Photochemical dynamics on $\sigma \pi$ excited states in ethylene cation $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$

asuits@chem.wayne.edu
joalland@chem.wayne.edu

Baptiste Joalland ${ }^{1}$, Toshifumi Mori², Todd J. Martinez ${ }^{2}$ and Arthur G. Suits ${ }^{1}$

${ }^{1}$ Department of Chemistry, Wayne State University, Detroit, MI USA

$$
{ }^{2} \text { PULSE Institute and Department of Chemistry, Stanford University, Stanford, CA USA }
$$

The ethylene cation $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$is, with the isoelectronic neutral vinyl $\mathrm{C}_{2} \mathrm{H}_{3}$, the simplest organic π radical system: one electron populates a unique unique π orbital in the ground state electronic configuration. This system

Electronic structure

Ground state:
$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}^{+}+\mathrm{H}_{2}$
2.62 eV (I) $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}{ }^{+}+\mathrm{H}$
2.70 eV (2)
transition state $(1.01 \mathrm{eV}) \quad$ bridged minimum $(1.0 \mathrm{e}$ eV $)$
Minima and connecting saddle-point on the ground state PES at the SAA-CASPT2(7,8) level of theory

- ultra-flat double well along torsional coordinate
- torsional barrier <0.01 eV (MRCI and CAS)
- minima around $20-25$ deg. at the MRCI level, lower angle at the CASSCF level (lack of dynamical correlation) and comprised between 8 and 30 deg. in the literatur
- PPE tends to strongly decrease the torsional angle at 0 - ZPE tends to strongly decrease the torsional angle at $O K$
\Rightarrow No ethylideng-like minimum $\left(\mathrm{CH}_{3} \mathbf{C H}^{+}\right)$

Excited states:

The dominant electronic configurations of the first three electronic states of the ethylene radical cation and the different active spaces used in this study (left); ; schematic representation of the most important molecular orbitals in terms of a linear combination of atomic orbitals (right).

Relaxed PESs of ground state D0, on states DI, D2, D3, and $\pi \pi^{*}$ state D4 along
torsion calculated at the MRCI level of theory torsion calculated at the MRCI level of theory.

References

Photochemical Dynamics with the Ab Initio Multiple Spawning Method

For each initial state: 2 sets of Wigner distributions generated from planar (neutral, P^{0}) and twisted (cationic, P^{+}) geometries (optimized at the MP2/6-3। ${ }^{* *}$ level). Franck-Condon energies and MECls Distributions of spawning geometries

Time evolution of the populations

Distribution of the spawning events characterized by their torsional angle T as functions of time, total energy and initial torsional angle T_{i}, with contours interpolated from population transfers.

Population transfer

As in neutral ethylene, DI/DO (SI/SO) population transfer occurs in broader range compared to D2/DI (S2/SI). DI/DO spawning events associated to planar al are closer to the structure a2. The latter can howeve DIIDO and D2/DI transitions associated to MECI b are "tight" (nea geometry) and involves the most important population transfer.

Typical DI-D0 trajectories involving Cls at $\mathrm{T}=0$ deg. and at $\mathrm{T}=90 \mathrm{deg}$

- On the left the system spawns to the ground state (black) via the Cl
at 0 deg $(3$ times) no morer living trajectory on DI after 60 fs. We
notice I short H migration event. - On the right the initiail wavepac
via the Cl at 90 deg. and then disappears after 50 fs. Then its 2 DO children "back-spawn" to $\mathrm{DI}(3$ times, cyan) via the same Cl at 90 deg
that is encounters twice each complete CH2 rotation. The DI backthat is encounters twice each complete CH2 rotation. The DI back-
spawned children rapidly loose the torsional excitation then spawn to D0 (grey) and we can observe other later back-spawn events from this $2^{\text {nd }}$ generation of DO wavepackets.

What have we learned?

- No dissociation occurs from the excited states, nor any migration event over a thousand of trajectories. The main Cl involved in the relaxation to the ground state is located near the H migration TS , and leads to prompt H migration events.
- Torsion is involved in the opening of a nonadiabatic relaxation pathway that allows a more rapid transition to the ground state. Besides, the decay through the Jahn-Teller Cl at $\mathrm{T}=90^{\circ}$ provokes strong excitation of the torsional mode, and ultimately hindered rotation with a lifetime comparable of the vibration energy redistribution ($\sim 0.5 \mathrm{ps}$).
- Revisiting the changes of the $\mathrm{H} / \mathrm{H}_{2}$ ratio measured in the vibrationally-mediated photodissociation experiments (cf. figure), the threshold in favor of H loss observed at an energy of 4.1 eV may be a signature of the opening of the torsional channel on the B state. The excitation of the torsional mode could then either directly favor the H loss channel with a lower C-H dissociation energy at this geometry or indirectly by delaying the energy

