣ + 1

2 ∣c
⊤at,xu c∣

)
. It follows by taking

conditional expectation on ec⋅X
ℎ
n that

E[ec⋅X
ℎ
n ] ≤ C0(c) := sup

ℎ≤ℎ0
eC2T (1 + C2ℎ)T/ℎ < ∞.

Let c be the vectors of the form (0, ⋅ ⋅ ⋅ , 0,±C, 0, ⋅ ⋅ ⋅ , 0)⊤, we can easily conclude that

EeC∣Xℎ
n ∣ is uniformly bounded for all ℎ ≤ ℎ0 and Xℎ = Xℎ,� with � ∈ Aℎ. Further

more, in spirit of Remark 4.1 and by the same arguments as (3.6) in the proof of

Proposition 2.5, supℙ∈PR Eℙ[eC∣XT ∣] is bounded. And therefore, we proved the claim

(4.9).

Finally, we finish this section by providing two convergence lemmas, but leave their

proofs in Appendix.

Lemma 4.4. (i) Let (ℙℎ)0<ℎ≤ℎ0 be a sequence of probability measures such that ℙℎ ∈
Pℎ. Then (ℙℎ)0<ℎ≤ℎ0 is precompact, and any cluster point belongs to PR.

(ii) Let ℙ ∈ PS0. Then we can construct a sequence of probability measures

(ℙℎ)0<ℎ≤ℎ0 such that ℙℎ ∈ Pℎ and ℙℎ → ℙ as ℎ→ 0.
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Lemma 4.5. Suppose that Assumptions 1 holds true, Φ and L satisfy (2.9). Then

sup
ℙ∈PS0

Eℙ[Ψ] = sup
ℙ∈PR

Eℙ[Ψ].

4.1.3 Proof of the general convergence (Theorem 2.6)

Finally, we are ready to give the proof of Theorem 2.6.

Proof of Theorem 2.6. Since Ψ ∈ L∗1 by Lemma 4.3, then in spirit of Lemma 4.2,

we get from (i) of Lemma 4.4 that

lim sup
ℎ→0

sup
ℙℎ∈Pℎ

Eℙℎ [Ψ] ≤ sup
ℙ∈PR

Eℙ[Ψ].

Moreover, it follows by (ii) of Lemma 4.4 that

lim inf
ℎ→0

sup
ℙℎ∈Pℎ

Eℙℎ [Ψ] ≥ sup
ℙ∈PS0

Eℙ[Ψ].

We hence conclude the proof of the theorem by Lemma 4.5 and (4.6), (4.7).

4.2 Proofs of Theorem 2.7

The proof of Theorem 2.7 is similar to Dolinsky [7], where the author uses the invari-

ance principle technique of Sakhanenko [23] to approximate the discrete-time martin-

gales. In our context, we shall approximate discrete-time semimartingales.

4.2.1 From continuous to discrete-time semimartingale

The next result is similar to Lemmas 4.2 and 4.3 of Dolinsky [7], which states that a

continuous martingale can be approximated by its discrete-time version.

In (2.12), we assume that E is a convex compact subset in S+
d ×ℝ

d and �(t,x, u) = b,

�(t,x, u) = a1/2 for every u = (a, b) ∈ E. Given a strategy � = (at, bt)0≤t≤T ∈ U as

well as a discrete time grid � = (tk)0≤k≤n (tk := kℎ, ℎ := T/n ≤ ℎ0), let us define

some discrete-time processes:

B�,�
0 := 0, B�,�

k+1 := B�,�
k + ΔB�,�

k+1 with ΔB�,�
k+1 := E�k

[ ∫ tk+1

tk

bsds
]
,

ΔM�,�
k+1 :=

∫ tk+1

tk

(abs)
1/2dWs with abs := as − ΔB�,�

k+1

(
ΔB�,�

k+1

)⊤
/ℎ, (4.11)

M�,�
k+1 := M�,�

k + ΔM�,�
k+1 and X�,�

k := x0 + B�,�
k + M�,�

k ,

where E�k [⋅] := E[⋅∣ℱ�k ] for ℱ�k := �(X�,�
0 , ⋅ ⋅ ⋅ , X�,�

k ). We notice that by Remark 3.2,

the matrix abs defined by (4.11) is strictly positive for every s under Assumption 1 and

hence ΔM�,� is well defined. We denote also

ΔA�,�k+1 := E�k
[
ΔM�,�

k+1(M�,�
k+1)⊤

]
= E�k

[ ∫ tk+1

tk

asds
]
− ΔB�,�

k+1(ΔB�,�
k+1)⊤.

18



Similarly, for every (x, �) = (x0, ⋅ ⋅ ⋅ , xn, �1, ⋅ ⋅ ⋅ , �n) ∈ ℝd(n+1)×(S+
d ×ℝd)n, a discrete-

time version of function Ψ in (4.5) can be given by

Ψ�(x, �) :=
n−1∑
k=0

ℎL
(
tk, x̂⋅, �k+1

)
+ Φ(x̂⋅), (4.12)

where x̂ is the linear interpolation function of x0, ⋅ ⋅ ⋅ , xn.

Now, we introduce a discrete-time version of the optimization problem (2.3):

V � := sup
�∈U

E
[
Ψ�(X�,� , ��,�)

]
, with ��,�k :=

(1

ℎ
ΔA�,�k ,

1

ℎ
ΔB�,�

k

)
. (4.13)

Remark 4.6. The definition of M�,� in (4.11) uses a perturbation version of a. The

main purpose is to adapt the biased term appearing in the variance term of (3.4). In

particular, it follows that ��,�k ∈ Eℎ almost surely for

Eℎ :=
{

(a− ℎbb⊤, b) : (a, b) ∈ E
}
. (4.14)

Lemma 4.7. (i) There is a constant C independent of ℎ = 1/n such that

sup
�∈U

E
∣∣X�
⋅ − X̂�,� ⋅

∣∣2 ≤ Cℎ1/2. (4.15)

(ii) It follows that under conditions (2.9) and (2.13), there is a constant C such that∣∣V − V �
∣∣ ≤ Cℎ1/4. (4.16)

Proof. (i) Given a control � = (at, bt)0≤t≤T ∈ U , denote

B�
t :=

∫ t

0
bsds, M̃�

t :=

∫ t

0
a1/2
s dWs and M�

t :=

∫ t

0
(abs)

1/2dWs.

Then it is clear that X�
t = X0 + B�

t + M̃�
t . Since �s = (as, bs) is uniformly bounded,

there is a constant C independent of n such that

sup
�∈U

E
∣∣∣ ∫ T

0
�sds−

n∑
k=1

ℎ��,�k

∣∣∣2 ≤ C
1

n
, (4.17)

and

sup
�∈U

E
∣∣B�
⋅ − B̂�,� ⋅

∣∣2 ≤ C
1

n
.

Moreover, it follows by Lemmas 4.2 of Dolinsky [7] that

sup
�∈U

E
∣∣M̃�
⋅ − M̂�,� ⋅

∣∣2 ≤ 2 sup
�∈U

E
[∣∣M̃�

⋅ −M�
⋅
∣∣2 + E

∣∣M�
⋅ − M̂�,� ⋅

∣∣2] ≤ C
1√
n
.

Therefore, by the fact that ∣X�
⋅ − X̂�,� ⋅∣2 ≤ 2

(
∣B�
⋅ − B̂�,� ⋅∣2 + ∣M̃�

⋅ − M̂�,� ⋅∣2
)
, we

proved (4.15).
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(ii) For the second assertion, we remark that by (2.13), for every � ∈ U ,

∣∣∣ ∫ T

0
L(s,X�

⋅ , �s)ds−
n−1∑
k=0

ℎL
(
tk, X̂�,� ⋅, �

�,�
k+1

)
+ Φ(X�

⋅ )− Φ(X̂�,� ⋅)
∣∣∣

≤ C exp
(
C(∣X�

⋅ ∣+ ∣X̂�,� ⋅∣)
) (∣∣X�

⋅ − X̂�,� ⋅
∣∣+ ℎ+

∣∣∣ ∫ T

0
�sds−

n∑
k=1

ℎ��,�k

∣∣∣).
With similar arguments as used at the beginning of the proof of Proposition 2.5, we

have

sup
�∈U

E
[
e2C(∣X�

⋅ ∣+∣X̂�,� ⋅∣)] < +∞, for every C > 0.

Finally, it follows by (4.13), (4.15) together with Cauchy-Schwarz inequality that (4.16)

holds true.

4.2.2 Invariance principle in approximation of semimartingales

Let X� be a semimartingale on the discrete time grid (tk)0≤k≤n in the probability

space (Ω,ℱ ,ℙ). We have also characteristics B� and M� defined by decomposition

with respect to the natural filtration of X�, let ΔA�, ΔB� be the conditional increment

terms as ΔA�,� , ΔB�,� defined at the beginning of Section 4.2.1. Suppose in addition

that there is a constant C0 > 0 such that E∣ΔX�
k ∣3 ≤ C0 and ( 1

ℎΔA�k ,
1
ℎΔB�

k ) ∈ Eℎ ⊂
S+
d × ℝd a.s., where Eℎ is defined in (4.14).

Let H : Eℎ × [0, 1]→ ℝd be a measurable mapping such that for every (a, b) ∈ Eℎ
and random variable U with uniform distribution on [0, 1],

EH(a, b, U) = bℎ, VarH(a, b, U) = aℎ, and E∣H(a, b, U)∣3 < CH , (4.18)

for a constant CH ≥ C0.

Now, on another probability space (Ω,ℱ ,ℙ) equipped with U1, ⋅ ⋅ ⋅ , Un and U1, ⋅ ⋅ ⋅ , Un
which are i.i.d. with uniform distribution on [0, 1], we can approximate the distribution

of X in Ω by sums of random variables of the form H(a, b, U) in Ω.

Lemma 4.8. There is a constant C such that for every Θ > 0, we can construct

two semimartingales X
�

and X
ℎ

on (Ω,ℱ ,ℙ) as well as ΔA
�

and ΔB
�

such that

(X
�
,ΔA

�
,ΔB

�
) in (Ω,ℱ ,ℙ) has the same distribution as that of (X�,ΔA�,ΔB�) in

(Ω,ℱ ,ℙ). Moreover,

X
ℎ
k = X

�
0 +

k∑
i=1

H(ΔA
�
i ,ΔB

�
i , U i) and ℙ

(
max

1≤k≤n

∣∣X�
k −X

ℎ
k

∣∣ > Θ
)
≤ CCHn

Θ3
. (4.19)

We refer to Lemma 3.2 of Dolinsky [7] for a technical proof, where the main idea

is to use the techniques of invariance principle of Sakhanenko [23].

Remark 4.9. The process X
ℎ

is defined in (4.19) by characteristics of X
�

, with U

as well as function H. If we stay in the general stochastic control problem context,

H is a function depending on x, it follows then that the process X
ℎ

is constructed by
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using functions of the form H(tk, X
�
, ⋅ ⋅ ⋅ ), which may not be an admissible controlled

semimartingale defined in (3.11). This is the main reason for which we need to suppose

that H is independent of x in (2.12) to deduce the convergence rate in Theorem 2.7.

Remark 4.10. With Hℎ given by (3.9), set

H(a, b, x) := Hℎ(0, 0, a+ bb⊤ℎ, b, x), ∀(a, b, x) ∈ Eℎ × ℝd. (4.20)

Since (a + bb⊤ℎ, b) ∈ E for every (a, b) ∈ Eℎ, then the above function (4.20) is well

defined. Moreover, it follows by Lemma 3.1 that H satisfies (4.18) with CH ≤ C0n
−3/2,

for C0 independent of n. In particular, let Θ = n−1/8, then

ℙ
(

max
1≤k≤n

∣∣X�
k −X

ℎ
k

∣∣ > 1

n8

)
≤ C1

1

n8
,

for another constant C1 independent of n (or equivalently of ℎ := T/n).

4.2.3 Proof of Theorem 2.7

By Theorem 3.4 and Lemma 4.7, we only need to prove separately that

V � ≤ V ℎ
0 + C"ℎ

1/8−", (4.21)

V ℎ
0 ≤ V � + C"ℎ

1/8−", (4.22)

and ∣∣V ℎ
0 − V �

∣∣ ≤ Cℎ1/8, if L and Φ are bounded. (4.23)

First inequality (4.21) For every � ∈ U as well as the discrete-time semimartingale

X�,� defined at the beginning of Section 4.2.1, we can construct, following Lemma 4.8,

(X
�
,ΔA

�
,ΔB

�
) and X

ℎ
in a probability space (Ω,ℱ ,ℙ) with H(a, b, x) := Hℎ(0, 0, a+

bb⊤ℎ, b, x) as in Remark 4.10, such that the law of (X
�
,ΔA

�
,ΔB

�
) under ℙ is the

same as (X�,� ,ΔA�,� ,ΔB�,�) in (Ω,ℱ ,ℙ), and (4.19) holds true for every Θ > 0. Fix

Θ := ℎ1/8 and denote

ℰ :=
{

max
0≤k≤n

∣X�
k −X

ℎ
k ∣ > Θ

}
.

Denote also

�� = (��k)1≤k≤n with ��k :=
1

ℎ

(
ΔA

�
k , ΔB

�
k

)
.

By the same arguments in proving the claim (4.9), we know that Eℙ[ exp
(
C(∣X̂�

⋅∣ +

∣X̂ℎ
⋅∣)
)]

is bounded by a constant independent of � ∈ U . It follows by the definition

of Ψd in (4.12) as well as (2.9) and (2.13) that for every " > 0, there is a constant C"
independent of � ∈ U such that

Eℙ
[∣∣∣Ψd(X

�
, ��) − Ψd(X

ℎ
, ��)

∣∣∣] ≤ CEℙ[ exp
(
C(∣X̂�

⋅∣+ ∣X̂
ℎ
⋅∣)
)∣∣X̂�

⋅ − X̂
ℎ
⋅
∣∣]

≤ C"
(
ℎ1/8 + ℙ(ℰ)1/(1−8")

)
≤ C"ℎ

1/8−", (4.24)
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where the second inequality follows from Hölder inequality and Remark 4.10.

Next, we claim that

Eℙ[Ψd(X
ℎ
, ��)

]
= Eℙ

[ n−1∑
k=0

ℎL
(
tk, X̂

ℎ
⋅, �

�
k+1

)
+ Φ(X̂

ℎ
⋅)
]
≤ V ℎ

0 . (4.25)

Then by the arbitrariness of � ∈ U , it follows by the definition of V � in (4.13) that

(4.21) holds true. Hence we only need to prove the claim (4.25).

We can use the randomness argument as in Dolinsky, Nutz and Soner [8] for prov-

ing their Proposition 3.5. By the expression of X
ℎ

in (4.19), using regular conditional

probability distribution, there is another probability space (Ω̃, ℱ̃ , ℙ̃) together with inde-

pendent uniformly distributed random variables (Ũk)1≤k≤n, (Ũ ′k)1≤k≤n and measurable

functions Πk : [0, 1]k × [0, 1]k → Eℎ such that with

(ΔÃk, ΔB̃k) := Πk(Ũ1, ⋅ ⋅ ⋅ , Ũk, Ũ ′1, ⋅ ⋅ ⋅ , Ũ ′k)

and

X̃k := x0 +

k∑
i=1

H(ΔÃi,ΔB̃i, Ũi),

the distribution of (X̃k,ΔÃk,ΔB̃k)1≤k≤n in (Ω̃, ℱ̃ , ℙ̃) equals to (X
ℎ
k ,ΔA

�
k ,ΔB

�
k)1≤k≤n

in (Ω,ℱ ,ℙ). Denote for every u = (u1, ⋅ ⋅ ⋅ , un) ∈ [0, 1]n,

X̃u
k := x0 +

k∑
i=1

H
(
Πi(Ũ1, ⋅ ⋅ ⋅ , Ũi, u1, ⋅ ⋅ ⋅ , ui), Ũi

)
.

Since H is given by (4.20), it follows by the definition of Eℎ in (4.14) as well as that

of V ℎ
0 in (3.12) that, with strategy �̃uk := 1

nΠk(Ũ1, ⋅ ⋅ ⋅ , Ũk, u1, ⋅ ⋅ ⋅ , uk),

E[Ψd(X̃
u, �̃u)] ≤ V ℎ

0 .

And hence,

E
[
Ψd(X

ℎ
, ��)

]
= E

[
Ψd(X̃

Ũ ′ , �̃Ũ
′
)
]

=

∫
[0,1]n

E[Ψ�(X̃u, �̃u)]du ≤ V ℎ
0 .

Therefore, we proved the claim, which concludes the proof of inequality (4.21).

Second inequality (4.22) Let F̃ℎ(a, b, x) denote the distribution function of the

random variable bℎ+a1/2Wℎ, where Wℎ is of Gaussian distribution N(0, ℎId). Denote

also by F̃−1
ℎ (a, b, x) the inverse function of x 7→ F̃ℎ(a, b, x). Then for every Xℎ,� with

� ∈ Aℎ, we can construct X
ℎ

as in (4.19) with H(a, b, x) = F̃−1
ℎ (a, b, x) such that its

distribution is closed to that of Xℎ,�. By the same arguments as in the proof of (4.21),

we can prove (4.22).
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Third inequality (4.23) When Φ and L are both bounded, we can improve the

estimations in (4.24) to

Eℙ
∣∣∣Ψd(X

�
, ��) − Ψd(X

ℎ
, ��)

∣∣∣
≤ 2∣Ψd∣∞ℙ(ℰ) + CEℙ[ exp

(
C(∣X̂�

⋅∣+ ∣X̂
ℎ
⋅∣)
)]
ℎ1/8 ≤ Cℎ1/8.

And all the other arguments in the proof of (4.21) and (4.22) hold still true. We hence

conclude the proof of (4.23).

5 The implementation of the scheme

We shall discuss some issues for the implementation of the scheme (2.7).

5.1 The degenerate case

The numerical scheme (2.7) demands that �(t,x, u) ≥ �0(t,x) > "0Id for every

(t,x, u) ∈ QT in Assumption 1, which implies that the volatility part should be all

non-degenerate. However, many applications are related to degenerate cases.

Example 5.1. Let d = 1, and E = [a, a], � ≡ 0 and �(u) :=
√
u for u ∈ E. A

concrete optimization problem is given by

sup
�∈U

E Φ
(
X�
T ,

∫ T

0
�tdt

)
.

Introducing X̃�
t :=

∫ t
0 �sds, the above problem turns to be

sup
�∈U

E Φ
(
X�
T , X̃

�
T

)
,

which can be considered in the framework of (2.3). However, the volatility matrix of

the controlled process (X� , X̃�) is clear degenerate.

The above example is the case of variance option pricing problem in uncertain

volatility model in finance.

Example 5.2. An typical example of variance option is the option “call sharpe”, where

the payoff function is given, with constants S0 and K, by

Φ
(
XT , VT

)
:=

(
S0 exp(XT − VT /2)−K

)+
√
VT

.

To make the numerical scheme (2.7) implementable in the degenerate case, we can

perturb the volatility matrix. Concretely, given an optimization problem (2.3) with

coefficients � and �, we set

�"(t,x, u) :=
(
��⊤(t,x, u) + "2Id

)1/2
, a"(t,x, u) := �"(�")⊤(t,x, u). (5.1)
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Clearly, a" is nondegenerate. Given � ∈ U , let X�," be the solution to SDE

X�,"
t = x0 +

∫ t

0
�(s,X�,"

⋅ , �s)ds +

∫ t

0
�"(s,X�,"

⋅ , �s)dWs. (5.2)

Then a new optimization problem is given by

V " := sup
�∈U

E
[ ∫ T

0
L(t,X�,"

⋅ , �t)dt + Φ(X�,"
⋅ )
]
,

which is no more degenerate. A similar idea was also illustrated in Guyon and Henry-

Labordère [15] as well as in Jakobsen [17] for degenerate PDEs. We notice in addition

that by applying Ito’s formula on the process ∣X�
t −X̃

�,"
t ∣2, then taking expectations and

using classical method with Gronwall’s lemma, we can easily get the error estimation

E sup
0≤t≤T

∣∣X�
t − X̃

�,"
t

∣∣2 ≤ C"2.

It follows that when L and Φ satisfy conditions (2.9) and (2.13), we have

∣V − V "∣ ≤ C ".

5.2 The simulation-regression method

To make scheme (2.7) implementable, a natural technique is to use the simulation-

regression method to estimate the conditional expectations arising in the scheme. First,

given a function basis, we propose a projection version of the scheme (2.7). Next,

replacing the L2−projection by least-square regression with empirical simulations of

X0, it follows an implementable scheme. The error analysis of the simulation-regression

method has been achieved by Gobet, Lemor and Warin [13] in the context of BSDE

numerical schemes. In this paper, we shall just describe the simulation-regression

method for our scheme and leave the error analysis for further study.

5.2.1 The Markovian setting

In practice, we usually add new variables in the optimization problem and make the

dynamic of X0 (given by (2.6)) Markovian. Suppose that for d′ > 0, there are functions

�0,k : ℝd×ℝd′ → ℝd, �0,k : ℝd×ℝd′ → Sd and sk : ℝd×ℝd′ → ℝd for every 1 ≤ k ≤ n
such that

�0(tk, X̂0⋅) = �0,k(X
0
k , S

0
k), �0(tk, X̂0⋅) = �0,k(X

0
k , S

0
k)

and S0
k+1 := sk+1(S0

k , X
0
k+1). Then (X0

k , S
0
k)0≤k≤n is a Markovian process from (2.6).

Suppose further that there are functions (�k, �k, Lk) : ℝd × ℝd′ × E → ℝd × Sd × ℝ
and Φ : ℝd × ℝd′ → ℝ such that

�(tk, X̂0⋅, u) = �k(X
0
k , S

0
k , u), �(tk, X̂0⋅, u) = �k(X

0
k , S

0
k , u),

and L(tk, X̂0⋅, u) = Lk(X
0
k , S

0
k , u), Φ

(
X̂0⋅

)
= Φ

(
X0
n, S

0
n

)
.
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Then it is clear that the numerical solution Y ℎ
k of (2.7) can be represented as a mea-

surable function of (X0
k , S

0
k), where the function G in (2.5) turns to be

G(tk, x, s, , p)

:= sup
u∈E

(
Lk(x, s, u) +

1

2

(
�k�

⊤
k (x, s, u)− �0,k�

⊤
0,k(x, s)

)
⋅  + �k(x, s, u) ⋅ p

)
.(5.3)

Remark 5.3. In finance, when we consider the payoff functions of exotic options

such as Asian option, lookback option, we can usually add the cumulative average, or

cumulative maximum (minimum) to make the system Markovian.

5.2.2 The projection scheme

To simplify the notations, let us just give the scheme for the case d = d′ = 1, while

that in general case can be easily deduced; we also omit the superscript ℎ for (Y, Z,Γ).

Let (pYk,i)1≤i≤I, 0≤k≤n−1 be a family of basis functions where every pYk,i is function

defined on ℝ2, so that

SYk :=
{ I∑
i=1

�ip
Y
k,i(X

0
k , S

0
k), � ∈ ℝI

}
,

is a convex subclass of L2(Ω,ℱT ). A projection operator PYk is defined by

PYk (U) := arg min
S∈SYk

E
∣∣U − S∣∣2, ∀U ∈ L2(Ω,ℱT ). (5.4)

Similarly, with basis functions pZk,i and pΓ
k,i, we can define SZk , SΓ

k as well as the

projections operators PZk , PΓ
k . Inspired by [14], we propose the following two projection

schemes: with the same terminal condition

Ŷn = Φ(X0
T , S

0
T ),

First scheme⎧⎨⎩
Ŷk = PYk

(
Ŷk+1 + ℎG(tk, X

0
k , S

0
k , Γ̂k, Ẑk)

)
,

Ẑk = PZk
(
Ŷk+1 (�⊤0 )−1 ΔWk+1

ℎ

)
,

Γ̂k = PΓ
k

(
Ŷk+1 (�⊤0 )−1 ΔW⊤k+1ΔWk+1−ℎId

ℎ2
�−1

0

)
.

Second scheme⎧⎨⎩
Ŷk = PYk

(
ŶT +

∑n−1
i=k ℎG(tk, X

0
k , S

0
k , Γ̂i, Ẑi)

)
,

Ẑk = PZk
([
ŶT +

∑n−1
i=k+1 ℎG(tk, X

0
k , S

0
k , Γ̂i, Ẑi)

]
(�⊤0 )−1 ΔWk+1

ℎ

)
,

Γ̂k = PΓ
k

([
ŶT +

∑n−1
i=k+1 ℎG(tk, X

0
k , S

0
k , Γ̂i, Ẑi)

]
(�⊤0 )−1 ΔW⊤k+1ΔWk+1−ℎId

ℎ2
�−1

0

)
.

We note that the numerical solutions are of the form Ŷk = yk(X
0
k , S

0
k), Ẑk =

zk(X
0
k , S

0
k) and Γ̂k = k(X

0
k , S

0
k) with functions yk, zk, k.
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5.2.3 Empirical regression scheme

The simulation-regression scheme consists in simulating M empirical processes by

(2.6), denoted by (X0,m, S0,m)1≤m≤M , then replacing the projection of (5.4) by em-

pirical least square method to estimate functions yk, zk and k. Concretely, with the

simulation-regression method, the first scheme turns to be

yk =
I∑
i=1

�̂yk,ip
Y
k,i, zk =

∑I
i=1 �̂

z
k,ip

Z
k,i, k =

I∑
i=1

�̂k,ip
Γ
k,i, (5.5)

where

�̂yk := arg min
�∈ℝI

M∑
m=1

( I∑
i=1

�ip
Y
k,i(X

0,m
k , S0,m

k )

− yk+1(X0,m
k+1, S

0,m
k+1) − ℎG(tk, ⋅, , z)(X0,m

k , S0,m
k )

)2
.

and �̂y, �̂ are also given by the corresponding least square method. Similarly, we can

easily get an empirical regression scheme for the second projection scheme.

Finally, we finish by remarking that in error analysis as well as in practice, we

usually need to use truncation method in formula (5.5) with the a priori estimations

of (Ŷk, Ẑk, Γ̂k).

A Appendix

We shall give here the proofs of Lemmas 4.4 and 4.5. The arguments are mainly due

to Section 8 of Kushner [18], we adapt his idea of proving his Theorems 8.1, 8.2 and

8.3 in our context.

We first recall that given �ℎ ∈ Aℎ, Xℎ,�ℎ is defined by (3.11) and mℎ,�ℎ(t, du) :=

�(�ℎ)k(du) for t ∈ (tk, tk+1]. Denote �ℎs := (�ℎ)k for s ∈ (tk, tk+1] and Eℎ,�ℎk [⋅] :=

E[⋅∣ℱℎ,�ℎk ] for ℱℎ,�ℎk := �(Xℎ,�ℎ
0 , ⋅ ⋅ ⋅ , Xℎ,�ℎ

k ). Then for every ' ∈ C∞b (ℝd), it follows

by Taylor expansion that

Eℎ,�ℎk

[
'(Xℎ,�ℎ

k+1 )
]
− '(Xℎ,�ℎ

k ) = Eℎ,�ℎk

[ ∫ tk+1

tk

ℒs,X̂
ℎ,�ℎ ,�ℎs'(X̂ℎ,�ℎs) ds

]
+ "ℎ, (A.1)

where ∣"ℎ∣ ≤ C(ℎ3/2 + ℎ�(ℎ)) and � is the continuity module of � and � in t given by

(2.2), with a constant C depending on ' but independent of (ℎ, �ℎ).

Proof of Lemma 4.4. (i) First, let (ℙℎ)ℎ≤ℎ0 be the sequence of probability measures

on Ω
d

given in the lemma. Suppose that ℙℎ is induced by (X̂ℎ,�ℎ ,mℎ,�ℎ) with �ℎ ∈ Aℎ,

then by (3.4), it is clear that there is a constant C3 such that for all 0 ≤ s ≤ t ≤ T ,

sup
0<ℎ≤ℎ0

Eℙℎ
[
∣!dt − !ds ∣3

]
= sup

0<ℎ≤ℎ0
E
[∣∣∣X̂ℎ,�ℎ

t − X̂ℎ,�ℎ
s

∣∣∣3] ≤ C3∣t− s∣3/2,

and hence it follows the precompactness of
(
ℙℎ∣Ωd

)
ℎ≤ℎ0 . Further, since E is supposed

to be a compact Polish space, it follows by Prokhorov’s Theorem that M([0, T ] × E)

26



(the space of all positive measures m on [0, T ] × E such that m([0, T ] × E) = T ) is

compact under the weak convergence topology. Then M is also compact as a closed

subset of M([0, T ]×E). It follows that the class of probability measures (ℙℎ∣M)ℎ≤ℎ0 on

M is precompact (still by Prokhorov’ Theorem). Therefore, (ℙℎ)ℎ≤ℎ0 is precompact.

Suppose that ℙ is a limit measure of (ℙℎ)ℎ≤ℎ0 , we shall show that ℙ ∈ PR. It is enough

to show that for every ' ∈ C∞b (ℝd),

Eℙℎ
[
f
(
!dsi ,msi( j), i ≤ I, j ≤ J

) (
Mt(')−Ms(')

)]
→ 0 as ℎ→ 0, (A.2)

for arbitrary I, J ∈ ℕ, si < s < t,  j ∈ Cb([0, T ]×E) and bounded continuous function

f , where the process M(') is defined by (4.4). Since ℙℎ is induced by (X̂ℎ,�ℎ ,mℎ,�ℎ)

with �ℎ ∈ Aℎ, then

Eℙℎ
[
f
(
!dsi ,msi( j), i ≤ I, j ≤ J

) (
Mt(')−Ms(')

)]
= E

[
f
(
X̂ℎ,�ℎsi ,

∫ si

0
 j(�

ℎ
r )dr, i ≤ I, j ≤ J

)[
'(X̂ℎ,�ℎ t)− '(X̂ℎ,�ℎs)−∫ t

s
ℒs,X̂

ℎ,�ℎ ,�ℎs'(X̂ℎ,�ℎr)dr
]]

which turns to 0 as ℎ→ 0 by taking conditional expectations and using (A.1).

(ii) Suppose that ℙ� ∈ PS0 is induced by a controlled process X�� and the control

�� ∈ U0 is of the form ��s = w(s,X��

rki
), where w(s,x) := wk(xrki

, i ≤ Ik) when

s ∈ (�k, �(k+1)] for functions (wk)k≥0 and a constant � > 0. Let ℙ� be the probability

measure on Ωd induced by X�� , which is clearly the unique probability measure on Ωd

under which X0 = x0 a.s. and

'(Xt) −
∫ t

0
ℒs,X⋅,w(s,X⋅)'(Xs)ds (A.3)

is a Fd−martingale for every ' ∈ C∞b (ℝd), where X is the canonical process of Ωd and

ℒ is defined by (4.3).

Now, for every ℎ ≤ ℎ0, let us consider the strategy � ∈ Aℎ defined by

�k(x0, ⋅ ⋅ ⋅ , xk) := w(tk, x̂).

Denote by ℙℎ the probability measure induced by Xℎ,� on Ωd, it follows by the same

arguments as in proving (A.2), together with the uniqueness of solution to the martin-

gale problem associated to (A.3), that ℙℎ → ℙ�. Moreover, since under ℙ�, x 7→ w(s,x)

is continuous, it follows that ℙℎ → ℙ�, where ℙℎ denotes the probability measure on

Ω induced by (X̂ℎ,�,mℎ,�).

In preparation of the proof for Lemma 4.5, we shall introduce another subset of

M(Ω
d
). Let � > 0, we consider the strategy ��t = vk(Xs, s ≤ k�) for t ∈ (�k, �(k +

1)], where vk are measurable functions defined on C([0, �k],ℝd). Denote by PSc the

collection of all probability measures induced by (X̂�� ,m��) as in (4.2), with �� of this

form. Then it is clear that

PS0 ⊂ PSc ⊂ PS ⊂ PR.
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Proof of Lemma 4.5. First, by almost the same arguments as in Section 4 of

El Karoui, Huu Nguyen and Jeanblanc [9] (especially that of Theorem 4.10) that for

every ℙ ∈ PR, there is a sequence of probability measures ℙn in PSc such that ℙn → ℙ,

where the main idea is using Fleming’s chattering method to approximate a measure on

[0, T ]×E by piecewise constant processes. We just remark that the uniform continuity

of � and � w.r.t. u in (2.2) is needed here, and the “weak uniqueness” assumption in

their paper is guaranteed by Lipschitz conditions on � and �. Then we conclude by the

fact that we can approximate a measurable function vk(x) defined on C([0, �k],ℝd) by

functions wk(xti , i ≤ I) which is continuous (we notice that in Theorem 7.1 of Kushner

[18], the author propose to approximate a measurable function vk by functions wk
which are constant on rectangles).
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